
Software Verification and Testing

Lecture Notes: Transition Systems II



LTSs for Concurrent Systems

so far: we have modelled single sequential action systems

task: model concurrent systems, i.e.,

• model their parallel temporal development
• model their interaction/communication via shared variables or message passing

analogy:

• in engineering, temporal system behaviour is modelled by system of
differential equations

• states correspond to vectors
• interaction is modelled by shared variables

here: systems are discrete, not continuous. . .

1



LTSs for Concurrent Systems

definition: for i = 1, . . . , n let Ai = (Si, Ti, αi, βi, λi) be LTSs.
Their free product A1 × · · · × An is the LTS A = (S, T, α, β, λ) defined by

• S = S1 × · · · × Sn

• T = T1 × · · · × Tn

• α(t1, . . . , tn) = (α(t1), . . . , α(tn))
• β(t1, . . . , tn) = (β(t1), . . . , β(tn))
• λ(t1, . . . , tn) = (λ(t1), . . . , λ(tn))

remarks:

• global states of a concurrent systems are now vectors
• global transitions transform state vectors into state vectors
• this makes actions synchronous, i.e., a clock drives the individual transitions

2



LTSs for Concurrent Systems

observation: in communicating systems, many global transitions cannot be carried
out due to synchronisation constraints

example: consider the boolean variable and the sequential program example

• the boolean variable has 2 states and 8 transitions
• the sequential program has 4 states and 5 transitions
• the free product has 8 states and 40 transitions (combinatorial explosion. . . )
• however, in the combined system, the sequential program sets the states of

the boolean variable

3



LTSs for Concurrent Systems

example: (cont.)

• so there is only one global transition

(4, true) →(b:=false,b:=false) (1, false)

from global state (4, true)
• similarly, the test of b in the sequential program is always synchronised

with a read action on the boolean variable

notation: we will write true!, true? etc. for send and receive actions

4



LTSs for Concurrent Systems

example: (cont.)

• legal global actions:

(b := true, b := true)

(b := false, b := false)

(true?, true!)

(false?, false!)

(proc, e)

5



Synchronous Product

definition: a synchronisation constraint over the alphabets A1, . . . , An of LTSs is
a subset of A1 × · · · × An. Elements of synchronisation constraints are called
synchronisation vectors

definition: letAi, i = 1, . . . , n, be LTSs with alphabets Ai and let I ⊆ A1×· · ·×An

be a synchronisation constraint. The synchronous product (A1, . . . ,An, I) of
the Ai under I is the sub-LTS of the free product A1 × · · · × An that contains
only those transitions (t1, . . . , tn) with λ(t1, . . . , tn) ∈ I

intuition: global transitions of a synchronous product must respect the synchroni-
sation constraints

6



Synchronous Product

example: synchronous product of sequential program with boolean variable

(1, true) →(b=true?,true!) (1, true) (2, true) →(b:=true,b:=true) (3, true)

(3, true) →(proc,e) (4, true) (4, true) →(b:=false,b:=false) (1, false)

(1, false) →(b=false?,false!) (2, false) (2, false) →(b:=true,b:=true) (3, true)

(3, false) →(proc,e) (4, false) (4, false) →(b:=false,b:=false) (1, false)

eliminating unreachable states from initial state (1, false) yields

(3, true) →(proc,e) (4, true) (4, true) →(b:=false,b:=false) (1, false)

(1, false) →(b=false?,false!) (2, false) (2, false) →(b:=true,b:=true) (3, true)

7



Synchronous Product

example: Peterson’s algorithm (cf. Arnold’s book)

• the free product has 5 components: the two processes and three
boolean variables for d0, d1 and turn

• the interaction of the variables in the processes cause many
synchronisation constraints

• if both processes are executed on a single processor,then only one process
can progress in each time interval, the other executes e

• such assumptions lead to synchronisation constraints with ∼ 20 global actions
• from initial state (1, 1, false, false, 0) there are ∼ 75 possible transitions
• no transition has 5 as first and second component, i.e., the mutex property

holds

idea: verify the mutex property by adding an observer process that in each step
tests the values of the first and second component

8



Pragmatics of Synchronisation

example: processes interacting by shared variables

• represent each process and variable by LTS
• make constraint synchronise accesses to variables with actions of variables
• use constraints to make processes respect access policy for shared resources

9



Pragmatics of Synchronisation

example: two boolean variables, one observer

• observer tests for equal values
• this yields synchronisation vectors

(b = b′?, true!, true!)

