
Software Verification and Testing

Lecture Notes: Z I

Motivation

so far: we have seen that properties of software systems can be specified using
first-order logic, set theory and the relational calculus

tasks:

• develop a specific notation for software specifications
• provide an environment for declaring and combining these specifications
• integrate them into a formal method to refine specifications to

executable code

slogan: speficiations are (possibly) non-executable programs

1

The Z Notation

remark: as a formal language, Z needs a formal unambiguous notation

observation:

• most of the concepts have already be defined using “standard” mathematical
notation

• the Z notation is somewhat different

task: we will now review the Z notation and introduce some additional concepts

2

The Z Notation

first-order logic: the following notation is used in Z

• ¬ , ∧, ∨ are used for negation, conjunction and disjunction
• ⇒ and ⇔ are used for implication and bi-implication (also called equivalence)
• ∃ x • φ denotes “there is an x such that φ”
• ∃1 stands for “there is precisely one. . . ”

this allows for definite descriptions of entities

3

The Z Notation

sets: the following notation is used in Z

• sets can be defined by extension: {a, b, c}
• comprehension is written as {x | φ}
• set comprehension can be used for pattern definition:

{x | drivesCar (x) • address(x)}

yields the set of addresses of car drivers
• the power set of set A is denoted by P A.

4

The Z Notation

types: Z uses special sets called types for specifying entities

analogy: types in programming languages

intuition: each value x in a specification is associated with precisely one type
which is the largest set s such that x ∈ s

here: we identify sets and types, but write x : T when x has type T

type construction:

• Z has only Z as a basic built-in type
• types can be constructed from given types for instance by

taking cartesian products and powersets
• further constructs will appear later

5

The Z Notation

definitions: Z provides special notation for definitions

• we now consider declarations, abrreviations and axioms
• further kinds of definition will come later

declaration:

• type declaration: [Type] introduces new basis type Type.
• variable declaration: x : A declares variable x with type A

example:

• [Guest ,Room] declares basic types for a hotel booking system
• x : Guest declares a guest x of the hotel

notation: pairs x : A are called signatures

6

The Z Notation

abbreviations:

• notation: symbol == term
• condition: symbol may not occur in term

example:

• MarxBrothers == {Chico,Harpo,Groucho,Gummo,Zeppo}
• English == {p : Person | drinksTea(p) ∧ putsMilk (p)}

remark: abbreviations can be parametrised (∅[S] == {x : S | x 6= x})

7

The Z Notation

axiomatic definitions: the definition of an object is constrained by conditions

notation: (separation of declaration and conditions/predicates)

declaration

predicate

example:

N : P Z

∀ z : Z • z ∈ N ⇔ z ≥ 0

variant: if a condition is true it can be omitted

8

The Z Notation

axiomatic definitions: can be parametric

notation: (from example)

[X]
⊆ : P X ↔ P X

∀ s , t : P X • s ⊆ t ⇔ ∀ x : X • x ∈ s ⇒ x ∈ t

remark: ⊆ is defined as an infix operator on sets of arbitrary type

9

The Z Notation

relations:

• many constructs defined as previously
• maplet notation: x 7→ y as alternative to (x , y)
• R(| A |) denotes relational image of A under R, i.e.,

R(| A |) = dom(R B A)

• converse of R is denoted by R∼ or R−1

• identity on set X is denoted by idX
• relational composition is denoted R o

9 S

10

The Z Notation

functions: Z uses the following notation

• o
9 and ◦ for forward and backward composition, i.e.,

(f o
9 g)(x) = g(f (x)) (contravariant)

(f ◦ g)(x) = f (g(x)) (covariant)

• 7→ and → for partial and total functions
• 7� and � for partial and total injections
• 7→→ and →→ for partial and total surjections
• �→ for bijections (injective and surjective functions)

11

The Z Notation

conventions:

• one usually writes f x instead of f (x)
• infix notation is used, e.g., for arithmetic functions

3 + 4 5 ∗ 8 4/2 7− 5

12

The Z Notation

λ-notation: definition of anonymous functions

• in mathematics λ x .3 + x stands for function x 7→ 3 + x which
for every x yields 3 + x

