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LTSs for Concurrent Systems

so far: we have modelled single sequential action systems

task: model concurrent systems, i.e.,

• model their parallel temporal development
• model their interaction/communication via shared variables or message passing

analogy:

• in engineering, temporal system behaviour is modelled by system of
differential equations

• states correspond to vectors
• interaction is modelled by shared variables

here: systems are discrete, not continuous. . .
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LTSs for Concurrent Systems

definition: for i = 1, . . . , n let Ai = (Si, Ti, αi, βi, λi) be LTSs.
Their free product A1 × · · · × An is the LTS A = (S, T, α, β, λ) defined by

• S = S1 × · · · × Sn

• T = T1 × · · · × Tn

• α(t1, . . . , tn) = (α(t1), . . . , α(tn))
• β(t1, . . . , tn) = (β(t1), . . . , β(tn))
• λ(t1, . . . , tn) = (λ(t1), . . . , λ(tn))

remarks:

• global states of a concurrent systems are now vectors
• global transitions transform state vectors into state vectors
• this makes actions synchronous, i.e., a clock drives the individual transitions
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LTSs for Concurrent Systems

observation: in communicating systems, many global transitions cannot be carried
out due to synchronisation constraints

example: consider the boolean variable and the sequential program example

• the boolean variable has 2 states and 8 transitions
• the sequential program has 4 states and 5 transitions
• the free product has 8 states and 40 transitions (combinatorial explosion. . . )
• however, in the combined system, the sequential program sets the states of

the boolean variable
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LTSs for Concurrent Systems

example: (cont.)

• so there is only one global transition

(4, true) →(b:=false,b:=false) (1, false)

from global state (4, true)
• similarly, the test of b in the sequential program is always synchronised

with a read action on the boolean variable

notation: we will write true!, true? etc. for send and receive actions
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LTSs for Concurrent Systems

example: (cont.)

• legal global actions:

(b := true, b := true)

(b := false, b := false)

(true?, true!)

(false?, false!)

(proc, e)
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Synchronous Product

definition: a synchronisation constraint over the alphabets A1, . . . , An of LTSs is
a subset of A1 × · · · × An. Elements of synchronisation constraints are called
synchronisation vectors

definition: letAi, i = 1, . . . , n, be LTSs with alphabets Ai and let I ⊆ A1×· · ·×An

be a synchronisation constraint. The synchronous product (A1, . . . ,An, I) of
the Ai under I is the sub-LTS of the free product A1 × · · · × An that contains
only those transitions (t1, . . . , tn) with λ(t1, . . . , tn) ∈ I

intuition: global transitions of a synchronous product must respect the synchroni-
sation constraints
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Synchronous Product

example: synchronous product of sequential program with boolean variable

(1, true) →(b=true?,true!) (1, true) (2, true) →(b:=true,b:=true) (3, true)

(3, true) →(proc,e) (4, true) (4, true) →(b:=false,b:=false) (1, false)

(1, false) →(b=false?,false!) (2, false) (2, false) →(b:=true,b:=true) (3, true)

(3, false) →(proc,e) (4, false) (4, false) →(b:=false,b:=false) (1, false)

eliminating unreachable states from initial state (1, false) yields

(3, true) →(proc,e) (4, true) (4, true) →(b:=false,b:=false) (1, false)

(1, false) →(b=false?,false!) (2, false) (2, false) →(b:=true,b:=true) (3, true)
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Synchronous Product

example: Peterson’s algorithm (cf. Arnold’s book)

• the free product has 5 components: the two processes and three
boolean variables for d0, d1 and turn

• the interaction of the variables in the processes cause many
synchronisation constraints

• if both processes are executed on a single processor,then only one process
can progress in each time interval, the other executes e

• such assumptions lead to synchronisation constraints with ∼ 20 global actions
• from initial state (1, 1, false, false, 0) there are ∼ 75 possible transitions
• no transition has 5 as first and second component, i.e., the mutex property

holds

idea: verify the mutex property by adding an observer process that in each step
tests the values of the first and second component
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Pragmatics of Synchronisation

example: processes interacting by shared variables

• represent each process and variable by LTS
• make constraint synchronise accesses to variables with actions of variables
• use constraints to make processes respect access policy for shared resources
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Pragmatics of Synchronisation

example: two boolean variables, one observer

• observer tests for equal values
• this yields synchronisation vectors

(b = b′?, true!, true!)

