Chapter 2.

X-machines - a computational model framework.

This chapter has three aims:

* To examine the main existing computational models and assess their
computational power.

» To present the X-machines as a unified computational model framework of
which the above mentioned models are particular cases and to highlight its potential
as a specification tool.

» To investigate two natural classes of X-machines (i.e. straight-move stream
X-machines and stream X-machines) and discuss them from two points of view:

» how general they are as specification tools
» to what extent they can provide a basis for a theoretical specification based

strategy.

2.1. Computational models survey.

The emergence of the concept of computable function over sixty years ago marked the
birth of a new branch in mathematics. A main purpose of computability theory is to
make precise the intuitive idea of a computable function; that is, a function whose
values can be calculated in some kind of automatic or effective way. Certain classes
of computable functions (or languages) can be obtained using certain types of
procedures; these are the computational models corresponding to those classes of
functions or languages. These models can be classified according to ther
computational power, i.e. how large is the class of functions and languages they can
cope with. This hierarchy of languages and computational models is known as the
Chomsky hierarchy.

In this section we shall be presenting the main existing computational models and
describe their power in terms of the languages or functions they compute.

Chapter 2. X-machine - acomputational model framework.

2.1.1. Automata.

The finite automaton is a mathematical model of a system with discrete inputs and
outputs. The system can be in any of afinite number of internal states. The state of the
system summarises the information concerning past inputs that is needed to determine
the behaviour of the system on subsequent inputs.

Definition 2.1.1.1.

Let > be a finite alphabet. A finite automaton (or finite state machine) denoted FA,
over 2 consists of the following components (see Cohen [8], Kain [40] or Hopcroft &
Ullman [33, 34]):

1. A finite set Q of elements called states.

2. A subset | of Q containing theinitial states.

3. A subset T of Q containing theterminal states.

4. A finite set of transitions that give, for each state and for each letter of the input
alphabet, which state (or states), if any, to go to next. This can be represented as a
partial function F. Q x ~ - PQ, where F(q, 0) contains the states the machine is

allowed to go to from state g when it receivesthe input o .

Alternatively, each letter o [0 Z can be regarded as a partial function o: Q - Q.
Each triple (g, 0,) 0 Q x X x Q, where g O o(q), is caled an edge of the

automaton. We frequently use the notation g I - g’ to indicate the edge. A sequence
of edgesiscalled apath .

The automaton is presented with an input string of letters (or characters) that it reads
letter by letter starting at the leftmost letter. Beginning at one of the initial states, the
letters determine a sequence of states. The sequence may be interrupted when there is
no edge corresponding to the letter read and, in this case, the input string is rejected.
Otherwise, the sequence ends when the last input letter has been read. If the last state
of the sequence is aterminal one, the input string is accepted, otherwise it is rejected.
The set L [0 2* of al the strings accepted is caled the language accepted (or
recognised) by the automaton.

Note: >* = 5% [{1}, where =7 is the set of al finite strings of characters from =
and 1 isthe empty (or null) string.

The automaton is called deterministic if there is only one initia state (i.e. | = {qp})
and for each state and each letter there is at most one single next state (i.e. F can be
regarded as a partial function F: Q x ~ — Q). Otherwise, the automaton is called
nondeterministic. Obviously, the path through a deterministic automaton is fully
determined by the input string, whereas for the nondeterministic case, the choices of
the initial state and the next state selected for each letter and current state are made

Chapter 2. X-machine - acomputational model framework.

randomly from a set of possible options. In this latter case, a string is accepted if at
least one path determined by it through the machine endsin afinal state.

Although nondeterministic automata appear to have extra power over the
deterministic ones, it has been proved that any language accepted by a
nondeterministic automaton can be also accepted by a deterministic one. In other
words, the nondeterminism does not increase the power of the automata (see Cohen
[8], or Hopcroft & Ullman [34]).

However, in order to evauate the computational power of the automata and to
determine the languages accepted by them, we have to introduce the concept of
regular expressions.

Definition 2.1.1.2.
The set of regular expressions over an aphabet X is defined by the following rules:
1. Every letter of X is a regular expression; the empty string, 1, is a regular
expression.
2. 1f randr areregular expressions, then so are
e, r+r, r*
Note: The symbols used have the following meanings.

rr r concatenated with r’
r+r rorr
r* r concatenated with itself any finite number of times

In other words, the set of regular expressions is closed under concatenation, Boolean,
or and *.

Definition 2.1.1.3.
A language that can be defined by aregular expression is called aregular language.

The following theorem gives the measure of the computationa power of the automata
(Cohen [8]):

Theorem 2.1.1.4. (Kleene)
1. Any regular language can be accepted by an automaton.
2. Any language accepted by an automaton is regular.

The theorem above shows that the class of the languages accepted by automata is
restricted to those which can be defined as regular expressions. However, this classis
limited and there are situations where the rules of automata are not sufficient to
describe certain computationally interesting behaviour. This idea can be illustrated
better by the following example.

Example 2.1.1.5.
Let 3 be an alphabet, a and b be two distinct characters of < and ¢ 0 Z* be a string.
Then the language

Chapter 2. X-machine - acomputational model framework.

L ={akcb"| n O N}
is not regular (see Cohen [8]). Therefore there is no finite automaton that will accept
it.
The language above can be used, for example, to describe a very simple compiler
which will accept arithmetic expressions having the same number of opening and
closing brackets.

The reason why no finite automaton could recognise the language L is that, for large
enough n, the @ part has to run around in a circuit and the machine cannot keep track
of how many times it had looped around. It cannot therefore distinguish between
alcbN and a*MchN, for some positive integers n and m. From this example, it
appears obvious that the machine has to have an unlimited memory capacity. The
following two models increase the computational power of the finite state machine
model by adding an unlimited memory structure.

2.1.2. Pushdown automata.

The pushdown automaton, PDA, can be regarded as a finite automaton with a
primitive memory unit, its stack. A rigorous definition is given below (see Cohen [8]).

Definition 2.1.2.1.
A pushdown automaton, is a tuple having eight elements:
1. An alphabet X of input letters; the blank symbol & [J Z.
2. Aninput TAPE (infinite in one direction). Initially, the string of input lettersis
placed on the TAPE starting in cell i. Therest of the TAPE isfilled with &'s.
3. An aphabet Q of stack characters.
4. A pushdown STACK (infinite in one direction). Initialy, the stack is empty (it
contains only a special symbol A called the bottom of stack character).
5. One START dtate that has only out-edges and no in-edges.
6. Halt states of two kinds: ACCEPT and REJECT. They have in-edges and no
out-edges.
7. Finitely many non branching PUSH states that introduce characters onto the top
of the stack.
8. Finitely many branching states of two kinds:
(i) States that read the next unused letter from the tape which may have
out-edges labelled with letters from Z or the blank character .
(i) States that read the top character of the STACK which may have
out-edges labelled with letters from Z or the blank character d.

We further require that the states be connected so as to produce a connected directed
graph.

10

Chapter 2. X-machine - acomputational model framework.

To run a string of input letters on a PDA means to begin from the start state and
follow the unlabelled edges and those labelled edges that are appropriate (making
choices of edges when necessary) to produce a path through the graph. This path will
end either in ahalt state or the automaton will crash in a branching state when thereis
no edge corresponding to the letter read/popped. When the graph contains loops
consisting only of PUSH or POP instructions, the input string may loop forever on the
machine. An input string with a path that ends in ACCEPT is said to be accepted by
the PDA; otherwiseit is said to be rejected.

At this point we should discuss the possibility of nondeterminism. A deterministic
PDA is one for which every string determines a unique path through the machine. A
nondeterministic PDA is one for which at certain times we may have to choose among
possible paths through the machine. We say that an input string is accepted by such a
machineif at |east one choice leads us to an ACCEPT state.

Obviously, any language that can be accepted by a FA can be also accepted by a PDA
(we just trandate the formalism of FA into that of PDA and we obtain a PDA without
the STACK identical to the FA). In fact PDAs are more powerful that FAs due to the
unlimited memory available. For example, the language

L ={akcb"| n O N}
can be accepted by adeterministic PDA (see Cohen [8]).

Unlike the case of the FA, the nondeterminism gives extra power to a PDA, as
illustrated by the following example (Cohen [8]).

Example 2.1.2.2.
Let > ={a, b} bean aphabet and
PALINDROME = {sreverse(s)| sl Z*} be alanguage over %.
Then:
1. PALINDROME cannot be accepted by any deterministic PDA.
2. PALINDROME can be accepted by a nondeterministic PDA.
[Note: reverse(s) denotes the reverse of string g.

In order to evaluate the power of PDA, we have to introduce the notions of grammar
in general and context-free grammar in particular.

Definition 2.1.2.3.
A phrase-structure grammar, isaway of defining a language and it is specified by
four elements:

1. The set of nontermina symbols, V.

2. The set of terminal symbols, 2.

3. Thestart symbol S, SOIV.

4. A set of productions of the form

a - B,
wherea O(V O 2)*V (VOX)*, OV OX)*.

11

Chapter 2. X-machine - acomputational model framework.

Note: XY ={xy|x O X,y Y} wherexy isx concatenated with y.

The language generated by a phrase-structure grammar is the set of all strings of
terminals that can be produced from the start symbol S using the productions as
substitutions.

The particular phrase-structure grammars of interest to us are:
1. Context-free grammar - all productions have the form
A - B,
where AV, B 0O (V O 2)*.

2. Regular grammar - all productions have the form
A-sBo A-s
where A, B OV, sO 2*.

Obvioudly, the regular grammars are aso context-free. Furthermore, there exist
context-free languages which are not regular (the languages described by example
2.1.1.5 above belongs to this category of languages (see Cohen [8]).

The following two theorems illustrate the relationship between these grammars and
the machines presented above (see Cohen [8] or Hopcroft & Ulman [33, 34]):

Theorem 2.1.2.4.
1. Any regular language can be generated by aregular grammar.
2. Any language generated by aregular grammar isregular.

Theorem 2.1.2.5.

1. Any language accepted by a PDA (deterministic or not) can be generated by a
context-free grammar.

2. Any language generated by a context-free grammar can be accepted by a
nondeterministic PDA.

This theorem states in fact that the class of languages accepted by nondeterministic
PDAs s identical to that generated by context-free grammars and strictly includes the
set of languages accepted by deterministic PDAs. The languages accepted by
deterministic PDAs are called deterministic context-free languages.

Therefore, the PDA is a more powerful machine than a FA. However, because of the
primitive type of memory that it uses (i.e. a stack), its power is too limited to model
al real computer systems.

Example 2.1.2.6.
Let > ={a, b} bean aphabet and L be alanguage over Z,
L ={a%b"a| n O N}.
Then L cannot be accepted by any PDA (deterministic or not) (see Cohen [8]).

A more powerful type of machine will be described in the next section.

12

Chapter 2. X-machine - acomputational model framework.

2.1.3. Turing machines.

In this section we investigate a third type of recognising device, the Turing machine.
The Turing machine has been proposed as a mathematical model for describing
procedures. Since our notion of a procedure as afinite sequence of instructions which
can be mechanically carried out is not mathematically precise, we can never hope to
show formally that it is equivalent to the precise notion of Turing machine. However,
from the definition of a Turing machine it will become readily apparent that any
computation that can be described by means of a Turing machine can be mechanically
carried out. It can be also be shown that any computation that can be carried out on a
computer can be described by means of a Turing machine. This strengthens the belief
that the Turing machine model is general enough to encompass the intuitive notion of
a procedure. It has been hypothesised by Church that any process which could be
naturaly called a procedure can be realised by a Turing machine. Consequently,
computability by a Turing machine has become the accepted definition of a
procedure.

The Turing machine model has been defined in various ways in the literature, al of
these models being proved to be equivalent. We adopt the following definition due to
Cohen, [8].

Definition 2.1.3.1.
A Turing machine, denoted TM, is atuple having six elements:

1. An alphabet X of input letters; the blank symbol & [J Z.

2. A TAPE divided into a sequence of numbered cells each containing one
character or blank. The input word w [>* is presented to the machine one letter per
cell beginning in the left-most cell, called i. The rest of the tape isinitially filled with
blanks, &'s.

3. A TAPE HEAD that can, in one step, read the contents of a cell on the TAPE,
replace it with some other character, and reposition itself to the next cell to the right
or to the left of the one it has just read. At the start of the processing, the TAPE
HEAD aways begins by reading the input in cell i. The TAPE HEAD never moves
left from cell i; if it isinstructed to do so, the machine crashes.

4. An alphabet, Q, of characters that can be printed on the TAPE by the TAPE
HEAD. This can include Z. We alow the TAPE head to print a d on the TAPE but we
call thiserasing and we consider that & [Q.

5. A finite set of states including exactly one START state from which we begin
execution (and which we may reenter during execution) and some (maybe none)
HALT states that cause execution to terminate when we enter them. The other states
have no functions, only names.

6. A program, which isaset of rulesthat tell us, on the basis of the letter the TAPE
has just read, how to change states, what to print and where to move the TAPE
HEAD. We depict the program as a collection of directed edges connecting the states.
Each edge is |abelled with atriple of information:

(Ietter, letter, direction)

13

Chapter 2. X-machine - acomputational model framework.

Thefirst letter is the one that the TAPE HEAD reads. The second is the letter that the
TAPE HEAD printsin the cell before it leaves it. The third component tells the TAPE
HEAD whether to move one cell to the right (R) or one cell to the left (L).

We shall consider that all Turing machines are deterministic (nondeterministic Turing
machines have aso been investigated, but nondeterminism does not add extra power
to the model). This means that there is no state that has two or more edges leaving it
with the same first | etter.

Unlike the FA, every Turing machine T over an aphabet X divides the set of strings
into the classes:

1. The set of al stringsin =* that cause T to enter aHALT state. Thisis called the
language accepted by T.

2. The set of al strings that cause the machine to crash during execution by
moving left from cell i or by being in a state that has no exit edge that wants to read
the character the TAPE HEAD isreading.

3. The set of al other strings; that is, strings that cause T to loop forever.

However, for an arbitrary TM, there is no way to determine algorithmically whether
some arbitrary input string is accepted by it or not. This is known as the unsolvability
of the Halting Problem for Turing machines (Cohen [8] or Hopcroft & Ullman [33,
34). If TisaTM, we say that "T halts when given the input w" if w does not cause T
to loop forever (i.e. it either enters a HALT state or crashes during execution). Then
the Halting Problem can be formulated as. "given some arbitrary TM, T, and some
arbitrary string w, is there an algorithm to decide whether T halts when given the
input w?". Since our intuitive definition of an agorithm is a procedure that terminates
and we have accepted the TM as the mathematical model of a procedure, it is natural
to consider the model of an agorithm to be a TM which halts for any input in Z*.
Then the following theorem states the unsolvability of the Halting Problem (see
Cohen [8], Kain [40] or Hopcroft & Ullman [33, 34]).

