
P vs NP, Reductions, NP-Completeness, Cook-Levin Theorem, Bandersnatches –
Lecture 17

James Marshall

P vs NP

There is clearly some relationship between the complexity classes P and NP

 Languages that can be decided in polynomial time can also have certificates
checked in polynomial time

or ?

€

NP ⊆ EXPTIME =
k
TIME 2n

k()

Reductions

Definition

 A function

€

f : Σ* →Σ* is polynomial time computable if some deterministic
TM exists that runs in polynomial time, and halts with only f(w) on its tape when
started on any input w.

Definition

 Some language A is polynomial time mapping reducible (or polynomial time
reducible) to language B (written

€

A ≤P B), if a polynomial time computable function f
exists where, for every w

€

w ∈ A⇔ f (w)∈ B .
f is the polynomial time reduction of A to B.

Theorem

 If

€

A ≤P B andB ∈ P, then A ∈ P

Proof (sketch)

 B can be decided in polynomial time, A can be reduced to B in polynomial
time, hence A can be decided in polynomial time.

Satisfiability

€

SAT = φ φ is a satisfiable Boolean formula{ }

Examples

€

3SAT = φ φ is a satisfiable 3- cnf formula{ }

Examples

Definition

 A language B is NP-complete if:

1. B is in NP
2. every A in NP is polynomial time reducible to B

Theorem (Cook-Levin)

 3SAT is NP-complete

Proof (sketch)

 1. 3SAT is obviously in NP, as we can verify a possible satisfying assignment
in polynomial time.

 2. We can construct a polynomial time reduction to 3SAT for any language A,
by first considering a non-deterministic TM for deciding A, called M. Then the
reduction for A takes a string w and writes a Boolean formula

€

φ that simulates M’s
operation on it, such that if M accepts w then there is a satisfying assignment for

€

φ ,
and if M doesn’t accept w then there is no satisfying assignment for

€

φ . A Boolean
formula can simulate the operation of another machine, as the Boolean operators are
analogous to the logic gates used in electronic circuitry to construct ‘real-world’
computers.

Corollary

 SAT ∈P iff P = NP

‘I can’t find an efficient algorithm, I guess I’m just too dumb.’

‘I can’t find an efficient algorithm, because no such algorithm is possible.’

‘I can’t find an efficient algorithm, but neither can all these famous people.’

(©1979 Garey & Johnson, from ‘Computers and Intractability: A Guide to the Theory
of NP-Completeness’)

