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Département d’informatique et de génie logiciel
Université Laval
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Abstract Modal Kleene algebras are Kleene algebras with forward and backward modal op-
erators defined via domain and codomain operations. They provide a concise and convenient
algebraic framework that subsumes various other calculi and allows treating quite a variety of ar-
eas. We survey the basic theory and some prominent applications. These include, on the system
semantics side, Hoare logic and PDL (Propositional Dynamic Logic), wp calculus and predicate
transformer semantics, temporal logics and termination analysis of rewrite and state transi-
tion systems. On the derivation side we apply the framework to game analysis and greedy-like
algorithms.

1 Introduction

Kleene algebras are fundamental structures in computer science, with applications rang-
ing from program development and analysis to rewriting theory and concurrency control.
Initially conceived as algebras of regular events [28], they have recently been extended in sev-
eral directions. The first direction includes omega algebra, which is a Kleene algebra with an
additional operator for infinite iteration [8], demonic refinement algebra [51] and lazy Kleene
algebra [33]. The second direction adds tests to Kleene algebra [29]. This allows reasoning
about regular programs. All these variants are similar to relational reasoning. Most of them
offer a nice balance between economy in concepts and proofs and algorithmic power. The
equational theory of Kleene algebra, for instance, can be decided by automata. The third
direction, in contrast, is modal in spirit. Here Kleene algebra is combined with a Boolean
algebra in a module-based approach [17], the scalar product modelling the application of a
modal operator to a state. This yields a calculus that is very similar to certain algebraic
approaches to propositional dynamic logics.

The modal and the relational approaches to reasoning about programs and state tran-
sition systems have been reconciled in Kleene algebra with domain [12]. The three simple
equational domain axioms open a new door: they allow the definition of modal operators se-
mantically via abstract image and preimage operations. But expressions that mention modal-
ities can still in many cases be reduced to pure Kleene algebra with tests. This preserves the
algorithmic power of the latter and also provides a very symmetric approach to reasoning
about actions and propositions or transitions and states. Compared with relation algebra,
modal Kleene algebra does not need the full power of a complete Boolean algebra as the car-
rier set, of full additivity of sequential composition, of a converse operation and of residuation;
it can make do with very lean versions of these concepts only.

In this survey, we discuss modal Kleene algebras both from the theoretical and the
practical point of view. On the theoretical side, we introduce the main concepts and review the
most important facets of a calculus. Modal Kleene algebras are mathematically quite simple:
for actions, they provide only the regular operations of addition, multiplication and reflexive
transitive closure; for propositions we have a Boolean algebra. Through their combination via
modalities, they become expressive enough for a variety of applications. We also try to point



out that our algebraic approach to modal reasoning provides some advantages over a logical
one. Algebra in general is particularly suited for structuring and abstracting. Here, structure is
imposed via symmetries and dualities, for instance in terms of Galois connections. Abstraction
is provided, for instance, by lifting modal expressions to the algebras of modal operators,
which are again algebraically well-behaved. This often allows a very brief and concise point-
free style of reasoning. We will also see that exploiting modal correspondences, switching
between relational and modal reasoning, can be very simple in modal Kleene algebra. In
some cases, there is a one-to-one translation between modal and relational proofs. This is
interesting in particular when relational reasoning is visualized by diagrams.

On the practical side, we show that modal Kleene algebra may serve both for giving
abstract program semantics and as a unifying tool that subsumes various popular program
calculi and hence admits cross-theory reasoning. Here, we show that both the weakest liberal
precondition semantics and the weakest precondition semantics can be modelled in modal
Kleene algebra. It therefore supports both partial and total program correctness. We also show
how modal Kleene algebra induces predicate transformer algebras with convenient properties.
In the field of calculi, we present subsumption and completeness results for (propositional)
Hoare logic, propositional dynamic logic and temporal logics.

In the field of system development we show that our combination of relational and modal
reasoning can be applied to reasoning about greedy algorithms, in modelling termination con-
ditions, to analysing games and in reconstructing a considerable part of the theory of abstract
rewriting in a simple and convenient way. Since we do not consider equational rewriting but
its non-symmetric extension [46], our results are immediately relevant to concurrent systems
that interact via commutation or semi-commutation properties.

Although the aim of this paper is to form an overall picture of the usefulness of modal
Kleene algebra, we do not claim completeness of our survey. E.g., an approach to pointer
analysis based on Kleene algebra [16], though highly relevant, will not be treated here. Many
of the results presented here have appeared elsewhere, and we just quote the original papers
which should be consulted for full details. However, there is also a substantial amount of new
material.

Modal Kleene algebra is a quite recent development. Although we believe that the core of
the theory is now well understood and the examples outlined below point out its universality
and practical relevance, still many questions are open. In particular as far as applications are
concerned, we feel that we have so far only scratched the surface.

The remainder of this text is organised as follows. Section 2 introduces modal semirings.
Section 3 shows game analysis as a first application of modal semirings. Section 4 extends
modal semirings to Kleene algebra with domain and to modal Kleene algebras. Section 5
relates the approach to propositional dynamic logic and its relatives. Section 6 shows how
partial and total correctness of regular programs can be modelled in modal Kleene alge-
bra. Section 7 lifts modal Kleene algebra to predicate transformer algebras. Section 8 relates
the approach with temporal logics. Section 9 reconstructs various results from the area of
termination analysis, including properties of abstract rewrite systems. Section 10 discusses
connections to modal correspondence theory. Section 11 develops a generic greedy-like al-
gorithm. Section 12 summarises the applications and points out further directions for the
approach.

2 Domain Semirings and Modalities

2.1 Test Semirings and Domain

A semiring is a structure (K,+, ·, 0, 1) such that (K,+, 0) is a commutative monoid,
(K, ·, 1) is a monoid, multiplication distributes over addition from the left and right and zero
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is a left and right annihilator, i.e., a0 = 0 = 0a for all a ∈ K (the operation symbol · is
omitted here and in the sequel). The semiring is idempotent if it satisfies a + a = a for all
a ∈ K. Then K has a natural ordering ≤ defined for all a, b ∈ K by a ≤ b iff a + b = b. It
induces a semilattice with + as join and 0 as the least element; addition and multiplication
are isotone with respect to the natural ordering.

In many contexts these operations can be interpreted as follows:

+ ↔ choice,
· ↔ sequential composition,
0 ↔ abortion,
1 ↔ identity,
≤ ↔ increase in information or in choices.

Programs and state transition systems can be described in a bipartite world in which
propositions describe sets of states and actions or events model transitions between states.
Propositions live in a Boolean algebra and actions in an idempotent semiring with the oper-
ations interpreted as above. In fact, to model regular programs, an additional operation of
iteration or reflexive transitive closure is required. The corresponding extension of semirings
to Kleene algebras is described in Section 4. In many formalisms, propositions and actions
cooperate via modal operators that view actions as mappings on propositions in order to
describe state-change and via test operators that embed propositions into actions in order to
describe measurements on states and to model the usual program constructs.

To motivate this modal view, let a semiring element a describe an action or abstract
program and a test p a proposition or assertion, also called a test. Then pa describes a
restricted program that acts like a when the initial state satisfies p and aborts otherwise.
Symmetrically, ap describes a restriction of a in its possible final states. We now introduce
an abstract domain operator p that assigns to a the test that describes precisely its enabling
states. In combination with restriction, the domain operation yields an abstract preimage
operation. This provides the semantic basis for defining modalities.

Let us now axiomatise the corresponding notions. A Boolean algebra (BA) is a comple-
mented distributive lattice. By overloading, we usually write + and · also for the Boolean
join and meet operation and use 0 and 1 for the least and greatest elements of the lat-
tice. The symbol ¬ denotes the operation of complementation. We will consistently use the
letters a, b, c, . . . for semiring elements and p, q, r, . . . for Boolean elements. We will freely
use the concepts and laws associated with Boolean algebra, including relative complement
p− q = p u ¬q and implication p→ q = ¬p+ q.

A test semiring is a two-sorted structure (K, test(K)), where K is an idempotent semiring
and test(K) ⊆ K is a Boolean algebra embedded into K such that the operations of test(K)
coincide with the restrictions of the operations of K to test(K). In particular, p ≤ 1 for all
p ∈ test(K). But in general, test(K) is only a subalgebra of the subalgebra of all elements
below 1 in K.

A semiring with domain [12] (a p-semiring) is a structure (K, p), whereK is an idempotent
semiring and the domain operation p: K → test(K) satisfies for all a, b ∈ K and p ∈ test(K)

a ≤ (pa)a, (d1)
p(pa) ≤ p. (d2)

Let us explain these axioms. As in the algebra of relations, multiplication with a test from
the left or right means domain or range restriction, respectively. Now first, since pa ≤ 1 by
pa ∈ test(K), isotonicity of multiplication shows that the first axiom can be strengthened to
an equality expressing that restriction to the full domain is no restriction at all. The second
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axiom means that after restriction the remaining domain must satisfy the restricting test. An
important consequence of the axioms is that ppreserves arbitrary existing suprema [35].

To further explain (d1) and (d2) we note that their conjunction is equivalent to each of

pa ≤ p⇔ a ≤ pa, (llp)
pa ≤ p⇔ ¬pa ≤ 0, (gla)

which constitute elimination laws for p. (llp) says that pa is the least left preserver of a.
(gla) says that ¬pa is the greatest left annihilator of a. Both properties obviously characterize
domain in set-theoretic relations.

Because of (llp), domain is uniquely characterised by the two domain axioms. Moreover,
if test(K) is complete then a domain operation always exists. If test(K) is not complete, this
need not be the case.

A prominent example of a domain semiring is the algebra REL of concrete homogeneous
binary relations over some set. There the domain operation is given by pR = R ; R˘ ∩ I,
where I is the identity relation, R˘ is the converse of R and ; is relational composition.