• example
– double without λ

double : N → N

∀m,n ∈ N • m 7→ n ∈ double ⇔ m + m = n

– double with λ

double : N → N

double = λn : N • n + n

13

The Z Notation

general syntax of λ-notation

λ declaration | constraint • result

example:

pair : ((N 7→ N)× (N 7→ N)) → (N 7→ (N× N))

pair = λ f , g : N 7→ N • (λn : N | n ∈ dom f ∩ dom g • (f n, g n))

14

The Z Notation

example:

pair (λn : N • 2 ∗ n, λn : N • 3 ∗ n) 4

= λm : N • ((λn : N • 2 ∗ n) m, (λn : N • 3 ∗ n) m) 4

= λm : N • (2 ∗m, 3 ∗m) 4

= (2 ∗ 4, 3 ∗ 4)

= (8, 12)

remark: this uses (λ x • f x) a = f a or (λ x • f) a = f [a/x]
x , f and a must have appropriate types

15

The Z Notation

function overriding: (applicable to relations)

[X ,Y]
⊕ : (X ↔ Y)× (X ↔ Y) → (X ↔ Y)

∀ f , g : X ↔ Y • f ⊕ g = (dom g −C f) ∪ g)

remark:

• outside the domain of g we keep f
• inside the domain of g we replace f by g

question: is the overriding of two functions a function?

16

The Z Notation

example: tracking persons

• types

Persons == {ferdinand , leopold ,maximilian}
Locations == {bed , office, beergarden}

• functions

where is0 : Persons → Locations

where is0 = {ferdinand 7→ office, leopold 7→ beergarden,
maximilian 7→ beergarden}

17

The Z Notation

example: tracking persons

• functions (continue:)

update0 : Persons 7→ Locations

update0 = {ferdinand 7→ beergarden}

update1 : Persons 7→ Locations

update1 = {maximilian 7→ bed , leopold 7→ bed}

18

The Z Notation

example: tracking persons

• functions (continued):

where is1 : Persons → Locations

where is1 = where is0⊕ update0

where is2 : Persons → Locations

where is2 = where is1⊕ update1

19

The Z Notation

example: tracking persons

where is0 leopold = beergarden

where is1 leopold = beergarden

where is2 leopold = bed

where is1 = {ferdinand 7→ beergarden, leopold 7→ beergarden,maximilian 7→ beergarden}

where is2 = {ferdinand 7→ beergarden, leopold 7→ bed ,maximilian 7→ bed}

remark: this can be done more elegantly. . .

20

The Z Notation

theorem: if dom f ∩ dom g = ∅, then f ⊕ g = f ∪ g

proof: if dom f ∩ dom g = ∅, then dom f = dom g ∩ dom f

f ⊕ g = (dom g −C f) ∪ g

= (dom g −C (dom f C f)) ∪ g

= (dom g C (dom f C f)) ∪ g

= ((dom g ∩ dom f) C f) ∪ g

= (dom f C f) ∪ g

= f ∪ g

you can visualise this using Venn diagrams. . .

21

Finite Sets

observation: finite sets are in bijective correspondence with subsets
of natural numbers

intuition: when a set is finite, we can assign a unique natural number
to each element

number range:

. . : N× N → P N

∀m,n ∈ N • m . . n = {i : N | m ≤ i ≤ n}

finite sets: F X == {s : P X | ∃n : N • ∃ f : 1 . . n �→ s • true}

22

Finite Sets

cardinality: the cardinality of a finite set is just its size. . .

[X]
: F X → N

∀ s : F X ; n : N • n = #s ⇔ ∃ f : (1 . . n) �→ s • true

set of all finite functions: A 7 7→ B == {f : A 7→ B | dom f ∈ F A}

set of all finite injections: A 7 7� B == A 7 7→ B ∩A 7� B

remark: A 7 7→ B (A 7 7� B) is the set of all finite (repetition-free) collections
of elements of B , indexed by elements from A

23

Finite Sets

properties of cardinality: let s and t be finite sets

#∅ = 0

#s ≤ #({a} ∪ s) ≤ 1 + #s

max (#s , #t) ≤ #(s ∪ t) ≤ #s + #t

∅ ≤ #(s ∩ t) ≤ max (#s , #t)

when are these bounds sharp?

24

