
Software Verification and Testing

Lecture Notes: Sets, Relations, Functions

Sets

problem: FOL is still not ideal for specifying and verifying software systems

• too unexpressive: no quantification over functions or predicates
• too unspecific: special functions, predicates, types are needed
• too concrete: abstract structural properties cannot be expressed directly

examples: we would like to

1. model programs as functions on sets of locations; characterise all programs
or some programs with a given property

2. express temporal properties of programs (safety, deadlock, starvation,. . .)
3. model data structures and data types
4. type programs

solutions: we use set theory and later temporal logics

1

Sets

example:

natural language: All horses are animals
FOL: ∀x.isHorse(x) → isAnimal(x)
set theory: ∀x.x ∈ Horses → x ∈ Animals

Horses ⊆ Animals

natural language: All horses’ heads are animals’ heads
FOL: ∀x.isHorse(x) ∧ isHead(x) → isAnimal(x) ∧ isHead(x)
set theory: Horses ∩Heads ⊆ Animals ∩Heads

Horses ⊆ Animals → Horses ∩Heads ⊆ Animals ∩Heads
follows immediately from isotonicity of intersection (see later). . .

2

Sets

set theory:

• in mathematics: universal language and tool
• in software engineering: basis of formal methods such as Z or B

axiomatic set theory:

• complex formalism belonging to foundations of mathematics
• many axioms needed to circumvent paradoxes:

the set of all sets that do not contain itself as an element (B. Russell)

operational set theory:

• first-order set theory with types to avoid paradoxes
• here: we use set theory only as a specification language

3

Sets

language of set theory: FOL with distinguished binary predicate symbol ∈

properties of set:

• extensionality: two sets are equal if they have the same elements

∀x, y.(∀z.(z ∈ x ↔ z ∈ y) → x = y)

• comprehension: the elements for which a predicate φ holds form a set

{x : φ}

4

Sets

properties of set:

• closure under pairs: the pair of two sets x and y is the set

x× y = {(a, b) : a ∈ x ∧ b ∈ y}

pairs can be defined within set theory. . .
• existence of power sets: the power set of a set x is the set

2x = {y : ∀z.z ∈ y → z ∈ x}

5

Sets

set inclusion: ∀x, y.x ⊆ y ↔ ∀z.z ∈ x → z ∈ y

empty set: ∅ = {z : z 6= z}

set union: x ∪ y = {z : z ∈ x ∨ z ∈ y}

set intersection: x ∩ y = {z : z ∈ x ∧ z ∈ y}

set complementation: x = {z : z 6∈ x}

equality of pairs: ∀x, y, x′, y′.(x, y) = (x′, y′) ↔ x = x′ ∧ y = y′

power set and inclusion: ∀x, y.x ∈ 2y ↔ x ⊆ y

6

Sets

theorem: let A be a set. Then (2A,∪,∩, , A, ∅) is a Boolean algebra

consequences: for x, y, z ⊆ A we have the following algebraic properties

• associativity: x ∪ (y ∪ z) = (x ∪ y) ∪ z x ∩ (y ∩ z) = (x ∩ y) ∩ z
• commutativity: x ∪ y = y ∪ x x ∩ y = y ∩ x
• distributivity: x∪ (y∩z) = (x∪y)∩ (x∪z) x∩ (y∪z) = (x∩y)∪ (x∩z)
• absorption: x ∪ (y ∩ x) = x = x ∩ (y ∪ z)
• idempotence: x ∪ x = x = x ∩ x
• zero: x ∪ ∅ = x x ∩ ∅ = ∅
• unit: x ∪ s = s x ∩ s = x
• complement: x ∪ x = s x ∩ x = ∅ x = x
• de Morgan: x ∪ y = x ∩ y x ∩ y = x ∪ y
• isotonicity: x ⊆ y → x ∪ z ⊆ y ∪ z x ⊆ y → x ∩ z ⊆ y ∩ z
• antitonicity: x ⊆ y → y ⊆ x

7

Sets

more consequences: for x, y, z ⊆ A

x ∪ y ⊆ z ↔ x ⊆ z ∧ y ⊆ z x ⊆ y ∩ z ↔ x ⊆ y ∧ x ⊆ z

further operations:

• set difference: x− y = x ∩ y
• exclusive or: x + y = (x− y) ∪ (y − x) = (x ∪ y) ∩ x ∩ y

supremum and infimum: Let B ⊆ 2A be some set of sets

sup(B) = {least subset of A that contains all elements of B}
inf(B) = {greatest subset of A that is contained in all elements of A}

8

Sets

conclusion: the algebra of set allows very concise abstract reasoning

problem: this approach to set theory is inconsistent.
Consider A = {x : x 6∈ x}. Then A ∈ A ↔ A 6∈ A

intuition: sets should be constructed from other sets

solutions:

• foundational: modify axioms, restrict comprehension
• operational: add types to set

here: we do not treat this. . .