(b = b′?, false!, false!)

(b 6= b′?, true!, false!)

(b 6= b′?, false!, true!)

10



Pragmatics of Synchronisation

example: communication by message passing

• communication channels are shared objects
• sending is synchronised with entering message into channel
• receiving is synchronised with taking a message from channel
• bounded channels can be modelled as bounded buffers (see previous example)
• lossy, duplifying or modifying buffers can be modelled similarly

remark: message passing is sufficient to model asynchronous communication
between processes

11



Interleaving

asynchronous communication: only one process can make progress per time step

idea: consider all possible interleavings of processes

realisation:

• add appropriate e-actions to LTSs
• impose appropriate synchronisation constraints

intuition: interleaving semantics corresponds to unwinding of LTS

question: how to label edges of the tree in a systematic way?

12



Example: The Alternating Bit Protocol

context: the alternating bit protocol is a popular exercise in specification
and verification

here: simplified version to obtain small synchronous products

specification: (informal)

• sender sends alternating bits and receives same bits as acknowledgements
• receiver receives alternating bits and sends same bits as acknowledgements
• communication is instantaneous, i.e., no message passing through buffer
• inversion of control bit modelled as error; then message or acknowledgement

is resent

13



Example: The Alternating Bit Protocol

actions of sender:

• m0!: send message labelled by 0 bit
• m1!: send message labelled by 1 bit
• a0?: receive acknowledgement labelled by 0 bit
• a1?: receive acknowledgement labelled by 1 bit

actions of receiver:

• m0?: receive message labelled by 0 bit
• m1?: receive message labelled by 1 bit
• a0!: send acknowledgement labelled by 0 bit
• a1!: send acknowledgement labelled by 1 bit

implicit assumption: at each instant, every entity sends or receives (no e-actions)

14



Example: The Alternating Bit Protocol

states:

• s0: state from which message or acknowledgement 0 is sent
• s1: state from which message or acknowledgement 1 is sent
• r0: state from which message or acknowledgement 0 is resent
• r1: state from which message or acknowledgement 1 is resent
• w0: state waiting for message or acknowledgement 0
• w1: state waiting for message or acknowledgement 1

15



Example: The Alternating Bit Protocol

LTS of sender:

t1 : s1 →m1! w1 t2 : s0 →m0! w0 t3 : r1 →m1! w1 t4 : r0 →m0! w0

t5 : w0 →a0? s1 t6 : w0 →a1? r0 t7 : w1 →a1? s0 t8 : w1 →a0? r1

initial states: s1, s0

emissions: t1, t2

re-emission: t3, t4 (message was not properly acknowledged)

16



Example: The Alternating Bit Protocol

LTS of sender:

s0

s1 w1

w0

r1

r0

t4
t6

a0?
t8

m1!m1!
t1

t3

t7 a1?

t2
m0!

t5

a1?

a0?

m0!

17



Example: The Alternating Bit Protocol

LTS of receiver:

t′1 : w1 →m1? s1 t′2 : w1 →m0? r0 t′3 : w0 →m0? s0 t′4 : w0 →m1? r1

t′5 : s1 →a1! w0 t′6 : s0 →a0! w1 t′7 : r1 →a1! w0 t′8 : r0 →a0! w1

initial states: w1, w0

well-received: t′1, t
′
3 (control bit has expected value)

re-emission: t′2, t
′
4 (control bit has un-expected value)

18



Example: The Alternating Bit Protocol

LTS of receiver:

s1 w1

w0

r0

r1

t7’
t4’

m0?
t2’

a0!m1?
t1’

t8’

t6’ a0!

t3’
m0?

t5’

m1?

a1!

a1!
s0

19



Example: The Alternating Bit Protocol

synchronisation constraints:

