Software Verification and Testing

Lecture Notes: Temporal Logics

Motivation

traditional programs (whether terminating or non-terminating)

e can be modelled as relations
e are analysed wrt their input/output behaviour (pre/postconditions)

e invariants are also considered

correctness properties:

e partial correctness (of postcondition wrt precondition):
“if the precondition holds then the postcondition will hold
whenever the program terminates.”

e total correctness (of postcondition wrt precondition):
“if the precondition holds then the postcondition will hold

and the program will terminate.”

Motivation

reactive systems:

e yield no final output

e i/o-relations are not appropriate for their analysis
e partial/total correctness are not relevant
e invariants are much more important

correctness properties:

e are properties of the execution run/trace of the system
e have a dynamical/temporal flavour

e can be formalised/analysed using temporal logics

Time

guestion: what is time?

Augustinus: “If nobody asks me for it, | know it;
if | want to explain it to someone, | do not know it.”

science/engineering:

e time is used and modelled without asking what it is
e selection of model is application-driven

question: then how to model time?

remark: still a difficult question. . .

Time

questions: is time

discrete/continuous?
instant /interval-based?
linear /branching?

o
([
([
[
guestion: do we describe time by
e past, present, future?
e carlier, later?
question: is our model exogenous/endogenous?

e exogenous: compare different systems
e endogenous: focus on trace of one single system

Time in FOL

example: modelling time as relational structure (7', <) in FOL

e possible properties of binary precedence relation <
— irreflexivity: Vz.—z < x
— transitivity: Vz, 9y, z. (e <y ANy <z —z < 2)
— linearity: Vz,y.(z=yVzr<yVy<uzx)
— (forward) discreteness:

Vedy(z<y—3dz(z<zAVw.(z <w—z<w)))

— density: Vz,y.(z <y —3Jz.(z <zAz<y))
—noend: Vedy.x <y

problems:

e many interesting properties cannot be expressed, e.g.,
“every descending sequence of instants of time must be finite.”
e formalism may be difficult to manipulate

Alternative Model

framework: we make the following assumptions

e instant-based model with initial state, infinite into future
e time is discrete (there are time-steps)
e we model temporal properties by propositional logics

e we add temporal operators (next-time, always, eventually,. . .

to model temporal system behaviour

remarks:

e temporal operators are examples of modal operators;
temporal logics are examples of modal logics
e we will see logics for linear and branching time

Alternative Model

temporal logics and transition systems

e reactive system modelled by LTS
e formulae of propositional logics describe what holds in a state
e temporal operators describe what holds in the next state,
in some future state, in all future states, etc.
e these descriptions can be understood as observer processes

consequence: satisfiability relation should be relativised to states or paths:
AskEo AckE?9

where A= (S, T,a,3,\) isa LTS, s € S, c is a path over T
and ¢ is a formula of temporal logic

Temporal Logics and Transition Systems

example: consider a mutex algorithm (with two processes)

e we have seen how to model this as an LTS
e properties of interest might be
— there never is a global state with both processes in the critical section
(a safety property)
— there never is a global state without any transition (deadlock-free)
— traces from a global state are always infinite (deadlock-free)
— every process that tries to enter the critical section from a global state will
eventually enter it (a liveness property)
— there is an infinite path where in each transition the two processes
try to reach the critical section and never succeed (livelock)

Linear Temporal Logic

idea: linear temporal logic (LTL) expresses path properties of a LTS

syntax:

e the language of LTL is built from
— a set P of propositional variables, the constant 0,
— the logical connective —,
— the temporal operators X (“next”) and U (“until”)
e the formulae of LTL are defined (inductively) by the rules

pu=p [0| ¢—=2 | Xo | Uy

Linear Temporal Logic

syntax:

e other logical connectives can be defined as usual
(question: how to define —p?)

o 1 =-0

e further temporal operators:
— F¢p=1U¢ ("eventually”, “finally”)
— G¢ = ~F-¢ (“always”, “globally”)

10

Linear Temporal Logic

intuitive semantics:

Xo
O—@®—>0—>0O0——

ouY
o >0 >0 >0

F®
Oo——™0O0—m™O—0—

G®
o—0 00—

11

Linear Temporal Logic

semantics: Let A= (S5, Ta,3,\) be a LTS and ¢ a path

e label states with the propositional variables that hold there
A, S — oF

e we then inductively define A, ¢ = ¢ for every LTL formula ¢:
— A, ckElandnot A,c =0
- A ckEpiffpe Pand p e) (alc))
- A ckEo—yviff A ckE= ¢ implies A ¢ ¢
- A cEXg¢piffc=t-c’and A, ' E ¢
— A cEoUyiff A c =1,
orc=t...t,-with A, /EvYandV1i<i<n. At;...t,-cE¢

