Software Verification and Testing

Lecture Notes: Z II

idea: sequences are a fundamental data structure in Z. They are used for modelling stacks, queues or lists

implementation: sequences are finite functions from the natural numbers

further use: we will use sequences to learn about inductive definitions and proofs by induction

intuition:

- sequences over some set A are functions $f : \mathbb{N} \to A$
- finite sequences over A are functions $f:1 \dots n \to A$ for some n

formalisation:

- (first definition) seq $X == \{s : \mathbb{N} \to X \mid \exists n : \mathbb{N} \bullet \operatorname{dom} s = 1 \dots n\}$
- but types can be sharpened

sequences in Z: seq $X == \{s : \mathbb{N} \twoheadrightarrow X \mid \exists n : \mathbb{N} \bullet \text{dom } s = 1 \dots n\}$

notation: we write

- $\langle \, \rangle$ for the empty sequence
- $\langle s, h, e, f, f, i, e, l, d \rangle$ when we explicitly enumerate a sequence

concatenation:

$$\begin{array}{c} = [X] \\ \underline{\quad} & \frown \\ & = \widehat{\quad} \\ & = \widehat{$$

example: $\langle a, b, c \rangle \cap \langle d, e, f, g \rangle = \langle a, b, c, d, e, f, g \rangle$

head:

$$= [X] =$$

$$head : seq X \to X$$

$$\forall s : seq X \mid s \neq \langle \rangle \bullet head \ s = s \ 1$$

example:

- $head\langle a, b, c \rangle = a$ $head\langle \rangle$ is undefined

tail:

$$\begin{array}{c} [X] \\ \hline tail : \operatorname{seq} X \to \operatorname{seq} X \\ \forall s : \operatorname{seq} X \mid s \neq \langle \rangle \bullet \\ & \# tail \ s = \# s - 1 \\ & \forall i : 1 \dots \# s - 1 \bullet (tail \ s) \ i = s \ (i + 1) \end{array}$$

example:

- $tail\langle a, b, c \rangle = \langle b, c \rangle$
- $tail\langle \rangle$ is undefined

restriction: $_ \upharpoonright _ : seq X \times \mathbb{P} X \to seq X$ is more difficult to define [cf. Using Z]

here: we only provide intuition

example: $\langle a, b, x, n, x, b, x, n, b, a \rangle \upharpoonright \{a, n\} = \langle a, n, n, a \rangle$

special case: injective sequences are repetition-free

theorem: sequence s is repetition-free iff $\#s = \# \operatorname{ran}(s)$

further operations:

• cons

$$\begin{bmatrix} X \end{bmatrix} \\ _ : _ : X \times \operatorname{seq} X \to \operatorname{seq} X \\ \forall x : X \bullet \forall s : \operatorname{seq} X \bullet \\ \#(x : s) = 1 + \#s \\ (x : s) \ 1 = x \\ \forall i : 2 \dots \#s + 1 \bullet (x : s) \ i = s \ (i - 1)$$

• example: $a : \langle b, c \rangle = \langle a, b, c \rangle$

further operations: (introduced by example)

- $front\langle a, b, c \rangle = \langle a, b \rangle$
- $last\langle a, b, c \rangle = c$

remark: a definition will be given as an exercise

observation:

- cons looks more basic that concatenation; it builds a sequence stepwise from the empty sequence
- every sequence can be written as a term of the form $x_1 : (x_2 : \cdots : (s_n : \langle \rangle) \dots)$
- so every sequence is either empty or a cons of some element and a sequence; but not both
- concatenation can be defined in terms of cons

$$\langle \rangle \cap s = s$$

 $(x:s) \cap t = x: (s \cap t)$

- this has two steps
 - 1. the definition for the sequence constructor $\langle \rangle$
 - 2. the definition for the sequence constructor : (cons)

Cons and Cat

property: $\langle x \rangle \frown s = (x:s)$

proof:
$$\langle x \rangle \cap s = (x : \langle \rangle) \cap s = x : (\langle \rangle \cap s) = (x : s)$$

remark: therefore, obviously, cons can also be defined in terms of cat. . .

