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Lecture 2 
James Marshall !!

Asymptotic notation (from COM2003) !
O(g(n))     — ‘big-oh’ —            upper bound !
Ω(g(n))     — ‘big-omega’ —      lower bound !
Θ(g(n))     — ‘big-theta’ —         upper and lower bound !!!
Upper bounds !
f(n) ∈ O(g(n)) ⇒  !!!!!!!!
Lower bounds !
f(n) ∈ Ω(g(n)) ⇒  !!!!!!!!
Upper and lower bounds !
f(n) ∈ Θ(g(n)) ⇒  !!!!!!



Worst-case vs average-case complexity !
 Usually it is far easier to work out the maximum number of steps an algorithm will take, 
rather than the average number, since we then need to know something about how probable 
different inputs to the algorithm are. Asymptotic complexities normally refer to worst-case 
complexity. !!!
Best and worst cases for some sorting algorithms !
--insertion sort (from Thompson, The Craft of Functional 
Programming) 
iSort :: Ord a => [a] -> [a] 
iSort []     = [] 
iSort (x:xs) = ins x (iSort xs) !
ins :: Ord a => a -> [a] -> [a] 
ins x []     = [x] 
ins x (y:ys) 
  | x <= y    = x:(y:ys) 
  | otherwise = y : ins x ys !
--mergesort (from Thompson, The Craft of Functional Programming, 
with merge function added by J. A. R. Marshall) 
mergeSort :: Ord a => [a] -> [a] 
mergeSort xs 
  | length xs < 2 = xs 
  | otherwise 
     = merge (mergeSort first) (mergeSort second) 
       where 
       first = take half xs 
       second = drop half xs 
       half = (length xs) `div` 2 !
merge :: Ord a => [a] -> [a] -> [a] 
merge [] [] = [] 
merge xs [] = xs 
merge [] ys = ys 
merge (x:xs) (y:ys) 
  | x < y  = [x]++(merge xs (y:ys)) 
  | y < x  = [y]++(merge (x:xs) ys) 
  | x == y = [x]++[y]++(merge xs ys) !
--quicksort (naive) (from Thompson, The Craft of Functional 
Programming) 
qSort :: Ord a => [a] -> [a] 
qSort [] = [] 
qSort (x:xs) = qSort [y | y<-xs, y<=x] ++ [x] ++ qSort [y | y<-xs,       
 y>x]  



Average-case complexity of qSort !
 Despite qSort having a worst-case complexity of order           , it is one of the most popular 
sorting algorithms used for large lists. Why? !
Intuition: The most efficient way for qSort to proceed is to split the list it is sorting into two 
equally sized sub-lists for sorting, with the first sublist containing only elements smaller than the 
‘pivot’, and the second sublist containing only elements that are larger. 
 Consider what happens in the ‘average case’ of a list of uniformly-distributed random 
numbers. At every divide step the pivot chosen by the naive version of qSort above is the head of 
the list: !!!!!!!!!!!!!!!!!!!!!!
 Because of this in the average case qSort behaves like mergeSort, and so has average-
case asymptotic complexity in                       (assuming that uniformly-randomly distributed lists 
represent the average case) !!!!!
Other reasons for quicksort’s popularity !


