
Advanced Programming Topics 

Algorithm analysis and design - dynamic programming 
Lecture 9 

James Marshall 

In lecture 1 we saw an efficient solution to computing the Fibonacci numbers, and an inefficient 
solution 

But what made the inefficient solution inefficient? 

 Trace: f 8 = 

And the efficient solution efficient? 

N.B. this change turned an exponential-time algorithm into a polynomial-time one 

Dynamic Programming (chapter 15 in CLRS) 

Dynamic Programming is a technique for efficient solution of problems having: 

 1. (Optimal) substructure — 

  the (optimal) solution to a problem contains the (optimal) solutions to subproblems 
(‘optimal’ refers to the frequent usage of dynamic programming in optimisation problems (next 
lecture)) 

 2. Overlapping independent subproblems — 

  subproblems form part of the solution to multiple other problems (cf. ‘regular’ 
divide-and-conquer problems in which each divide step generates new and non-overlapping 
subproblems)  



Subproblem Graphs 

Like recursion trees, but subproblem graphs show the relationships between all the distinct 
subproblems (vertices), with a directed edge from problem x to problem y showing that a solution to 
problem x requires a solution to problem y 

Example: Subproblem Graph for Fibonacci Numbers 

Identifying and Implementing Dynamic Programming Algorithms in Haskell 

To identify that a dynamic programming algorithm may solve a problem, and then implement one: 

 1. Determine whether the description of the solution to a problem shows that the problem 
exhibits (optimal) substructure (see above) — e.g. 

“if we work out that the quickest train route from London to Sheffield includes a stop in Derby, we 
have also worked out the quickest train route from London to Derby” 

 2. Determine whether the subproblems can be solved independently (does solving one 
subproblem affect how we solve a different subproblem? Often it doesn’t, but sometimes it does…) 
— e.g. 

“working out the optimal route from London to Birmingham doesn’t change how we work out the 
optimal route from London to Nottingham” 

 3. Determine whether solutions to subproblems are used in multiple different solutions (if 
not then simple recursion will suffice) — e.g. 

“in working out the quickest train route from London to Sheffield we evaluate multiple routes that 
all require us to know the quickest route from London to Derby” 



 4. Implement using top-down recursion with memoization 

A. start by asking for the answer to the original question (e.g. the 100th Fibonacci 
number), defined recursively in terms of the answers to smaller questions - hence 
top-down 

B. when a value is computed, it is memoized (stored) in an efficient data structure 

C. when a value is required, it is searched for in the structure first; if not found then it is 
computed recursively 

Many languages let you define functions as being automatically memoized. Alternatively, use 
a data structure to store computed values, e.g. Data.Map in Haskell. For simple enough 
recursions (e.g. the Fibonacci example of lecture 1) it may be possible to keep track of a small 
number of memoized values at each step in the recursion 