Inductive Definitions

a generalisation: the definition of \bigcirc as a function on sequences can be generalised to arbitrary functions from sequences:

inductive/recursive definitions: let c be a constant in set B and let $g: X \times B \to B$ be a function. Then the function $f: seq X \to B$ is uniquely defined by

$$f\left<\right> = c$$
 $f\left(x:s\right) = g(x,f(s))$

examples:

- length of a sequence $\#\langle \rangle = 0$ #(x:s) = 1 + #xs
- reversion of a sequence $rev\langle \rangle = \langle \rangle$ $rev(x:s) = (rev s) \frown \langle x \rangle$

Inductive Definitions

remember: terms and formulae were also inductively defined

- first on some "atoms", i.e., constants or atomic formulae
- then with respect to function symbols as term constructors and logical operation symbols as formula constructors

remark: also the natural numbers can be defined inductively using the constructors

- 0 and $s: \mathbb{N} \to \mathbb{N}$
- 4, e.g., is represented by the term s(s(s(s(0))))
- addition can be defined inductively as

$$n+0 = n \qquad n+s(m) = s(n+m)$$

Inductive Definitions

example: $s \upharpoonright \{x\}$ can be defined inductively by

$$ig \langle \
angle \upharpoonright \{x\} = \langle \
angle$$

 $(y:s) \upharpoonright \{x\} = if \ x = y \ then \ y : (s \upharpoonright \{x\}) \ else \ s \upharpoonright \{x\}$

task: extend this definition to $s \upharpoonright \{x, y\}$

- why doesn't that work?
- how can we simulate this?

remark: this is not a specification, but an implementation problem...

observation: many systems, data types and behaviours can be defined inductively

theorem: (principle of mathematical induction) Let P(.) be a property of natural numbers. If P(0) holds and P(m) implies P(m+1) for all $m \in \mathbb{N}$. Then P(n) holds for all $n \in \mathbb{N}$

example:
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

• base case
$$\sum 0 = 0 = \frac{0 \cdot 1}{2}$$

- induction hypothesis $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$
- induction step:

$$\sum_{i=1}^{k+1} i = (k+1) + \sum_{i=1}^{k} i = (k+1) + \frac{k(k+1)}{2}$$
$$= \frac{2(k+1) + k(k+1)}{2} = \frac{(k+1)(k+2)}{2}$$

theorem: (principle of structural induction) Let P be a property of sequences. If $P(\langle \rangle)$ holds and for all $x \in X$ and $s \in \text{seq } X$ P(s) implies P(x : s), then P(s) holds for all $s \in \text{seq } X$

proof: by contradiction assume that P(s) does not hold for all sequences s. Then there must be a minimal sequence t (wrt length) such that $\neg P(t)$ holds. t cannot be empty, since $P(\langle \rangle)$ holds. So t = x : t'. But then, by contraposition, $\neg P(t')$ also holds. This contradicts the minimality of t.

example: $\#(s \frown t) = \#s + \#t$.

- base case: $\#(\langle \rangle \frown t) = \#t = 0 + \#t = \#\langle \rangle + \#t$
- induction hypothesis: $\#(s \frown t) = \#s + \#t$
- induction step:

$$\begin{array}{l} \#((x:s) \frown t) = \#(x:(s \frown t)) \\ &= 1 + \#(s \frown t) \\ &= 1 + \#s + \#t \\ &= \#(x:s) + \#t \end{array}$$

example: $(s \frown t) \frown u = s \frown (t \frown u)$

• base case:
$$(\langle \rangle \frown t) \frown u = t \frown u = \langle \rangle \frown (t \frown u)$$

- induction hypothesis: $(s \frown t) \frown u = s \frown (t \frown u)$
- induction step:

$$\begin{aligned} ((x:s) \cap t) \cap u &= (x:(s \cap t)) \cap u \\ &= x:((s \cap t) \cap u) \\ &= x:(s \cap (t \cap u)) \\ &= (x:s) \cap (t \cap u)) \end{aligned}$$

example: #s = # rev s

- base case: $\#\langle \rangle = 0 = \#\langle \rangle = \# \operatorname{rev}\langle \rangle$
- induction hypothesis: #s = # rev s
- induction step:

$$#(x:s) = 1 + #s$$

= 1 + # rev s
= # rev s + # \lapla x \rangle
= # (rev s \cap \lapla x \rangle)
= # rev(x:s)

Further properties

we have

 $\begin{aligned} head(x:s) &= x\\ tail(x:s) &= s\\ last \ s &= head \ rev \ s\\ front \ s &= tail \ rev \ s\end{aligned}$

Induction and Verification

observation: many functions/data-types can be inductively defined (factorials, Fibonacci numbers, trees, formulae, . . .)

structural induction can be generalised from sequences to arbitrary inductively defined expressions

example: show that every term is either bracket-free or contains an even number of brackets. . .

induction and verification:

- reasoning about inductively defined properties requires inductive proofs
- inductive reasoning is often creative; assumptions must be strengthened or modified
- some properties cannot be proved in a straight way

Induction and Verification

theorem proving: a **theorem prover** is a tool that carries out mathematical proofs on a machine

- proofs in FOL can often be automated
- if the claim is a theorem of FOL, it can be detected
- if it is not a theorem, the prover may run forever

problem: induction is not part of FOL

solution: interactive theorem provers

• many simple inductive proofs can still be automated