COM 6854: Verification and Testing

Exercise Sheet 8

Exercise 1: Give examples for

- (a) a safety property,
- (b) a liveness property,
- (c) a strong fairness property.

Formalise these properties in LTL.

Exercise 2: Give the LTL-semantics of the following operators.

- (a) F^{∞} ,
- (b) G^{∞} ,
- (c) the weak until (or unless) operator U_w , such that $\phi U_w \psi$ holds iff ϕ holds as long as ψ does not (even if ψ never holds),
- (d) the *before* operator B, such that $\phi B \psi$ holds iff whenever ψ holds in the future it must be strictly preceded by an occurrence of ϕ .
- **Exercise 3:** As mentioned in the lecture, LTL and CTL are incomparable with respet to expressivity. This exercise further analyses this fact.
 - (a) Consider a transition systems with states s_0 , s_1 and s_2 and transition relation given by $s_0 \rightarrow s_0$, $s_0 \rightarrow s_1$, $s_1 \rightarrow s_2$ and $s_2 \rightarrow s_2$. Let proposition p hold in s_0 and s_2 , but not in s_1 . Argue that the LTL-formula FGp is satisfied by every path in the transition system starting with s_0 . What about satisfiability of AFAGp in CTL?
 - (b) Consider the following two LTS:
 - \mathcal{A}_1 has states s_0^1 , s_1^1 , s_2^1 , s_3^1 and transitions $s_0^1 \to s_1^1$, $s_1^1 \to s_2^1$, $s_1^1 \to s_3^1$. Propositions p and q hold in s_0^1 , p holds in s_1^1 , $\neg p$ holds in s_2^1 and q holds in s_3^1 .
 - $\begin{array}{l} \mathcal{A}_2 \text{ has states } s_0^2, s_1^2, s_2^2, s_3^2, s_4^2 \text{ and transitions } s_0^2 \rightarrow s_1^2, s_0^2 \rightarrow s_1^2, \\ s_1^2 \rightarrow s_3^2, s_2^2 \rightarrow s_4^2. \text{ Propositions } p \text{ and } q \text{ hold in } s_0^2, p \text{ holds in } s_1^2 \\ \text{ and } s_2^2, \neg p \text{ holds in } s_3^2 \text{ and } q \text{ holds in } s_4^2. \end{array}$

Can LTL distinguish between \mathcal{A}_1 and \mathcal{A}_2 ? Which CTL-formula can distinguish between the two systems? In order to answer this question, find a formula that holds in one transition system, but not in the other.