P vs NP, Reductions, NP-Completeness, Cook-Levin Theorem, Bandersnatches Lecture 17
 James Marshall

P vs NP

There is clearly some relationship between the complexity classes \mathbf{P} and $\mathbf{N P}$
Languages that can be decided in polynomial time can also have certificates checked in polynomial time
or

$$
\mathrm{NP} \subseteq \operatorname{EXPTIME}=\underset{k}{\bigcup} \operatorname{TIME}\left(2^{n^{k}}\right)
$$

Reductions

Definition

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is polynomial time computable if some deterministic TM exists that runs in polynomial time, and halts with only $f(w)$ on its tape when started on any input w.

Definition

Some language A is polynomial time mapping reducible (or polynomial time reducible) to language B (written $A \leq_{\mathrm{P}} B$), if a polynomial time computable function f exists where, for every w

$$
w \in A \Leftrightarrow f(w) \in B .
$$

f is the polynomial time reduction of A to B.

Theorem

If $A \leq_{\mathrm{P}} B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$

Proof (sketch)

B can be decided in polynomial time, A can be reduced to B in polynomial time, hence A can be decided in polynomial time.

Satisfiability

$$
S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable Boolean formula }\}
$$

Examples

$$
3 S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable 3-cnf formula }\}
$$

Examples

Definition

A language B is $\boldsymbol{N P}$-complete if:

1. B is in NP
2. every A in $\mathbf{N P}$ is polynomial time reducible to B

Theorem (Cook-Levin)

3SAT is NP-complete

Proof (sketch)

1. 3 SAT is obviously in $\mathbf{N P}$, as we can verify a possible satisfying assignment in polynomial time.
2. We can construct a polynomial time reduction to $3 S A T$ for any language A, by first considering a non-deterministic TM for deciding A, called M. Then the reduction for A takes a string w and writes a Boolean formula ϕ that simulates M 's operation on it, such that if M accepts w then there is a satisfying assignment for ϕ, and if M doesn't accept w then there is no satisfying assignment for ϕ. A Boolean formula can simulate the operation of another machine, as the Boolean operators are analogous to the logic gates used in electronic circuitry to construct 'real-world' computers.

Corollary

$S A T \in \mathbf{P}$ iff $\mathbf{P}=\mathbf{N} \mathbf{P}$

'I can't find an efficient algorithm, I guess I'm just too dumb.'

'I can't find an efficient algorithm, because no such algorithm is possible.'

'I can't find an efficient algorithm, but neither can all these famous people.'
(©1979 Garey \& Johnson, from 'Computers and Intractability: A Guide to the Theory of NP-Completeness')

