
Software Verification and Testing

Lecture Notes: Testing II



Functional Testing

idea: derive test cases from component specification

• component as black box, i.e., invisible for tester
• appropriate for analysing global functionality of component
• specification can be formal (Z ) or informal

(e.g., interface with natural language documentation)

problem:

• complete functional testing usually not feasible
• selection of test cases should yield high probability of error detection

remark: this is also called conformance testing

1



Functional Testing

techniques for functional testing

• functional equivalence classes
• boundary value analysis
• testing of special values
• random testing
• state automata testing

2



Functional Equivalence Classes

idea: partition the sets of input- and output-parameters into equivalence classes

mathematical background:

• a partition of a set S is a family S1 . . .Sn of subsets of S such that Si ∩Sj = ∅
(pairwise) and S1 ∪ · · · ∪ Sn = S

• an equivalence is a reflexive, symmetric and transitive relation
• the equivalence class of an x ∈ S wrt equivalence ≡ is [x ] = {y ∈ S | y ≡ x}
• every partition defines an equivalence
• every equivalence defines a partition
• definitions extend to infinite families. . .

3



Functional Equivalence Classes

idea: partition the sets of input- and output-parameters into equivalence classes

• test for one representative of each class
• hope that the other elements in a class behave like the representative

remark:

• because of heuristic nature, one usually neglects that classes
should be intersection-free

• “equivalence classes” are not meant in strict mathematical sense
• “representative testing” might be a better notion. . .

4



Functional Equivalence Classes

question: how can one identify equivalence classes?

heuristics: input equivalence classes

1. if an input-condition specifies a connected domain of values, then choose
the domain and its complement

2. if an input-condition specifies a set of values with expected different behaviour,
then choose one class per value and one class outside the domain

3. if an input-condition specifies a boolean decision, then choose
two classes according to the truth value

heuristics: output equivalence classes

1. same conditions at inputs
2. input equivalence classes must correspond to output equivalence classes

5



Functional Equivalence Classes

example: counting digits again

• specification
– the procedure reads input from the keyboard; it stops when some input

is not an upper case character or some upper value Max-Size
has been reached

– if the input is an upper case character, then the counter InCount is
incremented; if it is a vowel, then the counter VoCount is incremented

– both counters are input and output parameters
– the invariant VoCount <= InCount holds

• interface
void CountDigits( int &VoCount, int &InCount);

6



Functional Equivalence Classes

example: counting digits again

• equivalence classes for InCount
1. 0 ≤ InCount < MaxSize

2. InCount = MaxSize

• equivalence class for VoCount
3. 0 ≤ VoCount ≤ InCount

• equivalence classes for keyboard input Digit
4. Digit < ′A′

5. ′A′ ≤ Digit ≤ ′Z′

6. ′Z′ < Digit

7. Digit = ′A′

8. Digit = ′E′

9. Digit = ′I′

10. Digit = ′O′

11. Digit = ′U′

7



Functional Equivalence Classes

example: SetMonth(short Month);

• invariant 1 ≤ Month ≤ 12
• equivalence classes
1. 1 ≤ Month ≤ 12
2. Month ≤ 0
3. 13 ≤ Month

• derived test cases:
1. Month = 3
2. Month = −7
3. Month = 41

8



Boundary Value Analysis

observation: values at boundaries of equivalence classes are often critical

example: lower and upper indices of loops

idea: test boundary values, when values can be ordered

example: for SetMonth, test values 0, 1, 12, 13 of Month

extension: tests for critical values

• test for 0 in arithmetics
• test for special values (e.g., keyboard commands)

9



Random Values

remarks:

• no stand-alone technique
• useful in combination with other techniques, because testers often

unintentionally generate patterns in test cases
• random value testing can be used to select representatives of

equivalence classes

10



Testing State Automata

overview:

• state automata or state machines are similar to labelled transition systems
• they can be used for specifying reactive and concurrent systems
• examples are UML statecharts
• procedure is similar to statement coverage and branch coverage testing
• more in context of OO testing
• currently active research area (in our department)
• question: how to test liveness properties?

11



Functional and Structural Testing Combined

problems:

• structural testing
– cannot detect absence of functionality
– may generate trivial test cases that are irrelevant for functionality

• functional testing
– does not consider implementation details

solution: combine the two

12



Functional and Structural Testing Combined

requirements: a testing method should

• satisfy minimal criteria like branch coverage, conformance with specification
• generate of error- and conformance-sensitive test-data
• be cost-effective
• be systematic and operational
• be intersubjective and reproducible
• use appropriate tools, including metrics and regression tests

13



Functional and Structural Testing Combined

requirements: a tester needs

• structural information
– which parts of a components are affected by a test case
– which parts are strongly used (information for optimisation)

• functional information
– which parts of the specification are correctly implemented
– whether domain and type constraints are satisfied
– whether special cases and exceptions are handled correctly