Further important domain semirings are the algebra PAT of path sets in a directed graph
(see e.g. [32]) and Kleene’s original algebra of formal languages, the latter ones being not very
interesting, because its test algebra is discrete, i.e., consists of 0 and 1 only.

Many natural properties follow from the axioms. Domain is uniquely defined. It is strict
(pa = 0 ⇔ a = 0), additive (p(a + b) = pa + pb), isotone (a ≤ b ⇒ pa ≤ pb), stable on tests
(pp = p) and satisfies the import/export law (p(pa) = p pa). Finally, domain commutes with
all existing suprema. See [12] for further information.

2.2 Modal Semirings

A domain semiring is called modal if additionally it satisfies

p(a pb) ≤ p(ab). (d3)

This axiom serves to make composition of multimodal operators below well-behaved. In a
modal semiring, domain is local in the following sense:

p(ab) = p(a pb).

Without (d3), only the inequality p(ab) ≤ p(apb) holds. The additional axiom (d3) guarantees
that the domain of ab is independent from the inner structure of b or its codomain; information
about the domain of b in interaction with a suffices.

A codomain operation q can easily be defined as a domain operation in the opposite
semiring, where, as usual in algebra, opposition just swaps the order of multiplication. We
call a semiring K with local domain and codomain simply a modal semiring.

Let K be a modal semiring. We can now introduce forward and backward diamond
operators by modelling their semantics as abstract preimage and image operations:

|a〉p = p(ap), 〈a|p = (pa)q, (1)

for all a ∈ K and p ∈ test(K). Let us explain why this definition is adequate. For a state
transition system a, the term ap restricts a to that part for which all final states satisfy p.
Then p(ap) selects all starting states of this remaining part; they indeed form the inverse
image of p under a. Symmetric arguments apply to the backward diamond.

The definition implies that the diamond operators are strict additive mappings (or hemi-
morphisms) on the algebra of tests. Hence for arbitrary index set I and arbitrary family
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(ai)i∈I of elements ai ∈ K the structures (test(K), {|ai〉 : i ∈ I}) and (test(K), {〈ai| : i ∈ I})
are Boolean algebras with operators à la Jónsson and Tarski [25]. Such structures are called
modal algebras in [20].

Duality with respect to opposition transforms forward diamonds into backward diamonds
and vice versa. It follows that they satisfy an exchange law, a weak analogue of the relational
Schröder law. For all a ∈ K and p, q ∈ test(K),

|a〉p ≤ ¬q ⇔ 〈a|q ≤ ¬p. (2)

De Morgan duality transforms diamonds into boxes and vice versa:

|a]p def= ¬|a〉¬p, |a〉p = ¬|a]¬p.

It follows that diamonds and boxes are lower and upper adjoints of Galois connections:

|a〉p ≤ q ⇔ p ≤ [a|q, 〈a|p ≤ q ⇔ p ≤ |a]q, (3)

for all a ∈ K and p, q ∈ test(K). The Galois connections are useful as theorem generators
and the dualities as theorem transformers.

The above-mentioned import/export law entails

p (|a〉q) = |pa〉q, p (〈a|q) = 〈ap|q. (4)

The modal axiom (d3) implies

|ab〉p = |a〉|b〉p, 〈ab|p = 〈b|〈a|p, |ab]p = |a]|b]p, [ab|p = [b|[a|p. (5)

Thus multiplication acts covariantly on forward modalities and contravariantly on backward
ones. In the sequel, when the direction of diamonds and boxes does not matter, we will use
the notation 〈a〉 and [a].

If test(K) is complete then p always exists; moreover, since it commutes with all suprema,
it has a unique upper adjoint which is q. So in this case, the modal algebra is completely
characterised by the domain axioms and the Galois connection. If test(K) is not complete, this
need not be the case. In the non-complete case, diamonds (boxes) commute with all existing
suprema (infima) of the test algebra. These and further properties are inherited from those
of domain. Further useful properties are immediate from the Galois connection. They include
cancellation laws and isotonicity and antitonicity properties for modalities. Of particular
interest are the following demodalisation laws that follow from the domain elimination law
(gla) and its dual for codomain.

|a〉p ≤ q ⇔ ¬qap ≤ 0, 〈a|p ≤ q ⇔ pa¬q ≤ 0. (6)

For a test p we have
〈p〉q = pq, [p]q = p→ q. (7)

Hence, 〈1〉 = [1] is the identity function on tests. Moreover, 〈0〉p = 0 and [0]p = 1.
To set up the connection to relational algebra, we define a modal semiring with converse

to be a modal semiring K with an additional operation ˘ : K → K that is an involution,
distributes over addition, is the identity on tests and is contravariant with respect to multi-
plication. One can show (see again [12]) that over a modal semiring with converse the axioms
(d1) and (d2) imply the Galois connection

|ă 〉p ≤ q ⇔ p ≤ |a]q. (8)
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It follows that in a modal semiring with converse all predicate transformers λp . |a〉p are
universally disjunctive, i.e., preserve all existing suprema (and that all predicate transformers
λp . |a]p are universally anti-disjunctive, i.e., transform all existing suprema into corresponding
infima). This generalizes to modal semirings, since there one can replace |ă 〉 by the backward
diamond of a. Therefore in a modal semiring with converse ˘ we have

|ă 〉 = 〈a|, |ă ] = [a|. (9)

3 Two-Player Game Analysis

3.1 Introduction

To illustrate what we can already achieve with modal semirings, we take up part of the
two-player game analysis in [42] and [3]. Such a game is given by a set of positions with a
binary relation describing the admissible moves. A position is terminal if it does not have
a successor under the move relation. The two players take turns. A player whose turn it is
but who is in a terminal position has lost the game. There are no special assumptions about
positions and moves; in particular, the move relation need not be Noetherian.

The aim is to characterize positions that mean guaranteed win (under optimal play) or
guaranteed loss (even under optimal play) and to compute a winning strategy if possible. We
do not focus particularly on computing a winning strategy, which will nevertheless come as
a byproduct from an algorithm for iteratively computing the winning and losing positions.
The following conditions are obvious:

– Every terminal position is a losing position.
– A position is a losing position iff all moves from it lead to winning positions (for the

opponent), because then there is no possibility to prevent her from winning (provided she
plays optimally).

– A position is a winning position iff at least one move from it leads to a losing position
(for the opponent), because the player may move into that position and hence force the
opponent to lose.

We abstract from the relational case and represent the move relation as an element a of
a modal semiring. Moreover, we want to represent terminal, winning and losing positions by
semiring tests t, w and l. We obtain t from a as t = ¬pa, whereas w and l have yet to be
determined. To this end we rewrite the above informal conditions into modal notation:

t ≤ l,
l = |a]w, (10)
w = |a〉 l. (11)

Conditions (10) and (11) are mutually recursive. Separate them by substitution yields

l = |a] |a〉 l, w = |a〉 |a]w.

What kind of solutions do these recursive equations have?

3.2 Existence of Solutions: Fixpoints of Dual Functions

We define the functions

f(p) def= |a] |a〉 p, g(p) def= |a〉 |a] p.
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By the properties of 〈 〉 and [ ] both functions are isotone. We now assume that in the
underlying modal semiring K the sublattice test(K) is complete. Then, by the Knaster/Tarski
fixpoint theorem, f and g each have both a least and a greatest fixpoint. To investigate their
relation we recall that two functions h, k : M → M on a Boolean lattice (M,≤) are (de
Morgan) duals if for all x ∈M

h(x) = ¬k(¬x).

By definition, the functions |a〉 and |a] are dual, and a quick calculation shows that the above
functions f and g are dual as well. Now we can use the following result (see e.g. [38]).

Lemma 3.1 Let h, k be dual functions over a Boolean lattice such that µh, µk and νh, νk
exist. Then

µh = ¬νk, µk = ¬νh.
From this it is immediate that µh, µk and z def= ¬(µh tµk) = νh u νk form a partition of

the lattice, i.e., if ⊥ and > are the least and greatest element then

µh u µk = µh u z = µk u z = ⊥,
µh t µk t z = >.

Likewise, νh, νk and ¬(νh t νk) = µh u µk form a partition of the lattice.
Let us apply this to our dual functions f and g above. The set of positions is to be

partitioned into winning, losing and tie positions. By the above observation there are two
possible choices: either l = µf as the set of losing positions and w = µg as the set of winning
positions, or l = νf and w = νg.

In [3] it is shown that the first of these choices is the adequate one. The remainder
νf u νg = νfνg represents the set of tie positions, i.e., the set of positions from which under
optimal play of both opponents none will reach a winning or losing position. Note that from
a tie position there needs to emanate at least one infinite path in the game graph; if the set
of positions is finite, this path necessarily has to be cyclic.

One has to ensure that the (separately found) solutions l = µf and w = µg also satisfy
the original mutual recursion

l = |a]w w = |a〉 l
(which need not be the case for arbitrary fixpoints of f and g). This can be done by the
rolling rule of fixpoint calculus (see again [38]).

3.3 Iterative Computation of Win/Lose

We now want to obtain an algorithm for actually computing the winning and losing
positions. For this we remember Kleene’s fixpoint theorem, the proof of which shows the
following:

Lemma 3.2 Let h : M → M be an isotone function on a complete lattice (M,≤). Then

sup {hi(⊥) : i ∈ IN} ≤ µh.
So let us consider the first steps of the fixpoint iteration for µf and µg. In the semiring

setting we have ⊥ = 0; moreover, let t = ¬pa again be the set of terminal positions.

f1(0) = |a] |a〉 0 = |a] 0 g1(0) = |a〉 |a] 0 = |a〉 t
= ¬pa = t = |a〉 (f1(0))

f2(0) = f(f1(0)) = f(t) g2(0) = g(g1(0)) = g(|a〉 t)
= |a] |a〉 t = |a] (g1(0)) = |a〉 |a] |a〉 t = |a〉 (f2(0))
...

