
7

Chapter 2.

X-machines - a computational model framework.

This chapter has three aims:

• To examine the main existing computational models and assess their
computational power.

• To present the X-machines as a unified computational model framework of
which the above mentioned models are particular cases and to highlight its potential
as a specification tool.

• To investigate two natural classes of X-machines (i.e. straight-move stream
X-machines and stream X-machines) and discuss them from two points of view:
 • how general they are as specification tools
 • to what extent they can provide a basis for a theoretical specification based
strategy.

2.1. Computational models survey.

The emergence of the concept of computable function over sixty years ago marked the
birth of a new branch in mathematics. A main purpose of computability theory is to
make precise the intuitive idea of a computable function; that is, a function whose
values can be calculated in some kind of automatic or effective way. Certain classes
of computable functions (or languages) can be obtained using certain types of
procedures; these are the computational models corresponding to those classes of
functions or languages. These models can be classified according to their
computational power, i.e. how large is the class of functions and languages they can
cope with. This hierarchy of languages and computational models is known as the
Chomsky hierarchy.

In this section we shall be presenting the main existing computational models and
describe their power in terms of the languages or functions they compute.

Chapter 2. X-machine - a computational model framework.

8

2.1.1. Automata.

The finite automaton is a mathematical model of a system with discrete inputs and
outputs. The system can be in any of a finite number of internal states. The state of the
system summarises the information concerning past inputs that is needed to determine
the behaviour of the system on subsequent inputs.

Definition 2.1.1.1.
Let Σ be a finite alphabet. A finite automaton (or finite state machine) denoted FA,
over Σ consists of the following components (see Cohen [8], Kain [40] or Hopcroft &
Ullman [33, 34]):

 1. A finite set Q of elements called states.
 2. A subset I of Q containing the initial states.
 3. A subset T of Q containing the terminal states.
 4. A finite set of transitions that give, for each state and for each letter of the input
alphabet, which state (or states), if any, to go to next. This can be represented as a
partial function F: Q × Σ → Q, where F(q, σ) contains the states the machine is
allowed to go to from state q when it receives the input σ .

Alternatively, each letter σ ∈ Σ can be regarded as a partial function σ: Q → Q.
Each triple (q, σ, q’) ∈ Q × Σ × Q, where q’ ∈ σ(q), is called an edge of the
automaton. We frequently use the notation q σ → q’ to indicate the edge. A sequence
of edges is called a path .

The automaton is presented with an input string of letters (or characters) that it reads
letter by letter starting at the leftmost letter. Beginning at one of the initial states, the
letters determine a sequence of states. The sequence may be interrupted when there is
no edge corresponding to the letter read and, in this case, the input string is rejected.
Otherwise, the sequence ends when the last input letter has been read. If the last state
of the sequence is a terminal one, the input string is accepted, otherwise it is rejected.
The set L ⊆ Σ* of all the strings accepted is called the language accepted (or
recognised) by the automaton.

Note: Σ* = Σ+ ∪ {1}, where Σ+ is the set of all finite strings of characters from Σ
and 1 is the empty (or null) string.

The automaton is called deterministic if there is only one initial state (i.e. I = {qo})
and for each state and each letter there is at most one single next state (i.e. F can be
regarded as a partial function F: Q × Σ → Q). Otherwise, the automaton is called
nondeterministic. Obviously, the path through a deterministic automaton is fully
determined by the input string, whereas for the nondeterministic case, the choices of
the initial state and the next state selected for each letter and current state are made

Chapter 2. X-machine - a computational model framework.

9

randomly from a set of possible options. In this latter case, a string is accepted if at
least one path determined by it through the machine ends in a final state.
Although nondeterministic automata appear to have extra power over the
deterministic ones, it has been proved that any language accepted by a
nondeterministic automaton can be also accepted by a deterministic one. In other
words, the nondeterminism does not increase the power of the automata (see Cohen
[8], or Hopcroft & Ullman [34]).

However, in order to evaluate the computational power of the automata and to
determine the languages accepted by them, we have to introduce the concept of
regular expressions.

