Software Verification and Testing

Lecture Notes: Temporal Logics

Motivation

traditional programs (whether terminating or non-terminating)

- can be modelled as relations
- are analysed wrt their input/output behaviour (pre/postconditions)
- invariants are also considered

correctness properties:

- partial correctness (of postcondition wrt precondition):
 "if the precondition holds then the postcondition will hold whenever the program terminates."
- total correctness (of postcondition wrt precondition):
 "if the precondition holds then the postcondition will hold and the program will terminate."

Motivation

reactive systems:

- yield no final output
- i/o-relations are not appropriate for their analysis
- partial/total correctness are not relevant
- invariants are much more important

correctness properties:

- are properties of the execution run/trace of the system
- have a dynamical/temporal flavour
- can be formalised/analysed using temporal logics

Time

question: what is time?

Augustinus: "If nobody asks me for it, I know it; if I want to explain it to someone, I do not know it."

science/engineering:

- time is used and modelled without asking what it is
- selection of model is application-driven

question: then how to model time?

remark: still a difficult question...

Time

questions: is time

- discrete/continuous?
- instant/interval-based?
- linear/branching?
- . . .

question: do we describe time by

- past, present, future?
- earlier, later?

question: is our model exogenous/endogenous?

- exogenous: compare different systems
- endogenous: focus on trace of one single system

Time in FOL

example: modelling time as relational structure (T, <) in FOL

- $\bullet\,$ possible properties of binary precedence relation <
 - irreflexivity: $\forall x. \neg x < x$
 - transitivity: $\forall \, x, y, z. (x < y \land y < z \rightarrow x < z)$
 - linearity: $\forall x, y.(x = y \lor x < y \lor y < x)$
 - (forward) discreteness: $\forall x \exists y.(x < y \rightarrow \exists z.(x < z \land \forall w.(x < w \rightarrow z < w)))$
 - density: $\forall x, y.(x < y \rightarrow \exists z.(x < z \land z < y))$
 - no end: $\forall x \exists y.x < y$

problems:

- many interesting properties cannot be expressed, e.g.,
 "every descending sequence of instants of time must be finite."
- formalism may be difficult to manipulate

Alternative Model

framework: we make the following assumptions

- instant-based model with initial state, infinite into future
- time is discrete (there are time-steps)
- we model temporal properties by propositional logics
- we add temporal operators (next-time, always, eventually, . .) to model temporal system behaviour

remarks:

- temporal operators are examples of modal operators; temporal logics are examples of modal logics
- we will see logics for linear and branching time

Alternative Model

temporal logics and transition systems

- reactive system modelled by LTS
- formulae of propositional logics describe what holds in a state
- temporal operators describe what holds in the next state, in some future state, in all future states, etc.
- these descriptions can be understood as observer processes

consequence: satisfiability relation should be relativised to states or paths:

$$\mathcal{A},s\models\phi\qquad\mathcal{A},c\models\phi$$

where $\mathcal{A} = (S, T, \alpha, \beta, \lambda)$ is a LTS, $s \in S$, c is a path over T and ϕ is a formula of temporal logic

Temporal Logics and Transition Systems

example: consider a mutex algorithm (with two processes)

- we have seen how to model this as an LTS
- properties of interest might be
 - there never is a global state with both processes in the critical section (a safety property)
 - there never is a global state without any transition (deadlock-free)
 - traces from a global state are always infinite (deadlock-free)
 - every process that tries to enter the critical section from a global state will eventually enter it (a liveness property)
 - there is an infinite path where in each transition the two processes try to reach the critical section and never succeed (livelock)

idea: linear temporal logic (LTL) expresses path properties of a LTS

syntax:

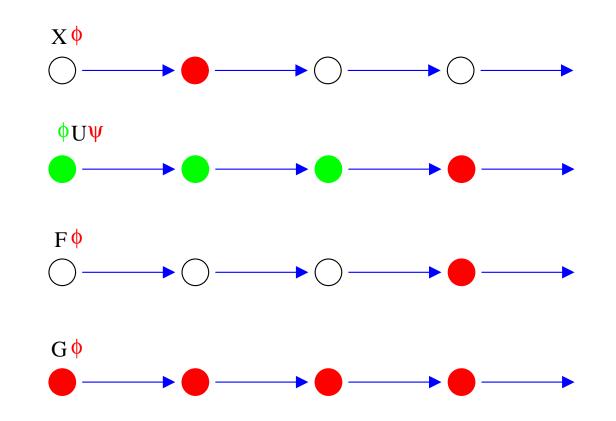
- the language of LTL is built from
 - a set P of propositional variables, the constant 0,
 - the logical connective \rightarrow ,
 - the temporal operators X ("next") and U ("until")
- the formulae of LTL are defined (inductively) by the rules