...
f i+1(0) = |a] (gi(0)) gi+1(0) = |a〉 (f i+1(0))
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This can be explained informally as follows. The set f1(0) of losing positions of “order 1” is
the set t of terminal positions. The set g1(0) of winning positions of “order 1” consists of all
immediate predecessors of t. The set f i+1(0) of losing positions of “order i+1” consists of the
positions all successors of which are winning positions of “order i”, the set gi+1(0) of winning
positions of “order i + 1” consists of the positions that have at least one losing position of
“order i+ 1” as a successor.

Hence the fixpoint iteration describes the following algorithm.

1. Start with the terminal positions which are marked as losing positions.
2. Then traverse the game graph backwards while adapting the markings according to the

above equations.

But what about termination of the algorithm? And under which circumstances does it
really reach the least fixpoints l = µf and w = µg? It is obvious that for an infinite set of
positions there always will be games for which the algorithm doesn’t terminate. So we now
restrict our attention to games with finitely many positions. This can abstractly be reflected
by considering only modal semirings K in which all chains in test(K) are finite, so that all
isotone functions are also continuous and hence the fixpoint iteration yields the desired result.
It can be stopped as soon as it gets stationary, i.e., as soon as a fixpoint has been reached.
Recording in every iteration step which moves lead into winning or losing positions, one also
obtains all possible winning strategies.

The basic fixpoint iteration algorithm reads as follows:

r := 0 ;
{ inv r ≤ f(r) ∧ r ≤ µf}
while (f(r) 6= r)

do r := f(r) ;
od {r = µf}

The least fixpoint µg = w then results as w = |a〉 l.

3.4 Efficiency Improvement

Let us now show that the algebra of modal semirings is also very useful in formal trans-
formation of the basic algorithm into more efficient (but much less understandable) versions.

The main technique employed is that of formal differentiation or strength reduction
(see e.g. [39]), where expensive recomputation of a quantity in every step of an iteration is
replaced by computation of the increments between the values of that quantity. By their
many distributive laws, modal semirings are an ideal setting for this technique.

In the algorithm above, we first introduce an auxiliary variable s that always has the
value f(r) and is incremented correspondingly:

r := 0 ; s := f(0) ;
{ inv s = f(r) ∧ r ≤ s ∧ r ≤ µf}
while (s 6= r)

do (r, s) := (s, f(s)) ;
od {r = µf}

Because of r ≤ s we have s = r + (s − r) and s 6= r ⇔ s − r 6= 0. (This only needs
isotonicity of f .) To simplify the assignment s := f(s) we have to consider the special form
of f . We obtain

f(s) = f(r + (s− r)) = |a] |a〉 (r + (s− r)) = |a] (|a〉 r + |a〉 (s− r)). (∗)
Now we set u = |a〉 r and examine |a] (u+ x) for arbitrary x:

|a] (u+ x) = ¬p(a¬(u+ x)) = ¬p(a¬u¬x) = |a¬u]x.
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If we now carry the part a¬u in a variable m, the assignment s := f(s) simplifies to s := |m]x
with x = |a〉 (s− r). Our new invariant reads

{ inv s = f(r) ∧ r ≤ s ∧ r ≤ µf ∧ u = |a〉 r ∧ m = a¬u}
This is established by the initialisation

u := 0 ;m := a ;

How can we maintain it?
The calculation (∗) shows that after the assignment r := s variable u has to have the

new value u+ x, so m needs the new value

a¬(u+ x) = a¬u¬x = m¬x

This yields

r := 0 ; s := f(0) ;
u := 0 ;m := a ;
{ inv s = f(r) ∧ r ≤ s ∧ r ≤ µf ∧ u = |a〉 r ∧ m = a¬u}
while (s− r 6= 0)

do let x = |a〉 (s− r)
in (r, s, u, m) := (s, |m]x, u+ x, m¬x) ;

od {r = µf ∧ u = µg}
The simultaneous assignment can be sequentialised from left to right.
Our final improvement results from examining the expressions involving m, notably

|m]x = ¬p(m¬x). Since we need n
def= m¬x anyway, it makes sense to compute n and

¬pn simultaneously.
For this we maintain a new variable d that always contains ¬pm. It is initialised to ¬pa

and is incrementally adjusted using a vector of out-degrees:

1. Loop through x.
2. For each position p ∈ x and every predecessor q of p under m:
3. decrease q’s outdegree by 1 and remove the edge from q to p.
4. If the outdegree of q becomes 0 that way, add q to d.

Of course, all these steps can be done algebraically.

4 Modal Kleene Algebras

While modal semirings suffice for some applications, others require an explicit notion of
iteration. This is provided by extending idempotent semirings to Kleene algebras.

A Kleene algebra [28] is a structure (K, ∗) such that K is an idempotent semiring and
the star ∗ satisfies, for a, b, c ∈ K, the unfold and induction laws

1 + aa∗ ≤ a∗, (∗-1)
1 + a∗a ≤ a∗, (∗-2)

b+ ac ≤ c⇒ a∗b ≤ c, (∗-3)
b+ ca ≤ c⇒ ba∗ ≤ c. (∗-4)

Therefore, a∗ is the least pre-fixpoint and the least fixpoint of the mappings λx.ax + b and
λx.xa+ b. The star is isotone with respect to the natural ordering.

Two important properties that follow from these axioms are the laws

ba ≤ ac ⇒ b∗a ≤ ac∗, ab ≤ ca ⇒ ab∗ ≤ c∗a. (12)
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A Kleene algebra with tests (KAT) [29] is a test semiring (K, test(K)) such that K is a
KA. For all p ∈ test(K) we have that p∗ = 1.

In a KAT one can give (angelic) abstract semantics of regular programs as follows:

abort
def= 0

skip
def= 1

a dc b def= a+ b

a ; b def= ab

if p then a else b
def= pa+ ¬pb

assert p
def= if p then skip else abort = p

while p do a
def= (pa)∗¬p

Note that full Kleene algebra is needed for modelling loops, i.e., iteration. The definition
of assert p via if then else is the usual one from assertion macro packages in programming
languages like C or Java; algebraically it simplifies to p alone.

If the underlying test semiring of a KAT K is a domain (codomain), we speak of a KA
with domain (codomain), briefly p-(q-)KA. Finally, a modal Kleene algebra (MKA) is a KAT
in which the underlying test semiring is modal.

Examples of MKAs are again REL and PAT.
Using the star induction axioms, one can show the following induction principle for the

diamond operator (cf. [12]):
|a〉p+ q ≤ p ⇒ |a∗〉q ≤ p. (13)

5 Kleene Modules and PDL

Most previous algebraic approaches to modeling programs or state transition systems
show an asymmetric treatment of propositions and actions. On the one hand, propositional
dynamic logic (PDL) [21] and its algebraic relatives dynamic algebras [27,36,41] and test al-
gebras [36,41,49] are proposition-based. Dynamic algebra has only modalities, test algebra
also has propositions. Most axiomatisations do not even contain explicit axioms for actions:
their algebra is only implicitly induced via the definitions of the modalities. On the other
hand, KAT has both actions and propositions, but, complementarily to dynamic algebra, it
lacks modalities, i.e., the possibility to combine actions and propositions into new propo-
sitions. Therefore, reasoning about actions in dynamic algebra and test algebra and about
propositions in KAT is indirect and restricted.

These rather artificial asymmetries and limitations have already been questioned by
Pratt [41], but persisted for several decades. They are overcome in MKA in a very smooth
and simple way; therefore MKA provides an algebraic alternative to PDL that supports both
proposition- and action-based reasoning and admits both tests and modalities. In a more
abstract sense, MKA reconciles relational and modal reasoning about programs. However, the
defining axioms of MKA are quite different from and more economic than those of dynamic
algebra and test algebra. We will now briefly describe the precise relation between MKA
and PDL and its algebraic relatives. This can best be done by introducing an additional
intermediate structure which we call a Kleene module. Kleene modules are on the one hand
straightforward adaptations of the standard modules of algebra that allow us to introduce
modal operators via scalar products. On the other hand, the coupling between actions and
propositions in Kleene modules is not as tight as in modal Kleene algebra.
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5.1 Definition of Kleene Modules

Kleene modules are natural variants of the usual modules from algebra [24], where the
ring is replaced by a Kleene algebra and the Abelian group by a Boolean algebra. Certain
variants of Kleene modules have already been studied in [5,30].

Definition 5.1. A Kleene left-module is a two-sorted algebra (K, test(K), :), where K ∈
KA and B ∈ BA and where the left scalar product : is a mapping K × B → B such that for
all a, b ∈ K and p, q ∈ B,

a : (p+ q) = a : p+ a : q, (km1)
(a+ b) : p = a : p+ b : p, (km2)

(ab) : p = a : (b : p), (km3)
1 : p = p, (km4)
0 : p = 0, (km5)

q + a : p ≤ p⇒ a∗ : q ≤ p. (km6)

As usual, we do not distinguish between the Boolean and Kleenean zeros and ones. KMl

denotes the class of Kleene left-modules. In accordance with the relation-algebraic tradition,
we also call the scalar products of KMl Peirce products.

Axioms of the form (km1)–(km4) also occur in algebra. For rings, an analogue of (km5) is
redundant, whereas for semirings — in absence of inverses — it is independent. Axiom (km6)
is of course beyond ring theory. It is the star induction rule (∗-3) with the semiring product
replaced by the Peirce product and the sorts of elements adjusted, i.e., b and c replaced by
Boolean elements.

Analogously to the situation for domain and codomain we define Kleene right-modules
as Kleene left-modules on the opposite semiring. A Kleene bimodule is a Kleene left-module
that is also a Kleene right-module. We will henceforth consider only Kleene left-modules.

