Context Free Grammars - Lecture 9
 James Marshall

More parse tree examples
$<$ EXPR $>\rightarrow<$ EXPR $>+<$ EXPR $>\mid<$ EXPR $>x<$ EXPR $>\mid(<$ EXPR $>) \mid$ a

Draw a parse tree for the string $a+a \times a$

Definition-Ambiguous Grammar

A string is derived ambiguously in a CFG if there is more than one leftmost derivation of it. A CFG is ambiguous if it generates at least one string via an ambiguous derivation.

Definition - Inherently Ambiguous Language

If a language can only be generated by an ambiguous grammar, that language is said to be inherently ambiguous.

$$
\text { Example: }\left\{a^{i} b c^{k} \mid i=j \text { or } j=k\right\}
$$

Definition - Chomsky Normal Form

A CFG is in Chomsky Normal Form if every rule has the form
(1) $A \rightarrow B C$, or
(2) $A \rightarrow a$
where (3) a is any terminal except ε, and A, B and C are any variables, with the important exception that (4) B and C may not be the start variable. If A is the start variable we may also have the rule $A \rightarrow \varepsilon$

Theorem

A CFG in Chomsky Normal Form exists for any CFL.

Proof Sketch (by construction)

Any grammar can be converted into Chomsky Normal Form by the following process:

1. Given existing start variable S add a new start variable S_{0} and the rule $S_{0} \rightarrow S$, to satisfy condition (4).
2. For any rule $A \rightarrow \varepsilon$ where A is not the start variable, to satisfy condition (3) For every occurence of A on the right-hand side of a rule, add a new rule with that occurence deleted. For rules of form $R \rightarrow A$ add rule $R \rightarrow \varepsilon$ unless that rule has already been deleted.
3. For any rules $A \rightarrow B$ and $B \rightarrow u$ (where u is a string of variables and terminals), delete A $\rightarrow B$ (to satisfy condition (1)) and add $A \rightarrow u$ (unless $A \rightarrow u$ was a rule already deleted in this stage).
4. Convert all remaining rules into the form of (1) or (2) by chaining rules together, e.g.

$$
\begin{aligned}
& A \rightarrow B C D \text { becomes } \\
& A \rightarrow B A_{1} \\
& A_{1} \rightarrow C D(\text { satisfying }(1)) \\
& \text { and } D \rightarrow E f \text { becomes } \\
& D \rightarrow E F \\
& F \rightarrow f \text { (satisfying (2)) }
\end{aligned}
$$

Example

Write the following grammar in Chomsky Normal Form:
$<$ EXPR $>\rightarrow<$ EXPR $>+<$ EXPR $>\mid(<$ EXPR $>) \mid$ a

Theorem

If G is a CFG in Chomsky Normal Form, then for any string $w \in L(G)$ of length $n \geq 1$, there are $2 n-1$ steps in any derivation of w.

Proof Sketch