$$\phi ::= p \hspace{.1in} | \hspace{.1in} 0 \hspace{.1in} | \hspace{.1in} \phi \rightarrow \psi \hspace{.1in} | \hspace{.1in} X\phi \hspace{.1in} | \hspace{.1in} \phi U\psi$$

syntax:

- other logical connectives can be defined as usual (question: how to define ¬p?)
- $1 = \neg 0$
- further temporal operators:
 - $F\phi = 1 U\phi$ ("eventually", "finally")
 - $G\phi = \neg F \neg \phi$ ("always", "globally")

intuitive semantics:



semantics: Let $\mathcal{A}=(S,\,T\alpha,\beta,\lambda_{\tau})$ be a LTS and c a path

• label states with the propositional variables that hold there

$$\lambda_{\sigma}:S\to 2^P$$

global semantics:

- $\mathcal{A} \models \phi$ iff $\mathcal{A}, c \models \phi$ for all paths c
- $\models \phi \text{ iff } \mathcal{A} \models \phi \text{ for all LTS } \mathcal{A}$

semantics of always and eventually:

- $\mathcal{A}, c \models F\phi$ iff $c = c' \cdot c''$ (for some c') and $\mathcal{A}, c'' \models \phi$
- $\mathcal{A}, c \models G\phi$ iff $\mathcal{A}, c'' \models \phi$ for all c' with $c = c' \cdot c''$

further interesting operators:

- $F^{\infty}\phi = GF\phi$ "infinitely often"
- $G^{\infty}\phi = FG\phi$ "almost everywhere"

remark: many properties of temporal operators can be derived from their semantics

- $\models X \neg \phi \leftrightarrow \neg X \phi$
- $\bullet \models F(\phi \lor \psi) \leftrightarrow F\phi \lor F\psi$
- $\bullet \models (\phi \, U \psi) \leftrightarrow \psi \lor (\phi \land X(\phi \, U \psi))$
- $\bullet \models GG\phi \leftrightarrow G\phi$
- . . .

properties of paths expressed in LTL:

- $\mathcal{A}, c \models X1$: c is non-empty
- $\mathcal{A}, c \models \neg FX0$: c is infinite

correctness properties:

- safety properties ("bad things never happen"): $G\neg\phi$
- liveness properties ("good things eventually happen"): $F\psi$ or $G(\phi \to F\psi)$
- fairness properties ("all processes are treated fairly be the scheduler") (examples later)

examples:

• partial correctness: (a safety property)

 $\phi \rightarrow G(\text{terminates} \rightarrow \psi)$

• total correctness: (a liveness property)

 $\phi \to F(\mathsf{terminates} \land \psi)$

examples:

 "it will never be the case that two cars are at the same time at the crossing" (a safety property)

 $G \neg (c_1 \neq c_2 \land \mathsf{atCrossing}(c_1) \land \mathsf{atCrossing}(c_2)$

• "I'll be back" (a liveness property)

```
\mathsf{Terminator}(x) \to F \mathsf{ isback}(x)
```

• "all plagiators will eventually be caught" (another liveness property)

```
G(isPlagiator(x) \rightarrow F iscaught(x))
```

fairness: (there are several other fairness properties)

• impartiality: every process is executed infinitely often

 $\forall i. F^{\infty} executed_i$

• weak fairness: every process enabled almost everywhere is executed infinitely often

```
\forall i. (G^{\infty} enabled_i \rightarrow F^{\infty} executed_i)
```

• strong fairness: every process enabled infinitely often is executed infinitely often

```
\forall i. (F^{\infty} enabled_i \rightarrow F^{\infty} executed_i)
```

idea: for computational tree logic (CTL)