Theorem 2.1.3.2.
Thereis no agorithm (i.e. TM that halts for any input string) to determine whether an
arbitrary Turing machine T halts when given an arbitrary input w.

Definition 2.1.3.3.

A language L over the alphabet is called recursively enumerable if thereisa Turing
machine that accepts every word in L and either rglects or loops for every word that is
notinlL.

The following theorem describes the set of recursively enumerable languages in terms
of grammars that generate them (see Cohen [8] or Hopcroft & Ullman [33, 34]).

14

Chapter 2. X-machine - acomputational model framework.

Theorem 2.1.3.4.

1. Any recursively enumerable language can be generated by a phrase-structure
grammar.

2. Any language generated by a phrase-structure grammar can be accepted by some
Turing machine.

From the theorem above, it is clear that the class of languages accepted by PDAS is
included in the set of recursive enumerable languages. The inclusion is strict (we can,
for example, prove that the language described by the example 2.1.2.6 is recursively
enumerable, (see Cohen [8])).

The class of languages that are accepted by TM that hat for any input are called
recursive languages and are strictly included in the class of recursively enumerable
languages (see Cohen [8] or Hopcroft & Ulman [33, 34]). In view of our intuitive
definition of an algorithm, alanguage L over ¥* isrecursive if for any w [J 2* there
exists an agorithm that decides whether w I L or not.

Another important class of languages is the class of context-sensitive languages. A
language is called context-sensitive if it can be generated by a phrase grammar in
which in any production a - 3 (see definition 2.1.2.3), B is at least as long as a. It
has been proved that alanguage is context-sensitive if and only if it is accepted by a
nondeterministic Turing machine which, instead of having a potentially infinite tape
on which to compute, is restricted to the portion of the tape containing the input w [

>* together with the first square that contains a blank (i.e. if the input contains n
symbols, the machine uses n+1 squares). This model is caled a linear bounded
automaton. Any context-sensitive language is recursive and there are recursive
languages that are not context sensitive (see Cohen [8] or Hopcroft & Ullman [33,
34)).

The class of languages accepted by PDAs is included in the set of context-sensitive
languages. The inclusion is strict (we can, for example, prove that the language
described by the example 2.1.2.6 is context-sensitive (see Cohen [8])).

At this point, we can draw a diagram (figure 2.1) showing the hierarchy of the
machines presented so far, according to their computational power. This diagram can
be expanded by adding extra intermediate levels, but this is not the purpose of this
chapter.

15

Chapter 2. X-machine - acomputational model framework.

Recursively enumerable languages

Recursive Languages

Context-sensitive languages

Context-free languages

Deterministic
Context-free languages

Regular languages

Figure 2.1. Languages Hierarchy

In addition to being a language acceptor, the Turing machine may be viewed as a
computer for evaluating partia functions from 2* to ', wherel 0 2 [0 Q is called
the output alphabet (see Mal’'cev [42]). Let T be a TM as defined in definition 2.1.3.1.
We shall make the simplifying assumption that whenever T enters a HALT state, the
TAPE will contain only symbols from I and d&'s (i.e. the machine can, for example,
erase al the symbols from Z [0 Q - I' before it enters a HALT state). Hence T
computes a function f: 2* - I'*, where f(w) will be defined for an input w [0 2* if
and only if T acceptsw and f(w) =y, and y [I'* is the string obtained from the final
value of the tape by deleting all occurrences of the blank symbol 8. The set of partid
functions computed by Turing machines are called partial recursive functions. If f isa
(total) function rather than a partial one, then f is called atotal recursive function. In a
sense, the partia recursively functions are analogous to the recursive enumerable
languages, since they are computed by Turing machines that may or may not halt on a
given input. The total recursive functions correspond to the recursive languages, since
they are computed by TMs that always halt.

The definitions above can be extended to functions

fr2q* x X E* - T,
where 21, ...,2k, [arefinite aphabets. This can be done by initialising the tape of the
Turing machineswith wq O 21*, ..., wi U ZKk* separated by &'s.

16

Chapter 2. X-machine - acomputational model framework.

An important class of functions that can be computed in this way are functions from
positive integers to positive integers,

f:N = N (or f: NK = N).
The traditional approach is to represent integers in unary (i.e. < contains a single
element, say 1); the integer n=> 0 is represented by the string 1N.

2.1.4. Computational models as specification tools.

The usage of finite state machines is a widely followed practice, particularly in
sequential hardware design (Clements [7]). In some types of software system design,
they are also used, for example in user interface design (Wasserman et a. [56]). But
the model is rather simple and has several drawbacks.

Firstly, it is difficult to model any non-trivial data structure using the finite state
machine model. This makes modelling large systems with complex data structures
very difficult.

Secondly, its computational power is too limited. One could argue that, in practice,
any system is a finite state machine (this is because the memory used will be always
finite). For example the language presented in example 2.1.1.5 will be approximated
in practice by

Lk ={achN| n<k}
for some sufficiently large k J N. Since

Lk ={achN| n<k}
is regular, it can be accepted by some finite automaton. However, if k is large, the
number of states of the automaton accepting the language will be huge and such a
model will become too complicated.

The Pushdown Automaton and Turing Machines are more powerful models obtained
by augmenting the finite state machine model by using some form of unlimited
memory. But the models are too restrictive and low level to be used as vehicles for
description and analysis of serious applications. Indeed, in practice one might want to
use more complex memory structures than a tape or a stack and alow more
complicated functions to be performed on this memory structures. For example,
imagine a simple system which uses a set of registers as its memory, the value of a
register being a natural number. In this case it is natura to assume that a function
which compares the values of two registers exists and can be used to build the
gpecification of the system. Furthermore, the specification can use even more
complicated functions (for example arithmetic functions such as multiplication,
factorid, etc.), provided that these have been already specified. It is therefore obvious
that in practice the process of building a system specification is hierarchica, i.e. a
complex system is specified using simpler functions that in turn can be specified by
simpler machines, rather then always getting back to the lowest level (i.e. the push’s,

17

Chapter 2. X-machine - acomputational model framework.

pop’s, remove symbol from the tape, write symbol onto the tape, etc.) used by the
traditional computational models. This approach can be accommodated by the X-
machine model.

2.2. X-machines.

The X-machine is a natural generalisation of the computational devices presented in
section 2.1. Recall that in the previous chapter we described the X-machine as
consisting of a state diagram in which the transitions are labelled with a set of basic
processing functions, ®, which operate on a basic data set X. This fits exactly the
description of the computational models presented above. Unlike these though, the set
® is not restricted to a certain class of functions. Any function ¢ can be used as a
label in the state transition diagram as long as it is computable by some procedure
(one can aso use non-computable functions, but this is obviously not desirable if the
X-machine is to be used to model computer systems, however, the use of
noncomputable ¢’s could be useful in areas such as biocomputing, but this beyond the
scope of this chapter).

The following definition is due to Holcombe, [27].

Definition 2.2.1.
An X-Machineisal1lO-tuplem =(X,Y,Z,a, B3, Q, ®,F I, T), where
1. X isthe fundamental data set that the machine operates on.
2.Y and Z are the input and the output sets, respectively.
3. a and (3 are the input and the output relations respectively, used to convert the
input and the output sets into, and from, the fundamental st i.e.
ayY o X, BXoZ
4. Qisthe (finite) set of states.
5. ® isthetype of 7, a set of non-empty relationson X, i.e.
®: P(X « X)
[Note: For aset A, PA isthe powerset of A].
The type of the machine is the class of relations (usually partial functions) that
constitute the elementary operations that the machine is capable of performing. @ is
viewed as an abstract alphabet. ® may be infinite, but only a finite subset ®’ of ® is
used (this is because 71 has a finite number of edges despite the infinite number of
labels available).
6. Fisthe’ next state’ partial function
FQ- (®-/rQ)
So, for stateq 0 Q, F(Q): @ - PQ isapartial function.

18

Chapter 2. X-machine - acomputational model framework.

However, when it is convenient, F can be treated like a partia function with two
arguments, i.e.
F(a, §) = (F(@)(9)-
F is often described by means of astate-transition diagram.
7.1 and T arethe sets of initial and terminal states respectively.

10Q, TOQ

An example of an X-machine will be given later (see example 2.3.5). Before we
continue, we give some basic definitions.

Definition 2.2.2.
Ifq,qg0Q, ¢ JPandqg I F(q, $), then
qf -,

isthearcfromqtoq'.

Definition 2.2.3.
If g, g’ 0 Q are such that there exist q1,..., qn U Qand ¢ 1,..., dp+1 U P with
a1 O Fa, ¢2), a2 O F(gy, $2), ... an U F(An-1, $n). 9" U F(an, dn+1), then
q@ - 0% - Q... O =
isthe path from q to q'. Each pathp is labelled with [p|, where
Pl = 01 dpa1: X = X
isthe relation computed by the machine when it follows that path.
When the state sequence is not relevant we shall refer to a path as the sequence of
relations, i.e.

P=01... dn+1.
A successful path isone that startsin aninitial state and endsin aterminal one.
A loop is apath whose initial state is also terminal (i.e. apath from a state to itself).

Definition 2.2.4.
The behaviour of 71 isthe relation
[m]: X X
defined as
ml =0 |l
with the union extending over all the successful pathsp in 7.

Giveny [1Y, the operations of the X-machine’l on'Y consist of:
1. Picking a path p, from a start state gj (gj [! I), to aterminal state gt (gt U T) i.e.
g I - q.
2. Apply a to the input to convert it to the interna type X.
3. Apply |p|, if it isdefined for a(y). Otherwise, go back to step 1.
4. Apply 3 to get the output.
Therefore, the operation can be summarised as B(|p|(a(y)))-

19

Chapter 2. X-machine - acomputational model framework.

Definition 2.2.5.
The composite relation
is called the relation computed by 7.

A deterministic X-machine is an X-machine whose type @ is a set of partial functions
rather than relations and in which there is at most one possible transition for any state
g and any x [J X. This will always be the case in practical applications considered in
thisthesis.

Definition 2.2.6.
A X-machine) is called deterministic if:
1. a and 3 are partial functions, not relations:
ayY - X, B X-Z
2. ® contains only partial functions on X rather than relations:
®: P(X - X)
3. F maps each pair (g, ¢) [J Q x @ onto at most a single next state:
FQ-(®-Q
A partia function is used because each ¢ [1 ® will not necessarily be defined as the
label to an edge in every state. If F istreated as a function with two arguments, then F
isapartial function
FFQxd - Q.
4. | contains only one element (i.e. | = {0p}, where qg U Q).
5.1f qO? - p and q@¥ — p are distinct arcs emerging from the same state q,
then
dom¢ n dom ¢’ =01.
Note: dom ¢ denotes the domain of ¢.

If we consider F as afunction with two arguments, the condition 5 can be written as:
5.0q0Q, ¢, ¢’ 0 ®,if (g,), (0, ¢*) 1) dom F then
dom¢ n dom ¢’ =01.

The input and output sets will almost always comprise sequences of symbols from
some alphabets >~ and I'. Therefore Y = 2*, Z = I'*, where is called the input
alphabet and I" the output alphabet. Thus relations

fi2* o I*
will be computed. The set X will have the form

X=T*xMxZ*
where M is a monoid called memory. The first component of the above cartesian
product (i.e. I'*) will be called the output register. The last component (i.e. =*) will
be called the input register. In what follows we shall only be referring to X-machines
having this form.

20

Chapter 2. X-machine - acomputational model framework.

If 7 is a X-machine acceptor (i.e. ' = O, hence '* = {1}, where 1 is the empty
sequence), then

X =M x z*
and 7 will compute afunction f with only one output value, i.e.

Oc, if x O dom f
f(x)= 0O
00O, otherwise

withc= B(D).
We call L = dom f the language accepted by the machine.
Before we continue, we introduce the following notation:

Notation 2.2.7.
Given an X-machine with X =T*x M x 2* we define the following functions:
Out: X - I'*, Out(g, m,s) =g
In: X = X*, In(g, m,s) =s
Mem: X - M, Mem(g, m,s) =m
OgOr*, moMm, s z*.
If 7 is a machine acceptor (i.e. ' =), then In: X - * and Mem: X - M are

defined by
In(m, s) =s, Mem(m, s) = m.

If 7 is a deterministic X-machine, one would expect 7l to compute a partia function

f. 2* - I'* rather than a relation. However, this is not aways the case, an additiona
condition being required.

Definition 2.2.8.
A path |p| = ¢1... dn+1: X - X iscaled trivial, if Ux [J dom |p| such that

In(lpl(x)) = In(x).
In other words, a trivial path is one aong which the machine does not change the
value of the input register for some values of X, while possibly changing the output
register and memory.

Then, we have the following straightforward result (see Eilenberg [12]):
Proposition 2.2.9.

If 7 is a deterministic X-machine in which no trivia path connects two termina
states, then 7 computes a partial function.

21

Chapter 2. X-machine - acomputational model framework.

The model presented so far is slightly too general and we now consider two natura
classes of these machines.

2.3. Straight move stream X-machines.

Consider a program (or a hardware device) that receives some external inputs from an
alphabet 2 and produces some outputs from an alphabet . The program will have a
memory structure M and will consist of a set of 'basic’ moves or instructions
performing one of the following types of 'basic’ operations:

Cupdate the memory;

[update the memory and produce an outputy I T.

[fead an input o [J 2 and update the memory.

[read aninput o [2, update the memory and produce an outputy (I T.

Also, a special input symbol that indicates when the program has finished reading al
the necessary inputs might be required. We denote this by é and we call it the blank or
end marker. For the sake of simplicity we shall consider that & [Z.

Obviously, more than one output can be produced at one time, but this can be dealt
with by a convenient augmentation of the output set I' (i.e. we replace I' with the
appropriate I’ 0 T*).

Therefore, it looks as though a very wide class of applications can be represented in
the way described above. Let us trandate this model into an X-machine. First, we
introduce some notation that we shall be needing in what follows:

Definition 2.3.1.
Let 2 be aset. Then we define the functions
head: >* - >*, front: 2* - 2*, tail: 2* - 2* rear: 2* - 2*
by:
head(os) =0, Jo 0 Z, s 2*; head(1) = 1;
front(so) =s, 0o O Z, s >*; front(1) = 1;
tail(os) =s, 0o 0 %, s >*; tail(1) = 1,
rear(so) =0, 0o 0%, sOZ*; rear(1) = 1.
Note If sO 2*, t 0 2*,st is s concatenated with t.

We can now define formally the particular type of X-machine described at the
beginning of this section.

22

Chapter 2. X-machine - acomputational model framework.

Definition 2.3.2.
Let > and I two alphabets, andlet d 0> O T and 2’ = X [{&}. Then, an X-machine
M with
X=T*xMxZ'*
is called a straight-move stream X-machine (denoted SMS X-machine) if:

1. The input and output codes
a2 - X, BXTI*
are defined by
a(s) = (1, mg, sd), Usz*,

(g, ifs=1
Blgm s)= 0
00, otherwise
OgOr,
where mg O M is called theinitial memory value.