5.2 Calculus of Kleene Modules

The relation between Kleene left-modules and modal Kleene algebra is straightforward.

Proposition 5.2. Let K be a modal Kleene algebra. Setting a : p = |a〉p, the structure
(K, test(K), :) is a Kleene left-module.

The left-module axioms and also the right-module axioms can easily be shown to be
theorems of modal Kleene algebra. Consequently, these axioms establish further properties
of MKA in a well-structured way.

We first present some further properties that do not mention the star. The scalar product
is right-strict, i.e., a : 0 = 0 and left- and right-isotone. It is disjunctive, a : (pq) ≤ (a : p)(a : q)
and satisfies

a : p− a : q ≤ a : (p− q).
The following variants of the star unfold laws (∗-1) and (∗-2) hold.

p+ a : (a∗ : p) = a∗ : p, p+ a∗ : (a : p) = a∗ : p. (14)

Therefore, of course, they do not have to be explicitly added to the module axioms. Finally,
the module axiom (km6), which is a quasi-identity, is equivalent to the identity

a∗ : p− p ≤ a∗ : (a : p− p). (15)

This identity appears in PDL (cf. [21]), but also in axiomatisations of temporal logics as an
induction law. In [17], we present various additional properties that all can easily be translated
to theorems of PDL.
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5.3 Relatives of Kleene Modules

We now position the Kleene modules within the context of Kleene algebra with domain
and algebraic variants of propositional dynamic logic.

First, the class of dynamic algebras [41] can be obtained as a variant of Kleene modules
by requiring, instead of a Kleene algebra, an absolutely free algebra of Kleenean signature
(without 0 and 1), by removing (km4) and (km5), by adding right-strictness and the star
unfold law of (14) and by replacing (km6) by (15). Consequently, the algebra of actions
is implicitly axiomatised in dynamic algebra. We call a dynamic algebra or Kleene module
extensional if

∀ p . (a : p ≤ b : p)⇒ a ≤ b.
This property is independent from the module axioms. The relation induced by the left-hand
side of this quasi-identity is a precongruence on Kleene modules. It can also be interpreted
as a notion of observational equivalence. Intuitively, it is a point-wise measurement of the
behaviour of the actions. In the extensional case, the action is completely determined by this
scanning.

The following result shows that Kleene modules subsume dynamic algebras.

Theorem 5.3. Every Kleene module is a dynamic algebra.

Moreover, Kleene modules yield an optimal representation of equational reasoning about
Kripke frames.

Theorem 5.4. The equational theories of extensional Kleene modules and extensional
dynamic algebras coincide.

Hence, these equational theories coincide with that of finite Kripke structures.
Second, there are two extensions of dynamic algebras that also include tests. In Pratt’s

variant, the test axiom p? : q = pq is added to the axioms of dynamic algebra, where ? models
an embedding of tests into actions. Again, therefore, the Kleene algebra is implicitly defined.
It is straightforward to show that modal Kleene algebra subsumes Pratt’s variant of test
algebra.

Proposition 5.5. Every modal Kleene algebra is a test algebra à la Pratt.

Note the notational economy inherited from KAT which makes the embedding operator
? implicit.

Hollenberg [23] has given a variant of test algebra which makes explicit use of the Kleene
algebra axioms and also of the embedding operator ?. This test algebra subsumes Pratt’s
variant.

Theorem 5.6. The classes of modal Kleene algebras and test algebras à la Hollenberg
coincide.

Theorem 5.7. The equational theories of extensional modal Kleene algebras and finite
Kripke structures coincide.

It follows from results for test algebra that the equational theory of extensional modal
Kleene algebra is EXPTIME-complete. Here the advantage of modal Kleene algebra over test
algebra is its economy. It is defined via three axioms, whereas Hollenberg’s test algebra has
eight.

For further technical details as well as further discussion of related work we refer to [17].
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6 Modelling Program Correctness

6.1 Hoare Logic and wlp

We now return to the Kleene semantics of simple while programs introduced in Section 4.
As is well known, partial program correctness can be modelled using the weakest liberal
precondition wlp(a, q) = |a] q. Then a Hoare triple {p} a {q} is valid if p ≤ |a] q.

Kozen has shown that already in KAT one can formulate validity of {p} a {q} as pa¬q = 0.
Although this allows proving soundness of the rules of propositional Hoare logic, i.e., Hoare
logic without the assignment rule, the MKA formulation leads to still simpler and readable
encodings of Hoare triples and rules and also to simpler and more concise soundness proofs.
Moreover, in contrast to KAT, the MKA formulation also admits a simple, fully algebraic
proof of relative completeness of propositional Hoare logic [35]. This is due to the fact that
while backward modalities can be used for encoding Hoare triples, MKA also provides forward
modalities for encoding their standard semantics.

Example 6.1 As an example consider the while-rule:

{p ∧ q} a {q}
{q} while p do a {¬p ∧ q}

Its translation into MKA reads

pq ≤ |a] q ⇒ q ≤ |(pa)∗¬p] (¬p q).

Dualising to diamonds using (3) we obtain the version

〈a| (pq) ≤ q ⇒ 〈(pa)∗¬p| q ≤ ¬p q. (16)

Now the soundness proof of this rule proceeds as follows:

〈a| (pq) ≤ q ⇔ 〈pa| q ≤ q
⇒ 〈(pa)∗| q ≤ q
⇒ ¬p (〈(pa)∗| q) ≤ ¬p q
⇔ 〈(pa)∗¬p| q ≤ ¬p q

The first step uses the definition of diamond twice, the second one induction (13), the third one
isotonicity, the fourth one import/export (4). An even shorter proof is possible in predicate
transformer algebra (see Section 7). ut

The result of encoding Hoare rules and showing that they are theorems of modal Kleene
algebra can be expressed as follows.

Theorem 6.1. Propositional Hoare logic is sound with respect to the modal Kleene al-
gebra semantics.

Note that it is not surprising that this is possible in a formalism that subsumes KAT.
However, it can be done in a much more succinct way. Therefore, the specialised syntax of
Hoare logic can easily be abandoned in favour of the simple and more universal algebraic
calculus of modal Kleene algebra.

Using the demodalisation rules of modal Kleene algebra that arise as generalisations of
(llp) and (gla), there is, however, a simple translation of the modal encoding of Hoare rules
into KAT. The resulting rules have a special shape and their validity can be decided by
automata in PSPACE [9]. Thus the gain of expressiveness and flexibility introduced by MKA
does not compromise the nice algorithmic properties of KAT.
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Using the MKA encoding of the weakest liberal precondition semantics for Hoare logic,
we can carry out an entirely algebraic and fully formal relative completeness proof of propo-
sitional Hoare logic. This proof is by far shorter than the standard textbook proofs that are
based on set theory and usually leave many assumptions implicit.

Theorem 6.2. Propositional Hoare logic is relatively complete for the partial correctness
semantics of deterministic programs in modal Kleene algebra.

6.2 Total Correctness and wp

For modelling total correctness, an MKA element a now receives the following interpre-
tation: its domain pa represents the set of starting states for which all a-computations are
guaranteed to terminate; a itself represents the set of all these computation paths [13]. Under
this interpretation, the weakest precondition is given by

wp(a, q) def= pawlp(a, q),

the refinement relation by
c v a ⇔ pa ≤ pc ∧ pa c ≤ a.

This entails the following properties of the angelic programming constructs:

wp(a, 0) = 0,
wp(a, 1) = pa,

wp(abort, q) = 0,
wp(skip, q) = q,

wp(if r then a else b, q) = rwp(a, q) + ¬rwp(b, q),
wp(a+ b, q) = wp(a, q)wlp(b, q) + wlp(a, q)wp(b, q).

The demonic programming constructs can be defined as follows:

– Demonic join (choice):
a t b = papb (a+ b).

– Demonic meet: If a u b exists and p(a u b) = papb then

a u b = (a u b) + ¬pa b+ ¬pb a.
– Demonic composition:

a2b
def= ([a](pb)) ab.

A demonic redefinition of loop is also possible, see [13] for details. These definitions imply
the following properties that all can be shown by fairly concise algebraic calculation. First,
demonic refinement is the natural order associated with demonic choice, i.e., a v b ⇔ atb =
b. Hence we have an upper semilattice (which is even complete if the underlying MKA is).
Second, 2 distributes through t in both arguments and hence is v-isotone in both arguments.
Third, demonic composition is associative.

In the semantic model just given, angelic choice is not v-isotone. A generalised rela-
tionally based program semantics that integrates isotone angelic and demonic choice was
presented in [14]. The idea is to model a program as a pair consisting of a transition rela-
tion between states and a subset of the domain of that relation from which no divergence is
possible.

We again abstract to a modal Kleene algebra K and let the elements of K represent
transition behaviour of programs, regardless of termination. Programs are then modelled by
pairs (a, p) with p ∈ test(K) and p ≤ pa includes termination information about the starting
states of a. Then the essential program constructors are the following:
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– Demonic composition: (a, p)2(b, q) def= (ab, p (|a]q)).
– Demonic choice: (a, p) de (b, q) def= (a+ b, pq).
– Angelic choice: (a, p) bc (b, q) def= (a+ b, p+ q).

Then 2 is associative, has annihilator (0, 0), neutral element (1, 1) and distributes through
de . Moreover, both choices are idempotent and associative. However, there is no neutral
element w.r.t de , since the obvious candidate (0, 1) does not satisfy the restriction imposed
on our pairs. So we do not have a full semiring structure. The refinement order is given by

(a, p) v (b, q) def⇔ (a, p) de (b, q) = (b, q) ⇔ a ≤ b ∧ q ≤ p.

