Software Verification and Testing

Lecture Notes: Z |

Motivation

so far: we have seen that properties of software systems can be specified using
first-order logic, set theory and the relational calculus

tasks:

e develop a specific notation for software specifications

e provide an environment for declaring and combining these specifications

e integrate them into a formal method to refine specifications to
executable code

slogan: speficiations are (possibly) non-executable programs

The Z Notation

remark: as a formal language, Z needs a formal unambiguous notation

observation:

e most of the concepts have already be defined using “standard” mathematical
notation
e the Z notation is somewhat different

task: we will now review the Z notation and introduce some additional concepts

The Z Notation

first-order logic: the following notation is used in Z

e —, A, V are used for negation, conjunction and disjunction
e = and < are used for implication and bi-implication (also called equivalence)
e Jz e ¢ denotes “there is an z such that ¢"
e o, stands for “there is precisely one. . . "
this allows for definite descriptions of entities

The Z Notation

sets: the following notation is used in Z

e sets can be defined by extension: {a,b, ¢}
e comprehension is written as {z | ¢}
e set comprehension can be used for pattern definition:

{z | drivesCar(z) ® address(z)}

yields the set of addresses of car drivers
e the power set of set A is denoted by P A.

The Z Notation

types: Z uses special sets called types for specifying entities
analogy: types in programming languages

intuition: each value x in a specification is associated with precisely one type
which is the largest set s such that z € s

here: we identify sets and types, but write z : T' when = has type T

type construction:

e / has only Z as a basic built-in type

e types can be constructed from given types for instance by
taking cartesian products and powersets

e further constructs will appear later

The Z Notation

definitions: Z provides special notation for definitions

e we now consider declarations, abrreviations and axioms

e further kinds of definition will come later
declaration:

e type declaration: |[Type| introduces new basis type Type.

e variable declaration: x : A declares variable z with type A
example:

e |Guest, Room| declares basic types for a hotel booking system

e 7 : Guest declares a guest = of the hotel

notation: pairs = : A are called signatures

The Z Notation

abbreviations:
e notation: symbol == term
e condition: symbol may not occur in term
example:
o MarzBrothers == {Chico, Harpo, Groucho, Gummo, Zeppo }
o FEnglish == {p : Person | drinksTea(p) N putsMilk(p)}

remark: abbreviations can be parametrised (S| =={z: S5 |z # x})

The Z Notation

axiomatic definitions: the definition of an object is constrained by conditions
notation: (separation of declaration and conditions/predicates)

declaration

predicate

example:

N:PZ

Vz:ZezeNs2z>0

variant: if a condition is true it can be omitted

The Z Notation

axiomatic definitions: can be parametric

notation: (from example)

— | X]
C PX<PX

Vs,t PXesCtesVr:. Xerces=aeEet

remark: C is defined as an infix operator on sets of arbitrary type

The Z Notation

relations:

e many constructs defined as previously
e maplet notation: z — y as alternative to (z,y)
e R(A | denotes relational image of A under R, i.e.,

R|(A])=dom(R> A)

e converse of R is denoted by R~ or R~*
e identity on set X is denoted by id X
e relational composition is denoted R § S

10

The Z Notation

functions: Z uses the following notation

e ¢ and o for forward and backward composition, i.e.,

(feg)z)=g(f(x)) (contravariant
(fog)z)=f(g(z)) (covariant

—+ and — for partial and total functions

-~ and »— for partial and total injections

— and —» for partial and total surjections

—» for bijections (injective and surjective functions)

)
)

11

The Z Notation

conventions:

e one usually writes f x instead of f(x)
e infix notation is used, e.g., for arithmetic functions

3+4 58 4/2 T—5

12

The Z Notation

A-notation: definition of anonymous functions

e in mathematics A z.3 + x stands for function x — 3 + x which
for every x yields 3 + x

e example
— double without A

double : N — N

Vm,ne Nemi—né&double sm+m=n
— double with \

double : N — N

double =An :Nen-+mn

13

The Z Notation

general syntax of A\-notation

A declaration | constraint e result

example:

pair : (N -+ N) x (N+ N)) - (N -+ (N x N))

pair = Af,g : N--Ne(An:N|necdomfndomge (f n,gn))

14

The Z Notation

example:

pair An:Ne2xn An:Ne3xn)4
=Am:Ne((An:Ne2xn)m,(An:Ne3xn)m)4
=Am:Ne((2xm,3%xm)4
= (2% 4,3 %4)
— (8,12)

remark: thisuses Az e f x)a=faor(Azef)a=fla/z]
x, f and a must have appropriate types

15

The Z Notation

function overriding: (applicable to relations)

X, Y]

@:(X<—>Y)><(X<—>Y)—><X<—>Y)

Vfg: X Yefdg=(dom g<f)Ug)

remark:

e outside the domain of g we keep f
e inside the domain of g we replace f by ¢

question: is the overriding of two functions a function?

16

The Z Notation

example: tracking persons

e types

Persons == {ferdinand, leopold, maximilian}

Locations == {bed, office, beergarden}

e functions

where_is, : Persons — Locations

where_is, = {ferdinand — office, leopold — beergarden,
mazximilian — beergarden}

17

The Z Notation

example: tracking persons

e functions (continue:)

update, : Persons + Locations

update, = {ferdinand — beergarden }

update, : Persons + Locations

update; = {maximilian — bed, leopold — bed }

18

The Z Notation

example: tracking persons

e functions (continued):

where_1s, : Persons — Locations

where_1s, = where_1s, ® update,

where_is, : Persons — Locations

where_1s, = where_1s, ® update,

19

The Z Notation

example: tracking persons

where_1s, leopold = beergarden
where_1is, leopold = beergarden

where_1s, leopold = bed

where_is, = {ferdinand — beergarden, leopold — beergarden, mazimilian — beergarden}

where_is, = {ferdinand — beergarden, leopold — bed, mazimilian — bed }

remark: this can be done more elegantly. . .

20

The Z Notation

theorem: if domf Ndomg =@, then f&g=fUg

proof: if dom f Ndom g = &, then dom f = dom g Ndom f
f@g=(domg<f)Ug
= (dom g <9 (dom f < f)) U
= (dom g < (dom f < f)) U
= ((domgnNdomf)<f)Ug

you can visualise this using Venn diagrams. . .

21

Finite Sets

observation: finite sets are in bijective correspondence with subsets
of natural numbers

intuition: when a set is finite, we can assign a unique natural number
to each element

number range:

.. :NxN—=PN

Vm,neNem..n={i:N|m<i<n}

finite sets: FX =={s:PX |[dn:NeJf:1..n— s etrue}

22

Finite Sets

cardinality: the cardinality of a finite set is just its size. . .

— [X]

. FX —- N

Vs:FX; n:Nen=#s< 3f:(1..n) — s etrue

set of all finite functions: A + B=={f: A+ B|domf € F A}
set of all finite injections: A B=—=A -+ BNA+ B

remark: A + B (A = B) is the set of all finite (repetition-free) collections
of elements of B, indexed by elements from A

23

Finite Sets

properties of cardinality: let s and ¢ be finite sets

He = 0
#s < #({apUs) <1+

max(#s, #t) < F#(sUt) < #s + F#t
g < #(sNt) < max(#s,#t)

when are these bounds sharp?

24

