Examples of nonregular languages (?):
$C=\{w \mid w$ has an equal number of 0 s and 1 s$\}$
$D=\left\{w w^{\mathcal{R}}\right\}$

An examples that looks nonregular but isn't:
$E=\{w \mid w$ has an equal number of substrings 01 and 10$\}$

Exercise: prove the regularity of E

Theorem - The Pumping Lemma for Regular Languages

If A is a regular language, then there is a minimum length p (the pumping length) where, for any string $s \in A$ of length at least p, s can be divided into three pieces $s=x y z$ such that

1. $x y^{i_{z}} \in A$, for each $i \geq 0$
2. $|y|>0$
3. $|x y| \leq p$

Proof Sketch

1. Consider a machine M that recognises A
2. Choose a string $s \in A$ of length $n \geq p$, where $p=$ the number of states in M
3. Let $q_{1} q_{2} \ldots q_{n+1}$ be the sequence of states M goes through in accepting s
4. By the pigeonhole principle, since $n \geq p$, one or more states in M must be visited more than once
5. Consider the first $p+1$ states visited by M; one state (labelled q_{r}) must be visited twice, so s can be broken down as follows:

Example 1:

Prove that $F=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular, by application of the pumping lemma

Example 2:

Prove that $G=\{w \mid w$ has an equal number of 0 s and 1 s$\}$ is not regular, without recourse to the pumping lemma

