Nondeterministic Finite Automata - Lecture 3 James Marshall

Theorem

The class of regular languages is closed under the concatenation operation

Proof Sketch (first attempt)

Definition - Nondeterministic Finite Automaton (NFA)

A nondeterministic finite automaton is a 5-tuple (Q, Σ , δ , q_0 , F) where

- 1. Q is a finite set of states
- 2. Σ is a finite set called the **alphabet**
- 3. $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ defines the transition function
- 4. $q_0 \in Q$ is the start state
- 5. $F \subseteq Q$ is the set of accept states

Deterministic computation

Nondeterministic computation

NFA Examples

Theorem

The class of regular languages is closed under the *concatenation* operation

Proof Sketch

(N.B.) Assumption: