Software Verification and Testing

Lecture Notes: Z |l

Sequences

idea: sequences are a fundamental data structure in Z. They are used for
modelling stacks, queues or lists

implementation: sequences are finite functions from the natural numbers

further use: we will use sequences to learn about inductive definitions and
proofs by induction

Sequences

intuition:

e sequences over some set A are functions f : N — A
e finite sequences over A are functions f : 1..n — A for some n

formalisation:

o (first definition) seq X =={s: N— X |dn:Nedoms=1..n}
e but types can be sharpened

sequences in Z: seq X == {s N+ X |dn:Nedoms=1..n}

notation: we write

e () for the empty sequence
e (s,h,e . f f,i,e, l,d) when we explicitly enumerate a sequence

Sequences

concatenation:

— X

_ 7 _iseqX xseqX —seq X

Vs, t:seqX o
#(s 1) = ffs + 7t
Vi:l..#se (s t)i=s1
Vj:l..#te (s t)(j+H#s)=1]

example: (a,b,c) " (d,e,f,9) =(a,b,c,d,e,f,g)

Sequences

head:
— [X]
head : seq X - X
Vs:seqX | s# () e heads=s1
example:

e head(a,b,c) = a
e head() is undefined

Sequences

tail:
— [X]
tail : seq X + seq X
Vs:seqX |s#() e
tail s = #s — 1
Vi:l..#s—1e(tails)i=s (i+1)
example:

o tail{a,b,c) = (b,c)
e tail() is undefined

Sequences

restriction: _ | _:seq X X P X — seq X is more difficult to define [cf. Using Z]
here: we only provide intuition

example: (a,b,z,n,z,b,z,n,b,a) [{a,n} = (a,n,n,a)

Sequences

special case: injective sequences are repetition-free

theorem: sequence s is repetition-free iff #s = # ran(s)

Sequences

further operations:

® CoNns

— [X]
: X xXseqX —seq X

Ver: X eVs:seqX o
#H(x:s)=1++#s
(x:s) 1=z
Vi:2. . #s+1le(x:s)i=s(i—1)

e example: a: (b,c) = (a,b,c)

Sequences

further operations: (introduced by example)

e front{a,b,c) = (a,b)

e last{a,b,c)=rc

remark: a definition will be given as an exercise

Sequences

observation:

e cons looks more basic that concatenation; it builds a sequence stepwise from
the empty sequence

e every sequence can be written as a term of the form z; : (2 : -+ : (s, : ())...)

® SO every sequence is either empty or a cons of some element and a sequence;
but not both

e concatenation can be defined in terms of cons

(x:s) " t=x:(st)
e this has two steps

1. the definition for the sequence constructor ()
2. the definition for the sequence constructor : (cons)

10

Cons and Cat

property: (z) " s=(z:s)
proof: (z) "s=(x:{() "s=xz:(() " s)=(z:5s)

remark: therefore, obviously, cons can also be defined in terms of cat. ..

11

Inductive Definitions

a generalisation: the definition of 7" as a function on sequences can be generalised
to arbitrary functions from sequences:

inductive/recursive definitions: let ¢ be a constantinset Bandletg: X x B —
B be a function. Then the function f : seq X — B is uniquely defined by

fO=c flz:s)=g(z[(s))

examples:

e length of a sequence #() =0 #(x :s) =14 F#uxs
e reversion of a sequence rev() = () rev(z . s) = (revs) " (x)

12

Inductive Definitions

remember: terms and formulae were also inductively defined

e first on some “atoms”, i.e., constants or atomic formulae
e then with respect to function symbols as term constructors and
logical operation symbols as formula constructors

remark: also the natural numbers can be defined inductively using the constructors

e Dand s :N — N
e 4, e.g., is represented by the term s(s(s(s(0))))
e addition can be defined inductively as

n+0=n n+ s(m)=s(n+m)

13

Inductive Definitions

example: s [{z} can be defined inductively by

O Tzt =)
(y:s)[{z}=ifc=ytheny:(s[{z})elses|{z}

task: extend this definition to s [{z,y}

e why doesn’t that work?
e how can we simulate this?

remark: this is not a specification, but an implementation problem. . .

14

Proofs by Induction

observation: many systems, data types and behaviours can be defined inductively

theorem: (principle of mathematical induction) Let P(.) be a property of natural
numbers. If P(0) holds and P(m) implies P(m + 1) for all m € N. Then P(n)
holds for all n € N

15

Proofs by Induction

example: > " i = ”(”;1)
proof:
e base case Y 0=0="2

e induction hypothesis 3% k(k;l)

e induction step:

k+1 k

doi=(k+1)+) i=(k+1)+

k(k+1)

_2k+ 1)+ E(E+L) (B+1)(k+2)
2 2

16

Proofs by Induction

theorem: (principle of structural induction) Let P be a property of sequences. If

P({)) holds and for all z € X and s € seq X P(s) implies P(z : s), then P(s)
holds for all s € seq X

proof: by contradiction assume that P(s) does not hold for all sequences s.

Then there must be a minimal sequence ¢ (wrt length) such that —P(¢) holds.
t cannot be empty, since P({)) holds. So t =z : t'.

But then, by contraposition, = P(t’) also holds.
This contradicts the minimality of ¢.

17

Proofs by Induction

example: #(s 7 t) = #s + #t.

proof:

e base case: #({) " t)=H#t =0+ H#t =H#() + #t
e induction hypothesis: #(s 7 t) = #s + #t
e induction step:

#((zs)) =z (s 1))
=1+ #(s"t)
=1+ #s+ #t
= #(x : s)+ #t

18

Proofs by Induction

example: (s " t) Tu=s"(t" u)

proof:
e basecase: (() " t) Tu=t"u=)"(t" u)
e induction hypothesis: (s " t) T u=s5"(t " u)

e induction step:

19

Proofs by Induction

example: #s=#revs

proof:

e base case: #() =0=#() = # rev()

e induction hypothesis: #s = # rev s
e induction step:

#H(x:s) =1+ s
=1+#revs
= #rev s + #(x)
= #t(revs = (z))
= H#Hrev(z :s)

20

we have

Further properties

head(x : s) =
tail(z . s) = s
last s = head rev s

front s = tail rev s

21

Induction and Verification

observation: many functions/data-types can be inductively defined
(factorials, Fibonacci numbers, trees, formulae,. . .)

structural induction can be generalised from sequences to arbitrary
inductively defined expressions

example: show that every term is either bracket-free or contains an even number
of brackets. . .

induction and verification:

e reasoning about inductively defined properties requires inductive proofs

e inductive reasoning is often creative; assumptions must be strengthened
or modified

e some properties cannot be proved in a straight way

22

Induction and Verification

theorem proving: a theorem prover is a tool that carries out mathematical proofs
on a machine

e proofs in FOL can often be automated
e if the claim is a theorem of FOL, it can be detected
e if it is not a theorem, the prover may run forever

problem: induction is not part of FOL

solution: interactive theorem provers

e many simple inductive proofs can still be automated

23