1. no transmission errors for messages and acknowledgements

{(m0!, m0?), (m1!, m1?), (a0?, a0!), (a1?, a1!)}

2. transmission errors for messages, but not for acknowledgements

{(m0!, m0?), (m1!, m1?), (a0?, a0!), (a1?, a1!), (m0!, m1?), (m1!, m0?)}

3. transmission errors for acknowledgements, but not for messages

{(m0!, m0?), (m1!, m1?), (a0?, a0!), (a1?, a1!), (a0?, a1!), (a1?, a0!)}

4. transmission errors for messages and acknowledgements

{(m0!, m0?), (m1!, m1?), (a0?, a0!), (a1?, a1!),

(m0!, m1?), (m1!, m0?), (a0?, a1!), (a1?, a0!)}

20



Example: The Alternating Bit Protocol

s0,w0

w0,r1

s1,w0

w1,r1

r1,w0

w1,s0
r1w1

w1,s1

r0,w0

w0,s0

s1,w1

w1,r0

w0,r0

r0,w1

w0,s1

s0,w1

m1!,m0?

m1!,m1?

m1!,m0?

m1!,m1?

a0?,a1!

a1?,a1!

m0!,m1?

m0!,m0?

m1!,m1?

m1!,m0?m1!,m1?

m0!,m1! m0!,m0?

a0?,a0!

m1!,m0?

a1?,a0!

a0?,a0!

a1?,a0!

m0!,m0?

m0!,m0?

a1?,a0! m0!,m1?
a0?,a1!

a0?,a1!

a0?,a0!

a1?,a1!

a0?,a1!

a1?,a1!

a0?,a0!

a1?,a0!

a1?,a1!

m0!,m1?

21



Example: The Alternating Bit Protocol

s0,w0

w0,r1

s1,w0

w1,r1

r1,w0

w1,s0
r1w1

w1,s1

r0,w0

w0,s0

s1,w1

w1,r0

w0,r0

r0,w1

w0,s1

s0,w1

m1!,m0?

m1!,m1?

m1!,m0?

m1!,m1?

a0?,a1!

a1?,a1!

m0!,m1?

m0!,m0?

m1!,m1?

m1!,m0?m1!,m1?

m0!,m1! m0!,m0?

a0?,a0!

m1!,m0?

a1?,a0!

a0?,a0!

a1?,a0!

m0!,m0?

m0!,m0?

a1?,a0! m0!,m1?
a0?,a1!

a0?,a1!

a0?,a0!

a1?,a1!

a0?,a1!

a1?,a1!

a0?,a0!

a1?,a0!

a1?,a1!

m0!,m1?

22



Example: The Alternating Bit Protocol

s0,w0

w0,r1

s1,w0

w1,r1

r1,w0

w1,s0
r1w1

w1,s1

r0,w0

w0,s0

s1,w1

w1,r0

w0,r0

r0,w1

w0,s1

s0,w1

m1!,m0?

m1!,m1?

m1!,m0?

m1!,m1?

a0?,a1!

a1?,a1!

m0!,m1?

m0!,m0?

m1!,m1?

m1!,m0?m1!,m1?

m0!,m1! m0!,m0?

a0?,a0!

m1!,m0?

a1?,a0!

a0?,a0!

a1?,a0!

m0!,m0?

m0!,m0?

a1?,a0! m0!,m1?
a0?,a1!

a0?,a1!

a0?,a0!

a1?,a1!

a0?,a1!

a1?,a1!

a0?,a0!

a1?,a0!

a1?,a1!

m0!,m1?

23



Example: The Alternating Bit Protocol

s0,w0

w0,r1

s1,w0

w1,r1

r1,w0

w1,s0
r1w1

w1,s1

r0,w0

w0,s0

s1,w1

w1,r0

w0,r0

r0,w1

w0,s1

s0,w1

m1!,m0?

m1!,m1?

m1!,m0?

m1!,m1?

a0?,a1!

a1?,a1!

m0!,m1?

m0!,m0?

m1!,m1?

m1!,m0?m1!,m1?

m0!,m1! m0!,m0?

a0?,a0!

m1!,m0?

a1?,a0!

a0?,a0!

a1?,a0!

m0!,m0?

m0!,m0?

a1?,a0! m0!,m1?
a0?,a1!

a0?,a1!

a0?,a0!

a1?,a1!

a0?,a1!

a1?,a1!

a0?,a0!

a1?,a0!

a1?,a1!

m0!,m1?

24


