
Software Verification and Testing

Lecture Notes: Z II

Sequences

idea: sequences are a fundamental data structure in Z. They are used for
modelling stacks, queues or lists

implementation: sequences are finite functions from the natural numbers

further use: we will use sequences to learn about inductive definitions and
proofs by induction

1

Sequences

intuition:

• sequences over some set A are functions f : N → A
• finite sequences over A are functions f : 1 . . n → A for some n

formalisation:

• (first definition) seqX == {s : N → X | ∃n : N • dom s = 1 . . n}
• but types can be sharpened

sequences in Z: seqX == {s : N 7 7→ X | ∃n : N • dom s = 1 . . n}

notation: we write

• 〈 〉 for the empty sequence
• 〈s , h, e, f , f , i , e, l , d〉 when we explicitly enumerate a sequence

2

Sequences

concatenation:

[X]
a : seqX × seqX → seqX

∀ s , t : seqX •
#(s a t) = #s + #t
∀ i : 1 . . #s • (s a t) i = s i
∀ j : 1 . . #t • (s a t) (j + #s) = t j

example: 〈a, b, c〉 a 〈d , e, f , g〉 = 〈a, b, c, d , e, f , g〉

3

Sequences

head:

[X]
head : seqX 7→ X

∀ s : seqX | s 6= 〈 〉 • head s = s 1

example:

• head〈a, b, c〉 = a
• head〈 〉 is undefined

4

Sequences

tail:

[X]
tail : seqX 7→ seqX

∀ s : seqX | s 6= 〈 〉 •
tail s = #s − 1
∀ i : 1 . . #s − 1 • (tail s) i = s (i + 1)

example:

• tail〈a, b, c〉 = 〈b, c〉
• tail〈 〉 is undefined

5

Sequences

restriction: � : seqX × P X → seqX is more difficult to define [cf. Using Z]

here: we only provide intuition

example: 〈a, b, x ,n, x , b, x ,n, b, a〉 � {a,n} = 〈a,n,n, a〉

6

Sequences

special case: injective sequences are repetition-free

theorem: sequence s is repetition-free iff #s = # ran(s)

7

Sequences

further operations:

• cons

[X]
: : X × seqX → seqX

∀ x : X • ∀ s : seqX •
#(x : s) = 1 + #s
(x : s) 1 = x
∀ i : 2 . . #s + 1 • (x : s) i = s (i − 1)

• example: a : 〈b, c〉 = 〈a, b, c〉

8

Sequences

further operations: (introduced by example)

• front〈a, b, c〉 = 〈a, b〉
• last〈a, b, c〉 = c

remark: a definition will be given as an exercise

9

Sequences

observation:

• cons looks more basic that concatenation; it builds a sequence stepwise from
the empty sequence

• every sequence can be written as a term of the form x1 : (x2 : · · · : (sn : 〈 〉) . . .)
• so every sequence is either empty or a cons of some element and a sequence;

but not both
• concatenation can be defined in terms of cons

〈 〉 a s = s

(x : s) a t = x : (s a t)

• this has two steps
1. the definition for the sequence constructor 〈 〉
2. the definition for the sequence constructor : (cons)

10

Cons and Cat

property: 〈x 〉 a s = (x : s)

proof: 〈x 〉 a s = (x : 〈 〉) a s = x : (〈 〉 a s) = (x : s)

remark: therefore, obviously, cons can also be defined in terms of cat. . .

11

Inductive Definitions

a generalisation: the definition of a as a function on sequences can be generalised
to arbitrary functions from sequences:

inductive/recursive definitions: let c be a constant in set B and let g : X ×B →
B be a function. Then the function f : seqX → B is uniquely defined by

f 〈 〉 = c f (x : s) = g(x , f (s))

examples:

• length of a sequence #〈 〉 = 0 #(x : s) = 1 + #xs
• reversion of a sequence rev〈 〉 = 〈 〉 rev (x : s) = (rev s) a 〈x 〉

