
1

Chapter 1.

Introduction.

1.1. Software quality via formal methods and testing.

The subject of software quality, of delivering a correct implementation of the
correct system, has occupied the attention of many software engineers and
generated a substantial literature. Although much progress has been made there is
still a long way before we can be satisfied that the methods for design,
construction and management of software systems is at a level of quality that is
required in the modern world.

1.1.1. Correct specifications via formal methods.

Central to the problem of software quality is that it is extremely difficult to clarify
exactly what is required of a very complex system. A variety of techniques have
been introduced to help deal with the difficulties of developing computer systems.
Amongst these principles is the ideas that the appropriate mathematical techniques
could be used to specify the requirements of a computer system.

The main advantages of using formal methods for specifying software systems is
the clarity, conciseness and precision of mathematics. A formal specification will
enable us to reason in a very rigorous manner about the system’s behaviour, thus
making sure that the system does exactly what it is supposed to do.

1.1.2. Correct implementation via testing.

However, a correct (formal) specification is not in itself sufficient for delivering
software of high quality. The implementation of this specification is the product
we are ultimately interested in. So, it is crucial that the implementation is correct
with respect to the specification.

1.1.2.1. Correct implementation via proofs.

One way to ensure this is to use proofs. Attempts to prove that the implementation
is correct w.r.t. the specification after the implementation is complete are rarely
successful on large scale systems. Instead, a process of refinement can be used.

Chapter 1. Introduction

2

The specification represented in some suitable formal notation is converted into an
implementation using a series of simple refinements, each of which is easy to
prove. In this way, there should be no faults present in the implementation.
However, if the proof is constructed "by hand", there is no guarantee that there
will be no errors made in constructing the proof, and so guarantee that no faults
are introduced in the implementation. This problem can be overcome by using
automatic proof systems to aid a human in the construction of a proof, or
ultimately to perform the entire proof construction. However, there is still a major
problem, in that the automatic proof system and the systems of axioms used in it
must be known to be correct: the tool must have been proven at some point. In
addition there must be a formal description of the environment and the actual
physical environment must be proven consistent with the formal model. All these
problems reduce the practical use of proofs in the context of the complexity of
today’s applications.

1.1.2.2. Testing.

An alternative method of achieving correctness is testing. Indeed, in practice, even
the systems that are proven to be correct are very seldom released without being
tested. Testing attempts to detect all the faults that are present in the
implementation so they can be removed.

A number of testing techniques exist. Many sophisticated (and expensive) tools
are available on the market and many designers look to these to provide the
answer to the problem of building fault-free systems.

However, most testing methods are practice-driven approaches rather than
carefully constructed engineering methods based on a defensible well-founded
strategy. In particular, very few of the existing methods allow us to make any
statements about the type and the number of faults that remain in the
implementation after testing is completed (this idea will be expanded in Chapter
4). Thus we cannot measure the effectiveness of our testing activities in any
rigorous way. Hence, the goal of testing (i.e. to detect all the faults in the
implementation) is not achieved.

1.1.2.3. Formal methods and testing.

On the other hand, although a great deal of research has been done in the area of
formal methods and their practical use for the specification of software systems,
testing issues are very seldom mentioned by those within the formal methods
community. All too often formal methods and testing have been regarded as
mutually exclusive approaches in the development of software systems.

However, since testing is concerned with ensuring the correctness of an
implementation against a (possibly formal) specification, we believe that
examining the common ground between formal methods and testing will bring
benefits to both these fields and ultimately to the problem of software quality.

Chapter 1. Introduction

3

Indeed, by considering testing from the specification phase, we shall produce
formal specifications that are more easily testable. Conversely, by developing a
testing theory based on a particular formal model, we can place testing on a
theoretical basis, thereby providing a more convincing approach to the problem of
detecting all faults and allowing us to make sensible and theoretically defensible
claims about the level and type of faults that remain in the implementation after
testing is completed.

