
P vs NP, Reductions, NP-Completeness, Cook-Levin Theorem, Bandersnatches – 
Lecture 17 

James Marshall 
 
P vs NP 
 
There is clearly some relationship between the complexity classes P and NP 
 
 Languages that can be decided in polynomial time can also have certificates 
checked in polynomial time 
 
 

 
 
 
 
 
 
 
 

or      ? 
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NP ⊆ EXPTIME =
k
TIME 2n

k( ) 

 
 
 
 
Reductions 
 
Definition 
 
 A function 

€ 

f : Σ* →Σ* is polynomial time computable if some deterministic 
TM exists that runs in polynomial time, and halts with only f(w) on its tape when 
started on any input w. 



 
Definition 
 
 Some language A is polynomial time mapping reducible (or polynomial time 
reducible) to language B (written 

€ 

A ≤P B ), if a polynomial time computable function f 
exists where, for every w 

€ 

w ∈ A⇔ f (w)∈ B . 
f  is the polynomial time reduction of A to B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Theorem 
 
 If 

€ 

A ≤P B  andB ∈ P, then A ∈ P 
 
Proof (sketch) 
 
 B can be decided in polynomial time, A can be reduced to B in polynomial 
time, hence A can be decided in polynomial time. 
 
 
 
 
 
Satisfiability 
 

€ 

SAT = φ φ  is a satisfiable Boolean formula{ }  
 

Examples 



€ 

3SAT = φ φ  is a satisfiable 3- cnf formula{ }  
 

Examples 
 
 
 
 
 
 
 
 
 
 
 
Definition 
 
 A language B is NP-complete if: 

1. B is in NP 
2. every A in NP is polynomial time reducible to B 

 
 
 
 
Theorem (Cook-Levin) 
 
 3SAT is NP-complete 
 
Proof (sketch) 
 
 1. 3SAT is obviously in NP, as we can verify a possible satisfying assignment 
in polynomial time. 
 
 2. We can construct a polynomial time reduction to 3SAT for any language A, 
by first considering a non-deterministic TM for deciding A, called M. Then the 
reduction for A takes a string w and writes a Boolean formula 

€ 

φ  that simulates M’s 
operation on it, such that if M accepts w then there is a satisfying assignment for 

€ 

φ , 
and if M doesn’t accept w then there is no satisfying assignment for 

€ 

φ . A Boolean 
formula can simulate the operation of another machine, as the Boolean operators are 
analogous to the logic gates used in electronic circuitry to construct ‘real-world’ 
computers. 
 
 
 
 
Corollary 
 
 SAT ∈P iff P = NP 



 
‘I can’t find an efficient algorithm, I guess I’m just too dumb.’ 

 

 
‘I can’t find an efficient algorithm, because no such algorithm is possible.’ 

 

 
‘I can’t find an efficient algorithm, but neither can all these famous people.’ 

 
 
 

(©1979 Garey & Johnson, from ‘Computers and Intractability: A Guide to the Theory 
of NP-Completeness’) 