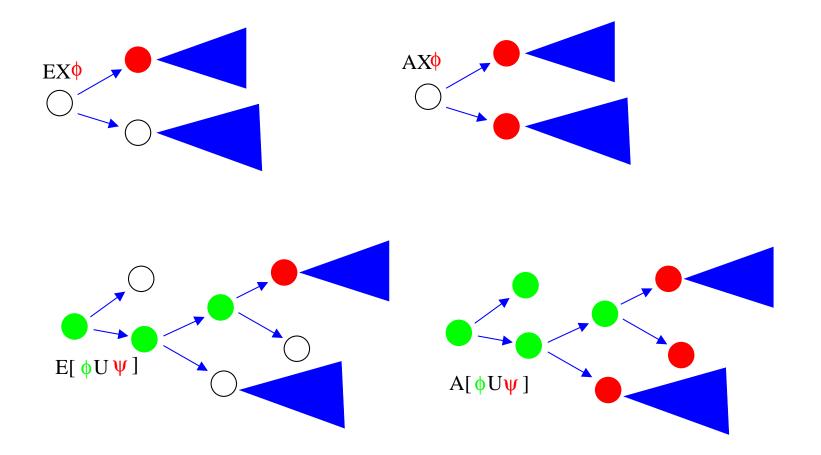
- instead of paths, consider properties of states of LTS unfolded to tree
- quantify existentially/universally over transitions from a state

language:

- propositional part as for LTL
- next-step operators AX and EX
- until operators $E[_U_]$ and $A[_U_]$

formulae: $\phi ::= p \mid 0 \mid \phi \to \psi \mid EX\phi \mid AX\phi \mid E[\phi U\psi] \mid A[\phi U\psi]$

intuitive semantics:



definition: a maximal path is a path that is either infinite or ending in a state that is not the source of another transition

semantics: inductively define $A, s \models \phi$ for state s and CTL-formula ϕ

- propositional cases similar to LTL $(\mathcal{A}, s \models p \text{ iff } p \in \lambda_{\sigma}(s))$
- $\mathcal{A}, s \models EX\phi$ iff $\mathcal{A}, s' \models \phi$ for some transition with source s and target s'
- $\mathcal{A}, s \models AX\phi$ iff $\mathcal{A}, s' \models \phi$ for all transitions with source s and target s'
- $\mathcal{A}, s \models E[\phi U \psi]$ iff there is a maximal path $c = t_1 \dots t_n \dots$ with source s such that either $\mathcal{A}, s \models \psi$,

or there is a $k \in \mathbb{N}$ such that $\mathcal{A}, \beta(t_k) \models \psi$ and $\forall 1 \leq i \leq k.\mathcal{A}, \alpha(t_i) \models \phi$

A, s ⊨ A[φUψ] iff for all maximal paths c = t₁...t_n... with source s either A, s ⊨ ψ,

or there is a $k \in \mathbb{N}$ such that $\mathcal{A}, \beta(t_k) \models \psi$ and $\forall 1 \leq i \leq k.\mathcal{A}, \alpha(t_i) \models \phi$, or c is a finite path and for every i, $\mathcal{A}, \alpha(t_i) \models \phi$ and $\mathcal{A}, \beta(t_i) \models \phi$

remarks:

- operators for "eventually" and "globally" can again be defined
- $\mathcal{A}, s \models AX\phi$ holds in particular if s is not the source of any transition
- again, a rich calculus for CTL follows from the semantics

LTL vs CTL: both logics have particular advantages

- CTL can distinguish some LTS that LTL cannot
- LTL cannot express "possibility" properties
- CTL cannot express fairness conditions (there are no path formulae to express F[∞])

remark: the logic CTL^* overcomes these restrictions; it subsumes both LTL and CTL and has state and path formulae

Model Checking

model checking problem: Given a LTS \mathcal{A} and a formula ϕ (in some temporal logic), does the following hold?

$$\mathcal{A}, s \models \phi \qquad \mathcal{A}, c \models \phi \qquad \mathcal{A} \models \phi$$

model checking and verification: the LTS encodes a reactive system, the correctness properties is described in the temporal logic

remark: for finite LTS model checking problems are decidable

- validity of the temporal logic formulae can be checked by global search on the LTS
- different logics lead to different search complexities
- if the formula does not hold, the failure path/run provides information for bug fixing

Model Checking

algorithmic aspects:

- intuitively, the temporal logics formula is compiled into an observer process that runs in parallel with the LTS
- global model checking: recurse on formulae; but evaluate on global LTS
- local model checking: explore LTS locally; but evaluate entire formulae
- worst-case complexity is the same, but average behaviour can differ
- LTL is usually treated locally, CTL globally
- the performance critically depends on storage space, on efficient data structures (e.g. binary decision diagrams) and on heuristics