Definition 2.1.1.2.
The set of regular expressions over an alphabet Σ is defined by the following rules:

1. Every letter of Σ is a regular expression; the empty string, 1, is a regular
expression.

2. If r and r’ are regular expressions, then so are
rr’, r + r’, r*

Note: The symbols used have the following meanings:
rr’ r concatenated with r’
r + r’ r or r’

 r* r concatenated with itself any finite number of times

In other words, the set of regular expressions is closed under concatenation, Boolean,
or and *.

Definition 2.1.1.3.
A language that can be defined by a regular expression is called a regular language.

The following theorem gives the measure of the computational power of the automata
(Cohen [8]):

Theorem 2.1.1.4. (Kleene)
1. Any regular language can be accepted by an automaton.
2. Any language accepted by an automaton is regular.

The theorem above shows that the class of the languages accepted by automata is
restricted to those which can be defined as regular expressions. However, this class is
limited and there are situations where the rules of automata are not sufficient to
describe certain computationally interesting behaviour. This idea can be illustrated
better by the following example.

Example 2.1.1.5.
Let Σ be an alphabet, a and b be two distinct characters of Σ and c ∈ Σ* be a string.
Then the language

Chapter 2. X-machine - a computational model framework.

10

L = {ancbn| n ∈ N}
is not regular (see Cohen [8]). Therefore there is no finite automaton that will accept
it.
The language above can be used, for example, to describe a very simple compiler
which will accept arithmetic expressions having the same number of opening and
closing brackets.

The reason why no finite automaton could recognise the language L is that, for large
enough n, the an part has to run around in a circuit and the machine cannot keep track
of how many times it had looped around. It cannot therefore distinguish between
ancbn and an+mcbn, for some positive integers n and m. From this example, it
appears obvious that the machine has to have an unlimited memory capacity. The
following two models increase the computational power of the finite state machine
model by adding an unlimited memory structure.

2.1.2. Pushdown automata.

The pushdown automaton, PDA, can be regarded as a finite automaton with a
primitive memory unit, its stack. A rigorous definition is given below (see Cohen [8]).

Definition 2.1.2.1.
A pushdown automaton, is a tuple having eight elements:
 1. An alphabet Σ of input letters; the blank symbol δ ∉ Σ.
 2. An input TAPE (infinite in one direction). Initially, the string of input letters is
placed on the TAPE starting in cell i. The rest of the TAPE is filled with δ’s.
 3. An alphabet Ω of stack characters.
 4. A pushdown STACK (infinite in one direction). Initially, the stack is empty (it
contains only a special symbol ∆ called the bottom of stack character).
 5. One START state that has only out-edges and no in-edges.
 6. Halt states of two kinds: ACCEPT and REJECT. They have in-edges and no
out-edges.
 7. Finitely many non branching PUSH states that introduce characters onto the top
of the stack.
 8. Finitely many branching states of two kinds:
 (i) States that read the next unused letter from the tape which may have
 out-edges labelled with letters from Σ or the blank character δ.
 (ii) States that read the top character of the STACK which may have
 out-edges labelled with letters from Σ or the blank character δ.

We further require that the states be connected so as to produce a connected directed
graph.

Chapter 2. X-machine - a computational model framework.

11

To run a string of input letters on a PDA means to begin from the start state and
follow the unlabelled edges and those labelled edges that are appropriate (making
choices of edges when necessary) to produce a path through the graph. This path will
end either in a halt state or the automaton will crash in a branching state when there is
no edge corresponding to the letter read/popped. When the graph contains loops
consisting only of PUSH or POP instructions, the input string may loop forever on the
machine. An input string with a path that ends in ACCEPT is said to be accepted by
the PDA; otherwise it is said to be rejected.

At this point we should discuss the possibility of nondeterminism. A deterministic
PDA is one for which every string determines a unique path through the machine. A
nondeterministic PDA is one for which at certain times we may have to choose among
possible paths through the machine. We say that an input string is accepted by such a
machine if at least one choice leads us to an ACCEPT state.

