Theorem

A language is context free iff some pushdown automaton recognises it

language G is context free \Leftrightarrow language G is recognised by a PDA

Lemma

If a language is context free some PDA recognises it

Proof Sketch (by Construction)

Design a PDA for a grammar that functions as follows:

Example

 $A \rightarrow 0A1 \,|\, \varepsilon$

Lemma

If a PDA recognises a language, then it is context free

Proof Sketch (by Construction)

For PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{accept}\})$ construct G with variables $\{A_{pq} \mid p, q \in Q\}$, start variable $A_{q_0, q_{accept}}$ and rules:

 A_{pq} → aA_{rs}b for each p,q,r,s∈Q, t∈Γ and a,b∈Σ_ε, if δ(p,a,ε) contains (r,t) and δ(s,b,t) contains (q,ε)

•
$$A_{pq} \rightarrow A_{pr}A_{rq}$$

for each $p,q,r \in Q$
• $A_{pp} \rightarrow \varepsilon$

for each $p \in Q$

Example

$$A_{q_0,q_3} \rightarrow$$

- $\delta(\ ,\ ,\varepsilon) = \{(\ ,\),...\}$ $\delta(\ ,\ ,\) = \{(\ ,\varepsilon),...\}$
- $\delta(\ ,\ ,\)=\{(\ ,\varepsilon),\ldots\}$
- $\delta(\ ,\ ,\varepsilon)=\{(\ ,\),\ldots\}$
- $\delta(,,) = \{(,\varepsilon),...\}$

Claim (proof in Sipser)

 A_{pq} generates string $x \Leftrightarrow x$ can bring PDA from state p with empty stack to q with empty stack