
COM2001 - SUGGESTED SOLUTIONS

JAMES MARSHALL

1 EMPIRICAL PERFORMANCE ANALYSIS

1.2. Graphing:

Figure 1: iSort: this algorithm has an average time complexity of O(n) and a worst case (for example,
reverse-sorted and random lists) time complexity of O(n2).

Figure 2: mergeSort: this algorithm has a time complexity of O(n log(n)) for all types of lists.

1



Figure 3: qSort: this algorithm has an average time complexity of O(n log(n)) and a worst case time
complexity of O(n2). The time complexity is O(n2) for sorted and reverse-sorted lists, but O(n log(n)) for
random lists.

2 ASYMPTOTIC COMPLEXITIES

(a). O(1) ⊂ O(log(n)) ⊂ O(n) ⊂ O(n log(n)) ⊂ O(n2) ⊂ O(2n)

(b). Ω(2n) ⊂ Ω(n2) ⊂ Ω(n log(n)) ⊂ Ω(n) ⊂ Ω(log(n)) ⊂ Ω(1)

(c). No. Θ(g(n)) means having upper and lower bounds which are constant multiples of g(n)).
Θ(n2) ⊂ Θ(2n) means that every algorithm having upper and lower running time bounds of order
n2 also has upper and lower running time bounds of order 2n; clearly 2n can upper-bound n2, but
a constant multiple of it clearly can’t also provide a lower bound on n2.

(d). The summation has a closed-form solution of (4n+1 − 1)/3. An appropriate asymptotic
time complexity is thus Θ(4n) (everything else in the closed-form solution being a constant that
does not depend on n). The running time will be growing exponentially as the input size increases,
as such this algorithm will have incredibly large running times with larger inputs, and will begin
to struggle with smaller inputs very quickly.

(e). The summation has a closed-form solution of 7n + 3n(n + 1)/2. An appropriate asymptotic
time complexity is thus Θ(n2) (since the n2 term dominates as n becomes larger, and everything
else in the solution is a constant that does not depend on n). This is a polynomial time algorithm,
in this case the running time will be growing quadratically as the input size increases. This al-
gorithm will perform well with larger inputs, with the growth curve growing significantly slower
than an exponential time algorithm.

3 RECURRENCES AND THE MASTER THEOREM

(a).a = 1, b = 3/2 hence case 2 applies as f(n) ∈ Θ(1) = Θ(n0) = Θ(nlog3/2 1). Therefore
T (n) ∈ Θ(log2 n).

(b). a = 9, b = 3 hence case 1 applies with ε = 1 as f(n) ∈ Θ(n) = Θ(nlog3 9−1). Therefore

2



T (n) ∈ Θ(n2).

(c). a = 3, b = 4 hence case 3 applies with ε ≈ 0.2 as f(n) ∈ Ω(n1) = Ω(nlog43+ε), and
3n/4 log2(n/4) ≤ cn log2 n for c = 3/4 and for large enough n. Therefore T (n) ∈ Θ(n log2 n).

(d). a = 4, b = 2 hence case 2 applies as f(n) ∈ Θ(n2) = Θ(nlog2 4). Therefore T (n) ∈ Θ(n2 log2 n).

(e). a = 2 but b is non-constant, hence the Master Theorem does not apply

(f). a = 4, b = 2 hence case 1 applies with ε = 1 as f(n) ∈ Θ(n) = Θ(nlog2 4−1). Therefore
T (n) ∈ Θ(n2).

(g). a = 2, b = 2 however the Master Theorem does not apply. Case 2 clearly does not apply
as f(n) /∈ Θ(n). Case 1 does not apply as if f(n) ∈ O(n1−ε) we would have n log2 n ≤ cn/nε which
can be rearranged to give c ≥ nε log2 n, hence c cannot be a constant. Similar reasoning shows
case 3 cannot apply either as if f(n) ∈ Ω(n1+ε) we would have c ≤ (log2 n)/nε. The problem is
we cannot establish a tight (case 2), polynomially larger (case 1) or polynomially smaller (case 3)
bound on f(n).

(h). a = 4, b = 2 hence case 3 applies with ε = 1 as f(n) ∈ Θ(n3) = Θ(nlog2 4+1), and
4(n/2)3 ≤ cn3 =⇒ 1/2 ≤ c which satisfies the condition c < 1. Therefore T (n) ∈ Θ(n3).

