
Software Verification and Testing

Lecture Notes: Testing I

Motivation

verification:

• powerful method for finding software errors
• mathematical proof of absence of errors in implementations

relative to specifications
• formal specification and analysis often very expensive;

requires highly qualified engineers
• automated techniques rather limited

testing: (as “poor man’s verification”)

• can only detect presence of errors
• cannot find all errors (induction problem)
• much cheaper than verification
• requires less mathematical skills

1

Motivation

verification vs testing:

• verification used often in early stages of development;
testing in later stages

• but test cases can be developed during the specification phase
• verification presupposes formal program semantics; testing does not
• verification often based on abstraction, thus also only a necessary

correctness criterion
• system tests go beyond verification, since real environment is involved
• testing is strongly used in software engineering: up to 40% of software

development efforts go into it
• formal verification is rarely used in practice. . .

2

Motivation

psychology of testing:

• coding is often seen as a “constructive” or “creative” activity;
testing as a “destructive” one

• the aim of testing should not be in the verification, but in the
falsification of a program

• ideally, development and testing teams should be separate

reality of testing:

• testing can be partially automated (using CASE-tools)
• good testing may require considerable engineering experience
• testing strongly contributes to software quality

3

Testing Notation

test object: the software component or program to be tested

test case: a collection of test data causing the complete execution
of the test object

test datum: input value for an input variable or input parameter
of the test object in a particular test case

test driver: frame for interactively calling a test object which is
a function or procedure

4

Testing Notation

instrumentation:

• addition of counters to source code
• either manually or by a tool
• evaluation of counters gives information about commands executed

coverage: describes the degree of completeness of a test procedure

regression tests: automated replay of test cases after code alternations

5

Classification of Testing Methods

dynamic testing: software component is executed with concrete input values
(in a real environment)

• structure testing (white-box testing):
test cases derived from control flow or data flow of the component

• functional testing (black-box testing):
test cases derived from (formal) component specification

static testing: code analysis (components are not executed) by
code inspections, code reviews, walkthroughs. . .

symbolic execution: (abstract interpretation) execution of source code with
abstract symbolic input values by interpreter;
intermediate between testing and verification

6

Classification of Testing Methods

here: focus on dynamic testing

structure testing:

• control flow oriented:
statement coverage tests, branch coverage tests, path coverage tests,
condition coverage tests

• data flow oriented:
defs/uses-tests, required k-tuples tests

functional testing: equivalence class tests, boundary value tests,
special value tests, random value tests, state automata tests

7

Control Flow Graphs

example: specification

• the procedure reads input from the keyboard; it stops when some input is not
an upper case character or some upper value MaxSize has been reached

• if the input an upper case character, then the counter InCount is incremented;
if it is a vowel, then the counter VoCount is incremented

• both counters are input and output parameters
• the invariant VoCount <= InCount holds

8

Control Flow Graphs

example: implementation

void CountDigits(int &VoCount, int &InCount)
{

char Digit
cin >> Digit //read Digit from input stream
while ((Digit >= ’A’) && (Digit <= ’Z’) && (InCount < MaxSize))

{
InCount++;
if ((Digit == ’A’) || (Digit == ’E’) || (Digit == ’I’) ||

(Digit == ’O’) || (Digit == ’U’))
{

VoCount++;
}// end if
cin >> Digit;

}//end while
}

9

Control Flow Graphs

control flow graph: directed graph (transition system) with start and end vertex

• nodes labelled by executable commands
• edges represent control flow between nodes

basic flow graphs:

whilesequence conditional

10

Control Flow Graphs

example:

n1

n2

n3

n4

n5

n6

cin >> Digit;

InCount++;

if ((...))

cin >> Digit;

VoCount++;

while ((...))

11

Control Flow Oriented Structure Testing

here: we consider

• statement coverage test:
test case must cover all nodes, i.e., all possible commands must be
executed at least once

• branch coverage test:
test case must cover all edges, i.e., all possible choices must be
explored at least once

• path coverage test:
test case must cover all different traces of a program,
i.e., paths in the flow graph

• condition coverage test:
test case for complex conditions/tests

12

Statement Coverage

example:

n1

n2

n3

n4

n5

n6

cin >> Digit;

InCount++;

if ((...))

cin >> Digit;

VoCount++;

while ((...))

13

Statement Coverage

test case: call CountDigits with InCount = 0 = VoCount

• input from keyboard: ’A’, ’1’
• test path: ni ,n1,n2,n3,n4,n5,n6,n2,no

remark: edge from n4 to n6 is not considered

evaluation:

• non-executable code can be found
• not a stand-alone testing technique

14

Branch Coverage

example:

n1

n2

n3

n4

n5

n6

cin >> Digit;

InCount++;

if ((...))

cin >> Digit;

VoCount++;

while ((...))

15

Branch Coverage

test case: call CountDigits with InCount = 0 = VoCount

• input from keyboard: ’A’, ’B’,’1’
• test path: ni ,n1,n2,n3,n4,n5,n6,n2,n3,n4,n6,n2,no

remarks: branch coverage

• subsumes statement coverage
• is a minimal testing technique
• helps to identify and optimise strongly used program parts

problems: branch coverage does not

• suffice for loop testing
• consider dependencies between branches
• resolve complex conditions/tests

16

Path Coverage

example:

• define the paths

c1 = (ni ,n1) · (n1,n2) c2 = (n2,n3) · (n3,n4) c3 = (n4,n5) · (n5,n6)

c4 = (n5,n6) c5 = (n6,n2) c6 = (n2,n6)

