
Advanced Programming Topics !
Solving recurrences and the Master Theorem

Lecture 4
James Marshall !

Q: In lecture 3, how did we know that !!!!
Q: is there a general method for analysing divide-and-conquer algorithms? !!

Some tricks for solving recurrences !
 In counting the steps involved in executing an algorithm, generally we end up with open-
form solutions involving summations, e.g. !!!
 With some know-how, these can typically be reduced to closed-form solutions suitable for
asymptotic analysis. For instance, the example above can be shown to be in !!!
 But how? Gauss worked this one out when he was a schoolboy… !!!!
Solving arithmetic series (in general) !!!!!!
Solving geometric series (e.g. lecture 1) !!!!!!!

Other tricks available, see e.g. CLRS appendix A

The Master Theorem (e.g. Theorem 4.1 in CLRS) !
 For constants a ≥ 1, b > 1 and for n ≥ 0, let the running time T (n) of an algorithm be defined
by the recurrence !

T(n) = a T (n/b) + f (n) !!!
 Then we can work out an asymptotic bound for T (n) if one of the following three conditions
holds: !!
1. If for some constant ε > 0, then

2. If then

3. If for some constant ε > 0, and if a f (n / b) ≤ c f (n) for some

constant c < 1 and all sufficiently large n, then

!
Explaining the Master Theorem

 What is ? It is the number of leaves in the recurrence tree. Why?

!
!
!
 So the Master Theorem compares the work done in ‘bookkeeping’ (splitting into
subproblems, and then combining solutions) against the amount of work done solving the simplest
subproblems, the leaves: !
1. ‘Cheap’ bookkeeping - dividing and combining is polynomially cheaper than the work done at

the leaves, so the latter dominates the total computational complexity.
2. ‘Marginal’ bookkeeping - dividing and combining is asymptotically as expensive as the work

done at the leaves, so neither dominates in the total computational complexity.
3. ‘Expensive’ bookkeeping - dividing and combining is polynomially more expensive than the

work done at the leaves, so the former dominates the total computational complexity !!

f(n) 2 O
�
nlogba�"

�

f(n) 2 ⌦
�
nlogba+"

�
f(n) 2 ⇥

�
nlogba

�
T (n) 2 ⇥

�
nlogba

�

T (n) 2 ⇥

�
nlogba

log n
�

T (n) 2 ⇥ (f(n))

nlogba

Caveats of the Master Theorem !
N.B. polynomially cheaper (for example) means just that, nε cheaper; logarithmically cheaper is not
sufficient. !
N.B. condition 3 requires that bookkeeping associated breaking down a problem and combining
solutions is cheaper than the bookkeeping associated with the original problem; in other words the
costs of bookkeeping do not increase as we go down the recurrence tree. !!
Applying the Master Theorem - mergesort

