
Advanced Programming Topics !
Proof in the wild: strong induction, imperative proof, automated proof 

Lecture 6 
James Marshall !

Strong Induction !
 Sometimes we need to consider more than just the next-smallest case in constructing a proof 
by induction. !
 e.g. the Fibonacci numbers (from lecture 1) !
f 1 = 1             --(fib1) 
f 2 = 1             --(fib2) 
f n = f (n-1) + f (n-2)          --(fibn) !
N.B. from lecture 1 we know that f 100 takes longer than the universe has been in existence to 
compute. However, we should be able to prove that the right answer would be given! For example 
we should be able to prove fibn, since we know that the n-th Fibonacci number is given by the 
formula !!!!!!
 Q: …but, how can we formulate an inductive hypothesis involving only the previous 
number in the sequence, when we need to know the previous two? !

A: by having our inductive hypothesis be that the desired property holds for all k < n !!!
Exercise (hard): use the mathematical definition above to prove f n is correct for all n ≥ 0 !!!
N.B. it may seem that strong induction is more powerful than weak induction, but actually !!

principle of weak induction  principle of strong induction !!
Q: why? 



Strong Induction Example - Integer Exponentiation !
fastIntExp :: Integer -> Integer -> Integer 
fastIntExp a b 
    | b == 0    = 1           --(exp0) 
    | even b    = (fastIntExp a (half b))^2   --(expeven) 
    | otherwise = (fastIntExp a (b-1)) * a    --(expodd) 
         where half x = truncate ((fromIntegral x)/2) !
 Prove that for all defined value fastIntExp a n == a^n !
1. Prove the base case: !!!!!
2. Prove the induction step under the inductive hypothesis fastIntExp a k == a^k for k<n  



Structural induction is implicitly strong… !
Strong Structural Induction Example - Binary Tree Size (from Thompson chapter 14) !
Prove that the number of nodes in a binary tree is strictly less than its 2 to the power of its depth. !
data NTree = NilT | 
             Node Int NTree NTree !
depth NilT           = 0        --(depth.1) 
depth (Node n t1 t2) = 1 + max (depth t1) (depth t2)  --(depth.2) !
size NilT            = 0         --(size.1) 
size (Node x t1 t2)  = 1 + size t1 + size t2     --(size.2) 
  
1. State the proof goal as proving for any NTree tr that size tr < 2^(depth tr) !!
2. Prove the base case !!!!!!!!
3. Prove the induction step, that the property holds for any tree, given the induction hypothesis that 
the property holds for that tree’s left and right subtrees !



Proving Correctness in Imperative Programs !
 Most imperative languages do not use recursion, but instead use loops. But loops are very 
similar to recursion, so we can adapt proof by induction to prove the correctness of loops, by using 
loop invariants. These feature in imperative proof systems such as Floyd-Hoare logic, which reason 
about pre and post-conditions for the execution of functions. Note that fully automated proof is 
impossible however; if we could specify termination as a post-condition of a function and prove it 
automatically, we would have solved the halting problem (see COM2003 notes). !
Definition: Loop Invariant !
 A loop invariant is a property of a loop that satisfies the following conditions (e.g. CLRS 
chapter 2): !
 1. Initialisation: The loop invariant is true before the first iteration of the loop. !
 2. Maintenance: If the invariant is true at the start of a loop iteration then it is also true at the 
end of the loop iteration. !
 3. Termination: When the loop terminates the invariant helps prove the correctness of the 
algorithm implemented by the loop. !
Loop Invariant Example - Insertion Sort (from chapter 2 of CLRS) !
INSERTION-SORT(A) 
1 for j ⟵ 2 to length[A] 
2  do key ⟵ A[j] 
3   Insert A[j] into the sorted sequence A[1 .. j − 1] 
4   i ⟵  j − 1 
5   while i > 0 and A[i] > key 
6    do A[i + 1] ⟵ A[i] 
7     i ⟵ i − 1 
8   A[i + 1] ⟵ key !
(Outer) Loop invariant: 
At the start of each iteration the subarray A[1 .. j − 1] is a sorted version of the original subarray 
A[1 .. j − 1] !
Initialisation: 
At initialisaation A[1 .. j − 1] = A[1 .. 1] contains 1 element, so the loop invariant is trivially true !
Maintenance: 
Informally, each loop iteration moves the new element to is correct position in the subarray. 
Formally, could use a loop invariant on the inner loop. !
Termination: 
When the loop ends j = n + 1, where n is the length of the array to be sorted. By the loop invariant, 
at termination the array A[1 .. j − 1] = A[1 .. n] is a sorted version of the original A[1 .. n]


