Data Provided:
Master Theorem (page 4)

DEPARTMENT OF COMPUTER SCIENCE
Mock Exam

ADVANCED PROGRAMMING TOPICS
2 hours

Answer BOTH questions.
Both questions carry equal weight. Figures in square brackets indicate the percentage of available marks allocated to each part of a question.

1. a)

Put the asymptotic complexity hierarchy

$$
O(n \log n) \subset O(n) \subset O\left(n^{2}\right) \subset O\left(2^{n}\right) \subset O(1) \subset O(\log n)
$$

into the correct order
b)

Is $\Theta\left(n^{2}\right) \subset \Theta\left(2^{n}\right)$? Explain your answer.
c)

Determine an appropriate asymptotic complexity for an algorithm with the following running time (in seconds). Explain your answer. How would this algorithm perform on large inputs?

$$
\sum_{i=1}^{n}(7+3 i)
$$

d)

Apply the Master Theorem to determine the asymptotic complexities of the algorithm whose running time is given by the following recurrence.

$$
T(n)=2 T\left(\frac{n}{2}\right)+n \log _{2} n
$$

If the Master Theorem is not applicable, state why.
2. a)

Explain the difference between defined and undefined values of recursive functions.
[10\%]
b)

Explain what properties make a problem amenable to solution with a dynamic programming algorithm.
c)

For the following implementation of a set Abstract Data Type prove that the axiom isEmpty (addMember x s) == False is satisfied.
module Set (emptySet, isEmpty, isMember, addMember, removeMember, union) where
newtype Set a = MySet [a] deriving (Show)
emptySet : : Set a
emptySet $=$ MySet [] --(empty)
isEmpty :: Set a -> Bool
isEmpty (MySet []) = True --(isEmpty.1)
isEmpty _ = False
--(isEmpty.2)
addMember :: Ord a => a -> Set a -> Set a
addMember x (MySet ys) = MySet (addMemberToList x ys) --(addMember.1)
addMemberToList :: Ord a => a -> [a] -> [a]
addMemberToList x [] = [x]
--(addMember.2)
addMemberToList x ($y: y s$)
$\mathrm{l} \mathrm{x}<\mathrm{y}=(\mathrm{x}:(\mathrm{y}: \mathrm{ys})$) --(addMember.3)
$\mid \mathrm{x}==\mathrm{y}=$ ($\mathrm{y}: \mathrm{ys}$) --(addMember.4)
| otherwise = (y:(addMemberToList x ys)) --(addMember.5)
d)

Using structural induction, prove that reverse (xs ++ ys) == reverse ys ++ reverse xs; you may assume associativity of the ++ operator.

```
[] ++ ys = ys
    --(++1)
(x:xs) ++ ys = x:(xs ++ ys)
reverse [] = [] --(reverse1)
reverse (x:xs) = reverse xs ++ [x] --(reverse2)
```

END OF QUESTIONS

Master Theorem

Theorem (Master Theorem): Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function and let $T(n)$ be defined for $n \geq 0$ by the recurrence

$$
T(n)=a T(n / b)+f(n)
$$

where n / b means either $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$. Then $T(n)$ can be bounded asympotically according to the following cases:

1. If $f(n) \in O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n) \in \Theta\left(n^{\log _{b} a}\right)$.
2. If $f(n) \in \Theta\left(n^{\log _{b} a}\right)$, then $T(n) \in \Theta\left(n^{\log _{b} a} \log n\right)$.
3. If $f(n) \in \Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and if $a f(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n) \in \Theta(f(n))$.