• then the set of all paths can be described by the regular expression

c1 · (c2 · (c3 ∪ c4) · c5)
∗ · c6

• it can be obtained by unwinding the control flow graph

17

Path Coverage

question: how many paths are in (c1 ∪ c2)
∗ (when the maximal length of paths

is bounded by n)?

answer: exponentially many (2n)!

consequence: it is not feasible to test all possible execution paths of a component

heuristics:

• boundary-interior path test:
1. consider all paths that enter, but do not repeat a loop (boundary test)
2. consider all paths that repeat a loop, restricted to two repetitions

(interior test)
• structured path test: generalisation of the above (discussion later)

18

Boundary-Interior Path Test

example: consider again CountDigits

1. outside of loop:
call with InCount = MaxSize

input from keyboard: whatever
test path: c1 · c6

19

Boundary-Interior Path Test

example: consider again CountDigits

2. boundary test:

(a) call with InCount = 0
input from keyboard: ’A’, ’1’
test path: c1 · c2 · c3 · c5 · c6

(b) call with InCount = 0
input from keyboard: ’B’, ’1’
test path: c1 · c2 · c4 · c5 · c6

20

Boundary-Interior Path Test

example: consider again CountDigits

3. interior test:

(a) call with InCount = 0
input from keyboard: ’A’, ’U’, ’1’
test path: c1 · (c2 · c3 · c5)

2 · c6

(b) call with InCount = 0
input from keyboard: ’U’, ’K’ ’ !’
test path: c1 · c2 · c3 · c5 · c2 · c4 · c5 · c6

21

Boundary-Interior Path Test

example: consider again CountDigits

3. interior test:

(c) call with InCount = 0
input from keyboard: ’C’, ’A’ ’n’
test path: c1 · c2 · c4 · c5 · c2 · c3 · c5 · c6

(d) call with InCount = 0
input from keyboard: ’G’, ’B’ ’DD’
test path: c1 · (c2 · c4 · c5)

2 · c6

22

Structured Path Test

idea: extend boundary-interior path tests to depth k

properties: for some k

• do not explore paths ci · c>k
j · cl

• explore all paths ci · c≤k
j · cl

23

Condition Coverage Test

example: CountDigits contains two conditions/tests

...
((Digit >= ’A’) && (Digit <= ’Z’) && (InCount < MaxSize))
...
((Digit == ’A’) || (Digit == ’E’) || (Digit == ’I’) ||
(Digit == ’O’) || (Digit == ’U’))
...

observation: path coverage tests do not analyse these conditions

24

Condition Coverage Test

variations:

• simple condition coverage: every atomic condition must be at least
once true and once false

• multiple condition coverage: considers full truth table
• minimal multiple condition coverage: every condition (atomic or composite)

must be at least once true and once false

25

Condition Coverage Tests

discussion:

• simple condition coverage subsumes not even statement coverage:
not an applicable technique

• multiple condition coverage considers exponentially many cases;
many of them not reachable because of dependencies

• minimal multiple condition coverage is more difficult to establish

26

Control Flow Testing: Empirical Data

error identification:

• statement coverage: 18%
• branch coverage: 34% (79% control flow errors, 20% computation errors)
• path testing techniques: no reliable data found
• condition coverage: no reliable data found

27

Data Flow Oriented Testing

idea: use definitions and accesses to variables for defining test cases

applications: this is useful for testing

• data structures
• data types
• objects

variants:

• defs/uses procedures
• required k-tuples testing
• data context covering

28

Defs/Uses Procedures

variables: they are used essentially in three different ways in programs

• assignments of values/definitions (defs)
• computations (c-uses)
• conditions/propositions (p-uses)

example: in if z > 1 then y = x + 1 else skip

• z is p-used
• y is defed
• x is c-used

29

Defs/Uses Procedures

example:

n1

n2

n3

n4

n5

n6

cin >> Digit;

InCount++;

if ((...))

cin >> Digit;

VoCount++;

while ((...))

30

Defs/Uses Procedures

example:

• ni : def InCount, VoCount
• n1: def Digit
• n2: p-use Digit, InCount
• n3: c-use InCount, def InCount
• n4: p-use Digit
• n5: c-use VoCount, def VoCount
• n6: def Digit
• no: c-use InCount, c-use VoCount

31

Defs/Uses Procedures

terminology:

• a def of x in ni precedes a c-use or p-use of x in nj
if there is a path c with source ni and target nj and
x is defined nowhere on c

• conversely, the c-use or p-used succeeds the def
• a p-use or c-use of a variable is local if it is preceeded by a def

in the same block
• it is called global if it is preceeded by a def not in the same block
• a def of a variable is local if it precedes a p-use or c-use in the same block
• it is called global if it does not precede a use in the same block

32

Criteria

all defs:

• test case contains for every globally defined variable at some node a path to
some succeeding c-use or p-use

• subsumes neither statement nor branch coverage

all p-uses:

• test case contains for every globally defined variable at some node a path to
all succeeding p-uses

• subsumes branch coverage

all c-uses:

• test case contains for every globally defined variable at some node a path to
all succeeding c-uses

• subsumes neither statement nor branch coverage

33

Criteria

all c-uses/some p-uses:

1. try all c-uses
2. if there is no c-use, test some succeeding p-use

all p-uses/some c-uses: dual to above

all uses: combine all c-uses and all p-uses

example: in exercises. . .

34

Data Flow Testing: Empirical Data

study:

• all defs, all p-uses and all c-uses together found 70% of program errors
• all c-uses found 48% of errors, first of all computation errors
• all p-uses found 34% of errors, first of all control flow errors
• all defs found 24% of errors, no control flow errors

35

Alternatives

required k-tuples:

• test alternating sequences of definitions and uses
• different bounds on sequence length yield different procedures

data context coverage: for each program variable, test each possible
assignment of value

36

