
Software Verification and Testing

Lecture Notes: Temporal Logics



Motivation

traditional programs (whether terminating or non-terminating)

• can be modelled as relations
• are analysed wrt their input/output behaviour (pre/postconditions)
• invariants are also considered

correctness properties:

• partial correctness (of postcondition wrt precondition):
“if the precondition holds then the postcondition will hold
whenever the program terminates.”

• total correctness (of postcondition wrt precondition):
“if the precondition holds then the postcondition will hold
and the program will terminate.”

1



Motivation

reactive systems:

• yield no final output
• i/o-relations are not appropriate for their analysis
• partial/total correctness are not relevant
• invariants are much more important

correctness properties:

• are properties of the execution run/trace of the system
• have a dynamical/temporal flavour
• can be formalised/analysed using temporal logics

2



Time

question: what is time?

Augustinus: “If nobody asks me for it, I know it;
if I want to explain it to someone, I do not know it.”

science/engineering:

• time is used and modelled without asking what it is
• selection of model is application-driven

question: then how to model time?

remark: still a difficult question. . .

3



Time

questions: is time

• discrete/continuous?
• instant/interval-based?
• linear/branching?
• . . .

question: do we describe time by

• past, present, future?
• earlier, later?

question: is our model exogenous/endogenous?

• exogenous: compare different systems
• endogenous: focus on trace of one single system

4



Time in FOL

example: modelling time as relational structure (T , <) in FOL

• possible properties of binary precedence relation <
– irreflexivity: ∀ x .¬x < x
– transitivity: ∀ x , y , z .(x < y ∧ y < z → x < z )
– linearity: ∀ x , y .(x = y ∨ x < y ∨ y < x )
– (forward) discreteness:
∀ x ∃ y .(x < y → ∃ z .(x < z ∧ ∀w .(x < w → z < w )))

– density: ∀ x , y .(x < y → ∃ z .(x < z ∧ z < y))
– no end: ∀ x ∃ y .x < y

problems:

• many interesting properties cannot be expressed, e.g.,
“every descending sequence of instants of time must be finite.”

• formalism may be difficult to manipulate

5



Alternative Model

framework: we make the following assumptions

• instant-based model with initial state, infinite into future
• time is discrete (there are time-steps)
• we model temporal properties by propositional logics
• we add temporal operators (next-time, always, eventually,. . . )

to model temporal system behaviour

remarks:

• temporal operators are examples of modal operators;
temporal logics are examples of modal logics

• we will see logics for linear and branching time

6



Alternative Model

temporal logics and transition systems

• reactive system modelled by LTS
• formulae of propositional logics describe what holds in a state
• temporal operators describe what holds in the next state,

in some future state, in all future states, etc.
• these descriptions can be understood as observer processes

consequence: satisfiability relation should be relativised to states or paths:

A, s |= φ A, c |= φ

where A = (S ,T , α, β, λ) is a LTS, s ∈ S , c is a path over T
and φ is a formula of temporal logic

7



Temporal Logics and Transition Systems

example: consider a mutex algorithm (with two processes)

• we have seen how to model this as an LTS
• properties of interest might be

– there never is a global state with both processes in the critical section
(a safety property)

– there never is a global state without any transition (deadlock-free)
– traces from a global state are always infinite (deadlock-free)
– every process that tries to enter the critical section from a global state will

eventually enter it (a liveness property)
– there is an infinite path where in each transition the two processes

try to reach the critical section and never succeed (livelock)

8



Linear Temporal Logic

idea: linear temporal logic (LTL) expresses path properties of a LTS

syntax:

• the language of LTL is built from
– a set P of propositional variables, the constant 0,
– the logical connective →,
– the temporal operators X (“next”) and U (“until”)

• the formulae of LTL are defined (inductively) by the rules

φ ::= p | 0 | φ→ ψ | Xφ | φUψ

9



Linear Temporal Logic

syntax:

• other logical connectives can be defined as usual
(question: how to define ¬p?)

• 1 = ¬0
• further temporal operators:

– Fφ = 1Uφ (“eventually”, “finally”)
– Gφ = ¬F¬φ (“always”, “globally”)

10



Linear Temporal Logic

intuitive semantics:

X φ

Uψ

F

G

φ

φ

φ

11



Linear Temporal Logic

semantics: Let A = (S ,Tα, β, λτ) be a LTS and c a path

• label states with the propositional variables that hold there

λσ : S → 2P

• we then inductively define A, c |= φ for every LTL formula φ:
– A, c |= 1 and not A, c |= 0
– A, c |= p iff p ∈ P and p ∈ λσ(α(c))
– A, c |= φ→ ψ iff A, c |= φ implies A, c |= ψ
– A, c |= Xφ iff c = t · c′ and A, c′ |= φ
– A, c |= φUψ iff A, c |= ψ,

or c = t1 . . . tn · c′ with A, c′ |= ψ and ∀ 1 ≤ i ≤ n. A, ti . . . tn · c′ |= φ

12



Properties

global semantics:

• A |= φ iff A, c |= φ for all paths c
• |= φ iff A |= φ for all LTS A

semantics of always and eventually:

• A, c |= Fφ iff c = c′ · c′′ (for some c′) and A, c′′ |= φ
• A, c |= Gφ iff A, c′′ |= φ for all c′ with c = c′ · c′′

further interesting operators:

• F∞φ = GFφ “infinitely often”
• G∞φ = FGφ “almost everywhere”

13



Properties

remark: many properties of temporal operators can be derived
from their semantics

• |= X¬φ↔ ¬Xφ
• |= F (φ ∨ ψ) ↔ Fφ ∨ Fψ
• |= (φUψ) ↔ ψ ∨ (φ ∧X (φUψ))
• |= GGφ↔ Gφ
• . . .

