Software Verification and Testing

Lecture Notes: Sets, Relations, Functions

Sets

problem: FOL is still not ideal for specifying and verifying software systems

e too unexpressive: no quantification over functions or predicates
e too unspecific: special functions, predicates, types are needed
e too concrete: abstract structural properties cannot be expressed directly

examples: we would like to

1. model programs as functions on sets of locations; characterise all programs
or some programs with a given property

2. express temporal properties of programs (safety, deadlock, starvation,. . .)

model data structures and data types

4. type programs

@

solutions: we use set theory and later temporal logics

Sets

example:

natural language: All horses are animals

FOL: Vx.isHorse(x) — isAnimal(x)

set theory: Vae.x € Horses — x € Animals
Horses C Animals

natural language: All horses’ heads are animals’ heads
FOL: Vx.isHorse(x) N isHead(x) — isAnimal(x) N isHead(x)
set theory: Horses N Heads C Animals N Heads

Horses C Animals — Horses N Heads C Animals N Heads
follows immediately from isotonicity of intersection (see later). . .

Sets

set theory:

e in mathematics: universal language and tool

e in software engineering: basis of formal methods such as Z or B
axiomatic set theory:

e complex formalism belonging to foundations of mathematics
e many axioms needed to circumvent paradoxes:
the set of all sets that do not contain itself as an element (B. Russell)

operational set theory:

e first-order set theory with types to avoid paradoxes
e here: we use set theory only as a specification language

Sets

language of set theory: FOL with distinguished binary predicate symbol €

properties of set:

e extensionality: two sets are equal if they have the same elements
Ve, y.Vz.(z €Ex >z €y) = x =1y)

e comprehension: the elements for which a predicate ¢ holds form a set

{z:¢}

Sets

properties of set:

e closure under pairs: the pair of two sets x and y is the set
rxy={(a,b):acxANbey}

pairs can be defined within set theory. . .
e existence of power sets: the power set of a set x is the set

2" ={y:Vzz ey — z e}

Sets

set inclusion: Vr¢,yrxrCy—Vzzexrx—2z€cy
empty set: () ={z:z # z}
set union: zUy={z:z€xVzecy}

set intersection: zxNy={z:z€xANz€y}

set complementation: T={z:z¢ z}
equality of pairs: Vz,y, 2",y .(z,y) = (2,y) cx=2"Ny=1v

power set and inclusion: Vz,yxc2y < xCy

Sets

theorem: let A be a set. Then (24,U,N, ™, A,0) is a Boolean algebra

consequences: for z,y,z C A we have the following algebraic properties

associativity: zU(yUz)=(xUy)Uz zN(yNz)=(xNy) Nz
commutativity: zUy=yUzxz zNy=yNx

distributivity: zU(yNz) = (xUy)N(xzUz) xN(yUz) = (xNy)U(xNz)
absorption: zU(yNz)=z=xN(yU2)

idempotence: zUz=z=zNx

zero: zUD=x2 zNO=10

unit: xUs=s xNs==x

complement: zUTZT=s zNzZ=0 T==x

de Morgan: zUy=Z2Ny zxzNy=2xU

isotonicity: zCy—axUzCyUz 2Cy—axnNzCyNnz
antitonicity: xCy—yC=x

Sets

more consequences: for r,y,z C A
rUyCz—axCzAyCz rCyNz—=axCyAhzrCz

further operations:

o set difference: z—y=2xNy
e exclusiveor: z+y=(r—y)U(y—x)=(xUy)NzNy

supremum and infimum: Let B C 24 be some set of sets

sup(B) = {least subset of A that contains all elements of B}
inf(B) = {greatest subset of A that is contained in all elements of A}

Sets

conclusion: the algebra of set allows very concise abstract reasoning

problem: this approach to set theory is inconsistent.
Consider A={xz:x¢x}. Then Ac A—A&ZA

intuition: sets should be constructed from other sets

solutions:

e foundational: modify axioms, restrict comprehension
e operational: add types to set

here: we do not treat this. . .