Obviously, any language that can be accepted by a FA can be also accepted by a PDA
(we just translate the formalism of FA into that of PDA and we obtain a PDA without
the STACK identical to the FA). In fact PDAs are more powerful that FAs due to the
unlimited memory available. For example, the language

L = {ancbn| n ∈ N}
can be accepted by a deterministic PDA (see Cohen [8]).

Unlike the case of the FA, the nondeterminism gives extra power to a PDA, as
illustrated by the following example (Cohen [8]).

Example 2.1.2.2.
Let Σ = {a, b} be an alphabet and

PALINDROME = {s reverse(s)| s ∈ Σ*} be a language over Σ.
Then:
 1. PALINDROME cannot be accepted by any deterministic PDA.
 2. PALINDROME can be accepted by a nondeterministic PDA.
[Note: reverse(s) denotes the reverse of string s].

In order to evaluate the power of PDA, we have to introduce the notions of grammar
in general and context-free grammar in particular.

Definition 2.1.2.3.
A phrase-structure grammar, is a way of defining a language and it is specified by
four elements:
 1. The set of nonterminal symbols, V.
 2. The set of terminal symbols, Σ.
 3. The start symbol S, S ∈ V.
 4. A set of productions of the form

 α → β,
 where α ∈ (V ∪ Σ)* V (V ∪ Σ)*, β ∈ (V ∪ Σ)*.

Chapter 2. X-machine - a computational model framework.

12

Note: XY = {xy| x ∈ X, y ∈ Y} where xy is x concatenated with y.
The language generated by a phrase-structure grammar is the set of all strings of
terminals that can be produced from the start symbol S using the productions as
substitutions.

The particular phrase-structure grammars of interest to us are:
 1. Context-free grammar - all productions have the form
 A → β,
 where A ∈ V, β ∈ (V ∪ Σ)*.

 2. Regular grammar - all productions have the form
 A → s B or A → s,
 where A, B ∈ V, s ∈ Σ*.

Obviously, the regular grammars are also context-free. Furthermore, there exist
context-free languages which are not regular (the languages described by example
2.1.1.5 above belongs to this category of languages (see Cohen [8]).

The following two theorems illustrate the relationship between these grammars and
the machines presented above (see Cohen [8] or Hopcroft & Ulman [33, 34]):

Theorem 2.1.2.4.
1. Any regular language can be generated by a regular grammar.
2. Any language generated by a regular grammar is regular.

Theorem 2.1.2.5.
1. Any language accepted by a PDA (deterministic or not) can be generated by a
context-free grammar.
2. Any language generated by a context-free grammar can be accepted by a
nondeterministic PDA.
This theorem states in fact that the class of languages accepted by nondeterministic
PDAs is identical to that generated by context-free grammars and strictly includes the
set of languages accepted by deterministic PDAs. The languages accepted by
deterministic PDAs are called deterministic context-free languages.

Therefore, the PDA is a more powerful machine than a FA. However, because of the
primitive type of memory that it uses (i.e. a stack), its power is too limited to model
all real computer systems.

Example 2.1.2.6.
Let Σ = {a, b} be an alphabet and L be a language over Σ,

L = {anbnan| n ∈ N}.
Then L cannot be accepted by any PDA (deterministic or not) (see Cohen [8]).

A more powerful type of machine will be described in the next section.

Chapter 2. X-machine - a computational model framework.

13

2.1.3. Turing machines.

In this section we investigate a third type of recognising device, the Turing machine.
The Turing machine has been proposed as a mathematical model for describing
procedures. Since our notion of a procedure as a finite sequence of instructions which
can be mechanically carried out is not mathematically precise, we can never hope to
show formally that it is equivalent to the precise notion of Turing machine. However,
from the definition of a Turing machine it will become readily apparent that any
computation that can be described by means of a Turing machine can be mechanically
carried out. It can be also be shown that any computation that can be carried out on a
computer can be described by means of a Turing machine. This strengthens the belief
that the Turing machine model is general enough to encompass the intuitive notion of
a procedure. It has been hypothesised by Church that any process which could be
naturally called a procedure can be realised by a Turing machine. Consequently,
computability by a Turing machine has become the accepted definition of a
procedure.
The Turing machine model has been defined in various ways in the literature, all of
these models being proved to be equivalent. We adopt the following definition due to
Cohen, [8].

