Software Verification and Testing

Lecture Notes: Sets, Relations, Functions



Sets

problem: FOL is still not ideal for specifying and verifying software systems

e too unexpressive: no quantification over functions or predicates
e too unspecific: special functions, predicates, types are needed
e too concrete: abstract structural properties cannot be expressed directly

examples: we would like to

1. model programs as functions on sets of locations; characterise all programs
or some programs with a given property

2. express temporal properties of programs (safety, deadlock, starvation,. . . )

model data structures and data types

4. type programs

@

solutions: we use set theory and later temporal logics



Sets

example:

natural language: All horses are animals

FOL: Vx.isHorse(x) — isAnimal(x)

set theory: Vae.x € Horses — x € Animals
Horses C Animals

natural language: All horses’ heads are animals’ heads
FOL: Vx.isHorse(x) N isHead(x) — isAnimal(x) N isHead(x)
set theory: Horses N Heads C Animals N Heads

Horses C Animals — Horses N Heads C Animals N Heads
follows immediately from isotonicity of intersection (see later). . .



Sets

set theory:

e in mathematics: universal language and tool

e in software engineering: basis of formal methods such as Z or B
axiomatic set theory:

e complex formalism belonging to foundations of mathematics
e many axioms needed to circumvent paradoxes:
the set of all sets that do not contain itself as an element (B. Russell)

operational set theory:

e first-order set theory with types to avoid paradoxes
e here: we use set theory only as a specification language



Sets

language of set theory: FOL with distinguished binary predicate symbol €

properties of set:

e extensionality: two sets are equal if they have the same elements
Ve, y.Vz.(z €Ex >z €y) = x =1y)

e comprehension: the elements for which a predicate ¢ holds form a set

{z:¢}



Sets

properties of set:

e closure under pairs: the pair of two sets x and y is the set
rxy={(a,b):acxANbey}

pairs can be defined within set theory. . .
e existence of power sets: the power set of a set x is the set

2" ={y:Vzz ey — z e}



Sets

set inclusion: Vr¢,yrxrCy—Vzzexrx—2z€cy
empty set: () ={z:z # z}
set union: zUy={z:z€xVzecy}

set intersection: zxNy={z:z€xANz€y}

set complementation: T={z:z¢ z}
equality of pairs:  Vz,y, 2",y .(z,y) = (2,y) cx=2"Ny=1v

power set and inclusion: Vz,yxc2y < xCy



Sets

theorem: let A be a set. Then (24,U,N, ™, A,0) is a Boolean algebra

consequences: for z,y,z C A we have the following algebraic properties

associativity: zU(yUz)=(xUy)Uz zN(yNz)=(xNy) Nz
commutativity: zUy=yUzxz zNy=yNx

distributivity:  zU(yNz) = (xUy)N(xzUz) xN(yUz) = (xNy)U(xNz)
absorption: zU(yNz)=z=xN(yU2)

idempotence: zUz=z=zNx

zero: zUD=x2 zNO=10

unit: xUs=s xNs==x

complement: zUTZT=s zNzZ=0 T==x

de Morgan: zUy=Z2Ny zxzNy=2xU

isotonicity: zCy—axUzCyUz 2Cy—axnNzCyNnz
antitonicity: xCy—yC=x




Sets

more consequences: for r,y,z C A
rUyCz—axCzAyCz rCyNz—=axCyAhzrCz

further operations:

o set difference: z—y=2xNy
e exclusiveor: z+y=(r—y)U(y—x)=(xUy)NzNy

supremum and infimum: Let B C 24 be some set of sets

sup(B) = {least subset of A that contains all elements of B}
inf(B) = {greatest subset of A that is contained in all elements of A}



Sets

conclusion: the algebra of set allows very concise abstract reasoning

problem: this approach to set theory is inconsistent.
Consider A={xz:x¢x}. Then Ac A—A&ZA

intuition: sets should be constructed from other sets

solutions:

e foundational: modify axioms, restrict comprehension
e operational: add types to set

here: we do not treat this. . .