Both choice operators are isotone w.r.t. v.
As an example for the use of the MKA laws in this setting, we prove associativity of

composition. It is immediate that it suffices to consider the second components of the pairs,
for which we calculate:

p |a](q |b]r) = p (|a]q) (|a]|b]r) = p (|a]q) (|ab]r).

The first step uses conjunctivity of |a], the second one locality. The proofs of the other
properties mentioned are slightly longer but again entirely straightforward calculations using
the laws of modal Kleene algebra.

7 Beyond PDL: Predicate Transformer Algebras

Assume a test semiring (K,+, , 0, 1). A predicate transformer is a function f : test(K) →
test(K). It is disjunctive if f(p+ q) = f(p) + f(q) and conjunctive if f(pq) = f(p)f(q). It is
strict if f(0) = 0. Finally, id is the identity transformer and ◦ denotes function composition.

Let P be the set of all predicate transformers, M the set of isotone and D the set of
strict and disjunctive ones. Under the pointwise ordering f ≤ g def⇔ ∀ p . f(p) ≤ g(p), P forms
a lattice where the supremum f + g and infimum f u g of f and g are the standard pointwise
liftings of + and ·. The least element of P (and D) is the constant 0-valued function 0(p).
The structure (D,+, ◦, , id) is an idempotent semiring. In fact, in its left argument ◦ even
preserves arbitrary existing suprema and infima, as the following calculation and a dual one
for infima show:

((tF ) ◦ g)(x) = (tF )(g(x)) = tF (g(x)) = t ((F ◦ g)(x)).

The modal operator | 〉 provides a left semiring homomorphism from K into D.
If test(K) is a complete Boolean algebra then P is a complete lattice with D as a complete

sublattice. Hence we can extend P and D by a star operation via a least fixpoint definition:

f∗ def= µg . id + f ◦ g,

where µ is the least-fixpoint operator. It turns out that by this definition D does satisfy the
Kleene algebra axioms except the second star induction law (∗-4). Only the subalgebra of
universally disjunctive predicate transformers is a full Kleene algebra.

We will now show that the algebra of modal operators that arises from a pointwise lifting
is a lattice-ordered monoid that contains an idempotent semiring or a variant of a KA as a
retract. This abstraction allows a more succinct pointfree style of reasoning.

A lattice-ordered monoid is a structure (K,+,u, ·, 1) such that (K,+,u) is a lattice,
(K, ·, 1) is a monoid and multiplication is additive in both arguments. These structures have
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extensively been studied in [4]. If the lattice reduct of the monoid is distributive (Boolean),
we call the respective structure a d-monoid (a b-monoid).

Let 〈K〉 be the sets of all mappings λx.〈a〉x with a ∈ K on some domain or codomain
semiring K. We define addition (or join), meet and multiplication on 〈K〉 pointwise by

(〈a〉+ 〈b〉)p = 〈a〉p+ 〈b〉p,
(〈a〉 u 〈b〉)p = (〈a〉p)(〈b〉p),

(〈a〉〈b〉)p = 〈a〉〈b〉p.

Then the structures (〈K〉,+,u, , 〈0〉, 〈1〉) are d-monoids. Dually, with addition, meet and
multiplication defined by

([a] + [b])(p) = ([a]p)([b]p),
([a] u [b])(p) = [a]p+ [b]p,

([a][b])(p) = [a][b]p,

the structures ([K],+,u, , [0], [1]) are d-monoids. In both cases the pointwise ordering co-
incides with the natural semiring ordering which also is the lattice ordering. Using both
mappings λx.[a]x and λx.〈a〉x, we can extend the d-monoids to b-monoids, defining

(¬〈a〉)(p) = [a]¬p, (¬[a])(p) = 〈a〉¬p.

We will also use the pointwise liftings of − and → to the operator level.
Many properties of modal operators can now be presented much more succinctly in

the respective algebra of operators. First, the test-level Galois connections can be lifted to
operators f, g : test(K)→ test(K):

|a〉f ≤ g ⇔ f ≤ [a|g, 〈a|f ≤ g ⇔ f ≤ |a]g, (17)

for all a ∈ K. From this we get the cancellation and shunting laws

|a〉[a| ≤ 〈1〉 ≤ [a||a〉, 〈a||a] ≤ 〈1〉 ≤ |a]〈a|, (18)
|a〉f ≤ g ⇔ f ≤ [a|g, 〈a|f ≤ g ⇔ f ≤ |a]g, (19)
f |a] ≤ g ⇔ f ≤ g〈a| f [a| ≤ g ⇔ f ≤ g|a〉. (20)

Semiring expressions inside of operators can be decomposed by the laws

〈a+ b〉 = 〈a〉+ 〈b〉, |ab〉 = |a〉|b〉, 〈ab| = 〈b|〈a|,
[a+ b] = [a] u [b], |ab] = |a]|b], [ab| = [b|[a|.

Note that the decomposition with respect to multiplication is covariant for forward modalities
and contravariant for backward modalities. This results from the symmetry between domain
and codomain via opposition. The decomposition can be used to transform expressions into
normal form and to reason entirely at the level of modal algebra in the sense of [20].

Diamonds are isotone, i.e., a ≤ b implies 〈a〉 ≤ 〈b〉. Dually, boxes are antitone, i.e., a ≤ b
implies [b] ≤ [a].

In the case of an MKA, the algebras of operators can be extended to KAs because of the
following unfold and induction laws at the operator level (cf. [12]).

|1〉+ |a〉|a∗〉 ≤ |a∗〉, |1〉+ |a∗〉|a〉 ≤ |a∗〉, (21)
f + |a〉g ≤ g ⇒ |a∗〉f ≤ g. (22)
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Setting f = g = 〈1〉 we obtain, from the analogue of this for the backward diamond,

〈a| ≤ 〈1〉 ⇒ 〈a∗| ≤ 〈1〉. (23)

These laws for the “inner star” induce an “outer star” |a〉∗ that coincides with |a∗〉 and
turns the algebra of boxes into a left KA. Analogous laws hold for the backward modal
operators. They imply the star fixpoint laws

|a∗〉 = |1〉+ |a〉|a∗〉, |a∗] = |1] u |a]|a∗]. (24)

Let us now give a point-free soundness proof for the while-rule of the propositional Hoare
calculus. The proof obligation (16) translates into

〈pa| ≤ 〈1〉 ⇒ 〈(pa)∗¬p| ≤ 〈¬p〉,
which follows immediately from (23), isotonicity, locality and neutrality of 〈1〉.

We conclude by giving lifted versions of the semi-commutation properties (12). The first
of these becomes, for the forward diamond,

|b〉f ≤ f |c〉 ⇒ |b∗〉f ≤ f |c∗〉; (25)

it is easily shown using (22). The second one lifts only for the case where f is a diamond:

〈a||b〉 ≤ |c〉〈a| ⇒ 〈a||b∗〉 ≤ |c∗〉〈a|. (26)

This is established by shunting the two occurrences of 〈a| in the conclusion of this implication
to the respective other side of the inequation using (19) and (20) and then again using (22).

8 Beside PDL: Temporal Logic

While propositional dynamic logic contains explicit statements for actions or programs
and therefore allows one to compare different programs, temporal logics reason about runs of
one particular program at a time. This is particularly interesting for the analysis of concurrent
programs and reactive systems. Originally, temporal logics used Prior’s future tense modality
G with the reading “at all future states including the present one”, F with the reading “at
some future state including the present one” and X with the reading “at the next state”.
Later, the binary operator U was added with the reading pUq as “p until q”, i.e., “q will
eventually be true and from the present state on p will be true until q is”. This system is also
known as propositional linear temporal logic.

It is well known that these temporal operators can be defined in PDL, whence also in
MKA: for abstract program a,

X = |a〉, (27)
F = |a∗〉, (28)
G = |a∗], (29)

pU = |(pa)∗〉. (30)

Note that X,F and G can also be defined in Kleene modules, whereas U requires a product
of a test and an action which cannot be expressed in the module setting. It is obvious that,
interpreted over traces, these operators have the desired semantics. It follows immediately
that F = 1U that G = ¬F¬ and that — by the unfold laws for the Kleene star — the following
unfold laws for eventually and until hold:

F = |1〉+ X F, (31)
pU = |1〉+ (|p〉 u X (pU)). (32)
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Manna and Pnueli [31] have given an axiom system for linear temporal logic (LTL). More
recently, von Karger [50] has derived these axioms as theorems in a much leaner formalism
called temporal algebra that defines modal operators by Galois connections similar to ours
over a complete Boolean algebra and uses the Theorem of Knaster and Tarski to model
iteration via fixed-points on this algebra. The reconstruction by von Karger also provides a
nice modular presentation of the LTL axioms. Some of them are general laws of modal logic.
They therefore hold a fortiori in MKA. Some further axioms, like the above until law, are
fixpoint properties and hence hold not only for von Karger’s calculus, but also for the more
general case of MKA. In particular, all the laws that do not involve U even hold in Kleene
modules. A particular instance of such a law is

|a∗](p→ |a]p) ≤ |a∗](p→ |a∗]p), (33)

which can be obtained by dualising the induction law (15).
There is, however, a series of LTL axioms that depends on the particular structure of

models and the way that temporal formulas are interpreted over runs of a program. Also
here, we can immediately generalise von Karger’s reconstruction to MKA. Von Karger shows,
for instance, that some further LTL axioms are implied in models that satisfy a confluence
property. We have seen how this can be expressed in MKA. Some further axioms hare implied
in models in which every state has precisely one successor state. This can be modeled using
the well-known properties of being a partial function or simple (or deterministic) and being
total or entire (cf. [18]), expressed in MKA as

〈a||a〉 ≤ 〈1〉, 〈1〉 ≤ |a〉〈a|.
The element a is a map if it is simple and entire. For maps, in particular, |a〉 = |a], which is
a direct translation of one of the LTL axioms, and |a]1 = 1. A co-simplicity property is also
imposed on backward modalities, whereas this is not the case for entirety. Just in contrast,
the model of linear temporal logic is assumed to be a discrete linear ordering with a left but
with no right endpoint. It remains to model the initial state.

