Regular Expressions - Lecture 5 James Marshall

Definition (inductive) - Regular Expression

R is a *regular expression* if *R* is

- 1. *a* for any *a* in the alphabet Σ
- 2. *ε*
- 3. Ø

4. $(A \cup B)$ where A and B are regular expressions

- 5. $(A \circ B)$ where A and B are regular expressions
- 6. (*A**)

Applications of regular expressions

Some further notation and some identities

Examples - Give regular expressions in the alphabet $\Sigma = \{0, 1\}$ *for*

 $\{w \mid w \text{ contains the substring 010 within it}\}$

 $\{w \mid w \text{ may or may not start with a 0, followed by any number of 1s}\}$

{w | w begins with 0 and ends with 1, or begins with 1 and ends with 0, such that no two 0s or 1s are ever adjacent}

Theorem

A language is regular iff (if and only if) some regular expression describes it

(language A is described by a regular expression \Leftrightarrow language A is regular)

Lemma

language A is described by a regular expression \Rightarrow language A is regular

Proof (by construction)

1. $L(R) = \{a\}$

2. $L(R) = \{\varepsilon\}$

3. $L(R) = \emptyset$

4. $L(R) = L(A \cup B)$ 5. $L(R) = L(A \circ B)$ 6. $L(R) = L(A^*)$