Definition 2.1.3.1.
A Turing machine, denoted TM, is a tuple having six elements:
 1. An alphabet Σ of input letters; the blank symbol δ ∉ Σ.
 2. A TAPE divided into a sequence of numbered cells each containing one
character or blank. The input word w ∈ Σ* is presented to the machine one letter per
cell beginning in the left-most cell, called i. The rest of the tape is initially filled with
blanks, δ’s.
 3. A TAPE HEAD that can, in one step, read the contents of a cell on the TAPE,
replace it with some other character, and reposition itself to the next cell to the right
or to the left of the one it has just read. At the start of the processing, the TAPE
HEAD always begins by reading the input in cell i. The TAPE HEAD never moves
left from cell i; if it is instructed to do so, the machine crashes.
 4. An alphabet, Ω, of characters that can be printed on the TAPE by the TAPE
HEAD. This can include Σ. We allow the TAPE head to print a δ on the TAPE but we
call this erasing and we consider that δ ∉ Ω.
 5. A finite set of states including exactly one START state from which we begin
execution (and which we may reenter during execution) and some (maybe none)
HALT states that cause execution to terminate when we enter them. The other states
have no functions, only names.
 6. A program, which is a set of rules that tell us, on the basis of the letter the TAPE
has just read, how to change states, what to print and where to move the TAPE
HEAD. We depict the program as a collection of directed edges connecting the states.
Each edge is labelled with a triple of information:
 (letter, letter, direction)

Chapter 2. X-machine - a computational model framework.

14

The first letter is the one that the TAPE HEAD reads. The second is the letter that the
TAPE HEAD prints in the cell before it leaves it. The third component tells the TAPE
HEAD whether to move one cell to the right (R) or one cell to the left (L).

We shall consider that all Turing machines are deterministic (nondeterministic Turing
machines have also been investigated, but nondeterminism does not add extra power
to the model). This means that there is no state that has two or more edges leaving it
with the same first letter.

Unlike the FA, every Turing machine T over an alphabet Σ divides the set of strings
into the classes:
 1. The set of all strings in Σ* that cause T to enter a HALT state. This is called the
language accepted by T.
 2. The set of all strings that cause the machine to crash during execution by
moving left from cell i or by being in a state that has no exit edge that wants to read
the character the TAPE HEAD is reading.
 3. The set of all other strings; that is, strings that cause T to loop forever.

However, for an arbitrary TM, there is no way to determine algorithmically whether
some arbitrary input string is accepted by it or not. This is known as the unsolvability
of the Halting Problem for Turing machines (Cohen [8] or Hopcroft & Ullman [33,
34]). If T is a TM, we say that "T halts when given the input w" if w does not cause T
to loop forever (i.e. it either enters a HALT state or crashes during execution). Then
the Halting Problem can be formulated as: "given some arbitrary TM, T, and some
arbitrary string w, is there an algorithm to decide whether T halts when given the
input w?". Since our intuitive definition of an algorithm is a procedure that terminates
and we have accepted the TM as the mathematical model of a procedure, it is natural
to consider the model of an algorithm to be a TM which halts for any input in Σ*.
Then the following theorem states the unsolvability of the Halting Problem (see
Cohen [8], Kain [40] or Hopcroft & Ullman [33, 34]).

Theorem 2.1.3.2.
There is no algorithm (i.e. TM that halts for any input string) to determine whether an
arbitrary Turing machine T halts when given an arbitrary input w.

Definition 2.1.3.3.
A language L over the alphabet Σ is called recursively enumerable if there is a Turing
machine that accepts every word in L and either rejects or loops for every word that is
not in L.

The following theorem describes the set of recursively enumerable languages in terms
of grammars that generate them (see Cohen [8] or Hopcroft & Ullman [33, 34]).

Chapter 2. X-machine - a computational model framework.

15

Theorem 2.1.3.4.
1. Any recursively enumerable language can be generated by a phrase-structure
grammar.
2. Any language generated by a phrase-structure grammar can be accepted by some
Turing machine.