Intuitively, a test p characterises initial states if it is contained in the complement of
the codomain of a, whence p ≤ ¬〈a|1 = [a|0. Dually, p characterises terminal states if it
is contained in the complement of the domain of a, whence p ≤ ¬|a〉1 = |a]0 (see also
Section 3.1). Terminality, however, is of no further interest here. Let now init be the greatest
such element, i.e.,

inita
def= [a|0.

This initiality condition is important for modeling validity of a modal implication p → q as
inita · p ≤ q.

The following generalisation of von Karger’s completeness result for propositional linear
temporal logic can then easily be generalised to modal Kleene algebra.

Theorem 8.1. Modal Kleene algebra is complete for the Manna and Pnueli axioms for
propositional linear temporal logic. The additional conditions for linear models and validity
of modal implications can be expressed in modal Kleene algebra (as additional axioms).

Von Karger also sketches a completeness result for computational tree logic. We conjec-
ture that also this result can be generalised to MKA.

9 Termination Analysis

9.1 Termination in Modal Kleene Algebra

We now deal with the question whether a transition system admits infinite transition
paths. To this end we abstract a notion of termination for modal semirings from set-theoretic
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relations. A similar characterisation has been used, for instance, in [20] for related structures.
A set-theoretic relation R ⊆ A × A on a set A is well-founded if there are no infinitely
descending R-chains, that is, no infinite chains x0, x1, . . . such that (xi+1, xi) ∈ R. It is
Noetherian if there are no infinitely ascending R-chains, i.e., no infinite chains x0, x1, . . .
such that (xi, xi+1) ∈ R. Thus R is not well-founded if there is a non-empty set P ⊆ A
(denoting the infinite chain) such that for all x ∈ P there exists some y ∈ P with (y, x) ∈
R. Equivalently, therefore, P is contained in the image of P under R, i.e., P ⊆ (PR)q.
Consequently, if R is well-founded, then only the empty set may satisfy this condition.

Abstracting to a modal semiring K we say that a is well-founded if

p ≤ 〈a|p⇒ p ≤ 0 (34)

for all p ∈ test(K). Dually, a is Noetherian if for all p ∈ test(K),

p ≤ |a〉p⇒ p ≤ 0. (35)

Note that by de Morgan duality a is Noetherian iff, for all p ∈ test(K),

|a]p ≤ p⇒ 1 ≤ p. (36)

Let us look at these definitions from another angle. According to the standard definition, a
relation R on a set A is well-founded iff every non-empty subset of A has an R-minimal ele-
ment. In a p-semiring K the minimal part of p ∈ test(K) w.r.t. some a ∈ K can algebraically
be characterised as p− 〈a|p, i.e., as the set of points that have no a-predecessor in p. So, by
contraposition, the well-foundedness condition holds iff for all p ∈ test(K)

p− 〈a|p ≤ 0 ⇒ p ≤ 0,

which by simple Boolean algebra can be transformed into (34).
It is easy to prove some of the well-known properties of well-founded and Noetherian

relations in modal Kleene algebra [12]. First, 0 is the only Noetherian test. Second, the prop-
erty of being Noetherian is downward closed. Third, every Noetherian element is irreflexive
and non-dense, provided it is non-trivial. Fourth, an element is Noetherian iff its transitive
closure is, but no reflexive transitive closure is Noetherian. Finally, Noethericity of a sum im-
plies Noethericity of its components, whereas the converse direction does not hold in general.
We will later present commutativity conditions that enforce this converse implication.

9.2 Termination via Löb’s Formula

We now investigate two alternative equational characterisations of Noethericity. The first
one uses the star. The second one is without the star. It holds for the special case of a transitive
Kleenean element a, i.e., when aa ≤ a.

Let K be a p-semiring. Consider the equations

|a〉 ≤ |a〉+(|1〉 − |a〉), (37)
|a〉 ≤ |a〉(|1〉 − |a〉). (38)

The equation (38) is a translation of Löb’s formula from modal logic (cf. [7]) which expresses
well-foundedness in Kripke structures. We say that a is pre-Löbian if it satisfies (37). We say
that a is Löbian if it satisfies (38).

In the relational model, Löb’s formula states that a is transitive and that there are no
infinite a-chains. We will now relate Löb’s formula and Noethericity.
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Theorem 9.1. The following statements hold in a modal Kleene algebra.
(i) Every Löbian and every pre-Löbian element is Noetherian.
(ii) Every Noetherian element is pre-Löbian.
(iii) Every Noetherian element is Löbian if it is transitive.

Properties (i) and (iii) already hold in p-semirings. A calculational proof of (ii) based on
[20] can be found in [12]. A closer analysis of the proof shows that in (iii) it suffices to assume
that a is weakly transitive, i.e,

|aa〉 ≤ |a〉.
Weak transitivity is a much weaker requirement than transitivity aa ≤ a. To see this, view
the Kleene elements again as sets of computation paths. If a consists of paths with exactly
two states each (i.e., is isomorphic to a binary relation on states) then aa consists of paths
with exactly three states, and so aa ≤ a holds only if aa = 0. But a is still weakly transitive
if it is transitive considered as a binary relation.

The calculational translation between the Löb-formula and our definition of Noethericity
is quite interesting for the correspondence theory of modal logic (see also Section 10). In this
view, our property of Noethericity expresses a frame property, which is part of semantics,
whereas the Löb formula stands for a modal formula, which is part of syntax. In modal
semirings, we are able to express syntax and semantics in one and the same formalism.
Moreover, while the traditional proof of the correspondence uses model-theoretic semantic
arguments based on infinite chains, the algebraic proof is entirely calculational and avoids
infinity. This is quite beneficial for instance for mechanisation.

9.3 Termination via Infinite Iteration

Cohen has extended KA with an ω operator for modeling infinite iteration [8]; he has also
shown applications in concurrency control. In [48], this algebra has been used for calculating
proofs of theorems from abstract rewriting that use simple termination assumptions.

Dually to the Kleene star, the omega operator is defined as a greatest post-fixpoint. An
ω-algebra is a structure (K,ω) where K is a KA and

aω ≤ aaω, (39)
c ≤ ac+ b⇒ c ≤ aω + a∗b, (40)

for all a, b, c ∈ K. Consequently, aω is also the greatest fixpoint of λx . ax.
Like in Section 7, for an MKA K it seems interesting to lift (39) and (40) to operator

algebras, similar to the laws (21), and (22) for the star. This is very simple for (39): for a ∈ K,

|aω〉 ≤ |a〉|aω〉. (41)

However, as we will see below, there is no law corresponding to (22) and (40). The proof of
(22) uses (llp) and works, since the star occurs at the left-hand sides of inequalities. There
is no similar law that allows us to handle the omega, which occurs at right-hand sides of
inequalities. But instead, one can axiomatise the greatest fixpoint ν|a〉 of |a〉 for a ∈ K by

ν|a〉 ≤ |a〉 ν|a〉, (42)
p ≤ |a〉p+ q ⇒ p ≤ ν|a〉+ |a∗〉q. (43)

If test(K) is complete then by the Knaster-Tarski theorem ν|a〉 always exists, since |a〉 is
isotone. In that case one can use a weaker axiomatisation (see [20]) from which (43) follows
by greatest fixpoint fusion.
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It will turn out that ν|a〉 is more suitable for termination analysis than aω. Since |a〉p =
¬|a]¬p, existence of ν|a〉 also implies existence of the least fixpoint µ|a] of |a], since µ|a] =
¬ν|a〉. In the modal µ-calculus, µ|a] is known as the halting predicate (see, e.g., [21]). With
the help of ν|a〉 we can rephrase Noethericity more concisely as

ν|a〉 = 0. (44)

As an immediate consequence of this we obtain

Corollary 9.2. Define, for fixed q ∈ test(K) and a ∈ K, the function f : test(K) →
test(K) by f(p) = q+ |a〉p. If ν|a〉 exists and a ∈ N (K) then f has the unique fixpoint |a∗〉q.

A notion of guaranteed termination can easily be defined in ω-algebra as the absence of
infinite iteration. We call a ω-Noetherian if aω ≤ 0.

We now study the relation between Noethericity and ω-Noethericity. Recall that a p-KA
K is extensional if

|a〉 ≤ |b〉 ⇒ a ≤ b
holds for all a, b ∈ K. Note that the language model is not extensional. The following lemma
shows that the relation between Noethericity and ω-Noethericity does not depend on exten-
sionality. This is somewhat surprising, since set-theoretic relations are extensional and in the
relational model the two notions coincide.

Lemma 9.3. Consider a modal Kleene algebra K that is also an ω-algebra.
(i) Every Noetherian element is ω-Noetherian, but not conversely, not even for extensional

MKA.
(ii) There is a non-extensional K which is Noetherian and ω-Noetherian.

For the proof see [11]. By the following corollary, (40) cannot in general be lifted to (43).

Corollary 9.4. There exists an MKA K such that ν|a〉 ≤ 0, but aω > 0 for some a ∈ K.

Thus ω-algebra does not entirely capture the standard notion of termination.
We now study the behaviour of the exhaustive finite iteration of an element a ∈ K, given

by
exh a

def= while pa do a = a∗¬pa.
Then we can represent the set of points from which a terminal point can be reached via
a-steps as

p(exh a) = p(a∗¬pa) = |a∗〉¬pa. (45)

Proposition 9.5. If a is Noetherian then p(exh a) = 1, i.e., from every starting point a
terminal point can be reached.