We shall be seeking to bridge the gap between these two fields and develop a
testing theory based on a formal specification model, namely the X-machines.

1.2. X-machines.

In this thesis we shall introduce Eilenberg’s X-machines, [12], as a formal model
for the description of computer system specifications. We shall analyse from a
theoretical point of view the use of X-machines both as a basis for a formal
specification language and a theory of testing. We shall seek to address some
theoretical issues regarding the use of X-machines as a specification method (i.e.
minimality, refinement) and to develop a theory of testing based on this model.

1.2.1. Why X-machines ?

Recently, a major thrust of software system specification has centred around the
use of models of data types, methods such that Z or VDM (Wulf et al. [60]). This
identification of data types and the definition of algorithms as functions or
relations on these mathematical entities has led to some considerable advances in
software design. However, one basic problem with these abstract specification
methodologies, whether Z, VDM, or whatever, is that they lack the ability to
express the dynamics of the system in a convenient and intuitive form. If the
system has many functions, interacting in a complex way, they may offer little
guidance as to how to integrate the individual functions into the system as a
whole. Algebraic methods such as OBJ suffer from similar problems although,
since they are executable, some scope for symbolic simulation exists and can
provide some insight into how the system will operate.

On the other hand, the dynamics of a system are often better represented in
graphical ways and the use of state machines diagrams is important in software
(Wasserman et al. [56]) and hardware design (Clements [7]). But the finite state
machine model is rather simple and has several drawbacks. Firstly, its
computational power is inadequate, and therefore even some very common
situations cannot be handled using this approach (see Chapter 2). Secondly, there
is no way to model data structures independently of the control structure. In fact, it
is difficult to model any non-trivial data structure using finite state machines.

More powerful computational models exist (i.e. Turing machines, pushdown
automata, etc.), but they are not used by software engineers for the specification of

Chapter 1. Introduction

4

real systems, the reason being that these models are based at a very low level of
abstraction and are not amenable to analysis and system development.

However, there is a much more appropriate model (i.e. X-machines) that combines
the graphical advantages of finite state machines with suitable data structures, thus
providing an appropriate environment for a rigorous description and analysis of
arbitrary systems.

1.2.2. X-machines - a blend of finite state machines and data structures.

Introduced by Eilenberg in 1974, [12], X-machines have received little further
study. Holcombe, [27], proposed the model as a basis for a possible specification
language and since then a number of further investigations have demonstrated that
this idea is of great potential value for software engineers. In its essence an X-
machine is like a finite state machine but with one important difference. A basic
data set, X, is identified together with a set of basic processing functions, Φ,
which operate on X. Each arrow in the finite state machine diagram is then
labelled by a function from Φ, the sequences of state transitions in the machine
determine the processing of the data set and thus the function computed. The data
set X can contain information about the internal memory of a system as well as
different sorts of output behaviour so it is possible to model very general systems
in a transparent way.

This method allows the control state of the system to be easily separated from the
data set, the set X is often an array consisting of fields that define internal
structures such as registers, stacks, database filestores, input information from
various devices, models of screen displays and other output mechanisms.

Consider a simple, abstract example:

1

2

4

5

3 6

initial state

final state

States are 1,...,6

ϕ

ϕ
ϕ

ϕ
ϕ

ϕ

ϕ

1

1

1
2

3

4
5

ϕ
1

Figure 1.1.

We haven’t specified X or the functions ϕi but this is sufficient to provide a basic
idea of the machine. It starts in a given initial state (control state) and a given state
of the system’s underlying data type X (the data state); there are a number of paths
that can be traced out from that initial state, these paths are labelled by functions
ϕ1, ϕ2 etc. Sequences of functions from this space are thus derived from paths in

Chapter 1. Introduction

5

the state space and these may be composed to produce a function that may be
defined on the data state. This is then applied to the value x, providing that the
composed function is defined on X. This then gives a new value, x’ ∈ X for the
data state and a new control state. Usually, the machine is deterministic so that at
any moment there is only one possible function defined (that is the domains of the
functions emerging from a given state are mutually disjoint).