2. Thetypeis
G =P1 0 Dy P3Py,
where

) O¢10dDq, ¢1: X » Xisarelation of the form:

(g p1(m, head(s)), p1(m, head(9)), tail(s)), if sz 1
¢1(g m 5= 0
0d, otherwise
where
MM XY o M, p1: M x% o T arerelations,
i.e. any ¢1 [0 ®q reads the head of the input string (possibly d) and adds an output
character to the end of the output string while updating the memory. @1 is called the
set of non-empty input and non-empty output operations.

i) O ¢2 0 Do, p2: X « Xisarelation of the form:

0(g, no(m, head(9)), tail(s)), if s# 1
$2(g, m,)= O
0d, otherwise
where
H2: M x 3’ o M isarelation;
i.e. any ¢ [®o reads the head of the input string (possibly &) and |eaves the output
string unchanged while updating the memory. ®» is called the set of non-empty input
and empty output operations.

23

Chapter 2. X-machine - acomputational model framework.

i) O ¢3 0 @3, ¢3: X « Xisarelation of the form:

$3(9, M, s) = (g p3(M), u3(m), 9),
where

H3:M o M, p3: M o T arerelations;
i.e. any ¢3 [@3 leavesthe input string unchanged and adds an output character to the
end of the output string while updating the memory. ®3 is called the set of empty
input and non-empty output operations.

iv) O ¢4 0Dy, d4: X » Xisarelation of the form:

b4(9, M,) = (g, pa(m), s),
where

H4:M o M isarelation;
i.e. any ¢4 [d4 leaves both the input and output strings unchanged while updating
the memory. ®4 is called the set of empty input and empty output operations.

3. Wefurther assumethat D q U T, O ¢ U P30 dy then (g, ¢) L dom F.
Therefore, no empty input transition is allowed from aterminal state.

A SMS X-machine will be denoted asatuple” = (Z, I, Q, M, ®, F, Qqg, T, mp).

Basicaly, a SM'S X-machine can process the head of the input string or no input at all
and add one output character or no output at al at the end of the output string.
Furthermore, no transition is allowed to use information from the tail of the input or
any of the output. It isfairly clear that a SM'S X-machine computes arelation

f:2* o [*, f=a[np.

Observation 2.3.3.

If 7 isa SMS X-machine acceptor (i.e. I =) then
X=MxZz*

and the type can be written as
® =P 0Py,

where

NO¢ OP1,01:X o Xisarelation of the form:

O(ug’ (M, head(9)), tail(s)), if s# 1

¢1'(@,m, g =0
00, otherwise
where
M1 MxZ o Misarelation;

24

Chapter 2. X-machine - acomputational model framework.

i) O ¢’ 0P, 92 : X « Xisarelation of the form:

$2'(9, m, s) =(u2' (M), s),
where
Ho':M o Misarelation.

From condition 3 of definition 2.3.2, it follows that no trivia paths start from a
terminal state in adeterministic SMS X-machine. Hence we have the following result.

Proposition 2.3.4.
Any deterministic straight-move stream X-machine computes a partial function
fi2* 5 I*,

In practice ~ and I' will be amost aways finite. However, our model does not make
any such assumption. A simple SMS X-machine exampleis given below.

Example 2.3.5.
Let> ={a b}, ={x, y}. Then” isa SMS X-machine defined as follows.
1. The set of statesis

Q={0o a1, 92,93} -
Jo istheinitial state; g3 is the terminal state.

2. The memory is the set of positive integers, M = N. Therefore, the fundamental
datasetis
X=T*xNx2X*,
whereZ’ =% [J {8}. Theinitial memory valueismg = 0.
30=p1 0D 0Dz Dy
with
@1 ={92}, P2 ={¢1, 95}, P3={d4}, P4 ={93},
where

01, 01, 03, 04, d5: T* XN X Z* |, [* x N x I'*
are partial functions defined as follows:

dom¢q=I* xNx{az'*,
d(g, n,as) =(g,n+1,9),0 g {x,y}*,nON,s{a b, d}*;

dom¢o=T* x N x{b}Z'*,
dp(g, n, bs) = (gy, n+1,9), 0 gU{x,y}*,nUON,sU{a b, d}*;

25

Chapter 2. X-machine - acomputational model framework.

dom g3 =T* x N x Z'*,
d3(g,n, 9 =(g, ntl,), 0 gO{x, y}*,nON,sO{a b, &} *;

domdg=T* x(N-{0}) x Z'*,
¢(9,n,9) =(gx,n-1,9,090{x,y}*,nON-{0},sl{a b, &}*;

dom ¢5 = I* x {0} x{d}Z'*,
#5(9, 0,89 =(9,0,9), 0 gU{x y}*,sU{a b, 3}*.

4. The next state function F follows from the diagram in figure 2.2.

Figure2.2.

Itisclear that 7 is deterministic and it computes a partial function
f:{a b} - {x,y}

defined by
dom f = {ab| n O N} and f(@b) = yx"*1, OnON.

At the beginning of this section we claimed the SMS X-machine could be used as a
general model of a program or of a hardware device. We can now support this claim
by showing that the computational models presented in section 2.1 are all particular
types of SMS X-machines. We show that finite state machines, pushdown automata
and Turing machines can be described as SMS X-machines. First, introduce some
notation that we shall be using later.

Definition 2.3.6.

Let > be an aphabet and let sUJ 2*. Then we define the functionsLg, Rg: 2* — 3* by
Lg(X) = sx, Rg(X) =xs, O x O 2*

and the partial functionsL_g, R_.g 2* — >* by
L.g(x) = s1x (i.e. dom L_g= {5} Z* and L_g(sx) = x, O x [Z*)
R.g(x) = xs'1 (i.e. dom R.g = Z*{s} and R_g(xs) = x, [x [Z*)

Obviously, Lol t = Lts, RsRt = Ret, L_gl-t = L-ot, R-sRt = R.tg, U s, t T Z*.

We shall denote by I: 2* - 2* theidentity function.

26

Chapter 2. X-machine - acomputational model framework.

Notation 2.3.7.
Let 71 bean X-machinewith X =* x M x * and M = A1 x ... x Ak (k possibly 0).
Letaso@r: M - Ir*, oy 3 - * and ¢: Aj - Aj, 1 =1, ..., k be (partial)
functions. Then we denote by

¢ = (@, @1, - G O5)
the (partial) function ¢: X - X defined by:

d(9 a1, -, &,) = (9r(9), ¢1(a1), --., ,(&), Px(9))
OgOr* s>, aqg OA1, ..., a OAK
(i.e. (9, a1, ..., &, 9) is defined iff @r(g), ¢ (&), ..., &) and @s(s) are al
defined).
Also, let @ be a set of (partial) functions from I'’* to I'’*, ®s be a set of (partia)
functions from Z* to 2* and ®j sets of (partial) functions from Aj to Aj, i =1, ..., k.
Then

Pr xPq x ... X Py X Oy
denotes the set

{6=(0r, 0L - O @) Or O Pr, g5 D O3, G O D}, i =1, ..., k}.
If 7 isan X-machine acceptor (i.e. [= [1), then we denote by

¢ = (@1, - O 03
the (partial) function ¢: X — X defined by:
N d(aq, ..., & 9 = (@), ..., ,k(ak), 05(9), s Z*, a1 DA, ..., a UAk.
so
P x ... x Py x Py
denotes the set
{d=(01, .., &, Ox)| s O B5, @ O Dj, i =1, ..., k}.

A. Finite state machines

LeM=0O,F=0, X=2"*.

Thetypeisgiven by
P=P1 ={L.gloTZ'}.

If we consider finite state machines with outputs (I # [1), then
X=r*xz*

and the type becomes
P=0¢1 ={RIy0r} x{LgloOX}.

B. Pushdown automata
LeeM=Q* =0, X=0Q* x3*, mg=A, where A is the bottom of stack character
(we consider that A [J Q).

Thetypeisgiven by

®=0d1' 0 Py,
with

27

Chapter 2. X-machine - acomputational model framework.

®1'={1} x{L.gloO X'} and
P2"={R.ol w0 Q} x {1} U{Reyl w0 Q} x{l}.

The model can be generalised by considering SMS X-machine models whose
memory structure is a stack or a finite set of stacks, the basic operations on stacks
being the usual ’push’ and ’pop’.

Definition 2.3.8.
Let m=(Z,T,Q M, ®, F, qo T, mg) beastraight move stream X-machine with
and T finite. If
ILM=Q1* x...x Q* (henceX =T* x Qq* x ... X Qp* x I'*,
where Q1, ... Qg arefinite alphabets.
20 =1 0P 0 P30 dDy
with
@1 ={Ry|yOl} x®1" x .. xP" x{L_gloc O},
P ={1} x ®1" x .. x D" x{L_glo 02},
D3 ={RylYL T} x®7" x ... x D" x{l},
Pg={1} x ®1" x.. x D" x {l},
where
Dj" = {R.yl w0 Qj} U {Reolwld Qj} O {I},i =1, ..., k.
then 7 is called a k-stack straight-move stream X-machine (denoted k-stack SMS X-
machine).

Obviously, aPDA isa 1-stack SMS X-machine acceptor.

Note: We can consider that ®;j also includes a partial function
E: Qj* - Qj*

that checks whether the stack is empty or not, i.e. E is defined by
domE={1} and E(1) = 1.

Thisfollows since E = R-p Rp, Where A is the bottom of stack character.

C. Turing machines
This case is more complicated since the Turing machine uses only one tape both as an
input and output device and moves in both directions are allowed. However, a Turing
machine can be simulated by a 2-stack SM'S X-machine.

Theorem 2.3.9.

Let > and I' be two finite alphabets and let f: 2* — '* be a partia recursive function.
There exists then a deterministic 2-stack straight-move stream X-machine 7 which
computesf.

28

Chapter 2. X-machine - acomputational model framework.

Proof:
If f isrecursively enumerable, then there exists a Turing machineJ with the state set
Q={ay..., an}
(g1 isthe Start state), Qg the set of tape symbols, which computes f. Hence, if t is the
initial value of the tape and t’ its end value, then
Rmb(t’") = f(t),
where
Rmb: (T O {&})* - I'*
is afunction which removes all occurrences of the blank symbol & from the tape.

Any transition of 7 can be described as

(ql a) - (p! a,! d),
where q is the state J currently is in, a the character read, p the next state, a the
replacement character and d [{L, R} isthe direction the tape head movesin.

We can now simulate the Turing machine J on the following 2 stack SMS X-machine
m:

1. The set of statesis
Q={aq’ a" 0 h'}OQ"
The states set of 71 is obtained by duplicating each state from Q and adding some
extra states (viz. Q"). The set Q" will explicitly follow from the construction of 7. 7
will bein the state gj’, i = 1, ..., nif Jisin the state gj and it has not read a blank (d)
from the tape (therefore the Turing machine has not finished reading the input
sequence); 7l will bein the state g, i = 1, ..., n, if 7 isin the state g; and it has read a
blank () from the tape (the Turing machine has read the whole input sequence).

2. Theinitial stateisqq’ and the set of terminal statesis
T ={q"| qj isaHalt state of J}.

3. The memory is
M=0* xQ* whereQ =2 [0 Q¢ andQg’ =Qg U {}.

The values of the two stacks s and s' will hold the tape of the Turing machine up to
the rightmost location of the tape that has been read by the tape head, i.e. if

t=a .., (a... § U Q),
is the tape up to the rightmost location that has been read by the head tape and i is the
current position of the tape head, i < |, then

s=a1..8-1,S =§..4. _
Hencet = srev(s), where rev(x) denotes the reverse of the string x.

The initial value of the memory ismg = (1, 1).

29

Chapter 2. X-machine - acomputational model framework.

4. F results by the following simulation of 7 on 71:

a. For atransition in J of the form

(,0) - (p,b,R),cT0Z,bOQY,
the corresponding transitionsin 7 are:

F@'.91) =p", K@ $2) =p’. F(Q".92) =p",
where

$1=0,Rp, E L.g),92=(l, Rp, R.g,).
Therefore, if 7 has not finished reading the input string (7] isin state @) and s = 1 then
7 reads a new input character. Otherwise, no input is read and 7 only operates on its
stacks.

b. For atransitioninJ of theform
(@@ - (p,b,R),all Qy-%, b0 Q7
the corresponding transition in 7 is:
F", ¢3) = p",
where
$3=(I,Rp, R 1).
Since ais not an input character, J has finished reading the input string; therefore 1)
operates only on its stacks.

c. For atransition in J of the form
(q’ 6) - (p’ b, R)’ b Qj’,
the corresponding transitionsin 7 are:
F(a'.¢4) =p", F(@.¢5)=p', F(d".¢5) =p",
where
¢4=(,Rp E Lg), d5=(,Rp, R, I).
Therefore 7 can read the end marker of the input string only if a d has not yet been
read. Otherwise, the machine operates only on its stacks.

d. The transitions

(q’ 0) - (p1 b1 L)! (q! a) - (p1 b1 L)! (q! 6) - (p’ b’ L)’
o0z, alQy-2,b0OQ7,
can be obtained from those above by replacing ¢j, i = 1, ..., 5 by ¢;’ = ¢; Tf2, where
Tf is the function which transfers any character from the first stack to the second.
Such transitions can be transformed into a sequence of three SMS X-machine
operations by adding two new statesr1, ro U Q" for each transition. For example

F(a 917 = p'
isequivalent to

FO¢1) =1, Hry, @) =r2, F(r2, @) = p',
Oy O{(l,Rg Ry IN|all Q} (i.e. Y takes all the values of the set
{(I,Ra Ry Nlall Q}).

30

Chapter 2. X-machine - acomputational model framework.

In order to complete our construction, we have to address the following two
problems:

e. 7l has to read the entire input sequence even if J halts earlier. This can be easily
addressed by adding an extrastate rj’ [Q" for each i I {1, ..., n} such that gj isaHalt
state of 7, and the following transitions:

FOi' &) =i, F(@ &) =1 F(7 &) =1/ F(7 &) =", i = L.,
0&1 0{(l,Ra Ra Nlal Q} and&30{(l, Ry, I, L.g)l 0 0 3},
where

&2=(L1LEN,&=(,Rs 1 L.y).
Therefore if J has halted without finishing reading the input string, 7 will store the
part of the tape already read in the first stack, read the remaining part (until a d is
reached) and store the remaining part of the tape into the first stack. Since no path
can leave aHalt statein J, 1l remains deterministic.

f. So far 7 does not produce any outputs. Therefore, any transition of the type

Fa ¢) =q",
where q O Q' (Q' is the state set of 7l constructed so far) and gi" U T’ (i.e. gi" isa
terminal state) has to be replaced by

F(g, 9GH) = gi",
where G stores s rev(s) into s (therefore s will hold the reverse of the tape value t),
where s and s are the values of the two stacks, and H outputs Rmb(rev(s)) (i.e. the
string obtained by erasing al the blanks from the tape t). This can be achieved by
adding 2 extra statesrq", ro" [Q" for each gj" [T' and replacing each transition of
thetype F(qg, ¢) = gj" with the following sequence of transitions:

F(a. ¢) =r1", K(r1", 1) = 1" F(r1", ¢2) = 12", F(r2", ¢3) = 12",

F(r2", 4) = 12", K(r2", {5) = G,
0210{(, Ra Ra Nlad Q}, 24 D{(Ry, I, Ry, Dy O T},
where

22=0,E1,),33=(,1,R51).25=(,1,E1).