14



Functional and Structural Testing Combined

requirements: the management is interested in organisatorial aspects

• how to control the progress of testing
• how to estimate the time required
• who tests what and to which extend
• how to quantify the degree of testing

15



Functional and Structural Testing Combined

procedure: assumes a testing tool, a specification and an implementation

1. functional testing
• instrument test object with testing tool
• identify equivalence classes, boundary values, special values, test cases
• perform tests

2. structural testing
• evaluate coverage metrics from functional testing
• specify test cases for non-covered branches, paths or conditions

(or delete these entities)
• perform tests until the desired coverage is obtained

3. regression testing

16



Functional and Structural Testing Combined

question: how extensively should one test?

answer:

• no general answer possible
• often branch coverage of 80 − 99% sufficient

industrial experience: (not mine)

• testing without tools yields poorer quality
• functional test cases should be developed in design phase
• identifying functional test cases requires much thought and experience
• functional testing alone is usually not sufficient

17



Testing Object-Oriented Components

particularities:

• functional testing must be modified, since objects are parametrised
by their states

• encapsulation makes it difficult to directly observe the current state
• classes can be instantiated in various ways (that cannot all be tested)
• inheritance creates additional dependencies
• polymorphism and dynamic binding require new techniques
• genericity (C++ templates) requires types to be instantiated before testing

question: can a design and programming paradigm be good if it makes
testing difficult?

18



Testing Object-Oriented Components

example: modification of a subclass requires retesting all methods
inherited from its superclasses

• consider a window-manager class and its subclass for the Linux OS
• assume that some method initialises the screen to blank
• let some other method that sets the screed background
• the order of invoking these methods can be different in different contexts

conclusion: OO simplifies design, but complicates testing

• combining encapsulation with inheritance requires integrated
instead of reduced testing

• inheritance makes changes non-local and dependent on complex mechanisms

19



Object-Oriented Specification

design by contract: OO development by realising contract between
designer and implementor

• designer is responsible for respecting publicly available services in an interface
• implementor is responsible for providing the functionality specified by interface

remarks: helpful view for

• specifying and refining preconditions, postconditions and invariants of a system
• distinguishing the “two sides” of an interface
• specification, implementation and refinement of OO systems

literature: B. Meyer, Object-Oriented Software Construction, Prentice Call, 1988.

20



Class Testing

problems:

• classes can only be tested via instances
• data flow analysis is complicated by dynamic binding
• sequences of method calls must be tested

21



Class Testing

useful test scenario:

1. generate an instrumented object of the class to be tested
2. test each individual method; first getters and then setters

• define test cases by equivalence classes and boundary values;
initialise object appropriately

• test object state and output parameters after each method execution
3. test execution sequences of dependent methods

(all potential uses in practical applications)
• in presence of object life-cycle, perform statement or branch coverage test

4. use instrumentation to check coverage; perform additional tests

22



Class Testing

testing environment:

1. test driver: simulates inherited attributes and methods,
triggers execution of selected methods

2. message generator: generates input parameters
3. object initialiser: brings object in desired precondition
4. state evaluator: checks object state and output parameters

after method execution against postconditions
5. test monitor: manages method execution sequences

23



Class Testing

testing levels:

1. instance testing: select representative objects to be tested
2. context testing: test objects in all relevant dependencies:

• message exchanges
• exceptions
• potential dynamic bindings

3. completeness testing: coverage of methods and methods sequences,
object dynamics

4. state model testing: generate all relevant states of objects
and all state transitions

24



Class Testing

testing abstract classes:

• derive concrete class
• implement abstract methods as simply as possible

testing parametrised classes:

• generate very simple concrete classes
• chose parameters wrt simplicity of testing

25



Subclass Testing

recipes:

• all test cases for inherited and non-redefined methods must be repeated
• new test cases for redefined methods must be developed
• in case of method refinement: old test cases can be reused,

but new ones might be necessary

26



Example: Method Sequence Testing

observations:

• result of method execution depends on “history” of previous method executions
• method sequencing is constrained by system functionality (stack object ini-

tialised as empty should accept pop messages only after push messages)

idea: specify method sequences as regular expressions

27



Example: Method Sequence Testing

example: a simple bank account class

• interface methods: Create, Deposit , Open, Withdraw , Close, Delete
• transaction method sequences: TransSeq = Deposit ·(Deposit ∪Withdraw )∗

• account method sequences: AccSeq = Open ·TransSeq ·Close
• method sequences: MethodSeq = Create ·AccSeq ·Delete

• MethodSeq defines the set of valid messages accepted by the account class
• the following sequences are in MethodSeq :

Create ·Open ·Deposit ·Withdraw ·Close ·Delete

Create ·Open ·Deposit ·Deposit ·Close ·Delete

28



Example: Method Sequence Testing

method sequences:

• they specify the intended execution sequences of a system
• execution sequences of the methods implemented can be tested against these

sequences
• state coverage, branch coverage or path coverage can be applied
• message-sequence diagrams can be very useful in this context

