Software Verification and Testing

Lecture Notes: Transition Systems |

Set-Based and Relational Formal Methods

context: sets and relations are powerful tools for analysing software systems

specification: abstract and concise modelling of system properties
verification: elegant calculational equational proofs in relational calculus
mechanisation: automated or interactive machine proofs in FOL
visualisation: properties of finite systems depictable by graphs
push-bottom approach: powerful decision procedures for finite systems

objections:

e this is theory, but does it work in practice?

e who can handle the 573 rules of the relational calculus?
e is exhaustive search feasible for large finite systems?

e how to model data structures, data types, objects?

Set-Based and Relational Formal Methods

plan:

e we further consider relational structures for modelling
properties of sequential systems

e we learn how to visualise finite systems by graphs

e we extend these methods to concurrent systems

e we formalise simple system properties in PL and FOL

Transition Systems

context: we have given a relational semantics to simple while-programs
(aka regular programs)

skip=14
abort = ()
R:S=RoS
R+S=RUS

if Bthen Relse S=B<RU(A—B)<S
while Bdo R=(B< R)"o(A— B)

Transition Systems

actions and propositions:

e sets model static aspects of a program
— examples: tests and properties of the store (values of variables. .
— sets can be identified with propositions, i.e., logical sentences
e relations model dynamic aspects of a program
— examples: changes of the store (assignments to variables. . .)
— relations can be identified with actions

conclusion: the relational semantics of while-programs models transitions
on a state space

question: how to model transition systems formally?

)

Transition Systems

definition: a transition system is a structure A = (S, T, «a, 3) where

e S is a (finite or infinite) set of states

e T is a (finite or infinite) set of transitions

e o and 3 are functions from T’ to S such that, for every t € T,
— «(t) is the source of ¢
— (B(t) is the target of ¢

s=a(t) s =B3(t)

O t -

Transition Systems

remarks:

e every pair (a(t),5(t)) is a relation on S

e different transitions can have the same source and target
definition:

e a finite path of length n in a transition system A is a sequence tg,...,t,_1
of transitions where 3(t;) = a(t;11) holds Vi.0 <i<n—1

e an infinite path in A is a sequence tg,%; ... of transitions where
5(752) = Oé(tH_l) holds V7.2 > 0

intuition: paths are transitions glued together

Transition Systems

notation: we extend « and (3 to paths by setting
aty, ..., th_1) = a(ty) Bty .-y tn_1) = B(tn_1) a(to, t1,...) = a(ty)
path product: let c =tg,...,t,—1 and ¢ =t},...,t. _; be finite paths
e the product of ¢ and ¢’ is defined whenever 3(c) = a(c’) as
c-d=c=ty,...,th_1,t0,.- 1 1

m—

e a(c-d)=ualc) and B(c-) = B()

e for each state s we define the empty path €5 by a(es) = B(es) = s

remark: ¢’ could as well be an infinite path, ¢ couldn’t

Labelled Transition Systems

problem: with transition systems we cannot model actions

definition: a labelled transition system (LTS) over an alphabet A is a structure
A= (S,T,a,B,\) where

o (S,T,a, () is a transition system and
e)\ is a labelling function from T to A

intuition: \(¢) indicates the action that triggers transition ¢

s=a(t) s =3(t)

> e O

Labelled Transition Systems

assumption: we do not distinguish transitions with the same source,
target and label

notation: we write t : s —, s’ to denote that transition ¢ triggered by action a
goes from state s into state s’

definition: let ¢ = tp,t1,... be a pathinan LTS A. The trace of ¢ is the sequence

of actions
trace(c) = A(to), A(t1), - - .

Labelled Transition Systems

definition: let ¢ = tg,t1,... be a path in an LTS A. The run correcponding to ¢
is the sequence of states

run(c) = a(tg), a(ty), . ..

intuition: runs are sequences of states related by transitions

distinction:

e paths are sequences of transitions
e traces are sequences of actions
e runs are sequences of states

10

Traces and Regular Expressions

task: find a more compact notation for sets of traces

definition: regular expressions over alphabet A

e if a is a letter from A, then a is a regular expression denoting the set {a}
e if e; and ey are regular expressions denoting sets F/; and FE5 then
— e1 - eo is a regular expression denoting {ujus : u; € E;}
— e1 + ey is a regular expression denoting F; U Ey
e if e is a regular expression denoting F then
— ¢e* is a regular expression denoting e U {ug...up_1:u; € EAn >0}
— €% is a regular expression denoting {uquy---:u; € EAu; # €}

notation: the operations -, + and * are called regular operations

remark: regular programs are programs built from the regular operations

11

Traces and Regular Expressions

examples: the regular expression a(b + ¢)d corresponds to the LTS

12

Traces and Regular Expressions

examples: the regular expression a*b corresponds to the LTS

13

Traces and Regular Expressions

examples: the regular expression (a + b)*c corresponds to the LTS

14

Adding Labels for States

extension: instead of a LTS with labelling function A for transitions we can also
define LTS with labelling functions A\, and A, for states and transitions

intuition: we can use state labels for explicitly identifying states with the set of
atomic propositions that hold in that state