From the construction above it is clear that f = af/l|3. Therefore 7l computesf. ®

Example 2.3.10.
Let 7 be the Turing machine described in figure 2.3, where:

>={0,1},T ={0,1},Q={0, 1},
go istheinitial state and g the Halt state.

31

Chapter 2. X-machine - acomputational model framework.

(1,1R)
(0,0R) ; 2 (6,0L)
qo0 /\qy g2

Figure2.3.

J computes the partial function f: Z* — I'* with
dom f = {01K| k O N}
defined by
f(01K) = 01K, k = 0.
By applying the transformations given by 4.a - d, 4.e and 4.f, J is transformed
successively as described in figures 2.4, 2.5 and 2.6 respectively.

E:' E%’ E,_|1_-I]5) (I,RL, R-1,1)
(I, RO, E, L-0)
I, RO, R-O, |
@ (I, RO, R-0, I) " @ () /@..
(L RO,R-3,1) (1, RO, E, L- 3) (LRO,R-3,1)
r3
EI, R-0, RO, |§
I'R-1RL |
('R &R,) R RN
(I.R- & R3,1)

g0’ istheinitial state
g2" isthetermina state

Figure2.4.

32

Chapter 2. X-machine - acomputational model framework.

(I,RL, R-1,1)

(I,R1, E, L-1)
(I,R1,R-1,1)

(I, RO, E, L-0)
(1, RO, R-0, 1)

(1, RO, R-0, 1)

@

(I, RO, R-3, 1)

(I, RO, E, L-8)

(I,R3,1,L-3)

Figure2.5.

33

Chapter 2. X-machine - acomputational model framework.

E: RLE Il_ll)) (I, RL R-1, 1)
(I, RO, E, L-0) (|
. RO, R0, |
@ (I, RO, R0, 1) @ /Q%
(1, RO, E, L-5) (I, RO, R-3, 1)

(ILE I,1)

©< (,1,E 1)
62’

(,1,R-3,1)

Figure 2.6.

Since qq", q1", r3 and r4 are not connected to the initial state qg’, they can be deleted
together with the arcs that emerge from them or leave them. Hence, the 2-stack SMS
X-machine obtained has the 'state transition’ diagram given in figure 2.7, where qq’ is
theinitial state and g2" isthe terminal state.

34

Chapter 2. X-machine - acomputational model framework.

(I, RO, E, L-0)

@ (I, RO, R0, I)

~S

PPD

(ILE I,1)

©< (,1,E1)
62’

(,1,R-3,1)

Figure2.7.

Obviously, adding extra stacks to a 2-stack SMS X-machine (by constructing a n-
stack SM'S X-machine with n > 2) will not increase the power of the machine beyond
that of a Turing machine (i.e. it can be shown fairly easily that any n-stack SMS X-
machine can be simulated by a Turing machine by placing the input string, the n

35

Chapter 2. X-machine - acomputational model framework.

stacks and the output string on the Turing machine tape separated by an extra
symboal).

2.3.1. SM S X-machines asa basisfor a specification and testing method.

The SMS X-machine model is general enough to model any computation performed
by a Turing machine. Furthermore, the model is much more flexible and does not
necessarily require the computation to be specified at the lowest level in the way that
Turing machines do. Indeed, the type @ of atop level SMS X-machine of a system
can use fairly complex functions that can be defined by other means or can be even
described themselves as SM'S X-machines. Any function can be used as an arc label
aslong as we know that it is computable by some procedure.

However, our intention in investigating various X-machine modelsisto find a formal
specification (i.e. a particular type of X-machine) that can be aso used as basis for
developing atheoretical testing strategy. The generality of the SMS X-machine model
offers little hope in this direction. Indeed, a very simple SMS X-machine with two
stacks together with the basic push’ and 'pop’ operations is as complex as a Turing
machine. For instance, let 4 be a 2-stack SMS X-machine specification of a system
and let J be its implementation. Then testing J against 4 would mean finding an
algorithm which determines whether § and 4 compute the same function. This is
impossible since J is an arbitrary Turing machine. Indeed there is no agorithm that
establishes whether an arbitrary Turing machine halts for an arbitrary input sequence,
let alone an algorithm that determines that two arbitrary Turing machines compute the
same function. Since, in practice, a specification will be more complex than the 2
stack SMS X-machine model, the development of a well founded testing
methodology based on this model appears to be impossible.

On the other hand, many real applications correspond to Turing machines that halt.
Therefore, one might imagine a less general X-machine model that can be used to
specify these systems and aso provide a basis for a testing methodology. Also, it is
fairly clear that the 'empty input’ moves (i.e. when the machine does not consume an
input) are the ones that cause all the problems in the SM'S X-machine model. Indeed,
an infinite loop caused by a certain input string s will contain only a finite number of
"non-empty input’ moves but an infinite number of *empty input’ ones.

2.4. (Generalised) stream X-machines.

These are X-machines with no 'empty input’ moves.

36

Chapter 2. X-machine - acomputational model framework.

Definition 2.4.1.
Let > and I two alphabets, andlet d 0> O T and 2’ = X [{&}. Then, an X-machine
m=Z, oM, d,F Qq T, mg) with
X =I*xM x Z'* iscalled astream X-machine (denoted S X-Machine) if:
1. Theinput and output codes
oa:2* - X, B:XoT*

are defined by
a(s) = (1, mg, sd) Us &,
Og, ifs=1
B(g,m,s)= 0
0d, otherwise
Ogar*,

where mg U M istheinitial memory value.

2. The type is ® such that
O¢ 0>, ¢: X ~ Xisarelation of the form:
(g p(m, head(s)), u(m, head(s)), tail(s)), if s# 1
¢(g.m,s) =0
0d, otherwise
where: M x 2 o M, p: M x2' o [arerelations.

If therelation pisdefinedasp: M x 32" « * instead of p: M x 2’ « T then the X-
machineis called a generalised stream X-machine (denoted GS X-Machine).

In any state g [Q, a stream X-machine reads the first character o of the input string s,
removes it from s and adds a new character y to the output string. The new value of
the memory and y depend on o, but they are not affected by the rest of the input
string. A generalised stream X-machine can add a string of characters (possibly the
empty one) to the output string for each input character it processes. S X-machines
and GS X-machines compute relations from Z* to .

Obviously, S X-machines are special types of GS X-machines. Conversely, one could
transform a generalised stream X-machine into a stream X-machine by augmenting
the output alphabet to a (possibly infinite) set M1 O *, the set of sequences from M*
produced by p (i.e. there existsan injection h: M'q - ™). If f: 3* o '* istherelation
computed by the generalised stream X-machine and f1: £* « [1* is the relation
computed by the stream X-machine obtained in this way, then f = f{H, where
H: 1* - '* isthe morphism induced by h. Obviously, if only machine acceptors are
considered (i.e. the output is not relevant) then the S X-machine and GS X-machine
models are equivalent.

37

Chapter 2. X-machine - acomputational model framework.

Obvioudly, no trivia paths exist in a (generalised) stream X-machine. Hence a
deterministic (generalised) stream X-machine computes afunction f: 2* — *,

Obvioudly, the S X-machine model is more restrictive than the SMS X-machine
model. However, the more restrictive nature of the model makes it more attractive as
a basis for a specification based testing method. Indeed, if each basic function in @
can be computed by a procedure that terminates in finite time (i.e. a Turing machine
that halts) then, given any input s [0 2*, the computation determined by s through 7
also terminates in finite time (this is because the machine consumes an input symbol
each timeit performs atransition). Let us formalise thisidea.

Definition 2.4.2.

A partia function ¢ is called fully computable if there exists an agorithm A (i.e. a
Turing machine that halts) such that A computes ¢. A type @ is caled fully
computableif 0 ¢ O @, ¢ isfully computable.

Note: If X =T* x Qq1* x ... x Q* x¥* with I, Qq, ..., Qg and X’ finite, then let
¢: X - X
and
do: X - T*,01: X - Q1*, ..., Ok: X = Q*, dk+1: X - '
be its projections on I'*, Q1*, ..., Q* and Z™* respectively. Then ¢ is fully
computableiff g t, d1.t. .. Pkt Pk+1.t @retotal recursive, where

bot: X - (T O{c})* isdefined by

Udo(x), if x U dom ¢q
bo.t(x) =0
U c, otherwise
wherecO (M0 Q1 0..0Qk O %); d1t, - Pk.ts Pk+1.t are defined similarly.

Proposition 2.4.3.

Let m=Z, T, Q M, ® F Qq T, mg) be adeterministic (generalised) stream X-
machine with ® fully computable. Then, the partia function f: Z* - I'* computed by
M is fully computable. Hence, the class of fully computable relations is closed under
the (generalised) stream X-machine operator.

Pr oof:
Lets=01 ... 0p, With oy, ..., on O Z. Hence
G(S) = (1, mo,..., 01 O-na)

38

Chapter 2. X-machine - acomputational model framework.

Then, the path determined by a(s) consists of at most n+1 transitions. Therefore, ¢(s)
is determined by applying at most n+1 algorithms (i.e. an algorithm for each ¢ which
processes either gj or). Hence, f = a [/1| B isfully computable. ®

Obvioudly, if 7 is a stream X-machine acceptor with @ fully computable, then the
language accepted by 71 is recursive.

Thus, if each ¢ can be computed by a Turing machine that halts, then the whole
machine can be represented as a Turing machine that halts. Then let us assume that
we have specified a system as a stream X-machine 4 with a fully computable type ®
and that we can assume that the implementation J is also a stream X-machine with the
same type. Then, J is guaranteed to halt. Hence if J is fed with an arbitrary input string
s, then we are guaranteed to obtain the output in finite time. Thisis an important fact
if the implementation is to be tested against the specification since we no longer have
to solve the unsolvable halting problem.

Obvioudly, proposition 2.4.3 is not true for a SMS X-machine since it can contain
loops consisting of only empty input operations which can cause the the machine to
loop forever.

Obvioudly, if the stream X-machine is to be used as a specification tool, it is
important to know how general this model is, i.e. how far can we get in the language
hierarchy by using stream X-machines with a certain memory structure and a certain
type ®@. Similarly to definition 2.3.8, we can define a k-stack stream X-machine.

Definition 2.4.4.
Let M=, L Q,M, ®,F Qp T, mg) beastream X-machine with Z and I" finite. If
LM=Qp* x...x Q* (hence X =T* x Q1* x ... x Q)* x Z™*), where
Qq, ... Qg arefinite alphabets
2. ¢:{Ry|yD M x®Ppx.xPx{L.glocdZ},
where
®j = {R_ol w0 Qj} U { Rl Qi} T {I, E},i =1, ..k,
then 7 is called a k-stack stream X-machine (denoted k-stack S X-machine).

We saw that the class of 2-stack SMS X-machine was equivaent to the class of
Turing machines. However, k-stack S X-machines are much more restrictive. Let us
denote by L the class of languages accepted by k-stack S X-machines acceptors (i.e.

M=0)and

L = Lk

k=1
We shall cal L the class of real time stack languages (i.e. in this context real time
refers to the fact that the machine does not have empty input moves, hence it decides
whether to accept an input string immediately after it reads it). Obviously any L will

39

Chapter 2. X-machine - acomputational model framework.

contain all regular languages. However, L does not contain all deterministic context-
free languages. In fact we have the following result.

Proposition 2.4.5.
L, and the class of deterministic context-free languages are incomparable [0 n O N,
n2.

Proof:
Let>={a b, c} and
L ={a%b"cN| n O N}.
Obviously, L is not context-free (see Cohen [8]). It can be proven easily that L [J Lo.

Conversely, let _ o
L' ={albad2p ... dl-lballcSar-Stl|r= 1, 1<s<r, ij=1foral 1<j<1}.
Harrison, [24], provesthat L’ is deterministic context-freeand L'ULy, D n O N.®

From the proof above it also follows that Ly, and the class of (non-deterministic)
context-free languages are incomparable [0 n 0 N, n = 2. The position of L in the
language hierarchy is shown by the diagram in figure 2.8.

Context-sensitive
L anguages

Context-free
Languages

Deterministic
Context-fre

Figure2.8.

It is clear that the k-stack S X-machines cannot cope with many applications. For
example an arbitrary push-down automaton cannot be represented in thisway. Thisis

40

Chapter 2. X-machine - acomputational model framework.

because such a pushdown automaton might require an unbounded number of 'empty
input’” moves between two moves in which the machine consumes input symbols.
However, we can 'hide’ these empty moves by choosing more complex @'s which will
allow the machine to perform an unbounded number of operations on its stack each
time it reads an input symbol. Indeed, the fact that the X-machine does not restrict us
to using only very low level functions such as push and pop is one of the main
advantages of this model. We can use more complicated basic functions as long as we
know that they can be computed by some computational models. Those models will,
preferably, be ssimpler stream X-machines themselves, so the X-machine model can
be used as a specification tool hierarchicaly. In this way we can have a high level
stream X-machine model and several low-level models that specify each ¢ O ®. Since
the finite automaton is the simplest stream X-machine, then we can try to construct a
stream X-machine whose ¢' s are computed by finite automata.

2.4.1. Regular stack stream X-machines.
Before proceeding any further, we introduce some preliminary concepts.

Definition 2.4.1.1.
Let Q be afinite aphabet and L be a subset of Q*. Then, following Eilenberg, [12],
wecal L aprefixif

s1 ={1},0s0OL.

Example 2.4.1.2.
Let>={a b, c}. ThenL ={ab*c} isaprefix.

In what follows we prove some properties of prefixes that we shall need later on.
Proposition 2.4.1.3 isfrom Eilenberg, [12].

Proposition 2.4.1.3.
Let L O Q*. Then the following conditions are equival ent:

1. L isaprefix.

2. 1fs, st0L, thent=1.

3. Ifst=st withs, sUL,thens=s andt=t".

4. L =0 or the minima automaton (possibly infinite) of L has one terminal state t
and no arcs leavet.

5. L is the behaviour of a deterministic (possibly infinite) automaton such that no
arcs leave aterminal state.

Proposition 2.4.1.4.
1.If Lisaprefixand 1 0L, thenL = {1}.
2. Any subset of aprefix isaprefix.