9

Binary Relations

definition: Let A be a set. A binary relation R on A is a subset of A×A

example:

Osbournes = {Sharon,Ozzy ,Kelly , Jack}
men = {Ozzy , Jack}

women = {Sharon,Kelly}
parent = {(Sharon,Kelly), (Sharon, Jack), (Ozzy ,Kelly), (Ozzy , Jack)}

mother = {(Sharon,Kelly), (Sharon, Jack)}
son = {(Jack ,Ozzy), (Jack ,Sharon)}

sibling = {(Jack ,Kelly), (Kelly , Jack)}

10

Binary Relations

representations: every finite relation can be represented as a

• 0− 1-matrix

mother S O K J
S 0 0 1 1
O 0 0 0 0
K 0 0 0 0
J 0 0 0 0

mother =


0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0



11

Binary Relations

representations: every finite relation can be represented as a

• directed graph (digraph) G = (V,E) with finite set of vertices V and
set of edges E ⊆ V × V

Jack

Ozzy Sharon

Kelly

12

Binary Relations

operations on relations: consider the set of relations on a set A

• as sets, they form a boolean algebra with maximal element A×A
• the identity relation

1A = {(x, x) : x ∈ A}
• the converse of a relation R is

R◦ = {(y, x) : (x, y) ∈ R}

• the product of two relations R and S is

R ◦ S = {(x, y) : ∃z.(x, z) ∈ R ∧ (z, y) ∈ S}

13

Binary Relations

example: analysing the Osbournes

parent −mother = {(Ozzy ,Kelly), (Ozzy , Jack)}
= father

parent◦ = {(Kelly ,Sharon), (Jack ,Sharon),

(Kelly ,Ozzy), (Jack ,Ozzy)}
= child

sibling◦ = sibling

sibling ◦ son = {(Kelly ,Sharon), (Kelly ,Ozzy)}
= daughter

14

Binary Relations

example: analysing the Osbournes

Jack

Ozzy Sharon

Kelly

15

Binary Relations

algebra of relations: relations satisfy again many algebraic laws

examples:

(R◦)◦ = R (R ∪ S)◦ = R◦ ∪ S◦ (R ◦ S)◦ = S◦ ◦R◦

(R ◦ S) ◦ T = R ◦ (S ◦ T) R ◦ (S ∪ T) = R ◦ S ∪R ◦ T

1A ◦R = R ◦ 1A ∅ ◦R = ∅ = R ◦ ∅

16

Binary Relations

properties of relations: R is

• reflexive iff 1A ⊆ R iff ∀x.(x, x) ∈ R
• symmetric iff R◦ ⊆ R iff ∀x, y.(x, y) ∈ R ↔ (y, x) ∈ R
• anti-symmetric iff R ∩R◦ ⊆ 1A iff ∀x, y.(x, y) ∈ R ∧ (y, x) ∈ R → x = y
• transitive iff R ◦R ⊆ R iff ∀x, y, z.(x, y) ∈ R ∧ (y, z) ∈ R → (x, z) ∈ R

definition: a reflexive antisymmetric, transitive relation is a partial order

definition: a reflexive symmetric, transitive relation is an equivalence relation

17

Binary Relations

examples:

• ⊆ is a partial ordering
• = is an equivalence relation
• → is reflexive and transitive, but not antisymmetric:

p ∧ q → q ∧ p and q ∧ p → p ∧ q, but p ∧ q 6= q ∧ p

18

Binary Relations

definition: we inductively define R0 = 1A and Rn+1 = R ◦Rn

definition:

• the transitive closure of R is R+ = sup(Ri : i > 0)
• the reflexive transitive closure of R is R∗ = sup(Ri : i ≥ 0)

remark:

• R+ is the least transitive relation containing R
• R∗ is the least reflexive transitive relation containing R

19

Binary Relations

example: transitive closure

20

Binary Relations

example: transitive closure

21

Binary Relations

example: transitive closure

22

Binary Relations

example: transitive closure

23

Binary Relations

domain related constructs: Let R ⊆ S × S and P ⊆ S

• domain: dom(R) = {x : (x, y) ∈ R}
• range: ran(R) = {y : (x, y) ∈ R}
• domain restriction: P � R = {(p, y) : p ∈ P ∧ (p, y) ∈ R}
• range restriction: R � P = {(x, p) : p ∈ P ∧ (x, p) ∈ R}
• domain subtraction: P �– R = (dom(R)− P) � R
• range subtraction: R �– P = R � (ran(R)− S)
• preimage: |R〉P = dom(R � P)
• image: 〈R|P = ran(P � R)

24

Binary Relations

examples:

dom(parent) = {Sharon,Ozzy}
ran(parent) = {Kelly , Jack}

mother � {Kelly} = {(Sharon,Kelly)}
mother �– {Kelly} = {(Sharon, Jack)}

|mother〉{Kelly , Jack} = {Sharon}
〈son|{Jack} = {Sharon,Ozzy}

can you visualise this using graphs?

