Turing Machines – Lecture 13 James Marshall

The Turing Machine

Like a finite automaton but:

- 1. A TM can read from *and* write to the input tape
- 2. The read-write head can move right or left
- 3. The tape is infinite
- 4. Accept and reject states take effect immediately

Definition

A TM is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ where Q, Σ, Γ are finite sets and

- 1. *Q* is the set of *states*
- 2. Σ is the *input alphabet*, which must exclude the blank symbol
- 3. Γ is the *tape alphabet*, where
- 4. $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the transition function
- 5. $q_0 \in Q$ is the start state
- 6. $q_{accept} \in Q$ is the accept state
- 7. $q_{reject} \in Q$ is the reject state, where $q_{reject} \neq q_{accept}$

Definition

A language is *Turing-recognisable* if some TM recognises it, defined as reaching q_{accept} if the input string is a member of the language.

Definition

A language is *Turing-decidable* if some TM decides it, defined as reaching q_{accept} if the input string is a member of the language, otherwise reaching q_{reject}

Example

Design a TM to decide $B = \{w \# w \mid w \in \{0,1\}^*\}$

Church-Turing Thesis

"Every effectively calculable function is a computable function"