Regular Expressions - Lecture 5

James Marshall

Definition (inductive) - Regular Expression

R is a regular expression if R is

1. a for any a in the alphabet Σ
2. ε
3. \varnothing
4. $(A \cup B)$ where A and B are regular expressions
5. $\left(A^{\circ} B\right)$ where A and B are regular expressions
6. $\left(A^{*}\right)$

Applications of regular expressions
\square

Some further notation and some identities

Examples - Give regular expressions in the alphabet $\Sigma=\{0,1\}$ for
$\{w \mid w$ contains the substring 010 within it $\}$
$\{w \mid w$ may or may not start with a 0 , followed by any number of 1 s$\}$
$\{w \mid w$ begins with 0 and ends with 1 , or begins with 1 and ends with 0 , such that no two 0 s or 1 s are ever adjacent\}

Theorem

A language is regular iff (if and only if) some regular expression describes it (language A is described by a regular expression \Leftrightarrow language A is regular)

Lemma

language A is described by a regular expression \Rightarrow language A is regular

Proof (by construction)

1. $L(R)=\{a\}$
2. $L(R)=\{\varepsilon\}$
3. $L(R)=\varnothing$
4. $L(R)=L(A \cup B)$
5. $L(R)=L\left(A^{\circ} B\right)$
6. $L(R)=L\left(A^{*}\right)$