25

Binary Relations

further constructs: Let R ⊆ S × S and P ⊆ S

• overwriting: R <+ S = dom(S) �– R ∪ S
• direct product: R⊗ S = {(x, (y, z)) : (x, y) ∈ R ∧ (x, z) ∈ S}
• parallel product: R||S = {((x1, x2), (y1, y2)) : (x1, y1) ∈ R ∧ (x2, y2) ∈ S}

example:

sibling <+ son = {(Jack ,Ozzy), (Jack ,Kelly), (Kelly , Jack)}

26

Binary Relations

problem: we have only considered homogenous relations on one single set A

definition: A heterogeneous relation R between sets A and B is a subset of A×B

advantage: more precise specifications

remark: the previous calculus extends to heterogeneous relations

• the boolean operations and conversion are straightforward
• relational products must respect the sets, i.e., R ◦ S is only defined

for R ⊆ A×B and S ⊆ B × C

notation: we write A ↔ B for the set of all relations from A to B

27

Functions

idea: a function is a heterogeneous relation where each element in the domain
is related to precisely one element in the range

definition: f ⊆ A×B is

• partial function if f◦ ◦ f ⊆ 1B

• total if 1A ⊆ f ◦ f◦ iff dom(f) = A
• surjective if 1B ⊆ f◦ ◦ f iff ran(f) = B
• injective if f ◦ f◦ ⊆ 1A

• bijective if it is injective and surjective

28

Functions

notation: we write

• A .→ B for the set of partial functions from A to B
• A → B for the set of total functions
• A � B for the set of injections
• A � B for the set of surjections
• A �� B for the set of bijections

29

Functions

intuition:

• if f is a partial function then (x, y) ∈ f and (x, z) ∈ f imply y = z,
whence f◦ ◦ f ⊆ 1A

• if f is total then it is defined everywhere on A
• if f is surjective then its range is B, whence its converse is total
• if f is injective, then x 6= y implies f(x) 6= f(y), whence f◦

is a partial function

remark: the constructions on relations and functions lead to a huge set of
algebraic properties (see Abrial’s book)

30

Functions

example: kinship relations (very strict society)

• constraints:
– every person is either male or female, but not both
– only women have husbands and at most one
– only men have wives and at most one
– mothers are married women

31

Functions

example: kinship relations

• fundamental set: People
• constraints formalised:

women ⊆ People

men = People − women

husband ∈ women
.

� men

mother ∈ People .→ dom(husband)

32

Functions

example: kinship relations

• derived concepts:

wife = husband◦ spouse = husband ∪ wife

father = mother ◦ husband parents = mother ⊗ father

children = (mother ∪ father)◦ daughter = children � women

sibling = children◦ ◦ children − 1People brother = sibling �– women

33

Functions

example: kinship relations

• properties:

mother = father ◦ wife spouse = spouse◦

ran(parents) = husband sibling = sibling◦

father ◦ father◦ = mother ◦mother◦ father ◦mother◦ = ∅
mother ◦ father◦ = ∅ father ◦ children = mother ◦ children

question: can you prove these?

34

Functions

example proof: kinship relations

father ◦ father◦ = (mother ◦ husband) ◦ (mother ◦ husband)◦

= mother ◦ husband ◦ husband◦ ◦mother◦

= mother ◦ 1dom(husband) ◦mother◦

= mother � dom(husband) ◦mother◦

= mother ◦mother◦

35

Functions

example: regular programs on state space A

• model actions of a program by relations on A
• model tests by subsets of A
• empty action: skip = 1A

• abortive action: abort = ∅
• sequencing: R;S = R ◦ S
• non-determinism: R + S = R ∪ S
• conditional: if B then R else S = B � R ∪ (A−B) � S
• loop: while B do R = (B � R)∗ ◦ (A−B)

36

Conclusion

relational calculus:

• builds two layers of abstraction on logic
• very suitable tool for specifying properties of systems
• abstract verifications in equational calculus
• huge libraries of rules for various constructs difficult to manipulate

outlook: many concepts will reappear in Z

37