(i). a = 1 but b is non-constant, hence the Master Theorem does not apply.

4 INDUCTIVE PROOFS

(a). expsum z n == (1 - z ^ (n + 1)) / (1 - z)

Base case:

expsum z 0 == (1 - z^(0 + 1)) / (1 - z)

expsum z 0 == (1 - z^1) / (1 - z)

expsum z 0 == (1 - z) / (1 - z)

expsum z 0 == 1

From (expsum)

1 == 1

Inductive step:

expsum z n == (1 - z^(n + 1)) / (1 - z) ==>

expsum z (n + 1) == (1 - z^(n + 2)) / (1 - z)

expsum z (n + 1) == (1 - z^(n + 2)) / (1 - z)

From (expsum2)

z^(n + 1) + expsum z n == (1 - z^(n + 2)) / (1 - z)

From inductive hypothesis

3



z^(n + 1) + (1 - z^(n + 1)) / (1 - z) == (1 - z^(n + 2)) / (1 - z)

(1 - z^(n + 1)) / (1 - z) ==

(1 - z^(n + 2) - (1 - z) * z ^ (n + 1)) / (1 - z)

(1 - z^(n + 1)) / (1 - z) ==

(1 - z^(n + 2) - z^(n + 1) + z^(n + 2)) / (1 - z)

(1 - z^(n + 1)) / (1 - z) == (1 - z^(n + 1)) / (1 - z)

Q.E.D.

(b). reverse (xs ++ ys) == reverse ys ++ reverse xs

Base case A:

reverse ([] ++ ys) == reverse ys ++ reverse []

From (++1)

reverse ys == reverse ys ++ reverse []

We must now prove the above statement by proving the following.
Inductive hypothesis B:

xs ++ [] == xs

Base Case B:

[] ++ [] == []

From (++1)

[] == []

Inductive step B:

xs ++ [] == xs ==> (x:xs) ++ [] == (x:xs)

(x:xs) ++ [] = (x:xs)

From (++2)

x:(xs ++ []) == (x:xs)

From inductive hypothesis B

x:(xs) == (x:xs)

Inductive step A:

reverse (xs ++ ys) == reverse ys ++ reverse xs ==>

reverse ((x:xs) ++ ys) == reverse ys ++ reverse (x:xs)

reverse ((x:xs) ++ ys) == reverse ys ++ reverse (x:xs)

From (++2)

reverse (x:(xs ++ ys)) == reverse ys ++ reverse (x:xs)

4



From (reverse2)

reverse (xs ++ ys) ++ [x] == reverse ys ++ (reverse xs ++ [x])

From inductive hypothesis

(reverse ys ++ reverse xs) ++ [x] ==

reverse ys ++ (reverse xs ++ [x])

which is true by associativity of the ++ operator, Q.E.D.

(c). foldr (*) 1 (map (2^) xs) == (2^) (foldr (+) 0 xs)

Base case:

foldr (*) 1 (map (2^) []) == (2^) (foldr (+) 0 [])

From (map1)

foldr (*) 1 [] == (2^) (foldr (+) 0 [])

From (foldr1)

1 == (2^) 0

1 == 1

Inductive step:

foldr (*) 1 (map (2^) xs) == (2^) (foldr (+) 0 xs) ==>

foldr (*) 1 (map (2^) (x:xs)) == (2^) (foldr (+) 0 (x:xs))

foldr (*) 1 (map (2^) (x:xs)) == (2^) (foldr (+) 0 (x:xs))

From (map2)

foldr (*) 1 ((2^) x: map (2^) xs) == (2^) (foldr (+) 0 (x:xs))

From (foldr2)

(*) ((2^) x) (foldr (*) 1 (map (2^) xs)) ==

(2^) ((+) x (foldr (+) 0 xs))

From inductive hypothesis

(*) ((2^) x) ((2^) (foldr (+) 0 xs)) ==

(2^) ((+) x (foldr (+) 0 xs))

Let k = (foldr (+) 0 xs)

(*) ((2^) x) ((2^) k) == (2^) ((+) x k)

(*) (2^x) (2^k) == (2^) (x + k)

(2^x) * (2^k) == 2^(x + k)

which can be confirmed by algebra, Q.E.D.

5