(b = b′?, false!, false!)

(b 6= b′?, true!, false!)

(b 6= b′?, false!, true!)
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Pragmatics of Synchronisation

example: communication by message passing

• communication channels are shared objects
• sending is synchronised with entering message into channel
• receiving is synchronised with taking a message from channel
• bounded channels can be modelled as bounded buffers (see previous example)
• lossy, duplifying or modifying buffers can be modelled similarly

remark: message passing is sufficient to model asynchronous communication
between processes
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Interleaving

asynchronous communication: only one process can make progress per time step

idea: consider all possible interleavings of processes

realisation:

• add appropriate e-actions to LTSs
• impose appropriate synchronisation constraints

intuition: interleaving semantics corresponds to unwinding of LTS

question: how to label edges of the tree in a systematic way?
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Example: The Alternating Bit Protocol

context: the alternating bit protocol is a popular exercise in specification
and verification

here: simplified version to obtain small synchronous products

specification: (informal)

• sender sends alternating bits and receives same bits as acknowledgements
• receiver receives alternating bits and sends same bits as acknowledgements
• communication is instantaneous, i.e., no message passing through buffer
• inversion of control bit modelled as error; then message or acknowledgement

is resent
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Example: The Alternating Bit Protocol

actions of sender:

• m0!: send message labelled by 0 bit
• m1!: send message labelled by 1 bit
• a0?: receive acknowledgement labelled by 0 bit
• a1?: receive acknowledgement labelled by 1 bit

actions of receiver:

• m0?: receive message labelled by 0 bit
• m1?: receive message labelled by 1 bit
• a0!: send acknowledgement labelled by 0 bit
• a1!: send acknowledgement labelled by 1 bit

implicit assumption: at each instant, every entity sends or receives (no e-actions)
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Example: The Alternating Bit Protocol

states:

• s0: state from which message or acknowledgement 0 is sent
• s1: state from which message or acknowledgement 1 is sent
• r0: state from which message or acknowledgement 0 is resent
• r1: state from which message or acknowledgement 1 is resent
• w0: state waiting for message or acknowledgement 0
• w1: state waiting for message or acknowledgement 1
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Example: The Alternating Bit Protocol

LTS of sender:

t1 : s1 →m1! w1 t2 : s0 →m0! w0 t3 : r1 →m1! w1 t4 : r0 →m0! w0

t5 : w0 →a0? s1 t6 : w0 →a1? r0 t7 : w1 →a1? s0 t8 : w1 →a0? r1

initial states: s1, s0

emissions: t1, t2

re-emission: t3, t4 (message was not properly acknowledged)
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Example: The Alternating Bit Protocol

LTS of sender:
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Example: The Alternating Bit Protocol

LTS of receiver:

t′1 : w1 →m1? s1 t′2 : w1 →m0? r0 t′3 : w0 →m0? s0 t′4 : w0 →m1? r1

t′5 : s1 →a1! w0 t′6 : s0 →a0! w1 t′7 : r1 →a1! w0 t′8 : r0 →a0! w1

initial states: w1, w0

well-received: t′1, t
′
3 (control bit has expected value)

re-emission: t′2, t
′
4 (control bit has un-expected value)
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Example: The Alternating Bit Protocol

LTS of receiver:
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Example: The Alternating Bit Protocol

synchronisation constraints:

1. no transmission errors for messages and acknowledgements

{(m0!, m0?), (m1!, m1?), (a0?, a0!), (a1?, a1!)}

2. transmission errors for messages, but not for acknowledgements

{(m0!, m0?), (m1!, m1?), (a0?, a0!), (a1?, a1!), (m0!, m1?), (m1!, m0?)}

3. transmission errors for acknowledgements, but not for messages

{(m0!, m0?), (m1!, m1?), (a0?, a0!), (a1?, a1!), (a0?, a1!), (a1?, a0!)}

4. transmission errors for messages and acknowledgements

{(m0!, m0?), (m1!, m1?), (a0?, a0!), (a1?, a1!),

(m0!, m1?), (m1!, m0?), (a0?, a1!), (a1?, a0!)}
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Example: The Alternating Bit Protocol
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Example: The Alternating Bit Protocol
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Example: The Alternating Bit Protocol
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Example: The Alternating Bit Protocol
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