15

Examples

a boolean variable b

e states are labelled by true and false
e values of the variables can be changed by assignment

t1 : true —p.—pye true to @ true —p.—fuse false

t3: false —p.— e true ta @ false —p.—suse false
e values of b can be tested
ts : true — e true te : false — puser false
e empty action e (or skip) can be added

by @ true —gip true ts @ false —ip false

16

Examples

a boolean variable b

truel falsel

=0

b:=true b:=false

question: what if true! is applied to false?

17

Examples

a counter with values O, 1, 2, 3

e obvious transitions (forgetting the ¢;)
0 —inc 1 1 —inc 2 2 —inc 3 3 —dec 2 2 —dec 1 1 —dec 0

e design decision:

— disallow incrementing 3 and decrementing 0: no further transitions

— counter modulo 4: add transitions 3 —;,. 0 and 0 — 4. 3

— add error state e and transitions 3 — ;. €, 0 — 4o €, € —ine €, € — goc €
e actions like tests and skip can also be added
e a set of initial states can be defined as init = {0}

18

Examples

a counter with values 0, 1, 2, 3 and error state

inc inc Inc
0) o/\o /\o/_\o 3

dec dec dec
INC
m J
o
e

dec

19

Examples

a bounded buffer with two slots used as a queue

e alphabet {a,b}
e states (labelled by possible contents): empty, a, b, aa, ab, ba, bb
e actions

— enter letter in buffer if it is not full

— remove letter from buffer if it is not empty

empty — eng(a) @ empty — enq(p) b
a4 — eng(a) QG a4 — eng(p) ba b — eng(a) ab b — eng(v) Ob
a — ge; €EMPLY b — 4eq €Mty
aa — deq @ ab — geq @ ba — geg b bb — jeq b

e ctc.

20

Examples

a bounded buffer can you draw a diagram?

21

Examples

a sequential program: consider the pseudo-code fragment

while true do
1: if not b then

begin
2: b:=true;
3: proc;

4. b:= false;
end

22

Examples

a sequential program: use program counters as state labels

b=true!

b=false! 2

106 —— @
b:=false l b:=true
o

O «-———

4 proc 3

23

Examples

Peterson’s mutex algorithm:

while true do while true do
begin begin
1: non-critical section; 1: non-critical section
2: dO:=true; 2: dl:=true;
3: turn:=0; 3: turn:=1;
4: wait(dl=false or turn=1); 4: wait(dO=false or turn=0);
5: critical section; 5: critical section;
6: dO:=false; 6: dl:=false;

end end

24

Examples

Peterson’s mutex algorithm: diagram for first process

1 ncs 2 dOo:=true 3
> @ > @

[
A
. t:=0
dO:=false =1
A/—\z

25

LTSs and Relations

fact: different transitions cannot have the same source, target and action label

idea: fix the label, consider corresponding pairs of sources and targets

theorem: with each LTS A = (5,7, a, (3, \)
t

we can associate a relational structure
(S {Rk(t) t € T}) where R)\(t) — {(Oz(/)

B(t)) e At) :t' e T}

26

LTSs and Relations

remarks:

e conversely, relational structures can be turned into LTSs by assigning different
transitions to all elements of the transition relations
e we often do not distinguish between LTSs and relational structures

definitions:

e we call R, the transition relation associated with the action a
e a LTS is deterministic if all transition relations are partial functions

27

Trees

idea: trees are special relational structures

definition: a tree is a relational structure (S, R) where

e the set of nodes S contains a distinguished element r, the root of the tree
and (r,s) € R* holds for all s € S

e for every s # r there is a unique s’ € S such that (s',s) € R
e R is acyclic, that is for all (t,¢) ¢ Rt forall s € S

28

Trees

example: unwinding a finite LTS with initial state

e take runs of the LTS as nodes of the tree
e take the direct-prefix-relation on runs as the successor relation in the tree

/ \ 01‘/0 T,
Y N / N
Q Q 011 012 \ 022

INCAN A YN

0111 0112 0121 0122 0211 0212 0221 0222

29

