
Advanced Programming Topics !
Abstract Data Types - Specification and Implementation

Lecture 7
James Marshall !!

N.B. Abstract Data Types are not to be confused with Algebraic Data Types !
Why use Abstract Data Types? !
Abstract Data Types allow modular software to be designed. They: !

• provide a clear interface to use the data type (typically called the signature, where the
functions provided have a defined syntax)

• hide details of the type’s implementation from the user, allowing us to subsequently
modify it without breaking code that makes use of it !!

Axiomatic Specification of ADTs !
How should we specify ADTs? We can give an informal definition of how a data structure behaves,
but often this will be incomplete, and insufficient for someone without prior knowledge to
implement it. The behaviour to be expected by users may also be ambiguous as a result. !
With some work, however, we can formally specify the properties of an ADT. If we are careful this
can provide a complete and unambiguous description of how the ADT can be used. We can also
then use this specification to prove that our implementation of an ADT meets that specification. !!
Example 1 - Stacks !
We wish to specify a stack ADT. The signature is: !

• emptyStack
• isEmpty
• top
• push
• pop !

The elements of the signature are divided into three types: !
Constructors !
Observers !
Mutators !

We provide the syntax for the elements of the signature as follows: !!
• emptyStack :: Stack a
• isEmpty :: Stack a -> Bool
• top :: Stack a -> a
• push :: a-> Stack a -> Stack a
• pop :: Stack a -> Stack a !!!

The axiomatic specification of the stack ADT is as follows: !

!
N.B. this specification has simpler error handling than the version in Mike Stannett’s notes !!
Example 2 - Sets !
Signature: !

• emptySet
• isEmpty
• isMember
• addMember
• removeMember
• union
• … !!!

Axiom Meaning
isEmpty emptyStack == True --(specIsEmpty.1) !!
isEmpty (push x s) == False --(specIsEmpty.2) !!
top (emptyStack) == error “empty stack has no
top” --(specTop.1)

!!
top (push x s) == x --(specTop.2) !!
pop (emptyStack) == error “cannot pop an
empty stack” --(specPop.1)

!!
pop (push x s) == s --(specPop.1) !!

Syntax: !
• emptySet :: Set a
• isEmpty :: Set a -> Bool
• isMember :: a -> Set a -> Bool
• addMember :: a -> Set a -> Set a
• removeMember :: a -> Set a -> Set a
• union :: Set a -> Set a -> Set a !!

Some Axioms: !
•isEmpty emptySet == True --(isEmpty.1)
•isEmpty (addMember x s) == False --(isEmpty.2)
•isMember x emptySet == False --(isMember.1)
•isMember x (addMember x s) == True --(isMember.2)
•isMember x (removeMember x s) == False --(isMember.3)
•(isMember x s) == True || (isMember r s) == True =>
 isMember (union r s) == True --(isMember.4)
•(isMember x s) == False && (isMember r s) == False =>
 isMember (union r s) == False --(isMember.5)
•removeMember x (addMember x s) == s --(removeMember.1)
•union emptySet emptySet == emptySet --(union.1)
•union emptySet s == s --(union.2)
•union s emptySet == s --(union.3) !

Q: do you think this axiomatic specification is complete
for the signature and syntax given? !!!

Implementing ADTs in Haskell (Thompson chapters 15 and 16 for more details) !
ADTs are naturally implemented in Haskell using modules. In a separate file we define a module,
including the functions that are visible by users importing that module (i.e. the signature of the
ADT). For the stack example, !
module Stack (emptyStack, isEmpty, push, pop, top) where

data MyStack a = Top a (MyStack a) | Empty !
emptyStack :: MyStack a
isEmpty :: MyStack a -> Bool
push :: a -> MyStack a -> MyStack a
pop :: MyStack a -> MyStack a
top :: MyStack a -> a !
N.B. if a module importing others wants to hide parts of them from itself and its users, it can; e.g.
 import Stack hiding (pop,isEmpty)
is possible, even if it’s not that useful. This can be useful if function names clash, for example.