14



Properties

properties of paths expressed in LTL:

• A, c |= X 1: c is non-empty
• A, c |= ¬FX 0: c is infinite

correctness properties:

• safety properties (“bad things never happen”): G¬φ
• liveness properties (“good things eventually happen”): Fψ or G(φ→ Fψ)
• fairness properties (“all processes are treated fairly be the scheduler”)

(examples later)

15



Properties

examples:

• partial correctness: (a safety property)

φ→ G(terminates → ψ)

• total correctness: (a liveness property)

φ→ F (terminates ∧ ψ)

16



Properties

examples:

• “it will never be the case that two cars are at the same time at the crossing”
(a safety property)

G¬(c1 6= c2 ∧ atCrossing(c1) ∧ atCrossing(c2)

• “I’ll be back” (a liveness property)

Terminator(x ) → F isback(x )

• “all plagiators will eventually be caught” (another liveness property)

G(isPlagiator(x ) → F iscaught(x ))

17



Properties

fairness: (there are several other fairness properties)

• impartiality: every process is executed infinitely often

∀ i .F∞executedi

• weak fairness: every process enabled almost everywhere
is executed infinitely often

∀ i .(G∞enabledi → F∞executedi)

• strong fairness: every process enabled infinitely often
is executed infinitely often

∀ i .(F∞enabledi → F∞executedi)

18



Computational Tree Logic

idea: for computational tree logic (CTL)

• instead of paths, consider properties of states of LTS unfolded to tree
• quantify existentially/universally over transitions from a state

language:

• propositional part as for LTL
• next-step operators AX and EX
• until operators E [ U ] and A[ U ]

formulae: φ ::= p | 0 | φ→ ψ | EXφ | AXφ | E [φUψ] | A[φUψ]

19



Computational Tree Logic

intuitive semantics:

EXφ AXφ

E[ φU ψ ]
A[ φUψ ]

20



Computational Tree Logic

definition: a maximal path is a path that is either infinite or ending in a state that
is not the source of another transition

semantics: inductively define A, s |= φ for state s and CTL-formula φ

• propositional cases similar to LTL (A, s |= p iff p ∈ λσ(s))
• A, s |= EXφ iff A, s ′ |= φ for some transition with source s and target s ′

• A, s |= AXφ iff A, s ′ |= φ for all transitions with source s and target s ′

• A, s |= E [φUψ] iff there is a maximal path c = t1 . . . tn . . . with source s
such that either A, s |= ψ,
or there is a k ∈ N such that A, β(tk) |= ψ and ∀ 1 ≤ i ≤ k .A, α(ti) |= φ

• A, s |= A[φUψ] iff for all maximal paths c = t1 . . . tn . . . with source s
either A, s |= ψ,
or there is a k ∈ N such that A, β(tk) |= ψ and ∀ 1 ≤ i ≤ k .A, α(ti) |= φ,
or c is a finite path and for every i , A, α(ti) |= φ and A, β(ti) |= φ

21



Computational Tree Logic

remarks:

• operators for “eventually” and “globally” can again be defined
• A, s |= AXφ holds in particular if s is not the source of any transition
• again, a rich calculus for CTL follows from the semantics

LTL vs CTL: both logics have particular advantages

• CTL can distinguish some LTS that LTL cannot
• LTL cannot express “possibility” properties
• CTL cannot express fairness conditions

(there are no path formulae to express F∞)

remark: the logic CTL∗ overcomes these restrictions;
it subsumes both LTL and CTL and has state and path formulae

22



Model Checking

model checking problem: Given a LTS A and a formula φ
(in some temporal logic), does the following hold?

A, s |= φ A, c |= φ A |= φ

model checking and verification: the LTS encodes a reactive system,
the correctness properties is described in the temporal logic

remark: for finite LTS model checking problems are decidable

• validity of the temporal logic formulae can be checked by global search
on the LTS

• different logics lead to different search complexities
• if the formula does not hold, the failure path/run provides information

for bug fixing

23



Model Checking

algorithmic aspects:

• intuitively, the temporal logics formula is compiled into an observer process
that runs in parallel with the LTS

• global model checking: recurse on formulae; but evaluate on global LTS
• local model checking: explore LTS locally; but evaluate entire formulae
• worst-case complexity is the same, but average behaviour can differ
• LTL is usually treated locally, CTL globally
• the performance critically depends on storage space, on efficient data struc-

tures (e.g. binary decision diagrams) and on heuristics

24