Binary Relations

definition: Let A be a set. A binary relation R on A is a subset of A x A

example:

Osbournes = {Sharon, Ozzy, Kelly, Jack}
men = { Ozzy, Jack}
women = {Sharon, Kelly}
parent = {(Sharon, Kelly), (Sharon, Jack), (Ozzy, Kelly), (Ozzy, Jack)}
mother = {(Sharon, Kelly), (Sharon, Jack)}
son = {(Jack, Ozzy), (Jack, Sharon)}
sibling = {(Jack, Kelly), (Kelly, Jack)}
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Binary Relations

representations: every finite relation can be represented as a

e 0 — 1-matrix

mother | S O K J 0
S 0O 0 1 1 0
0, 0O 0 0 O mother = 0
K 0O 0 0 O 0
J 0O 0 0 O

o O O O

OO OO =

OO O =

11



Binary Relations

representations: every finite relation can be represented as a

e directed graph (digraph) G = (V, E) with finite set of vertices V' and
set of edges F CV x V

Ozzy Sharon
O O

Jack \/O Kelly
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Binary Relations

operations on relations: consider the set of relations on a set A

e as sets, they form a boolean algebra with maximal element A x A
e the identity relation

la={(z,z):x € A}

e the converse of a relation R is

R® ={(y,z) : (x,y) € R}
e the product of two relations R and S is

RoS={(z,y):3z.(x,z) e RN (z,y) € S}

13



Binary Relations

example: analysing the Osbournes

parent — mother = {(Ozzy, Kelly), (Ozzy, Jack)}
= father
parent® = {(Kelly, Sharon), (Jack, Sharon),
(Kelly, Ozzy), (Jack, Ozzy)}
= child
sibling® = sibling
sibling o son = {(Kelly, Sharon), (Kelly, Ozzy)}
= daughter
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Binary Relations

example: analysing the Osbournes

Ozzy . Sharon

O

A A

Jack \/O Kelly
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Binary Relations

algebra of relations: relations satisfy again many algebraic laws

examples:

(R°)°=R (RUS)°=R°US"° (RoS)°=5°0R°
(RoS)oT =Ro(SoT) Ro(SUT)=RoSURoT
lpoR=Rolyk DoR=0=Rol

©)
O
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Binary Relations

properties of relations: R is

o reflexive iff 14 C R iff Va.(z,x) € R

e symmetric iff R° C R iff Vz,y.(z,y) € R < (y,x) € R

e anti-symmetric iff RN R° C 14 iff Vo, y.(x,y) € RA (y,2) E R—xz =1y
e transitive iff Ro R C Riff Va,y,z.(z,y) € RA(y,2) € R — (z,2) € R

definition: a reflexive antisymmetric, transitive relation is a partial order

definition: a reflexive symmetric, transitive relation is an equivalence relation
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Binary Relations

examples:

e C is a partial ordering
e — is an equivalence relation
e — is reflexive and transitive, but not antisymmetric:

pANgq—qgApand gAp—pAqg, butpAg#qgAp
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Binary Relations

definition: we inductively define R® =14 and R*t!' = Ro R"

definition:

e the transitive closure of Ris R =sup(R':i > 0)

e the reflexive transitive closure of Ris R* =sup(R':i > 0)

remark:

e R* is the least transitive relation containing R
e R* is the least reflexive transitive relation containing R
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example: transitive closure

Binary Relations
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example: transitive closure

Binary Relations
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example: transitive closure

Binary Relations

BANN
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example: transitive closure

