
Software Verification and Testing

Lecture Notes: Transition Systems I



Set-Based and Relational Formal Methods

context: sets and relations are powerful tools for analysing software systems

• specification: abstract and concise modelling of system properties
• verification: elegant calculational equational proofs in relational calculus
• mechanisation: automated or interactive machine proofs in FOL
• visualisation: properties of finite systems depictable by graphs
• push-bottom approach: powerful decision procedures for finite systems

objections:

• this is theory, but does it work in practice?
• who can handle the 573 rules of the relational calculus?
• is exhaustive search feasible for large finite systems?
• how to model data structures, data types, objects?

1



Set-Based and Relational Formal Methods

plan:

• we further consider relational structures for modelling
properties of sequential systems

• we learn how to visualise finite systems by graphs
• we extend these methods to concurrent systems
• we formalise simple system properties in PL and FOL

2



Transition Systems

context: we have given a relational semantics to simple while-programs
(aka regular programs)

skip = 1A

abort = ∅
R;S = R ◦ S

R + S = R ∪ S

if B then R else S = B � R ∪ (A−B) � S

while B do R = (B � R)∗ ◦ (A−B)

3



Transition Systems

actions and propositions:

• sets model static aspects of a program
– examples: tests and properties of the store (values of variables. . . )
– sets can be identified with propositions, i.e., logical sentences

• relations model dynamic aspects of a program
– examples: changes of the store (assignments to variables. . . )
– relations can be identified with actions

conclusion: the relational semantics of while-programs models transitions
on a state space

question: how to model transition systems formally?

4



Transition Systems

definition: a transition system is a structure A = (S, T, α, β) where

• S is a (finite or infinite) set of states
• T is a (finite or infinite) set of transitions
• α and β are functions from T to S such that, for every t ∈ T ,

– α(t) is the source of t
– β(t) is the target of t

t
α(t) β(t)s= s’=

5



Transition Systems

remarks:

• every pair (α(t), β(t)) is a relation on S
• different transitions can have the same source and target

definition:

• a finite path of length n in a transition system A is a sequence t0, . . . , tn−1

of transitions where β(ti) = α(ti+1) holds ∀i.0 ≤ i < n− 1
• an infinite path in A is a sequence t0, t1 . . . of transitions where

β(ti) = α(ti+1) holds ∀i.i ≥ 0

intuition: paths are transitions glued together

6



Transition Systems

notation: we extend α and β to paths by setting

α(t0, . . . , tn−1) = α(t0) β(t0, . . . , tn−1) = β(tn−1) α(t0, t1, . . . ) = α(t0)

path product: let c = t0, . . . , tn−1 and c′ = t′0, . . . , t
′
m−1 be finite paths

• the product of c and c′ is defined whenever β(c) = α(c′) as

c · c′ = c = t0, . . . , tn−1, t
′
0, . . . , t

′
m−1

• α(c · c′) = α(c) and β(c · c′) = β(c′)
• for each state s we define the empty path εs by α(εs) = β(εs) = s

remark: c′ could as well be an infinite path, c couldn’t

7



Labelled Transition Systems

problem: with transition systems we cannot model actions

definition: a labelled transition system (LTS) over an alphabet A is a structure
A = (S, T, α, β, λ) where

• (S, T, α, β) is a transition system and
• λ is a labelling function from T to A

intuition: λ(t) indicates the action that triggers transition t

α(t) β(t)s= s’=
(t)λ

8



Labelled Transition Systems

assumption: we do not distinguish transitions with the same source,
target and label

notation: we write t : s →a s′ to denote that transition t triggered by action a
goes from state s into state s′

definition: let c = t0, t1, . . . be a path in an LTS A. The trace of c is the sequence
of actions

trace(c) = λ(t0), λ(t1), . . .

9



Labelled Transition Systems

definition: let c = t0, t1, . . . be a path in an LTS A. The run correcponding to c
is the sequence of states

run(c) = α(t0), α(t1), . . .

intuition: runs are sequences of states related by transitions

distinction:

• paths are sequences of transitions
• traces are sequences of actions
• runs are sequences of states

10



Traces and Regular Expressions

task: find a more compact notation for sets of traces

definition: regular expressions over alphabet A

• if a is a letter from A, then a is a regular expression denoting the set {a}
• if e1 and e2 are regular expressions denoting sets E1 and E2 then

– e1 · e2 is a regular expression denoting {u1u2 : ui ∈ Ei}
– e1 + e2 is a regular expression denoting E1 ∪ E2