Binary Relations

definition: Let A be a set. A binary relation R on A is a subset of A x A

example:

Osbournes = {Sharon, Ozzy, Kelly, Jack}
men = { Ozzy, Jack}
women = {Sharon, Kelly}
parent = {(Sharon, Kelly), (Sharon, Jack), (Ozzy, Kelly), (Ozzy, Jack)}
mother = {(Sharon, Kelly), (Sharon, Jack)}
son = {(Jack, Ozzy), (Jack, Sharon)}
sibling = {(Jack, Kelly), (Kelly, Jack)}

10

Binary Relations

representations: every finite relation can be represented as a

e 0 — 1-matrix

mother | S O K J 0
S 0O 0 1 1 0
0, 0O 0 0 O mother = 0
K 0O 0 0 O 0
J 0O 0 0 O

o O O O

OO OO =

OO O =

11

Binary Relations

representations: every finite relation can be represented as a

e directed graph (digraph) G = (V, E) with finite set of vertices V' and
set of edges F CV x V

Ozzy Sharon
O O

Jack \/O Kelly

12

Binary Relations

operations on relations: consider the set of relations on a set A

e as sets, they form a boolean algebra with maximal element A x A
e the identity relation

la={(z,z):x € A}

e the converse of a relation R is

R® ={(y,z) : (x,y) € R}
e the product of two relations R and S is

RoS={(z,y):3z.(x,z) e RN (z,y) € S}

13

Binary Relations

example: analysing the Osbournes

parent — mother = {(Ozzy, Kelly), (Ozzy, Jack)}
= father
parent® = {(Kelly, Sharon), (Jack, Sharon),
(Kelly, Ozzy), (Jack, Ozzy)}
= child
sibling® = sibling
sibling o son = {(Kelly, Sharon), (Kelly, Ozzy)}
= daughter

14

Binary Relations

example: analysing the Osbournes

Ozzy . Sharon

O

A A

Jack \/O Kelly

15

Binary Relations

algebra of relations: relations satisfy again many algebraic laws

examples:

(R°)°=R (RUS)°=R°US"° (RoS)°=5°0R°
(RoS)oT =Ro(SoT) Ro(SUT)=RoSURoT
lpoR=Rolyk DoR=0=Rol

©)
O

16

Binary Relations

properties of relations: R is

o reflexive iff 14 C R iff Va.(z,x) € R

e symmetric iff R° C R iff Vz,y.(z,y) € R < (y,x) € R

e anti-symmetric iff RN R° C 14 iff Vo, y.(x,y) € RA (y,2) E R—xz =1y
e transitive iff Ro R C Riff Va,y,z.(z,y) € RA(y,2) € R — (z,2) € R

definition: a reflexive antisymmetric, transitive relation is a partial order

definition: a reflexive symmetric, transitive relation is an equivalence relation

17

Binary Relations

examples:

e C is a partial ordering
e — is an equivalence relation
e — is reflexive and transitive, but not antisymmetric:

pANgq—qgApand gAp—pAqg, butpAg#qgAp

18

Binary Relations

definition: we inductively define R® =14 and R*t!' = Ro R"

definition:

e the transitive closure of Ris R =sup(R':i > 0)

e the reflexive transitive closure of Ris R* =sup(R':i > 0)

remark:

e R* is the least transitive relation containing R
e R* is the least reflexive transitive relation containing R

19

example: transitive closure

Binary Relations

20

example: transitive closure

Binary Relations

21

example: transitive closure

Binary Relations

BANN

22

example: transitive closure

Binary Relations

PN

23

Binary Relations

domain related constructs: Let RC S xSand PC S

domain: dom(R) ={x: (x,y) € R}

range: ran(R) ={y: (x,y) € R}

domain restriction: P <R ={(p,y):p€ PA(p,y) € R}
range restriction: R> P ={(x,p):p€ P A (x,p) € R}
domain subtraction: P <R = (dom(R)—P)< R

range subtraction: RBP = RD> (ran(R) —95)

preimage: |R)P = dom(R > P)

image: (R|P = ran(P < R)

24

Binary Relations

examples:

dom(parent) = {Sharon, Ozzy}
ran(parent) = {Kelly, Jack}
mother > { Kelly} = {(Sharon, Kelly)}
mother &{ Kelly} = {(Sharon, Jack)}
|mother){ Kelly, Jack} = {Sharon}
(son|{Jack} = {Sharon, Ozzy}

can you visualise this using graphs?