41

Chapter 2. X-machine - acomputational model framework.

Proof:
lisobvious. 2 follows from proposition 2.4.1.3. ®

Lemma24.1.5.
If g: =* - Q* isamorphism such that g-1(1) = {1} and L O Q* is a prefix, then g-
1(L) isaprefix.

Pr oof:
If s, st 0 g (L), then g(s), g(s)g(t) O L. Henceg(t) =1landt=1.®

Definition 2.4.1.6.
Let Q be afinite alphabet and L be a subset of Q*. Then L iscalled aregular prefix if
L isboth a prefix and aregular language.

Proposition 2.4.1.7.
Let L O Q*. Then the following conditions are equival ent:

1. L isaregular prefix.

2. L =[O or the minimal finite automaton of L has one terminal state t and no arcs
leavet.

3. L isthe behaviour of a deterministic finite automaton such that no arcs leave a
terminal state.

Proof:
Thisfollows from the fact that L is both aregular language and a prefix. ®

Lemma 2.4.1.8.
If g: =* — Q* isamorphism such that g-1(1) = {1}, L 0O Q* isaregular prefix and
K O Z* isaregular language, then
gi(Lu) - K
isaregular prefix [u O Q*.

Pr oof:
Let u 0 Q*. Since L isaregular language, Lu is aregular prefix. Therefore g-1(Lu) is
a regular language (this is because the class of regular languages is closed under
inverse morphisms (see Hopcroft & Ulman [34]). Since K is aso aregular language,
it follows that

giLu)-K
isaregular language (this is because the class of regular languages is closed under -’
(see Hopcroft & Ulman [34]). Using the minimal automata of L and Lu, it can be
shown easily that Lu isaregular prefix. From lemma2.4.1.5, it follows that g-1(Lu) is
aprefix. Hence any subset of g1(Lu) isaprefix. Therefore

giLu)-K
isaprefix. ®

42

Chapter 2. X-machine - acomputational model framework.

Having anon-empty regular prefix L [0 Q*, we can define a partial function

R:Q* - Q*
as described bellow. This type of function will be used to construct our new type of
stream X-machine.

Definition 2.4.1.9.
Let Q be afinite alphabet and L [1 Q* be a non-empty prefix. Then we define a partial
function
R:Q* - Q*
by:

O srev(v)-d, if Ov OL suchthat srev(v)1lz0,
Ri(s=0
0d, otherwise
Note: rev(x) denotes the reverse of x. For s, u 0 Q*, sul # 0 means that Ot O Q*
such that s = tu.

Observation 2.4.1.10.
Since L is a prefix, there exists at most one v O L such that s rev(v)1 # O (see
proposition 2.4.1.3, 2). Therefore R_|_ iswell defined.

Example 2.4.1.11.
LetQ={a b, c} andL ={ab*c}.
1. If the value of the stack iss = aacbba, thenR_|_(s) = aa.
2. If the value of the stack is s = aacbbab, then R_|_ (s) is not defined.

If L isaregular prefix, then R_ (S) removes symbols from the end of the input string s
like a finite state machine in which no arcs leave a terminal state. Therefore R_| can
be computed using afinite automaton. We shall use such functions to construct a new
type of stream X-machine.

Definition 2.4.1.12:
Letm=(Z,T,Q, M, d,F Qq T, mg) beastream X-machine. If:
1. M=0Q* (henceX =T* x Q* x 3’*), where Q isafinite alphabet
2.0={Rydr} xoy x{LgloU2},
where
dp = {R-LRylu O Q*, L O Q* isanon-empty regular prefix},
then 7 is called aregular stack stream X-machine (denoted Rack S X-machine).
A regular stack generalised stream X-machine (denoted RSack GS X-machine) will
have the type
{RglgOT*} x Dy x {Lglc 0L},
with ®p, defined as above.

Chapter 2. X-machine - acomputational model framework.

Note: R.| Ry denotes the functional composition of R and Ry. R._R, removes
symbols from the end of the memory stack like a finite state machine and then adds a
fixed string u.

We shall prove that the class of regular stack stream X-machine acceptors accepts
exactly the deterministic context-free languages. We shall do this by showing that a
deterministic pushdown automaton (i.e. a deterministic 1-stack SMS X-machine
acceptor) can be converted into a RStack S X-machine.

24.2. RStack S X-machines and 1-stack SMS X-machines acceptors are
equivalent.

In this section we shall be referring to X-machine acceptors (i.e.” =).

Let us consider a deterministic SM'S X-machine acceptor,
m=(Z,0QM,dFq,T, mg).
Then ® = ®¢' 0 &', whered1’ and®y’ are defined in Observation 2.3.3.

LeegOdQand mM. Let

m@m)=(Z,0,Q M, 02, F,q Q m)
be the deterministic X-machine obtained from 7 by removing all the arcs with labels
in®q’ (i.e. FIQ x ®2' = F|Q x ®2" and F|Q x ®1" is null, where F|Q x ®j’ denotes the
restriction of Fto theset Q x @', i =1, 2) with g theinitia state, m theinitial memory
value and the set of terminal states T’ = Q.

Since 71'(g, m) operates only on empty input moves, it is clear that the computation of
M'(q, m) is independent of the value of the input register and it depends only on the
initial state g and the initial memory value m.

We say that 71'(g, m) haltsif:
i)O0g O0Q,mIOM andapath qIF - g in7'(g, m) such that
[pl(m, s) = (m’, s),00s0X'*
(Ip| is the partial function computed along p) and
i) O ¢ O Py with (9 ,9) L dom F, we have ¢p(m’, s) =00, O s Z'*
(in other words p is the maximal path that 71'(g, m) can follow).

We assume that 7'(q, m) halts 0 q 0 Q, m O M (i.e. there is such a maximal path).
Then we can define afunction

T.QxM - QxM
by

Chapter 2. X-machine - acomputational model framework.

T(q, m) =(q’, m’),
where g’ isthe state in which?'(q, m) haltsand m’ is the final memory value.

Note: More rigorously, we can use an auxiliary function Tt Q x M - Q x M, which
keeps track of the states and memory values of the computation of 7, on empty
Moves, i.e.
O (F(a,), Mem(d(m, 1))), if O¢ O d2’ such that
m(q, m)= 0O (0, 9) Ddom Fand ¢(m, 1) # [
0 O, otherwise
Hence t(g, m) = (g, m),
where
n=max{k O N|1&(g, m) # O}
Since we assumed that [0 q 0 Q, m O M, 7’(g, m) halts, n is finite and Tt is well
defined.

Finally, we define the set of functions

- AqglaqoQ
which describes the computation 711 on empty moves:

Wgq: M *xZ* - Mx 2™
is defined by

O(m’, s), ifOm’ O M such that (g, m’) =t(g, m)

Wg.q(m, g = 0
00, otherwise

Therefore, qu.q(m, s) is defined if 7'(g, m) haltsin q; Wa.q keeps the input register
unchanged (this is because empty input moves do not affect this) while the machine
transforms m into m’, where m’ is the final memory value of the computation of 71'(q,

m).

Let

W={Wgqgla gUQand (q UTor¢ U Py suchthat F(q' ¢) # L)}
Thus W isthe set of those functions Wa.q for which g’ is either aterminal state of 7 or
there exists an arc emerging from g labelled by a non-empty input function.

Then, we have the following result.

Proposition 2.4.2.1.

Letl = (%, U, Q,M, &, F, qo, T, mg) be a deterministic SMS X-machine acceptor
and L be the language accepted by it. If 0 g O Q, m O M, 7M'(g, m) halts, then there
exists adeterministic S X-machine acceptor 71" with the type ®@" = ®1’ W, where

45

Chapter 2. X-machine - acomputational model framework.

P1'W={¢ Yqqld UP1,q qlQand(q T or ¢ [Py’ such that
F(a,9) # D)},

which accepts the same language L.

Pr oof:
We define the deterministic S X-machine 7" as follows:
1. The set of states Q, the memory M and the input aphabet (i.e. ¥) remain
unchanged. Obviously, the output alphabet isempty (T = 0).
2. (" and mg" theinitial state and the initial value of the memory are chosen such
that (0", Mp") = (Ao, Mg)-
3. The set of terminal statesis T (therefore unchanged).
4. Thetypeis®" = d1' Y.
5. The next state function F': Q x ®" -, Q isdefined by
Do, if a=F(p.9)
F'(p, ¢Yq.q) = U
04, otherwise
0q,q,pldQsuchthatq 0T or O¢ U Pq’ such that F(q) # 1.

Let L and L" be the languages accepted by 7 and 7" respectively. Then, we have to
provethat L = L".

LetsUL,s=0102..0n-1 and let

(o, My, 01... 0 -10) U ﬁOhﬁ%‘)—’(qo",I’T’IO",O'l...Oh—lé) O ﬁla(ql, My, O2...0n-10) [%Lhﬁ,ﬁl_>
(g",m", 02...0n-10)... Dﬁ"_»(qn, my,1) O %n[ﬁ']ﬁ,iﬂj"_,(qn",m")

be the computation determined by sd through 71, where kg, ..., kn ON, gg" and mg"
aretheinitia state and memory value of 7" and qn" is aterminal state (obvioudly,
¢i O CD]_’, i = 1 ...n andq)’i 1 e ¢’i Ki O CDZ’, i = o, ..., n).
Then ' '
0,1 - 0 k(M X) = Y gim (M, x), Ox T 2,1 =0,..,n,
hence the computation determined through 7" by sd is

(Q", M, On..0n-10) O Pitves (1", m", 02...0n-10) O ok QY s Ju (", me" 1)
Hences[L".
Note: The notation (g, m,t) O ¥ - (¢, n,t') used above denotes that the machine

follows the path {1 ... {kx and {q ... {k(m, t) = (M, '), with {q ... {k being transition
functions, m, m" memory valuesand t, t’ input strings.

46

Chapter 2. X-machine - acomputational model framework.

This follows from the following two facts:

i). ¢ 1 - 9 ki 9i+1(M;j; Oj+1 --0n-10) = G0 (M", Oj+1 ..0n-10) # [
fori=0, ..., n-1.
Since
¢ 1 - O ki Piva(Mi, Oj+1 ...0n-10) 20,
and
(0", $j+q) U domF,
it followsthat O ¢ 0 d2” with (q", ¢) U dom F, we have
¢ 1 - 9 ki O(Mj, Oj41 -..0n-10) = U
(thisis because 7 is deterministic).
Therefore
d)’,'ld)’,'kl(m' ,0i+1...0n_16) = l.IJqlql"(m|, 0i+1...0n_16 , i = 0,..., n-1
and hence
¢’i'1 q)’i'ki(mi, X) = qJCIi.CIi" (m,, X), Ox0O2*, i = o,...,n.

if). Since gn" isaterminal state of 71, we have

Fan', ¢)=0,0¢ 0 7.
Thus

®'ng - Onkn(Mn, X) = Ygn.gn(Mn, X), DX T 2.

The converse implication (i.e. if s L", then s L) can be proven similarly since

OmOM and Yq.q U W, thereisaset of functions ¢’jy, .., ¢’jx U @2, such that
Wa.g(M, X) = ¢ §j (M, x) Ox O =

and ¢j1... ¢’jk label apath fromqtoq’. ®

Therefore, if 7’(g, m) hatsJ g O Q, m 0 M, 7 can be converted into a S X-machine
with type ®@" = ®1’ W. We show now that, given a 1-stack SMS X-machine /i, there
exists a 1-stack SMS X-machine 7l equivaent to 7 (i.e. 7l and 7lg accept the same
language) such that 7lg(q, m) halts for any state g and memory value m. As a
consequence, 7l can be converted into a S X-machine (we shall prove later that the
S X-machine obtained is a RStack S X-machine).

Lemma 2.4.2.2.

Letm = (%, O, Q M, ®, F g T, mg) be a deterministic 1-stack SMS X-machine
acceptor. There exists then adeterministic 1-stack SM S X-machine acceptor

Me=(Z, 0, Qe M, @, Fg, gpe, Te: Mg) equivalent to 71 such that 7lg(q, m) halts [0
gL Qe mIM.

Pr oof:
In this case

47

Chapter 2. X-machine - acomputational model framework.

P71’ =P1' 0 P,
where

Dy =P x{L.glo D Z'},® =P x{l},
with

dp ={R.g4alQ} O {RgalQ}O {1},
where Q isthe stack alphabet.

Without loss of generality, we can assume that
P71’ ={l}x{Lglo0}

(thisis because (R-5, L-g) can be written as the composition of two functions,
(Ral-g)=(,Lg) (Ral);

similarly,
(Ra L-g)=(, L.g) (Ra 1))

Let G be the graphical representation of F (i.e. the state diagram associated with F).
We shall transform G into anew diagram G’ such that the computation of the machine
M remains unaffected. The following two procedures are used:

1) If there is an arc qO Y~ g (i.e. | is the identity function), then q and g’ are
merged. We have the following two cases.

a. Thereisno arc labelled (I, 1) from g’ to q (Fig. 2.9). By merging q and q, figure
2.9 istransformed into figure 2.10.

Note: ry, .., fj are arcs that are incident on g, sy, .., § arcsfrom ' to g, ug, .., uj arcs
from ' to any state other thanqand ', i, .., tx arcsthat areincidentonq'.

Figure. 2.9.

48

Chapter 2. X-machine - acomputational model framework.

Figure 2.10.

b. If there is an arc labelled (I, I) from g’ to g, then there is no other arc leaving g’
(otherwise the machine will be non-deterministic) and, once the machine is in the
stateq (or q'), it will loop forever. Then, figure 2.11 is transformed into figure. 2.12.

J

Figure2.11.

loop forever
Figure2.12.

We apply these two rules until all the edges labelled (I, I) bave been eliminated. Since
their number isfinite, the procedure will also be finite.

49

Chapter 2. X-machine - acomputational model framework.

2) Since
RaR.g=1,0all Q
RaRp=0,0abl0Q,azb,

any (Rg, 1) followed by an (R.p, 1) can be eliminated.

Let gand g betwo states such that:
1) there exists an arc labelled (Rg, 1), all Q, that connects them, i.e.

q 0 &b . q;
i) there exists at least one arc (R_p, 1), b U Q, that leaves q'.
Then, since 7 is deterministic, al of the arcs that leave g’ will be labelled by functions

belonging to the set { (R_¢y, 1), w 0 Q}. We show now that thearc q O Rerh) g can
be eliminated. We have the following cases:

a. There is no arc labelled (R_5, 1) leaving g'. Then the arc q D(ﬁﬁq g can be
deleted.

b. There is an arc labelled (R_5 I) from q to a third state g" (figure 2.13). By

eliminating the arc q O @a[@ -, qandq" are merged and figure 2.13 is modified
asshown in figure 2.14.

(1 tm

(R-b1, 1) ..., (R-bi, I)
b1, .., bj, cq, .., Cj 0 Q-{a.

Figure 2.13.

