
Advanced Programming Topics !
Algorithm analysis and design - divide-and-conquer

Lecture 3
James Marshall !

Divide-and-conquer algorithms !
 Divide-and-conquer algorithms work by taking their input, dividing it into smaller sub-
problems, conquering these independently, then combining the results into a single solution for
output. Most functional programs are divide-and-conquer, since recursion works by repeatedly
breaking problems down into simpler problems, until the simplest possible problem is found for
which a solution is known, then combining the resulting solutions. !
Analysis - insertion sort !
--insertion sort (from Thompson, The Craft of Functional
Programming)
iSort :: Ord a => [a] -> [a]
iSort [] = []
iSort (x:xs) = ins x (iSort xs) !
ins :: Ord a => a -> [a] -> [a]
ins x [] = [x]
ins x (y:ys)
 | x <= y = x:(y:ys)
 | otherwise = y : ins x ys !!!

Analysis - mergesort !
--mergesort (from Thompson, The Craft of Functional Programming,
with merge function added by J. A. R. Marshall)
mergeSort :: Ord a => [a] -> [a]
mergeSort xs
 | length xs < 2 = xs
 | otherwise
 = merge (mergeSort first) (mergeSort second)
 where
 first = take half xs
 second = drop half xs
 half = (length xs) `div` 2 !
merge :: Ord a => [a] -> [a] -> [a]
merge [] [] = []
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
 | x < y = [x]++(merge xs (y:ys))
 | y < x = [y]++(merge (x:xs) ys)
 | x == y = [x]++[y]++(merge xs ys)  

Analysis - quicksort !
--quicksort (naive) (from Thompson, The Craft of Functional
Programming)
qSort :: Ord a => [a] -> [a]
qSort [] = []
qSort (x:xs) = qSort [y | y<-xs, y<=x] ++ [x] ++ qSort [y | y<-xs,
 y>x]