From the diagram we note that there is a possible sequence of functions from state
1 to state 6, here a specified terminal state, labelled by the functions ϕ1, ϕ1, ϕ2, ϕ
1. Assuming that each value is defined this path then transforms an initial value x
∈ X into the value ϕ1(ϕ2(ϕ1(ϕ1(x)))) ∈ X. So we are assuming that x ∈ domain ϕ
1; ϕ1(x) ∈ domain ϕ1; ϕ1(ϕ1(x)) ∈ domain ϕ2; and ϕ2(ϕ1(ϕ1(x))) ∈ domain ϕ1.
The computation carried out by this path is thus a transformation of the data space
as well as a transformation of the control space.

The advantages of this model include:
It is intuitive and easy to use.
It is built on current knowledge and does not involve any revolutionary

concept. Indeed, the model is a blend of state diagrams and formal descriptions of
data types and functions that can be expressed easily in a language such as Z or as
functions in ML or a similar functional language or using traditional mathematical
notations.

It allows for the capture of the dynamic system information in a very
intuitive manner. The use of state diagram helps a great deal in this sense.

It allows a system to be specified at different levels. Indeed, a processing
function from a high level X-machine specification can be expressed itself as a
lower level X-machine.

It is sufficiently general to cater for all computational problems. Indeed, it
is fairly clear that the Turing machine, which is accepted as the mathematical
model of computation, can be easily described as an X-machine (see Chapter 2).

Also, we have a further reason for proposing X-machines both as a basis of a
specification method and a theory of testing. Some theoretically based testing
methods aimed at finite state machines exist, due to Chow, [6], and Fujiwara et al.,
[16] (see also Chapter 4). Obviously, these are restricted to the finite state machine
model. But they provide us with a basis for developing a testing theory for the
more general X-machine.

1.2.3. Stream X-machines.

However, as we shall see later on in the following chapter, the generality of the X-
machines can be an obstacle in the way of developing a testing method based on
this model. The way in which we shall overcome this problem will be by
restricting the basic processing functions that the model can use to those that
satisfy certain conditions or have certain forms. In this way, we can obtain
different subclasses of X-machines, depending on the particular conditions that
their Φ satisfies.

Chapter 1. Introduction

6

However, we still have a problem, in the sense that by restricting the processing
functions that an X-machine can use, we could also restrict the nature and the
computational capability of the systems that the machine can specify. Therefore,
what we shall be looking for will be a subclass of X-machines such that:

it is general enough to cope with a wide range of computational problems
it is restrictive enough to provide a reasonable basis for a testing theory.

The machines belonging to this subclass will be called stream X-machines and our
testing theory will be aimed at those.

1.3. Thesis summary.

Chapter 2 will survey the main existing computational models and introduce the
X-machines as a unified computational model framework of which the above
mentioned models are particular cases. Two natural subclasses of X-machines
(namely straight-move stream X-machines and stream X-machines) will be
defined and discussed from two points of view:

how general they are as specification tools; this involves assessing the
above subclasses according to the computational problems that they can cope
with;

to what extent they can provide a reasonable basis for a theoretical testing
method.

Chapter 3 will investigate further the stream X-machine. The class of (partial)
functions that this model computes will be identified and two simple operations
(i.e. sequential and parallel composition) that can be performed on stream X-
machines will be defined. Also, some minimality problems will be defined and
discussed.

Chapter 4 is concerned with testing and is divided into two main parts. The first
one will survey the testing methods currently in use and discuss to what extent
they can achieve the goal of testing (i.e. to find all faults). The second part will
present our stream X-machine testing and will illustrate it with a case study.

Chapter 5 will define a stream X-machine refinement as a way of developing
stream X-machine specifications gradually. This will be illustrated with a case
study. A testing for refinement method will also be given.