50

Chapter 2. X-machine - acomputational model framework.

t1

tm

(R-b, 1) ..., (R-bi,)

Figure 2.14.

c. Thereisan arc labelled (R_g, I) from q' to itself (figure 2.15). By eéliminating the arc
qd (ﬁaﬂﬁ - J,gand g are merged (figure 2.16).

(R-a, 1) (R-bL, 1) ..., (R-bi, 1)

b1, ... bj, c1, ... ¢ O Q-{a}.

Figure 2.15.

51

Chapter 2. X-machine - acomputational model framework.

(R-a, 1)(R-b1, 1) ..., (R-bi, I)

Figure 2.16.

d. Thereis an arc labelled (R_, 1) from g’ to g (figure 2.17). In this case, when the
machine reaches state g, it will loop forever; therefore, figure 2.17 is transformed into

figure 2.18.

ri

(Ra, 1)

a L
K (R-a,1)

(R-b1, 1) ..., (R-bi, I)
b1, .., bj, cq, .., Cj 0Q-{a}.

Figure2.17.

loop forever

(R_Cj)

(R-bi, 1) ..., (R-bi,)

Figure 2.18.

52

Chapter 2. X-machine - acomputational model framework.

Since the number of arcs of graph G labelled with functions of the type (Rg, 1) is
finite, the procedure which results from applying the rules above is finite. The
resulting graph will contain no pathsin which a(Rg, 1) isfollowed by a (R.p, I).

Since any input string which causes 7 to loop forever will not be accepted by this, we
can further modify the graph G without affecting the computation of 7] as follows:

1). Any arc labelled 'loop forever’ can be removed.

it). Any loop formed only by arcs labelled with functions of type (Rg, |) can be
opened by removing any of them.

Let G be the graph resulting from transforming G as above. Then we can construct
Ne=(Z,U, Qe M, @, Fg doe Te Mg)
al stack SM'S X-machine where:
1. Qeisthe state set of the graph G’
2. Teisthe set of all states g [Qg such that either:
g O T is atermina state of 7 that has not been affected by the above
transformation (i.e. it has not been merged with another state) or
g is a state obtained by merging a number of states of which at least one was a
terminal state of 71,
3. qgeliseither:
Jo. if this has not been affected by the above transformations or
the state that resulted from merging the initial state qq of 71l with other states,
4. Feisthe next state function determined by the graph G’.
Obviously the memory (M = Q*), the type ® and the initial memory value remain the
same as for 7.

From the construction of G, it is obvious that 7l and e are equivalent (i.e. they
accept the same language). We can now prove that the computation of 7lg'(g, m) halts
UqU Qe mUM.

Let N = card(Qg). Let q U Qg be astate of the graph G, m I M be avaue of the stack
and n be the length of m (i.e. the number of characters that m contains). Also, let p be
an arbitrary path in G’ that starts from the state g containing only elements of @5’ and
let |p|] be the partial function computed aong this path. We show that if
[pl(m, 1) # [, then p contains at most n + N arcs. Indeed, since |p|(m, 1) # O and
because p cannot contain a function of type (Rg, I) followed by another of type
(R-p, 1), p may bewrittenasp = p'p", where:

P =Rap!) ... (Rg,1),witha,.,g0 Q,0<i<n,

p" = (Rpy, 1) - (Rpj, 1) with by, .., bj O Q.
Since G’ does not contain any |oops formed only of functions of type (R, |) it follows
that] < N (otherwise there will be a state which appears twice, and so G’ will have
such loops). Thus p hasat most N + n arcs.
Therefore Mg (g, m)hats0 g0 Qe mUO M. ®

53

Chapter 2. X-machine - acomputational model framework.

We can now prove that the classes of 1-stack SMS X-machines and RStack S X-
machines acceptors are equivalent.

Proposition 2.4.2.3.
Let 7 be a deterministic 1-stack SMS X-machine acceptor. Then there exists a

deterministic RStack S X-machine acceptor 71" such that 71" and 7 accept the same
language.

Pr oof:
We shall refer to 7lg, the machine that results by applying lemma 2.4.2.2. Asin the
proof of this lemma, we shall assume (without loss of generdlity) that the set of non-
empty input moves of Mg is

@y’ ={l}x{L.gloT2}.
From lemma 2.4.2.1 it follows that 7lle can be converted into a S X-machine with the
type d1' W.

Let g, g [0 Q be such that g is either a terminal state of 7lg or there exists an arc
emerging from g’ labelled by a non-empty input function. Then we prove that Ya.q
can be written as a finite union of functions of the form (R__Ry,, I), where L J Q* is
anon-empty regular prefix and u [0 Q* afinite string.

Note: If f, g A — B are two partia functions with dom f n dom g = [J, then their
unionf I gisa(partia) function h: A - B defined by:
Og(a), if all dom g
h(a) = Oh(a), if ald dom h
g, otherwise

from theway in which q' is chosen it follows that

Wa.q =L Ipl,
where the union extends over all the paths p containing only empty input moves that
sartingandending’. Let p besuchapath. Thenp=p’ p", where

P =(Rapl) (Rg, 1), whereaq, .., g U Q,

p" = (Rpy,) - (Rpj, 1), where by, .., bj 0Q.
We saw in the proof of the lemma above that j < N, where N is the number of states
of the graph G'. Therefore the number of such p" is finite. We denote by {p1", ...,
Pn'} the set of all such p". Then let s {1, ..., n} be such that ps' = p" and let g be
the initial state of pg'. Then p can be written as p = p’ pg', where p’ is a path that
starts from g and finishes in gg. The machine 7g removes symbols from the stack
along p’ and adds symbolsto the stack along ;.

Now, for s=1, ..., n, let Hg be the (partial) function defined by

Hs=1 [p'],
where the union extends over all the pathsp’ of the form

54

Chapter 2. X-machine - acomputational model framework.

P =(Ral) ... (Rg,ag,.,g 0 Q, starting in g and ending in g
Then

Wq.q =UJHdp"|
s=1

It is clear that there is no arc from qg labelled with a function of the type (R.5, 1),
a Q (otherwise the machine would be non-deterministic). Therefore Hg removes
symbols from the end of the stack like a finite state machine with a single terminal
state (gg) and without any arc emerging from the terminal state. Hence, there is a
regular prefix Lg such that Hg can be written as (R_| g, I). If we denote by (R,) the
computation along pg", then we have

Wa.q = (U {RLjRy}. 1) . ©

Obvioudly, the converse implication is also true (since an arc labelled by a function of
the form (R._.Ry, L-g) can be replaced by a diagram whose arcs are labelled by 1-
stack SM'S X-machine type functions). Thus proposition 2.4.2.3. has been established.

Corollary 2.4.2.4.
The class of regular stack stream X-machine acceptors accept exactly the
deterministic context-free languages.

Example2.4.2.5.
Let>={a b, c} and
L ={alba2p ... drlparcSalrstlr= 1, 1<s<r, ij=1foral 1<j<r}.
We know that L is deterministic context-free, but it isnot areal time stack language.

A deterministic regular stack stream X-machine that accepts L is the following.
1. Q={xvy}
2.Mg=y
3. The state transition diagram is presented in figure 2.19; qq istheinitial state and
g4 the terminal state and ¢1, ... ¢ are defined as follows:
$1=(Rx L-3)
2= (Ry, L.p)
¢3=(l.L¢
¢4=(RL"L-0)
¢5=(Rx, L-a)
6= (Ry, L.y,
where L’ = {Xly|n= 0}.

55

Chapter 2. X-machine - acomputational model framework.

Figure 2.19.

We saw that a regular stack stream X-machine used stack functions of the form
R_LRy, where R_|_ removes symbols from the stacks like a finite state machine and
Ry, adds afinite number of symbols at the end of the stack. An aternative (but similar
in principle) approach would be to use an additional set of symbols (called the set of
markers) to mark each stack location and to allow the machine to remove al the stack
symbols until a certain marker is encountered. We will call these stream X-machine
with markers and we will show that they are equivalent to the class of regular stack
stream X-machines.

2.4.3. Stack stream X-machineswith markers.

The stack stream X-machine with markers (denoted MSack S X-machine) is a
generaisation of the tabulator machine introduced by Cole, [9]. The mode is
somewhat similar to aregular stack stream X-machine, since the machine can remove
in asingle move an unlimited number of characters from the stack. Unlike the regular
stack stream X-machine though, the stack stream X-machine with markers uses an
additional set of symbols to mark the locations where the machine stops removing
characters from the stack. Therefore, each stack symbol will be a pair (g, Bj), where a
is a pushdown symbol and Bj is a set of markers.

Cole, [9], clams that a tabulator machine is equivalent to a pushdown automaton.
However, there are some apparent gaps in the proof provided. We prove this result by
showing the equivalence between M Stack S X-machines and RStack S X-machines.

Definition 2.4.3.1.
Let M=, L Q,M,®,F Qg T, mg) astream X-machine. If
1L.M=Q* (hence X =* x Q* x 2'*),
with Q = A x £(B), where A and B are finite aphabets and (B) is the powerset of B.
A iscalled the set of push-down symbols and B the set of markers.
2. CD={Ry|yD M xdop x{L.glo0%},
where each @ U ®) is determined by a pair of partial functions (z, w),
z. A xP(B) - B,
w: A xP(B) - (A xrB)) O{1}) (1istheempty string)
such that

56

Chapter 2. X-machine - acomputational model framework.

OulQ* u=((ag, B) --- (&, Bk)), @is defined by:

0(20, Bo) -+ (@m, Bm) W(ak, Bk), if w(a, By) # O and z(a, Bk) #
@(u) =0

00, otherwise

where
m = max {n < kK| z(a, Bk) U Bp},

then 7 is called a stack stream X-machine with markers.
A stack generalised stream X-machine with markers (denoted MStack GS X-
machines) will have the type
{RglgO*} x oy x{L.glo O},
with @\, defined as above.

Therefore, z indicates the location where the machine stops removing symbols from
the stack (i.e. when the marker indicated by z is found) and w indicates the pushdown
symbol and the set of markers which have to be added on top of the stack; if
w(ak, Bk) = 1 nothing is added on top of the stack.

To prevent the stacks becoming empty, the bottom-most location is required to
contain (ag, Bg), with Bo= B, the entire set of markers.

Example 2.4.3.2.
Let>={a b, c} and
L ={adlbal2b ... ar-lparcSdr-stlr>1,1<s<r, ij21foral1<j<r}.
A deterministic stack stream X-machine with markers that accepts L is the following.

1.>2={ab,c}, =0.Hence X = Q* x 2* where Q isthe stack alphabet.
2.A={x,y};B={s t, u,v}.
Hence Q = {x, y} x {0, {s}, {t}, {u}, {v}. {s t},{s u}, {s v}, {t, u}, {t v}, {u v},
{s, t,u},{s t, v}, {t,u, v}, {st,u v}}.
3. mg=(y, B).
4. The transition diagram is presented in figure 2.20; qq is the initial state and g4
the terminal state and ¢1, ... ¢g are defined as follows:
$1=(¢1,L-3)
b2=(92, L-3)
$3= (93, L-p)
d4=(¢4, L0
¢5=(¢5, Lo
b6= (96, L-3)
¢7=(97.L-a)

57

Chapter 2. X-machine - acomputational model framework.

bg=(¢8 L-3)
with @ determined by zj and wj, i =1, ..., 8.

zi: Q - Bandwj: Q - (Q U {1}) are partial functions defined by:

Note: For the sake of simplicity the values for which the partial functions above are
not defined will not be listed.

z1(y, {s, t,u,v}) =

z1(y.{s,u}) =s
z1(y, {t, u}) =t
z1(y.{s,v}) =s
z1(y, {t, v}) =t

zo(x,{s,u}) =s
z(x, {t, u}) =t
zo(x,{s,v}) =s
zo(x, {t,v}) =t

z3(x, {s, u}) =t
z3(x, {t,u}) =s
z3(x, {s,v}) =t
z3(x, {t,v}) =s

z4(x, {s, u}) =t
z4(x, {t,u}) =s
z4(X, {s,v}) =t
z4(x, {t,v}) =s

z5(x, {s, u})=v
z5(x, {t,u}) =v
z5(x,{s,v})=u
z5(x, {t,v})=u

zg(x, {s, u}) =s
zg(x, {t,u}) =t
zg(x, {s,v}) =s
zg(x, {t, v}) =t

z7(x,{s, u}) =t
z7(x,{t,u}) =s
z7(x,{s,v}) =t
z7(x, {t,v}) =s

zg(y, {s t,u,v}) =

s wa(y, {s, t, u,v}) = (x, {s, u})
wa(y, {s, u}) = (x, {t, u})
wa(y, {t, u}) = (x, {s, u})
wa(y, {s,v}) = (x,{t, v})
wa(y, {t,v}) = (x,{s, v})

wo(x, {s, u}) = (x, {t, u})
w2(x, {t, u}) = (x, {s, u})
w2(x, {s,v}) = (x, {t, v})
w2(x, {t, v}) = (X, {s, v})

wa(x, {s,u}) = (y,{s v})
wa(x, {t, u}) = (v, {t, v})
w3a(x, {s,v}) = (y,{s u})
wa(x, {t, v}) = (v, {t, u})

wy(x, {s,u}) =1
wy(x, {t,u}) =1
wy(X, {s,v})=1
wy(x, {t,v})=1

ws(X, {s u})=1
ws(x, {t,u}) =1
ws(X, {s v})=1
ws(X, {t,v})=1

we(x, {s,u}) =1
weg(x, {t,u}) =1
we(x, {s,v}) =1
we(x, {t,v}) =1

w7(x,{s,u}) =1
w7(x, {t,u}) =1
w7(x,{s,v})=1
w7(x, {t,v}) =1

S wg(y, {s,t,u,v})=1

58

Chapter 2. X-machine - acomputational model framework.

zg(y,{s u}) =s wg(y, {s,u}) =1
zg(y, {t, u}) =t wg(y, {t,u}) =1
zg(y,{sv}) =s wg(y, {s,v}) =1
zg(y, {t, v}) =t wg(y, {t,v}) =1

Figure 2.20.

Another interpretation of each @ [®), isthe following.

For each topmost symbol of the stack (ak, Bk), each @ [I ®d), removes symbols from
the memory stack like a finite state machine with two states and with no arc leaving
the terminal state (see figure 2.21) and adds the last symbol removed and another

(possibly empty) symbol w(g, Bk).
Q ,(ak, BK)

Q 1(ak, BK)
gl g2

Q1(ak, Bk) ={(c, D) U Q| z(a, Bk) 0 D}, Q2(ak, Bk) = Q - Q1(ak, By)-
g1 istheinitial state, gy isthe terminal state.

Figure 2.21.

Thus, as with the regular stack model, finite automata can be used to compute each

@ U d\; unlike these, though, the MStack S X-machine uses more than one (a finite
number, one for each stack symbol) finite automaton to compute each @ [®)4, but
these automata are smpler.

