
COM2001: Advanced Programming Techniques (Second Semester)

Guide to Examinable Material

Lecture Concepts, Knowledge and Skills
1 • How to write evaluation traces for recursive functions
2 • How to work with asymptotic complexity notations

• Definition of worst-case vs average-case complexity
3 • How to design divide-and-conquer algorithms

• How to use recurrence trees
4 • How to solve arithmetic series

• How to solve geometric series
• How to analyse algorithms with the Master Theorem

5 • Definition of defined and undefined values
• How to use proof by induction (standard)
• How to use proof by induction (structural)

6 • How to use proof by induction (strong)
• How to use proof by induction in imperative languages

7 • How to work with axiomatic specifications of abstract data types
• How to implement abstract data types in Haskell

8 • How to show completeness of abstract data type specifications
9-10 • Definition of problems efficiently solvable by dynamic

programming
• How to use subproblem graphs
• How to efficiently solve a problem with dynamic programming

Guidance:

• ‘Definition’ means be able to reproduce and apply the definition in a question.
• ‘How to’ means be able to apply a procedure in answering a question.

Highest marks on questions will be reserved for creative applications of results and
definitions covered during the course, to solve previously unseen problems.