For the proof see again [11]. This shows again that modal Kleene algebra is more ade-
quate for termination analysis than omega algebra. To see this, consider the algebra LAN of
formal languages which is both an omega algebra and an MKA with complete test algebra
test(LAN) = {0, 1}. In LAN we have |a〉1 = pa = 1 6= 0 when a 6= 0 and hence a is Noetherian
iff a = 0. Moreover, distinguishing the cases a = 0 and a 6= 0, easy calculations show that in
LAN we have exh a = ¬pa. This mirrors the fact that by totality of concatenation a nonempty
language can be iterated indefinitely without reaching a terminal element. But we also have
aω = 0 whenever 1ua = 0. Therefore, unlike in the relational model, aω = 0 6⇒ p(exh a) = 1,
while still ν|a〉 = 0⇒ p(exh a) = 1. Hence, for termination analysis in KAs more general than
the relational model the element ν|a〉 seems more adequate than aω.
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9.4 Additivity of Termination

It has been shown that many statements of abstract rewriting that depend on termination
assumptions can be proved in ω-algebra [48], among them an abstract variant of Bachmair’s
and Dershowitz’s well-founded union theorem [2], but also many of the so-called cooperation
theorems. It seems that Kleene algebra and ω-algebra capture the regular fragment of ab-
stract rewriting. However, many other properties of abstract rewriting require context-free
reasoning. We will show in this and the following section that modal Kleene algebra provides
ways of reasoning also in this larger fragment. Moreover, as we have seen in the previous
section, there is a gap between termination in ω-algebra and in p-KA. Here, we provide a
proof of Bachmair’s and Dershowitz’s theorem in p-KA.

Consider a KA K and a, b ∈ K. We say that a semi-commutes over b if ba ≤ a+b∗. a
quasi-commutes over b if ba ≤ a(a + b)∗. Semi-commutation and quasi-commutation state
conditions for permuting certain steps to the left of others. In general, sequences with a-steps
and b-steps can be split into a “good” part with all a-steps occurring to the left of b-steps
and into a “bad” part where both kinds of steps are mixed. Semi-commutation implies quasi-
commutation; in extensional KAs the reverse implications holds as well (see [48] for proofs).

One of the main results in this area is the Bachmair-Dershowitz well-founded union
theorem; it generalizes in the following way from relations to modal Kleene algebra.

Theorem 9.6. Let K be an extensional modal Kleene algebra with complete test algebra.
For all a, b ∈ K, let a quasi-commute over b. Then a and b are Noetherian iff their sum is
Noetherian.

The proof in modal Kleene algebra takes about one page of algebraic calculation, see [11].
This shows that modal Kleene algebra provides proofs for abstract rewriting that are as simple
as those in omega algebra. Note that the proofs in [2] are rather informal, while also previous
diagrammatic proofs (e.g. [19]) suppress many elementary steps. In contrast, the algebraic
proofs are complete, formal and still simple. An extensive discussion of the relation between
the proofs in omega algebra and their diagrammatic counterparts can be found in [48]. In
particular, the algebraic proofs mirror precisely the diagrammatic ones. This also holds for
the modal proofs we present here.

9.5 Newman’s Lemma

We now turn from semi-commutation to commutation and confluence. For their direct
algebraic characterisation one either has to use converse at the element level or a combination
of forward and backward modalities at the operator level. Since we do not have converse
available, we have to choose the second alternative.

We say that a, b ∈ K commute if 〈b∗||a∗〉 ≤ |a∗〉〈b∗|, and locally commute if 〈b||a〉 ≤
|a∗〉〈b∗|. The more standard notions of confluence and local confluence are recovered setting
a = b. Newman’s Lemma, originally stated for a single rewrite relation, says that a locally
confluent and Noetherian rewrite relation is even confluent. It has been generalised to two
relations in [45] for a theory of term-rewriting with pre-congruences that extends the tradi-
tional equational case. The generalisation of the equational Church-Rosser theorem is similar.
While the Church-Rosser case has already been proved in Kleene algebra in [47], it has been
argued in [48] that a proof of Newman’s lemma does not work in pure Kleene or omega alge-
bra, since these structures capture only the regular fragment of abstract rewriting while the
standard proof of Newman’s lemma requires context-free recursion in the centre of a formula
with left and right contexts.

In contrast to previous approaches [15,42], modal Kleene algebra allows a calculational
proof that mirrors precisely the previous diagrammatic one given in [45].
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Theorem 9.7. Let K be a modal Kleene algebra with complete test algebra. If a + b is
Noetherian and a and b locally commute then a and b commute.

Proof. (Sketch) The central idea of our proof is to use a generalised predicate (rc stands
for “restricted commutation”)

rc(p, a, b)⇔ 〈b∗|〈p〉|a∗〉 ≤ |a∗〉〈b∗|.
rc(p, a, b) states that a and b commute on all points in p. We have used the notation 〈p〉
to enhance the symmetry of the formulation; this is justified, since |p〉 = 〈p| for all tests p.
Clearly, a and b commute iff rc(1, a, b), so that commutation can be retrieved as a special
case. Then the predicate

r = sup {p | rc(p, a, b)}
characterizes the set of all points on which a and b commute; it is contracted by |a + b], so
that, by the second form (36) of Noethericity, we are done. Again, the calculations take less
than a page. For full details see [11]. ut

Exhaustive iteration and simplicity, as previously defined, can also be used to show
uniquenesss of term normal forms for confluent actions. In the proof, the points in (exh a)q
represent term normal forms whereas uniqueness is expressed by simplicity, as introduced in
the context of temporal logics. A proof can be found in [11].

10 Modal Kleene Algebra and Correspondence Theory

An important subfield of modal logic is correspondence theory [7,40] that studies trans-
lations between relational and modal characterisations of certain properties of the underlying
Kripke frames. Usually, the correctness proofs for these translations are done at the semantic
level, frequently using pointwise arguments. In this section we will give some examples how
such translations can be done purely algebraically using the calculus of MKA.

We start with the commutation formulas used in the previous section and study diagrams
of the type

•

•

c
>>~~~~~ •

d
``AAAAA

•
a

``AAAAA b

>>~~~~~

In abstract relational algebra this is expressed as ă b ≤ cd̆ . Recalling the notion of exten-
sionality from Section 5.3, we first observe that, in an extensional MKA with converse, by
locality and (9) one has

ă b ≤ cd̆ ⇔ 〈a||b〉 ≤ |c〉〈d|. (46)

Although being extensional is not very common for MKAs, the formula 〈a||b〉 ≤ |c〉〈d|
still is an adequate generalisation of the relational one; it expresses that any two transition
paths along a and b that emanate from a common starting point can be joined extending
them by c and d transition paths, respectively.

In many modal logics only forward or only backward modalities are available. So it is
interesting which type of formulas can be expressed using only one sort of modalities. For the
above commutation property this is possible, resulting in the Geach formula [7,40]:

Lemma 10.1 In general MKAs

〈a||b〉 ≤ |c〉〈d| ⇔ |b〉|d] ≤ |a]|c〉.
Hence, in extensional MKAs with converse

ă b ≤ cd̆ ⇔ |b〉|d] ≤ |a]|c〉.
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Proof. Starting from the right-hand side of (46) this is shown very concisely at the
operator level using the shunting rules:

〈a||b〉 ≤ |c〉〈d| ⇔ |b〉 ≤ |a]|c〉〈d| ⇔ |b〉|d] ≤ |a]|c〉.

The first step uses (17), the second one (20). ut

Consequently, commutation and local commutation are equivalent to the following for-
mulas:

|a∗〉|b∗] ≤ |b∗]|a∗〉, |a〉|b∗] ≤ |b]|a∗〉.
However, these are much less intuitive than our original ones. But the proof we sketched
above can be carried out in this unidirectional form as well.

Special cases of commutation type properties are determinacy 〈a||a〉 ≤ 〈1〉 and totality
〈1〉 ≤ |a〉〈a| (which is easily shown to be equivalent to pa = 1); these were already used in
Section 8.

For our last example we return to the Löb formula mentioned in Section 9.2. In its original
version it takes the form (cf. [6,7])

2(2p→ p)→ 2p.

Defining validity of a formula P (p) about tests p as ∀ p . 1 ≤ P (p) we first observe that, by
Boolean shunting, Q(p) → R(p) is valid iff ∀ p .Q(p) ≤ R(p). Hence we can transcribe the
validity assertion for the Löb formula over frame a as

∀ p . |a](|a]p→ p) ≤ |a]p.

Lemma 10.2

∀ p . |a](|a]p→ p) ≤ |a]p ⇔ ∀ p . |a〉p ≤ |a〉(p− |a〉p).

Proof. We use that ¬ is a bijection on tests, so that for any predicate P we have
∀ p . P (p) ⇔ ∀ p . P (¬p). We calculate

|a](|a]p→ p) ≤ |a]p

⇔ {[ negation ]}
¬|a]p ≤ ¬|a](|a]p→ p)

⇔ {[ connection between |a] and |a〉, ¬(q → r) = q − r ]}
|a〉¬p ≤ |a〉(¬|a〉¬p− p)

⇔ {[ definition of subtraction ]}
|a〉¬p ≤ |a〉(¬p− |a〉¬p).

ut

Using now the definition of the pointwise ordering on modal operators we can compact
the second of these formulas into the one given in Section 9.2. Similarly, one can show the
equivalence of (15) and (33).

Although the technique we have shown for translating modal validity is, of course, gen-
erally applicable, we refrain from treating further examples in this survey.
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11 Greedy-Like Algorithms

11.1 Looping for Optimality

The final application of this survey concerns algorithm derivation. It ties in well with
generalised confluence and exhaustive iteration.