We now prove that deterministic MStack S X-machines and RStack S X-machines

are equivalent.
2.4.4. RStack S X-machinesand M Stack S X-machines are equivalent.

59

Chapter 2. X-machine - acomputational model framework.

Proposition 2.4.4.1.
For any deterministic stack stream X-machine with markers 7 there exists a

deterministic regular stack stream X-machine 71’ such that 7 and 7’ are equivalent (i.e.
they compute the same function).

Pr oof:
Let m=(%T,Q,M,d,F qgg T, mg) beaMStack S X-machine with M = Q* and
Q = A x P(B).
Then O ¢ O ®, ¢ will have the form

¢ = (or, @ @),
with - O{RylVO '}, ¢z O{L-glo0 27} and @ [0 ®pg (Ppy is as defined in definition
24.3.1).

We show that 7 can be simulated by the RStack S X-machine
m=rQmMm &, F,Q T mg
inwhicheach¢ [@, ¢ = (@, @, @s) isreplaced by a set of functions
{01, ...k} O P (i.e.® isthetype of the RStack S X-machinel’),
with¢;’ =@r, ¢, ¢s,), 1 =1, ..k
Therefore the ' next state’ function of/’ will be defined by

F(,¢i)= Fa9),09g0Q,i=1, ..., k.
Themapping @ — {@1’, ...’} isdefined below.

Let @ (A x P(B))* - (A x((B))* defined by

ZZAxPB) - Band w: A xP(B) - A xP(B).
Let (3, C) O A x #(B) and @|(a, C) be the restriction of @to Q*{(a, C)}. If z(a, C) = O
or w(a, C) = [then g|(a, C) is the empty function. Otherwise, we prove that g|(a, C)
can be written as a finite union of functions of the form R Ry (L O Q* is a non-
empty regular prefix and u [Q*). We have the following two cases.

i)Letb=2z(a C).If bOC, thenletL ={a C} and u=w(a C). Then
¢l(a C) =R_Ry.
ii) Otherwise let
D={B’0B|b0OB'} andE={B'0B|bB'}.
Then, we define
Lyy=@C) (> @.B)*(x,y)Ox0OA yOE.
a[A,B' D
Itisclear that Lyy isaregular prefix. We also define
Uxy = (X, y) W(a, C).
It is easy to verify that ¢l(a, C) canbewrittenas] R_| x/Ruxy-

XOA,yOE

60

Chapter 2. X-machine - acomputational model framework.

Sincegp= U @(a, C), @canbesimulated by afinite set {@q’, ... @’} of functions

alA,ClP(B)

of theform R__Ry,.

From the construction of 9 it is clear that if 7 isdeterministic, 7' is deterministic.
®

The converseimplication is also true. First we need the following technical result.

Lemma?2.4.4.2.
Let 7 be a regular stack stream X-machine. Then, by a suitable enrichment of the
stack alphabet, ®), can be considered as
oy ={R | RyuC{1} 0QO Q2 whereL 0 Q* isaregular prefix, L # 0, {1}}
O{RyluO {1} O Q}.
Also, we can consider that the initial memory value of a 7l can be chosen as
mo U{1} O Q.

Pr oof:
Without loss of generality we shall consider that ®), is finite (this is because only a
finite number of functions are used to label the arcsin). Then
CDM Z{R-LiRUil i = 1, .., n}.
Let m=max ({|uj| |1 =1, ..., n} O {|mgf}). Then let Q" be an alphabet with the same
number of elementsastheset Q 0 ... 0 QM and
h.QO..0Qm._ o
be a bijective function.
In what follows h(x) will bedenoted by [x], Ox 0 Q O ... 0 QM.

The idea we shall employ is to transform 7l into a RStack S X-machine 71’ with the

stack aphabet Q'. The state set, the initial state and the set of terminal states will
remain unchanged. The initial memory value of " will be [mg]. The next state
function of 7’ will be obtained from the next state function of 7 by replacing any arc

qD%QI]ZlI?_»q’,(pD O]V R
with anumber of arcs

qD%DH—»Q’,...,qD%}DB_,q’

suchthat § = | J @ simulates .

i=1

Then, for each
OU{R iRyl =1, ... n}

61

Chapter 2. X-machine - acomputational model framework.

we have to find the corresponding function such that ¢ simulates ¢ and ¢ can be
written as afinite union of partia functions of the form R_| 'Ry, with L’ [0 Q™ anon-
empty regular prefix and u' 0 {1} O Q. In other words, let

g Q* - Q
be the surjective morphism induced by

g([u) =u,0ub Q.
Then for each ¢ as above, we have to find Y such that the diagram

L

Q W Q

. 0 R
Q Q

L

commutes and Y can be written as afinite union of the functions as described above.
Let 9= R__Ry. Then we have the following two cases.

i) If L={1}, then
g= R[u], [u O{1} O Q’ (i.e. if u=1, [u] denotes the empty string 1).

ii) OtherwiseL # {1}. Thenlet s [0 Q'*, s =[\{] ... [Yk]. Then we define Y by

W =hRpy,
where

O[yal - [yj-al [yi’l, ifOv O L suchthat y; ... yk =y’ rev(v)
h(s)= O with [y’| < Iy
00 O, otherwise

Itisclear that hiswell defined and gf =f’g.

Therefore h removesthe string [yj+1] --- [Yk]; Lyj] is either removed (i.e. if
Yi - Yk = rev(v)) or replaced by [yi'], O < |y'| < I, if yj ... Yk = ¥i" rev(v).

Since |y’ |C {0, ..., m-1}, h can be written as a union of functions of the form
U RLyRrevy)]

[ylcm
where

L1 .. xj = G HLXq ... X)) - (@HLxq . xj-DIX] O g U (Lxq ... Xj-2)[xj-1][x]] O
glilxy .. x2Mx.14] O glixy ... x-3)x-2[xj-11x] O

62

Chapter 2. X-machine - acomputational model framework.

gl(Lxy .. x3)X-2xj-1llx] O gl(Lxg ... x-3)[xj-2l[xj-1x] O
g l(Lxg .. Xj-3)[Xj-2%j-1x] O ... O g L(L)[xq ... Xj])
X1, X 0Q,j<m.
Aside. An example will illustrate the construction.
LetQ={a b,c} andm=2. Then
Q' ={[a], [bl, [c], [aa], [ab], [ac], [ba], [bb], [bc], [ca], [cb], [cc]}.
If L ={ab*c}, then
g1(L) = ([+ [ab]) ([b] + [bb])* ([c] + [be]) + [ac].
The minimal automata 4 and 4’ of L and Lq’ = g1(L), respectively, are represented in
figures 2.22 and 2.23.

b
a C
The minimal automaton of L

Figure 2.22.

The minimal automaton of L1’

Figure2.23.

Then
La = gl{ab*ca) - gl{ab*c})lal
Ly =gl({ab*ch}) - gl({ab*c})[b]
L¢ =gl{ab*cd}) - glfab*c})c] -

Since L is aregular prefix, all the sets L'y are regular prefixes (this follows from
lemma4.2.1.7). Therefore, the function () can be written as

b =(U RLyR{rev(y)) R[u].

lyl<m

where all of the sets Ly are regular prefixes.

The equivalence of the two machines (7 and 1) follows since for all input sequences
x O 2*, x takes 7 from its initial state and initial memory value into the state q and
memory vaue s iff x takes 7’ from itsinitia state and its memory value into the state
g and the memory value s, such that s [g-1(s); also, the output sequences produced

63

Chapter 2. X-machine - acomputational model framework.

by the two machines when they receive x are the same (this follows using a smple
inductive argument). ®

Proposition 2.4.4.3.
For any deterministic regular stack stream X-machine 7, there exists a deterministic

stack stream X-machine with markers)’ such that? and 7’ are equivalent.

Pr oof:
Letm=(%T,Q M, D, F go T, mg) be adeterministic RStack S X-machine with
stack aphabet Q. Hence
P={d=(Pr. Q@) "> I, @1 Z¥ > ¥, @ Q* - QF,
@r D{RIYOT}, @5 O{L.glo O T},0 D},
Without loss of generality we shall consider that ®), isfinite. From lemma 2.4.4.2, it
follows that ®)\q will have the form
dp ={RRuilLi {1}, yyO{1} 0 QO Q2i=1,.n 0O {Rylud {1} OO0 Q}.
Wealso assumethat mg L {1} 0 Q.

Let
g={LxYx00r Lixl20},i=1, .0
Since Lj isaregular language, /j isfinite. Letkj =card(?j),1 =1, ..., n.

We shall prove that 7 can be ssmulated by a MStack S X-machine 71’. The proof will
employ the following ideas:

Let y O Q* be a stack value and L [0 Q* be a non-empty regular prefix. Then R.
Ly) 20 iff Ot 0 Q*, & UL such that y =t rev(§). Hence y = twm, with @ = rev().
Therefore the end part of the stack is the reverse of an element of L. Hence R_|_(y) #
O iff y can be written asy = tw, with rev(w) O L (or {1} O L rev(w)™1).

On the other hand, since 0 x, X’ 0 Q*, L rev(xx)"1 = L rev(x)-1rev (x)-1, we can
keep track of all values L rev(w)-1 # 0, where w is the end part of the stack (i.e.

Ot 0 Q* such that s = tw).

Construction of M'.
Weconstruct ' =, L, Q', M@, F,), T', my’) aMStack S X-machine as follows.

1.Q=0x({10Q0 QZ)’ do=(0gMmp), T'=Tx({} 0QO0 QZ).

2. M’ = Q™* with the stack alphabet Q' = A x *(B), where the set of pushdown

symbols and the set of markers are defined as follows.
Let {Bij}j =1, ..., n beafamily of sets such that

card(Bj) = kj + 1and (] Bj=0.
i=1
Then the set of markersis

64

Chapter 2. X-machine - acomputational model framework.

B=0 Bj.

i=1

The set A will be
A=A1x . xAp,
where
Aj ={9gil gi: Zj —» Bjisapartial function}.

Notation: In order to simplify the notation in what follows we define, for an arbitrary
finite set X, the random function RA[X]: (P(X) - X) - X, where for each proper
subset of X, X’, RA[X](X") = x, wherexJ X and x [J X’ is chosen at random.

3. Theinitial memory valueis

Mg = (%10 - 9n0). B),
where gjg istheinitia value of gj, i =1, ..., n, defined by:

gio(Lj) = Rd[Bj](?) and undefined for Zj - {Lj}.
Theinitial value of the markers set is Bg = B.

4. The next state function F of 7" follows from the next state function F of 7 by
applying the following transformations:

a) Each arc from 7 of the form

q Dfa q,withe¢ =(or, ¢ ¢x), 0= R iRy, LiZ2{1},y O {1} 0D QO Q2,
isreplaced in 7’ by the set of arcs

(q, v)Dﬁ (g, w), vO{1} 0 QDO Q2

b) Each arc from 7 of the form

q Dfﬁ q,withé =(or, ¢ ¢y), 0= Ry, uld {1} O Q,
isreplaced in 7’ by two sets of arcs as follows:

@vof ., uvomoo

(g, v)O ﬁ - (q, rear(v) u),v Q2.
Note: head and rear are defined in definition 2.3.1.

For & = (¢r, @ ¢x) and v 0 {1} O Q O Q2 we denoted by ¢\, the function
oy’ = @r, ¢,/ ,¢5), where each @, isdetermined by apair of functions (z, w),
w: A xPB) - (AxrB))O{1})andz: A x?(B) - B.
The definitions of these functions (and therefore the definition of ¢,’) depend on the
following two cases.

CaseA. =R iRy Liz{1},ui 0{1} 0 QO Q2

65

Chapter 2. X-machine - acomputational model framework.

n

Let a0 A and C O #(B), a=(gy, .. gn). C = |J Cj with Cj O Bj, the pushdown
i=1

symbol and the markers set respectively of the topmost location of 7.

i). We definew by:
O (91 .., '), b)), if v0 Q2 and rear(v) O L
w(a C)= [O1,if JL O dom (gj), such that rev(v) O L D
0 [, otherwise

whereb’ = {by’,..., '} with q 0 Bj,j =1,..,n.
The expressions of 9 t]] =1, .., n, aregiven below.

Let dom (gj) ={Ljg, - Ljr}, r < kj- Then

dom (gj") ={Ljshead(v)-1, ..., Ljrhead(v)'1} - O O {Lj}, 2)

of (Lshead(v)) = gj(Lj9), if Ljshead(v) 1 # 0, s= 1, ...,)

o' (1) = RAB{I(gj(Ljsl Lighead(v) 1 # 0, 5= 1, ..., 1}), (4)

bj' =g (). (5)
ii). z is defined by:

O RA[C](D), if v 0 Q2 and rear(v) O Lj
z(a, C) = gj(L), if UL O dom (gj) such that rev(v) U L (6)
0 [, otherwise

CaseB. =Ry, ud{1} O Q.
Then @, isdetermined by the pair of functions z, w as follows.
i). We definew by:
091 ... a),), if VOQ O Q2

w(g C)= 0 1)
O 1, otherwise

whereb’ = {by’,..., |’} with q 0 Bj,j =1,..,n.
The expressions of 9 t]] =1, .., n, aregiven below.

Let dom (gj) ={Ljg, - Ljr}, r < kj- Then

66

Chapter 2. X-machine - acomputational model framework.

dom (gj") ={Ljshead(v)-L, ..., Ljr head(v)"1} - O O {Lj}, 2)

gi' (Lishead(v))) = gj(Lj9), if Ljshead(v) 12 0,s=1, .1, (3)

g/ (4j) = RA[B{1{gj(Lj9l Ljshead(v) 1 £ 0, 5= 1, ..., }), 4)

bji" =g’ (L. (5)
ii). zis defined by:

z(a, C) = RA[C](O) (6)

From the construction of 7’ it follows that the set of markers of each location except
the bottom-most will contain n markers, one from each B;.

Let us now explain how 7’ simulates 7. If a certain input sequence will take 71 into
the state g with the stack value y, then the same input sequence will take 71’ into a
state (q, v), v O {1} O Q O Q2, such that v is the end part of the stack valuess, i.e. (O
T U Q* such that y = tv). The function g; of the topmost location will associate a
marker with each non-empty set Ljx~1, where x isthe end part of T reversed (i.e. Ot O
Q* such that T =t rev(x)). Also, each stack location (apart from the bottommost) will
be marked by n markers, one from each Bj. When 7 adds or removes symbols from
its stack, 7" will add updated versions of the functions gj and a new set of markers or
removes symbols from its stack such that at any time |u| = [t| + 1, where v is the stack
value of .

The fact that 7 is well defined and that 7, and 1’ are equivalent follows from the
following three lemmas.