• if e is a regular expression denoting E then
– e∗ is a regular expression denoting ε ∪ {u0 . . . un−1 : ui ∈ E ∧ n ≥ 0}
– eω is a regular expression denoting {u0u1 · · · : ui ∈ E ∧ ui 6= ε}

notation: the operations ·, + and ∗ are called regular operations

remark: regular programs are programs built from the regular operations

11



Traces and Regular Expressions

examples: the regular expression a(b + c)d corresponds to the LTS

a
b

c

d

d

12



Traces and Regular Expressions

examples: the regular expression a∗b corresponds to the LTS

b

a

13



Traces and Regular Expressions

examples: the regular expression (a + b)∗c corresponds to the LTS

c

a,b

14



Adding Labels for States

extension: instead of a LTS with labelling function λ for transitions we can also
define LTS with labelling functions λσ and λτ for states and transitions

intuition: we can use state labels for explicitly identifying states with the set of
atomic propositions that hold in that state

15



Examples

a boolean variable b

• states are labelled by true and false
• values of the variables can be changed by assignment

t1 : true →b:=true true t2 : true →b:=false false

t3 : false →b:=true true t4 : false →b:=false false

• values of b can be tested

t5 : true →true! true t6 : false →false! false

• empty action e (or skip) can be added

t7 : true →skip true t8 : false →skip false

16



Examples

a boolean variable b

e true false e

false!

b:=false

true!

b:=true

b:=false

b:=true

question: what if true! is applied to false?

17



Examples

a counter with values 0, 1, 2, 3

• obvious transitions (forgetting the ti)

0 →inc 1 1 →inc 2 2 →inc 3 3 →dec 2 2 →dec 1 1 →dec 0

• design decision:
– disallow incrementing 3 and decrementing 0: no further transitions
– counter modulo 4: add transitions 3 →inc 0 and 0 →dec 3
– add error state e and transitions 3 →inc e, 0 →dec e, e →inc e, e →dec e

• actions like tests and skip can also be added
• a set of initial states can be defined as init = {0}

18



Examples

a counter with values 0, 1, 2, 3 and error state

0
1 2

3

e

inc

dec

inc inc

dec dec
inc

dec

dec

dec inc

19



Examples

a bounded buffer with two slots used as a queue

• alphabet {a, b}
• states (labelled by possible contents): empty , a, b, aa, ab, ba, bb
• actions

– enter letter in buffer if it is not full
– remove letter from buffer if it is not empty

empty →enq(a) a empty →enq(b) b

a →enq(a) aa a →enq(b) ba b →enq(a) ab b →enq(b) bb

a →deq empty b →deq empty

aa →deq a ab →deq a ba →deq b bb →deq b

• etc.

20



Examples

a bounded buffer can you draw a diagram?

21



Examples

a sequential program: consider the pseudo-code fragment

while true do
1: if not b then

begin
2: b:=true;
3: proc;
4: b:= false;

end

22



Examples

a sequential program: use program counters as state labels

b=true!

b=false!

proc

b:=trueb:=false

1
2

34

23



Examples

Peterson’s mutex algorithm:

while true do while true do
begin begin
1: non-critical section; 1: non-critical section
2: d0:=true; 2: d1:=true;
3: turn:=0; 3: turn:=1;
4: wait(d1=false or turn=1); 4: wait(d0=false or turn=0);
5: critical section; 5: critical section;
6: d0:=false; 6: d1:=false;

end end

24



Examples

Peterson’s mutex algorithm: diagram for first process

6

3

4

1

5

2ncs d0:=true

t:=0
t=1!

d1=false!
cs

d0:=false

25



LTSs and Relations

fact: different transitions cannot have the same source, target and action label

idea: fix the label, consider corresponding pairs of sources and targets

theorem: with each LTS A = (S, T, α, β, λ) we can associate a relational structure
(S, {Rλ(t) : t ∈ T}), where Rλ(t) = {(α(t′), β(t′)) ∈ λ(t) : t′ ∈ T}

26



LTSs and Relations

remarks:

• conversely, relational structures can be turned into LTSs by assigning different
transitions to all elements of the transition relations

• we often do not distinguish between LTSs and relational structures

definitions:

• we call Ra the transition relation associated with the action a
• a LTS is deterministic if all transition relations are partial functions

27



Trees

idea: trees are special relational structures

definition: a tree is a relational structure (S, R) where

• the set of nodes S contains a distinguished element r, the root of the tree
and (r, s) ∈ R∗ holds for all s ∈ S

• for every s 6= r there is a unique s′ ∈ S such that (s′, s) ∈ R
• R is acyclic, that is for all (t, t) 6∈ R+ for all s ∈ S

28



Trees

example: unwinding a finite LTS with initial state

• take runs of the LTS as nodes of the tree
• take the direct-prefix-relation on runs as the successor relation in the tree

0

1 2

0

01 02

011 012

0111 0112 0121 0122

021 022

0211 0212 0221 0222

29