12

Inductive Definitions

remember: terms and formulae were also inductively defined

• first on some “atoms”, i.e., constants or atomic formulae
• then with respect to function symbols as term constructors and

logical operation symbols as formula constructors

remark: also the natural numbers can be defined inductively using the constructors

• 0 and s : N → N
• 4, e.g., is represented by the term s(s(s(s(0))))
• addition can be defined inductively as

n + 0 = n n + s(m) = s(n + m)

13

Inductive Definitions

example: s � {x} can be defined inductively by

〈 〉 � {x} = 〈 〉
(y : s) � {x} = if x = y then y : (s � {x}) else s � {x}

task: extend this definition to s � {x , y}

• why doesn’t that work?
• how can we simulate this?

remark: this is not a specification, but an implementation problem. . .

14

Proofs by Induction

observation: many systems, data types and behaviours can be defined inductively

theorem: (principle of mathematical induction) Let P(.) be a property of natural
numbers. If P(0) holds and P(m) implies P(m + 1) for all m ∈ N. Then P(n)
holds for all n ∈ N

15

Proofs by Induction

example:
∑n

i=1 i = n(n+1)
2

proof:

• base case
∑

0 = 0 = 0·1
2

• induction hypothesis
∑k

i=1 i = k(k+1)
2

• induction step:

k+1∑
i=1

i = (k + 1) +

k∑
i=1

i = (k + 1) +
k (k + 1)

2

=
2(k + 1) + k (k + 1)

2
=

(k + 1)(k + 2)

2

16

Proofs by Induction

theorem: (principle of structural induction) Let P be a property of sequences. If
P(〈 〉) holds and for all x ∈ X and s ∈ seqX P(s) implies P(x : s), then P(s)
holds for all s ∈ seqX

proof: by contradiction assume that P(s) does not hold for all sequences s.
Then there must be a minimal sequence t (wrt length) such that ¬P(t) holds.
t cannot be empty, since P(〈 〉) holds. So t = x : t ′.
But then, by contraposition, ¬P(t ′) also holds.
This contradicts the minimality of t .

17

Proofs by Induction

example: #(s a t) = #s + #t .

proof:

• base case: #(〈 〉 a t) = #t = 0 + #t = #〈 〉 + #t
• induction hypothesis: #(s a t) = #s + #t
• induction step:

#((x : s) a t) = #(x : (s a t))

= 1 + #(s a t)

= 1 + #s + #t

= #(x : s) + #t

18

Proofs by Induction

example: (s a t) a u = s a (t a u)

proof:

• base case: (〈 〉 a t) a u = t a u = 〈 〉 a (t a u)

• induction hypothesis: (s a t) a u = s a (t a u)
• induction step:

((x : s) a t) a u = (x : (s a t)) a u

= x : ((s a t) a u)

= x : (s a (t a u))

= (x : s) a (t a u))

19

Proofs by Induction

example: #s = # rev s

proof:

• base case: #〈 〉 = 0 = #〈 〉 = # rev〈 〉
• induction hypothesis: #s = # rev s
• induction step:

#(x : s) = 1 + #s

= 1 + # rev s

= # rev s + #〈x 〉

= #(rev s a 〈x 〉)
= # rev (x : s)

20

Further properties

we have

head(x : s) = x

tail(x : s) = s

last s = head rev s

front s = tail rev s

21

Induction and Verification

observation: many functions/data-types can be inductively defined
(factorials, Fibonacci numbers, trees, formulae,. . .)

structural induction can be generalised from sequences to arbitrary
inductively defined expressions

example: show that every term is either bracket-free or contains an even number
of brackets. . .

induction and verification:

• reasoning about inductively defined properties requires inductive proofs
• inductive reasoning is often creative; assumptions must be strengthened

or modified
• some properties cannot be proved in a straight way

22

Induction and Verification

theorem proving: a theorem prover is a tool that carries out mathematical proofs
on a machine

• proofs in FOL can often be automated
• if the claim is a theorem of FOL, it can be detected
• if it is not a theorem, the prover may run forever

problem: induction is not part of FOL

solution: interactive theorem provers

• many simple inductive proofs can still be automated

23