Lemma 2.4.4.3.1 (inside proof).
Let v [0 Q™ the stack value of 7', U = WEW] ... Wk, With wg, W1,..., Wk T Q’ (i.e. wg is
the value of the bottommost location of the stack). Let (glj gni) be the pushdown
symbol of wj and CI = {byl...., by}, bj) O Bj, the set of markers of wj. Then, for
i=1, ..., nwehave
1. 0t 0Q*, [t] =Ju| -1 (i.e. the length of v without the bottommaost location is the
length of 1), such that

dom gjl = {Lj(rev(x))"1 # O] 0t 0 Q* suchthat xj =tx},j =0, ..., k,
Wher_exJ' 0 Q* satisfies|Xj| =) and Xj'll' z0 (i.e de 0 Q* suchthat t = dej).
2. gjl iswell defined, j =0, ..., k.
3. gjl isinjective, j =0, ..., k.
4.Letj 00, ..., k-1and let dj = xj~1t. If Li(rev(dj))-1 = O, then bil OCF r=j+1,., k.
Also, bil = gik(Lj(rev(dj))D).

67

Chapter 2. X-machine - acomputational model framework.

Pr oof:
1. It follows by induction on k using the definition of @,/ (i.e. the expressions of 9’
function of 9 asgiveninreations (3), (4) and (3'), (4')). We use the fact that

Lj rev(xa)1=L rev(x)-lrev (0)-1, Ox 0 Q*, a O Q.
2. Since Lj is a prefix, the sets {Lj(rev(x))-1 2 O] Ot O Q* such that Xj = tx} will be
disioint. Hence gj) iswell defined.
3. It follows by induction on k using the same definition and relations as 1.
4. Letdi=ay ... ag.j, withay,... ak-j O Q. From 1 it follows that

Liap L. (@rj)-l0domg", r=j+1, ... k
Since g’ isinjectiveit follows that

gif(Li(aDL.. (ar ™D 2 g"(Li). _
Hence, since b = gj'(L;) (relations (5) and (5')) it followsthat R} O C', r =j+1, ..., k.
By induction on the length of dj it follows that gik(Li(rev(dj))'l) = gjl(L;). Hence
bil = giK(Li(rev(d))1). O

From lemma 2.4.4.3.1, 2, it follows that gij is well defined for any stack location.
Hence w is well defined. Also, z is well defined since the two conditions from
relation (6) yield digoint domains.

We can now prove the equivalence of 7] and 71’. This is done using the following two
lemmas.

Lemma 2.4.4.3.2 (inside proof).
Let sJ >* be an input sequence. If stakes 7 from its initial state and memory value
to the state g I Q and stack value y [1 Q*, while producing an output sequence g [1 I
* thenthereexistv {1} 00 Q[Q2,1 00* andv O Q'* such that;
1ltv=y.
2. stakes " from itsinitial state and memory vaue to the state (g, v) and the memory
value v while producing the same output sequence g.
3. v satisfies Ju] = [t] + 1.
4. Let U = WEWY... Wk, With wg, wW1,..., Wk U Q' (i.e. wg is the value of the
bottommost location of the stack). Letj [0{0, ..., k} and (glj gni) be the pushdown
symbol of 0. Then:

dom gil = {Lj(rev(x))1# O] Ot O Q* such that xj =tx}, i = 1,..., n,
WherexJ' 0 Q* satisfies|Xj| =j and Xj'll' z0 (i.e de 0 Q* suchthat t = dej).

Proof:
We prove this lemma by induction on the length of the input sequence s. For s =1
statements 1 - 4 are true (i.e. we take T = 1, v = mg (the initial memory value of)

and v containing only the bottommost location of the stack of 71’).

68

Chapter 2. X-machine - acomputational model framework.

Let usassumethat 1 - 4 aretruefor sand let o O > be such that there exists an arc

qD£~q’,¢=(Ry, O Lg)yUleUdym
such that (y) # [I. Then let @(y) =y’. We prove that thereexist v’ 1 {1} 00 Q [I Q2,
T 0Q* and v’ 0 Q'* such that:
1.7V =y,
2. Thereexistsan arc

@O @ v). by =R o, Lo,
in7" suchthatg,’ ©) =v’.
3.v sdisfiesp’|=1'| + 1.
4. Let U’ = wgwy'... wk’, with wy', wr',..., w’ 0 Q. Letj O {0, ..., k} and (91)
gni) the pushdown symbol of wj’ . Then:

dom gil = {Lj(rev(x))1# 0] Ot 0 Q* suchthat xj’ =tx},i=1,..., n,
Wherer’ 0 Q* satisfi&c|xj"| =j and>i"1r’¢ O (i.e. de 0 Q* such that U :>i’q).

We have the following cases:

A o=Ry,ul{1} OQ.
)Ifv=1thenv =u,TU =tand v’ =v.
i IfvidQ,thenv =uand T = tv. U = vw, where w [Q' has the pushdown
symbol (91 .., gn) with
dom gj = {Lj(rev(x))"1 # 0|0t 0 Q* suchthat v =tx},i = 1,..., n.
i) Ifv O Q2 thenv’' = rear(v) uand T’ = 1 head(v). v’ = LW, where w [Q’ has the
pushdown symbol (91 .., gn) with
domg; = {Li(rev(x))'l:t 0| Ot 0 Q* such that T head(v) =tx}, i =1,..., n.
It can be easily verified that the statements 1 - 4 are true.

B.o=R. iRy LiZ{1},ui O{1} 0 QO Q2
Inthiscase R_ j(y) # U iff Dw U Lj, al] Q* suchthaty = arev(w). Hence
TV = arev(w). So we have the following cases:

yvd Q2 and rear(v) = rev(w). Hencerear(v) LI Lj. In this case we have v’ = uj and

T =1 head(v). v” =vw, where w 1 Q' has the pushdown symbol (g .., gpp) With
domg; = {Li(rev(x))'l:t 0| Ot 0 Q* such that T head(v) =tx}, i =1,..., n.
It can be easily verified that the statements 1 - 4 are true.

i) Ob O Q* such that rev(w) = bv and t = ab. Hence rev(v) rev(b) U L. Therefore
rev(v) O Lj rev(b)-L. Let L = Lj rev(b)-1. Then ¢, removes symbols from v until the
marker gj K(L) is encountered. Using lemma 2.4.4.3.1, 4, and relation (6) it follows
that @,'(U) = v’, such that v’ is obtained by removing [b| symbols from the end of v.
Therefore conditions 1 - 4 are satisfied for v =aand v’ = ¢. [

Lemma 2.4.4.3.3 (inside proof).

69

Chapter 2. X-machine - acomputational model framework.

Let sJ >* be an input sequence. We assume that s takes 71’ from itsinitial state and
memory value to the state (g, v) 0 Q x ({1} 0 Q [QZ) and stack value v [0 Q™
while producing an output sequence g L1 I'*. Then there exists t 1 Q* such that:
1. stakes 7’ from its initial state and memory value to the state g and the memory
value v while producing the same output sequence g.
2. v|=f|+1.
3. Let U = WeW1... Wk, With wg, W1,..., i 0 Q. Letj 0{0, ..., k} and (gq) .., gr) the
pushdown symbol of 0. Then:

dom gjl = {Lj(rev(x))1# 0] Ot O Q* such that xj =tx}, i = 1,..., n,
WherexJ' 0 Q* satisfies|Xj| =) and Xj'll' z0 (i.e de 0 Q* suchthat t = dej).

Pr oof:
By induction, in a manner similar to lemma 2.4.4.3.2. The induction step consists of
showing that if 7’ follows an arc

@WOH (@, v), 0y =Ry &/, Lo) with g, 0) = v
then 7’ will follow the arc

q Dﬁq q, o= (Ry, ¢ L_g) with @(tv) = T'v’, where T’ satisfies conditions 1-3
withrespecttov’ andv’' ®

Corollary 2.4.4.4.
The class of stack stream X-machines with markers accept exactly the deterministic
context-free languages.

2.4.5. Assessment of the stream X-machine model

At first sight the stream X-machine model appeared to be too restrictive to cope with
many common applications. We investigated the k-stack stream X-machines and we
saw that there were context-free languages that could not be accepted by such
machines.

But the power of the model increases by using more complex @'s. We have presented
two classes of stream X-machines (i.e. RStack S X-Machines and MStack S X-
machines) that accept exactly the deterministic context-free languages. These stream
X-machines use @'s that can be computed using simpler stream X-machines (i.e. finite
automata). In this way we can build even more complex stream X-machine models.
For example, we can define a k regular stack (generalised) stream X-machine
(denoted k-RStack (G)S X-machine) like a regular stack machine but with k stacks
instead of one. These machines will accept a larger class of languages (i.e. it will
include both the deterministic context-free language and real time stack languages).

70

Chapter 2. X-machine - acomputational model framework.

Also, the hierarchy of (G)S X-machines can be continued further using the idea
employed in the construction of RStack S X-machines. Following this approach we
can construct (G)S X-machines with one stack (i.e. M = Q*) and the set of functions
that operate on that stack

®p = {R.LRylu Q*, L O Q* isanon-empty prefix},
where L is a language for which we already have a computational model (e.g. L isa
language accepted by a RStack S X-machine or ak-RStack S X-machine).

2.5. Conclusions and further work.

We have investigated two particular classes of X-machines. Firstly, a very generd
class, the straight-move stream X-machines, that can model any type of Turing
computation. However, the generality of the model makes it an unlikely basis for a
theoretical testing methodology.

Secondly, we investigated a more restrictive class, the stream X-machines. These are
the machines on which our testing method will be based. We have seen that, although
more restrictive than the straight-move stream X-machine, the stream X-machine can
be used to build models of complex computational devices. The approach employed
was a hierarchical one, in which a machine uses basic operations that have been
specified by simpler S X-machines. This appears to fit the approach used in practice
for developing specifications of complex systems (i.e. a complex specification is built
in terms of simpler ones). On the other hand, the use of the stream X-machine as a
specification tool has been tried on numerous systems, some of them fairly complex
(see Laycock [41], Howe [35], Chiu [5]) and the model appears to cope successfully
with awide range of applications.

Further work could concentrate on extending the hierarchy of stream X-machines.
Following the approach used in this chapter, if 2 is a class of languages accepted by a
certain class of (G)S X-machines, then the next level in the hierarchy will be the class
of (G)S X-machines with one stack (i.e. M = Q*) and the set of functions that operate
on that stack

®p = {R.LRylu 0 Q*, L O Q* isanon-empty prefix, L [2}.

An dternative (and more powerful) approach we can employ for building hierarchies
of GS X-machines could be as follows. Let = a finite alphabet and f: 2* - %* a
partial function such dom f is a non-empty prefix. We denote by R a (partial)
function Ry 2* - &*

defined by:

O srev(v)-Lrev(f(v)), if Ov O dom f such that srev(v)-1z 0O,

71

Chapter 2. X-machine - acomputational model framework.

Rf(9)=10
00, otherwise

If f isafunction computed by a GS X-machine 7 and s J Z*, then R_¢(S) operates as
though 71 starts removing inputs /adding outputs from the end of the sequence s. This
is similar to the definition of R_|, but in this case 7 does not only remove input
symbols, it replaces them with outputs.

For example, let = ={a, b, c, x,y, z} andf: Z* - Z* bethe partial function with

domf ={ab*c}
defined by _
f(ablc} =xy!z,i = 0.

Then:
1. If the value of the stack is s = aacbba, then R_f (s) = aazyyx.
2. If the value of the stack is s = aacbbab, then Rt (S) is not defined.

Then, we can say that a GS X-machine is a (n+1)-complex Sack GS X-machine,
n=0,if itsmemory isM = Q* and itstypeis

P={RUyUTl} x®y x{LgloDUZ},
where

P\ = {Rg] f: Q* - Q* isapartia function computed by a n-complex Stack
GS X-machine such that dom f is a non-empty regular set}.

We shall aso define a O-complex Stack GS X-machine to be any machine that
computes the partial function f: 2* — 3* with
dom f = {1}, defined by f(1) = 1.

Let us denote by Mp, the class of n-complex Stack GS X-machines and Fp, the class of
functions they compute. Then M1 will be the class of finite state machines with
outputs (and with the property that when an input symbol is read the machine can
produce a sequence of output symbols, not only one). However, F» is larger then the
class of functions computed by RStack GS X-machines. In fact F2 includes al of the
functions computed by k-RStack GS X-machines. This follows easily from the
following two remarks.

1). Let L O Z* anon-empty regular prefix and u O Z*. Then R R, = R-f, where f:
2* o Z* isapartia function with dom f = L defined by

f(s) =rev(u), OsOL.
Itis easy to show that f [F1.

2). Let @ (=*)K = (=z*)K apartial function defined by
¢®=(R.L1Ruz- R-LkRu)

72

Chapter 2. X-machine - acomputational model framework.

with L1, ..., Lk O Z* non-empty regular prefixes and uq, ..., ux O Z*. Using 1) it
follows that ¢ can be written as
0= (Refy, - RAK)
for some partia functions fj: =* - 2*, fj O Fq, i = 1, ..., k. Then the function ¢
operating on k stacks can be simulated by a function) = R.g whereg: Q* - Q* isa
function that operates on a single stack. The values of the k stacks will be placed on a
single stack separated by some special symbolsay, ..., g suchthatg 0 Z, i =1, ..., k
(i.e.if s1, Sp, ..., Sk are the values of the k stacks, then the value of the new stack will
be a1s1899)...aKSk)-
Then the stack alphabet will be Q =3 [0 {&, ..., a}. The partial function g will have
dom g =dom fi >* {ak} ... domfo Z* {ap} domfq =* {&aq}
and will be defined by
O(XkYkak---X1Y1a1) = fFk(Xk)Ykak---f1(Xpy1a1,0 x1 O dom fq,..., Xk O dom fy,
Y1, - Yk O 2*.

Since dom f1, ..., dom f| are prefixes, g is well defined. It can be shown easily that
gUF1.

Obvioudly, this hierarchical approach requires much further investigation. Two
interesting questions that arise are:

How far can we get using this approach? We know that any language accepted by
a n-complex stack GS X-machine is recursive (see proposition 2.4.3). But how close
to the set of recursive languages can we get?

Does this hierarchy continue infinitely, is there any n such that
{n-complex Stack GS X-machines} = {(n+1)-complex Stack GS X-machines} ?
This approach could provide us with a natural way of classifying context-sensitive
(or even recursive) languages.

Another interesting area to explore is whether the X-machine model could be used to
classify non-Turing computable functions, i.e. having a cetan set & of
noncomputable functions and =(®P) the set of functions computed by the X-machines
with type @, under what conditions @ is strictly included in =(®)?

Acknowledgement:

Theorem 2.3.9 is a generaisation of a result stating that a Turing machine acceptor
can be simulated by a 2-PDA (i.e. a PDA with two stacks) (see Cohen [8]). The
concept of S X-machine was introduced by Laycock, [41]. The concept of MStack S
X-machineis ageneralisation of the tabulator machine introduced by Cole, [9].

73