12

Properties

global semantics:

o AE ¢iff A c = ¢ for all paths ¢
o =¢iff A= ¢ forall LTS A

semantics of always and eventually:

o A ckEFo¢iff c=c- " (for some ¢’) and A, " = ¢
o A cEGoiff A "= ¢ forall ¢/ with ¢ =¢"- "

further interesting operators:

o F'>*¢p = GF¢ "“infinitely often”
o G*¢p = FG¢o "almost everywhere”

13

Properties

remark: many properties of temporal operators can be derived
from their semantics

= X X
= F(oV) — FoV Fy

= (pUY) = YV (oA X(oUW))
_ GG — G

14

Properties

properties of paths expressed in LTL:

e A ckE= X1: cis non-empty
o A c = —FXO0: cis infinite

correctness properties:

e safety properties (“bad things never happen”): G—¢

e liveness properties (“good things eventually happen™): Fi or G(¢p — F1))

e fairness properties (“all processes are treated fairly be the scheduler”)
(examples later)

15

Properties

examples:

e partial correctness: (a safety property)
¢ — G(terminates — 1))
e total correctness: (a liveness property)

¢ — F(terminates A ¢)

16

Properties

examples:

e it will never be the case that two cars are at the same time at the crossing”
(a safety property)

G—(c1 # ¢ A atCrossing(c1) A atCrossing(cs)
e “I'll be back” (a liveness property)
Terminator(xz) — F isback(z)
e “all plagiators will eventually be caught” (another liveness property)

G (isPlagiator(xz) — F' iscaught(z))

17

Properties

fairness: (there are several other fairness properties)

e impartiality: every process is executed infinitely often
V1. F'*executed;

e weak fairness: every process enabled almost everywhere
is executed infinitely often

Vi.(G*™enabled; — F*executed,)

e strong fairness: every process enabled infinitely often
is executed infinitely often

Vi.(F>enabled; — F*executed;)

18

Computational Tree Logic

idea: for computational tree logic (CTL)
e instead of paths, consider properties of states of LTS unfolded to tree
e quantify existentially/universally over transitions from a state
language:

e propositional part as for LTL
e next-step operators AX and EX
e until operators E| _U_ | and A| _U_|

formulae: ¢ :=p | 0 | o= | EX¢ | AXo | EloUy] | AlpU)

19

intuitive semantics:

Computational Tree Logic

20

Computational Tree Logic

definition: a maximal path is a path that is either infinite or ending in a state that
Is not the source of another transition

semantics: inductively define A, s = ¢ for state s and CTL-formula ¢

e propositional cases similar to LTL (A, s = p iff p € A_(s))
o A s FEXo¢iff A s’ = ¢ for some transition with source s and target s’
o A sk AX¢ iff A s" = ¢ for all transitions with source s and target s’
o A s E|lpU| iff there is a maximal path ¢ =%, ...t,... with source s
such that either A, s =,
or there is a k € N such that A4, 5(#;) Fv and V1 < i < k. A a(t;) E ¢
o A s AlpU1] iff for all maximal paths ¢ = ¢ ...¢,... with source s
either A, s = 1,
or there is a k € N such that A, 5(t;) Ev and V1 < i < k. A a(t) E ¢,
or c is a finite path and for every i, A, a(t;)) = ¢ and A, 3(t;) E ¢

21

Computational Tree Logic

remarks:

e operators for “eventually” and “globally” can again be defined
o A s = AX¢ holds in particular if s is not the source of any transition
e again, a rich calculus for CTL follows from the semantics

LTL vs CTL: both logics have particular advantages

e CTL can distinguish some LTS that LTL cannot
e LTL cannot express “possibility” properties
e CTL cannot express fairness conditions

(there are no path formulae to express F'*°)

remark: the logic C'T'L* overcomes these restrictions;
it subsumes both LTL and CTL and has state and path formulae

22

Model Checking

model checking problem: Given a LTS A and a formula ¢
(in some temporal logic), does the following hold?

AsEo AckEo AE9

model checking and verification: the LTS encodes a reactive system,
the correctness properties is described in the temporal logic

remark: for finite LTS model checking problems are decidable

e validity of the temporal logic formulae can be checked by global search
on the LTS

e different logics lead to different search complexities

e if the formula does not hold, the failure path/run provides information
for bug fixing

23

Model Checking

algorithmic aspects:

intuitively, the temporal logics formula is compiled into an observer process
that runs in parallel with the LTS

global model checking: recurse on formulae; but evaluate on global LTS
local model checking: explore LTS locally; but evaluate entire formulae
worst-case complexity is the same, but average behaviour can differ

LTL is usually treated locally, CTL globally

the performance critically depends on storage space, on efficient data struc-
tures (e.g. binary decision diagrams) and on heuristics

24

