Context Free Grammars - Lecture 9 James Marshall

More parse tree examples

 $\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle | \langle EXPR \rangle \times \langle EXPR \rangle | (\langle EXPR \rangle) | a$

Draw a parse tree for the string $a+a \times a$

Definition - Ambiguous Grammar

A string is derived *ambiguously* in a CFG if there is more than one *leftmost derivation* of it. A CFG is *ambiguous* if it generates at least one string via an ambiguous derivation.

Definition - Inherently Ambiguous Language

If a language can *only* be generated by an ambiguous grammar, that language is said to be *inherently ambiguous*.

Example: $\{a^i b^j c^k \mid i = j \text{ or } j = k\}$

Definition - Chomsky Normal Form

A CFG is in Chomsky Normal Form if every rule has the form

(1) $A \rightarrow BC$, or

 $(2) A \rightarrow a$

where (3) *a* is any terminal except ε , and *A*, *B* and *C* are any variables, with the important exception that (4) *B* and *C* may not be the start variable. If *A* is the start variable we may also have the rule $A \rightarrow \varepsilon$

Theorem

A CFG in Chomsky Normal Form exists for any CFL.

Proof Sketch (by construction)

Any grammar can be converted into Chomsky Normal Form by the following process:

1. Given existing start variable *S* add a new start variable S_0 and the rule $S_0 \rightarrow S$, to satisfy condition (4).

2. For any rule $A \rightarrow \varepsilon$ where A is not the start variable, to satisfy condition (3) For *every* occurence of A on the right-hand side of a rule, add a new rule with that occurence deleted. For rules of form $R \rightarrow A$ add rule $R \rightarrow \varepsilon$ *unless* that rule has already been deleted.

3. For any rules $A \rightarrow B$ and $B \rightarrow u$ (where *u* is a string of variables and terminals), delete $A \rightarrow B$ (to satisfy condition (1)) and add $A \rightarrow u$ (*unless* $A \rightarrow u$ was a rule already deleted in this stage).

4. Convert all remaining rules into the form of (1) or (2) by chaining rules together, e.g.

 $A \rightarrow BCD \text{ becomes}$ $A \rightarrow BA_1$ $A_1 \rightarrow CD \text{ (satisfying (1))}$ and $D \rightarrow Ef \text{ becomes}$ $D \rightarrow EF$ $F \rightarrow f \text{ (satisfying (2))}$

Example

Write the following grammar in Chomsky Normal Form: <EXPR>→ <EXPR>+<EXPR> | (<EXPR>) | a

Theorem

If *G* is a CFG in Chomsky Normal Form, then for any string $w \in L(G)$ of length $n \ge 1$, there are 2n - 1 steps in any derivation of *w*.

Proof Sketch