Generalised Nondeterministic Finite Automata - Lecture 6 James Marshall

Theorem (from last lecture)

language A is described by a regular expression \Leftrightarrow language A is regular

Definition - Generalised Nondeterministic Finite Automaton (GNFA)

A generalised nondeterministic finite automaton is a 5-tuple (Q, Σ , δ , q_{start} , q_{start}) where

- 1. *Q* is the finite set of states
- 2. Σ is the finite input alphabet

3. $\delta: (Q \setminus \{q_{accept}\}) \times (Q \setminus \{q_{start}\}) \rightarrow \mathcal{R}$ defines the transition function, where \mathcal{R} is the set of all regular expressions over the input alphabet

- 4. $q_{\text{start}} \in Q$ is the start state
- 5. $q_{\text{accept}} \in Q$ is the accept state

Definition - Computation by an GNFA

A GNFA $N = (Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ accepts string $w \in \Sigma^*$ if and only if $w = w_1 w_2 \dots w_k$ where $w_i \in \Sigma^*$, and a sequence of states $q_0, q_1, q_2 \dots q_k$ exists in Q satisfying:

1. $q_0 = q_{\text{start}}$ 2. $q_0 = q_{\text{accept}}$ 3. $w_i \in L(\delta(q_{i-1}, q_i))$ for all i = 0, 1, ..., k - 1

Lemma

language A is regular \Rightarrow language A is described by a regular expression

Proof Sketch (*by construction*)

Step 1: Convert a DFA for language *A* into an equivalent GNFA

Step 2: Reduce the GNFA until it has a single transition labelled with the regular expression describing language *A*