25

Binary Relations

further constructs: Let RC Sx Sand PC S

e overwriting: R < S =dom(S)<RUS
e direct product: R® S ={(x,(y,2)): (x,y) € RA(x,2) € S}
e parallel product: RS ={((z1,x2), (y1,¥2)) : (x1,y1) € RA (x2,92) € S}

example:

sibling < son = {(Jack, Ozzy), (Jack, Kelly), (Kelly, Jack)}

26

Binary Relations

problem: we have only considered homogenous relations on one single set A
definition: A heterogeneous relation R between sets A and B is a subset of A x B
advantage: more precise specifications

remark: the previous calculus extends to heterogeneous relations

e the boolean operations and conversion are straightforward
e relational products must respect the sets, i.e., R o .S is only defined
for- RCAx Band SC B x(C

notation: we write A < B for the set of all relations from A to B

27

Functions

idea: a function is a heterogeneous relation where each element in the domain
is related to precisely one element in the range

definition: f C A x B is

e partial function if f°o f Clp

o total if 14 C fo fOiff dom(f)=A4

e surjective if 1 C f°o fiff ran(f) = B
e injective if fo feCly

e bijective if it is injective and surjective

Functions

notation: we write

e A — B for the set of partial functions from A to B
e A — B for the set of total functions

e A — B for the set of injections

e A — B for the set of surjections

e A — B for the set of bijections

Functions

intuition:

e if f is a partial function then (z,y) € f and (x,2) € f imply y = z,
whence f°o f C 1y

e if f is total then it is defined everywhere on A

e if f is surjective then its range is B, whence its converse is total

e if f is injective, then x # y implies f(x) # f(y), whence f°
Is a partial function

remark: the constructions on relations and functions lead to a huge set of
algebraic properties (see Abrial's book)

30

Functions

example: kinship relations (very strict society)

e constraints:

every person is either male or female, but not both
only women have husbands and at most one

only men have wives and at most one

mothers are married women

31

Functions

example: kinship relations
e fundamental set: People

e constraints formalised:

women C People

men = People — women

husband € women — men

mother € People — dom(husband)

32

Functions

example: kinship relations

e derived concepts:

wife = husband® spouse = husband U wife
father = mother o husband parents = mother ® father
children = (mother U father)® daughter = children > women

sibling = children® o children — 1pgp. brother = sibling &women

33

Functions

example: kinship relations

e properties:

mother = father o wife spouse = spouse’
ran(parents) = husband sibling = sibling®
father o father® = mother o mother® father o mother® = ()

mother o father® = () father o children = mother o children

question: can you prove these?

34

Functions

example proof: kinship relations

father o father® = (mother o husband) o (mother o husband)®
= mother o husband o husband® o mother®
= mother o 1o (husband) © mother®
= mother > dom(husband) o mother®

— mother o mother®

35

Functions

example: regular programs on state space A

e model actions of a program by relations on A

e model tests by subsets of A

e empty action: skip =14

e abortive action: abort = ()

e sequencing: R;S=RoS

e non-determinism: R+S5S=RUS

e conditional: if Bthen Relse S=B<RU(A—B)<S
e loop: while Bdo R=(B<R)*o(A— B)

36

Conclusion

relational calculus:

e builds two layers of abstraction on logic

e very suitable tool for specifying properties of systems

e abstract verifications in equational calculus

e huge libraries of rules for various constructs difficult to manipulate

outlook: many concepts will reappear in Z

37