Binary Relations

PN
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Binary Relations

domain related constructs: Let RC S xSand PC S

domain:  dom(R) ={x: (x,y) € R}

range:  ran(R) ={y: (x,y) € R}

domain restriction: P <R ={(p,y):p€ PA(p,y) € R}
range restriction:  R> P ={(x,p):p€ P A (x,p) € R}
domain subtraction: P <R = (dom(R)—P)< R

range subtraction: RBP = RD> (ran(R) —95)

preimage: |R)P = dom(R > P)

image:  (R|P = ran(P < R)
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Binary Relations

examples:

dom(parent) = {Sharon, Ozzy}
ran(parent) = {Kelly, Jack}
mother > { Kelly} = {(Sharon, Kelly)}
mother &{ Kelly} = {(Sharon, Jack)}
|mother){ Kelly, Jack} = {Sharon}
(son|{Jack} = {Sharon, Ozzy}

can you visualise this using graphs?
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Binary Relations

further constructs: Let RC Sx Sand PC S

e overwriting: R < S =dom(S)<RUS
e direct product: R® S ={(x,(y,2)): (x,y) € RA(x,2) € S}
e parallel product: RS ={((z1,x2), (y1,¥2)) : (x1,y1) € RA (x2,92) € S}

example:

sibling < son = {(Jack, Ozzy), (Jack, Kelly), (Kelly, Jack)}
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Binary Relations

problem: we have only considered homogenous relations on one single set A
definition: A heterogeneous relation R between sets A and B is a subset of A x B
advantage: more precise specifications

remark: the previous calculus extends to heterogeneous relations

e the boolean operations and conversion are straightforward
e relational products must respect the sets, i.e., R o .S is only defined
for- RCAx Band SC B x(C

notation: we write A < B for the set of all relations from A to B
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Functions

idea: a function is a heterogeneous relation where each element in the domain
is related to precisely one element in the range

definition: f C A x B is

e partial function if f°o f Clp

o total if 14 C fo fOiff dom(f)=A4

e surjective if 1 C f°o fiff ran(f) = B
e injective if fo feCly

e bijective if it is injective and surjective



Functions

notation: we write

e A — B for the set of partial functions from A to B
e A — B for the set of total functions

e A — B for the set of injections

e A — B for the set of surjections

e A — B for the set of bijections



Functions

intuition:

e if f is a partial function then (z,y) € f and (x,2) € f imply y = z,
whence f°o f C 1y

e if f is total then it is defined everywhere on A

e if f is surjective then its range is B, whence its converse is total

e if f is injective, then x # y implies f(x) # f(y), whence f°
Is a partial function

remark: the constructions on relations and functions lead to a huge set of
algebraic properties (see Abrial's book)
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Functions

example: kinship relations (very strict society)

e constraints:

every person is either male or female, but not both
only women have husbands and at most one

only men have wives and at most one

mothers are married women
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Functions

example: kinship relations
e fundamental set:  People

e constraints formalised:

women C People

men = People — women

husband € women — men

mother € People — dom(husband)
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Functions

example: kinship relations

e derived concepts:

wife = husband® spouse = husband U wife
father = mother o husband parents = mother ® father
children = (mother U father)® daughter = children > women

sibling = children® o children — 1pgp.  brother = sibling &women
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Functions

example: kinship relations

e properties:

mother = father o wife spouse = spouse’
ran(parents) = husband sibling = sibling®
father o father® = mother o mother® father o mother® = ()

mother o father® = () father o children = mother o children

question: can you prove these?
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Functions

example proof: kinship relations

father o father® = (mother o husband) o (mother o husband)®
= mother o husband o husband® o mother®
= mother o 1o (husband) © mother®
= mother > dom(husband) o mother®

— mother o mother®
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Functions

example: regular programs on state space A

e model actions of a program by relations on A

e model tests by subsets of A

e empty action: skip =14

e abortive action: abort = ()

e sequencing: R;S=RoS

e non-determinism: R+S5S=RUS

e conditional: if Bthen Relse S=B<RU(A—B)<S
e loop: while Bdo R=(B<R)*o(A— B)
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Conclusion

relational calculus:

e builds two layers of abstraction on logic

e very suitable tool for specifying properties of systems

e abstract verifications in equational calculus

e huge libraries of rules for various constructs difficult to manipulate

outlook: many concepts will reappear in Z
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