29



Example: Method Sequence Testing

example: testing TransSeq

Deposit

Deposit

Deposit

Withdraw

Withdraw

Withdraw

Deposit

30



Example: Method Sequence Testing

example: testing TransSeq

• node coverage:

Deposit ·Deposit

Deposit ·Withdraw

• branch coverage:

Deposit ·Deposit ·Deposit ·Withdraw

Deposit ·Withdraw ·Withdraw ·Deposit

31



Example: Method Sequence Testing

deriving method sequences:

• present design as transition system (state chart)
• method sequences present all possible paths (obtained by unwinding)
• this is called the language accepted by transition system
• process can easily be automated (“Kleene’s theorem”)

32



Example: Method Sequence Testing

example: bank account LTS

Deposit

Deposit

Withdraw

Open Close

regular expression derived: Open ·Deposit ·(Deposit ∪Withdraw )∗ · Close

33



Example: Method Sequence Testing

inheritance:

• specialisation inheritance: child class can contain additional methods
semantics of inherited methods is preserved

• refinement inheritance: child methods can be redefined
semantics of inherited methods is changed
(preconditions weakened, postconditions strengthened)

• implementation inheritance: not all methods need be inherited,
some can be redefined

34



Example: Method Sequence Testing

refinement inheritance: parent method sequences of are obtained
by renaming some child method sequences by parent methods

intuition: child method sequences can safely be used for parent methods;
but they can introduce additional behaviour

example: refine Deposit by Deposit · Interest for savings account class

implementation inheritance: combination of refinement and specialisation
inheritance

35



Integration Testing

task:

• test interplay of components in a program
• this is a variant of structural testing

test drivers: feeds components (interfaces) with parameters needed

dummies/stubs: simulate components needed that are specified,
but not yet implemented

36



Integration Testing

strategies:

• incremental/non-incremental
• test-goal driven: integrate components as needed to perform tests
• architecture driven (obvious)
• business-process driven: integrate components as needed for use case/business

process
• function driven: integrate components to achieve specification goal
• availability driven (obvious)

37



Integration Testing

architecture driven testing: top-down integration

• features
– start with high-level system components (e.g., GUIs)
– simulate lower levels by stubs

• pros:
– no test drivers needed
– early prototypes allow client to simulate system use
– easy to detect and handle changing requirements
– design and implementation can be interleaved

• cons:
– stubs can be difficult to implement
– test case generation for low-level components can become quite difficult
– interoperability of software with system software and hardware is tested

very late

38



Integration Testing

architecture driven testing: bottom-up integration

• features
– start testing components that require no further services
– integrate from level to level

• pros:
– no stubs needed
– test cases simple to develop and to interpret
– interoperability of software with system software and hardware is tested

very early
• cons:

– test drivers needed
– running system obtained very late; errors in global functionality occur late
– exception handling difficult to test, since parameter are given by components

that have already been tested

39



Integration Testing

dynamic integration testing:

• control flow oriented: test call-dependencies between components
– consider every call/execution of an exported/imported operation
– consider call sequences of imported operations

• data flow oriented: test data flow between components
– of input parameters and global variables before and after executing an

imported operation
– of output parameters after operation calls

• functional testing: as usual

40



System Testing

task:

• final test of software in real environment before delivery
• this is a variant of functional testing
• client is not yet involved

conformance: product-model, requirement, GUI-concept, user manual

41



System Testing

function testing:

• are all required functions present and working?
• test sequences defined in requirement specification

performance testing:

• load testing: how does the system work with massive data?
• time testing: are timing constraints satisfied?
• reliability testing: how does the system work under peak loads?
• stress testing: how does the system react beyond load limits?
• usability testing: is the system comprehensive and usable?
• security testing: does the system provide data security?
• interoperability testing: how does the system behave in interaction?
• configuration testing: how does the system behave on different platforms?
• document testing: are the user manual etc. useful?

42



System Testing

acceptance testing: system test together with client

• tests in normal working environment
• test cases for endurance testing

important points:

• configuration control
• system configuration from source programs
• testing according to predefined procedure, incl. user manual
• outcome of tests documented in protocol
• “free testing” after every testing step
• acceptance after final meeting in which errors are weighted and discussed

43



System Testing

alpha testing: system test in target environment by client

beta testing: system test by selected clients

44



Product Certification

idea: the quality of a software product is the result of the process quality

measurement: this can be collected in process or system certifications

standardisation: there are different standards in different countries

certification: given by independent accredited agencies

45



Testing Process and Documentation

testing process: three steps

• test planning (documented in test plan, test specification)
• test performance (documented in test plan, test specification)
• test control (documented in test report)

remark: there are several ANSI/IEEE norms for test documentation

• ANSI/IEEE Std 829–1983 Software Test Documentation
• ANSI/IEEE Std 1008–1987 Standard for Software Unit Testing
• ANSI/IEEE Std 1012–1986 Standard Verification and Validation Plans

46



Who verifies the verifier?

Who tests the tester?

47