Greedy algorithms solve certain optimisation problems, proceeding in a stepwise fashion
without backtracking. At each step there is a set of choices from which a greedy algorithm
always takes the one that seems best at the moment, i.e., it works locally without backtrack-
ing and lookahead to the global optimum that is to be found eventually. Instances of this
scheme are shortest path and minimum spanning tree problems in graphs, the construction
of Huffman codes and scheduling problems. Of course, the greedy approach only works for
certain types of problems: as is well-known from hiking in the mountains, always choosing the
steepest path will rarely lead to the highest summit of the whole area. The central correctness
requirement for the greedy scheme is that a local choice must not impair reaching the global
optimum.

We now use modal Kleene algebra for deriving general conditions under which a loop
satisfies this principle. It turns out that local optimality is inessential; so we study a more
general class of loops that we call greedy-like. In [34] a relational derivation was abstracted
to modal Kleene algebra via the Geach formula (cf. Lemma 10.1), whence avoiding backward
modalities. While this corresponds to the standard approach that a modal logician would
take, modal Kleene algebra offers the additional flexibility of simple combined reasoning with
forward and backward modalities via Galois connections. Then the development of greediness
conditions can be based again on commutation properties that, like in the case of abstract
rewriting, immediately reflect the choices that are taken at each step of a run of a greedy-like
algorithm. Here, we briefly describe this commutation-based development.

We start with a specification element t that abstracts a relation between inputs and ad-
missible outputs and an element c that abstracts a comparison relation on outputs capturing
the notion of (global) optimality. The derivation will exhibit the precise requirements on c.

An element r improves t with respect to c if it always relates inputs to outputs that are
at least as good as those prescribed by t. If r and t are relations this reads formally t̆ r ≤ c,
which in MKA immediately translates into the predicate

imp(r, t, c) def⇔ 〈t||r〉 ≤ |c〉.

Since then 0 trivially improves t, we are interested in the greatest improvement. In REL this
always exists and is given by the residual t̆ \c. However, since we want to avoid residuals, we
will not make use of this representation.

An implementation of specification t that always produces optimal solutions then is a
relation that refines and improves t. So we define

opt(r, t, c) def⇔ r ≤ t ∧ imp(r, t, c)

and want to calculate a sufficient criterion under which a loop program w
def= while p do

with loop condition p ∈ test(K) and body s ∈ K satisfies opt(w, t, c), i.e.,

w ≤ t, (47) imp(w, t, c), (48)

where we defer the treatment of (47) to the next section.
Spelling out the definitions in (48) results in 〈t||(ps)∗¬p〉 ≤ |c〉. We abstract a bit and

try to answer the question when, for q ∈ test(K) and a ∈ K, we have 〈t||a∗q〉 ≤ c. By the
lifted semi-commutation property (26) in Section 7 this can be established if

〈t||a〉 ≤ |c〉〈t|, (49) 〈t|〈q〉 ≤ |c〉, (50)
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since then by locality
〈t||a∗q〉 ≤ |c∗〉〈t|〈q〉 ≤ |c∗〉|c〉 = |c+〉.

If we now assume c to be weakly transitive (cf. Section 9.2), which is reasonable for a com-
parison relation, we have |c+〉 ≤ |c〉 and can draw the desired conclusion.

How can we, in turn, establish (49) and (50), at least in our special case? Translating
back we get the proof obligations

〈t||ps〉 ≤ |c〉〈t|, (51) 〈t|〈¬p〉 ≤ |c〉. (52)

Condition (51) means that every pass through the loop body s preserves the possibility of
obtaining a solution that is at least as good as all possible solutions before; (52) means that
upon loop termination no possible solution is better than the termination value.

11.2 Iterating Through the Problem Domain

We now decompose the specification relation t into the exhaustive iteration of an element
e of a set of elementary steps between points in the problem domain. We admit, as initial
approximations, arbitrary inputs, but as outputs only terminal elements from which no further
elementary steps are possible. Therefore we assume now that t has the special shape (cf.
Section 9.3)

t = exh e = e∗ ; ¬pe = while pe do e. (53)

Such a problem structure is found, e.g., in matroids and greedoids [22,26] where it is addi-
tionally assumed that t is a discrete strict-order and that all terminal (or maximal) elements,
the bases, have the same height (also known as rank or dimension) in the associated Hasse
diagram.

We try to calculate an implementation that traverses the problem domain without back-
tracking, i.e., using elementary steps only forward. This suggests trying ps ≤ e. Now, by
isotonicity of the star operation, proof obligation (47) can be fulfilled if additionally we can
achieve ¬p ≤ ¬pe or, equivalently, pe ≤ p. Sufficient conditions for these properties are

ps ≤ e p(ps) ≥ pe. (54)

These are reasonable requirements, since they prevent that the iteration blocks at a non-
terminal element. They even imply p(ps) = pe.

Next, we deal with proof obligation (52), assuming (53). We calculate

〈t|〈¬pe〉 ≤ |c〉 ⇔ 〈¬pe〉|t〉 ≤ 〈c|
⇔ 〈¬pe〉|e∗〉〈¬pe〉 ≤ 〈c|
⇔ 〈¬pe〉 ; (〈1〉+ |e〉|e∗〉)〈¬pe〉 ≤ 〈c|
⇔ 〈¬pe〉 ≤ |c〉.

Step one employs properties of converse. Step two uses (53). Step three unfolds the star. Step
four uses distributivity, locality, ¬pe e = 0, idempotence of ¬pe and equality of backward and
forward diamonds of a test.

So (52) is established if c is weakly reflexive on terminal elements, i.e., if

〈¬pe〉 ≤ |c〉.
This holds, in particular, if c is fully reflexive, i.e., a pre-order. But in some applications one
may choose to leave c partially reflexive. E.g., when constructing a Huffman code, the non-
terminal elements are proper forests, for which a comparison relation is not given as easily
as for the terminal elements, which are single code trees.

As for proof obligation (51), it is a generic condition that has to be considered individually
in each case. Our derivation can be summed up as follows.
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Theorem 11.1 Suppose that c is weakly reflexive on ¬pe and weakly transitive and that
t = exh e. Then (54) ∧ (51) ⇒ opt(while pe do s, t, c).

So far we still have a general scheme that does not specifically mention greediness. But
we can refine S further to choose in every step a locally optimal element. To this end we need
another pre-order l and stipulate imp(s, e, l). This now provides a truly greedy algorithm,
the correctness of which is already shown by Theorem 11.1. It corresponds to Curtis’s “Best-
Global” algorithm [10].

In [34] we show that one can fully reconstruct Curtis’s classification of Greedy algo-
rithms [10] in the abstract setting of MKA, even using forward modalities only. The reason
for this is that converse enters the derivation only in the limited way of general commutation
properties which can be expressed by forward modalities only, using the Geach formula of
Lemma 10.1. The modal approach again leads to considerably more concise proofs than the
original relational/allegorical ones.

12 Conclusion

We have outlined the calculus of modal Kleene algebra and discussed several applications,
most of them in the field of semantics, system calculi and development of programs and
algorithms. The proofs that are needed in these examples are abstract, concise and entirely
calculational.

Together with previous work [47,48], our case study in abstract rewriting, for instance,
shows that large parts of this theory can easily be reconstructed in modal Kleene algebra.
This is probably a novel idea. Other practical results, for instance the soundness proof of
propositional Hoare logic or the reconstruction of temporal logics, are strongly based on
previous work. Here, the main contribution seems to be that modal Kleene algebra may serve
as a convenient uniform framework. Sometimes, however, it even yields a drastic cut with
Occam’s razor: in the cases of propositional dynamic logic and linear temporal logic we can
significantly reduce the number of axioms. In the case of linear temporal logics again, we can
replace the three independent concepts X, G and U by one modal operator and the star.

Relational algebraists may claim that most of the results presented in this paper could
as well be treated in their formalism. While this is certainly true, we believe that modal
Kleene algebra nevertheless provides some advantages. It has fewer operations, it is more
algorithmic, and the symmetries between the additional relational operators is captured in
a more structured way by the modalities. This often leads to a more concise and readable
notation. Finally, the lifting to the modal operator algebras provides an additional level of
abstraction that is not present in relational algebra.

There is one particular application of modal Kleene algebra that has not been discussed
in this survey. Ehm has extended our approach to a calculus for the analysis of pointer algo-
rithms [16]. He has combined modal Kleene algebra with techniques from fuzzy set theory to
model the projection onto particular substructures of a given pointer structure. The reach-
ability analysis performed by pointer algorithms, however, works to a large extent in pure
modal Kleene algebra. Giving a full account of these results is beyond the scope of this paper.
We believe that Ehm’s approach can be adapted to the analysis of object structures.

So far, all our proofs are by paper and pencil. However, the simplicity of these proofs
makes them ideal candidates for mechanisation. Our case studies in rewriting show that
much less structure is needed for formalising proofs with a proof assistant than with previous
approaches (e.g. [37,43]). We expect similar results when modal Kleene algebra is integrated
into a formal method. Note that a considerable part of formal reasoning with popular methods
like Z [44] or B [1] is essentially relational. In particular, Kleene algebra has strong connections
to automata-theoretic decision procedures.
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The results of this paper contribute to an attempt to establish modal Kleene algebra as
a formalism for safe cross-theory reasoning and therefore interoperability between different
calculi for program and system analysis, modal or relational. We have tried to support this
claim both from the syntactic and the semantic point of view. In the future, we plan extensive
case studies, first of all in the area of program and protocol analysis. Due to its simplicity and
flexibility, we believe that modal Kleene algebra offers a considerable potential that deserves
further exploration, as well for peeling potatoes as for slicing pineapples.
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Propose to an Englishman any principle, or any instrument,
however admirable, and you will observe that the whole effort
of the English mind is directed to find a difficulty, a defect or an
impossibility in it. If you speak to him of a machine for peeling
a potato, he will pronounce it impossible: if you peel a potato
with it before his eyes, he will declare it useless, because it will
not slice a pineapple.

Charles Babbage 1852
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