From the theorem above, it is clear that the class of languages accepted by PDAs is
included in the set of recursive enumerable languages. The inclusion is strict (we can,
for example, prove that the language described by the example 2.1.2.6 is recursively
enumerable, (see Cohen [8])).

The class of languages that are accepted by TM that halt for any input are called
recursive languages and are strictly included in the class of recursively enumerable
languages (see Cohen [8] or Hopcroft & Ulman [33, 34]). In view of our intuitive
definition of an algorithm, a language L over Σ* is recursive if for any w ∈ Σ* there
exists an algorithm that decides whether w ∈ L or not.

Another important class of languages is the class of context-sensitive languages. A
language is called context-sensitive if it can be generated by a phrase grammar in
which in any production α → β (see definition 2.1.2.3), β is at least as long as α. It
has been proved that a language is context-sensitive if and only if it is accepted by a
nondeterministic Turing machine which, instead of having a potentially infinite tape
on which to compute, is restricted to the portion of the tape containing the input w ∈
Σ* together with the first square that contains a blank (i.e. if the input contains n
symbols, the machine uses n+1 squares). This model is called a linear bounded
automaton. Any context-sensitive language is recursive and there are recursive
languages that are not context sensitive (see Cohen [8] or Hopcroft & Ullman [33,
34]).

The class of languages accepted by PDAs is included in the set of context-sensitive
languages. The inclusion is strict (we can, for example, prove that the language
described by the example 2.1.2.6 is context-sensitive (see Cohen [8])).

At this point, we can draw a diagram (figure 2.1) showing the hierarchy of the
machines presented so far, according to their computational power. This diagram can
be expanded by adding extra intermediate levels, but this is not the purpose of this
chapter.

Chapter 2. X-machine - a computational model framework.

16

Regular languages

Recursively enumerable languages

Deterministic

Context-free languages

Context-free languages

Recursive Languages

Context-sensitive languages

Figure 2.1. Languages Hierarchy

In addition to being a language acceptor, the Turing machine may be viewed as a
computer for evaluating partial functions from Σ* to Γ*, where Γ ⊂ Σ ∪ Ω is called
the output alphabet (see Mal’cev [42]). Let T be a TM as defined in definition 2.1.3.1.
We shall make the simplifying assumption that whenever T enters a HALT state, the
TAPE will contain only symbols from Γ and δ’s (i.e. the machine can, for example,
erase all the symbols from Σ ∪ Ω - Γ before it enters a HALT state). Hence T
computes a function f: Σ* → Γ*, where f(w) will be defined for an input w ∈ Σ* if
and only if T accepts w and f(w) = y, and y ∈ Γ* is the string obtained from the final
value of the tape by deleting all occurrences of the blank symbol δ. The set of partial
functions computed by Turing machines are called partial recursive functions. If f is a
(total) function rather than a partial one, then f is called a total recursive function. In a
sense, the partial recursively functions are analogous to the recursive enumerable
languages, since they are computed by Turing machines that may or may not halt on a
given input. The total recursive functions correspond to the recursive languages, since
they are computed by TMs that always halt.

The definitions above can be extended to functions
f: Σ1* × ... × Σk* → Γ*,

where Σ1, ...,Σk, Γ are finite alphabets. This can be done by initialising the tape of the
Turing machines with w1 ∈ Σ1*, ..., wk ∈ Σk* separated by δ’s.

Chapter 2. X-machine - a computational model framework.

17

An important class of functions that can be computed in this way are functions from
positive integers to positive integers,

f: N → N (or f: Nk → N).
The traditional approach is to represent integers in unary (i.e. Σ contains a single
element, say 1); the integer n ≥ 0 is represented by the string 1n.

2.1.4. Computational models as specification tools.

The usage of finite state machines is a widely followed practice, particularly in
sequential hardware design (Clements [7]). In some types of software system design,
they are also used, for example in user interface design (Wasserman et al. [56]). But
the model is rather simple and has several drawbacks.

Firstly, it is difficult to model any non-trivial data structure using the finite state
machine model. This makes modelling large systems with complex data structures
very difficult.

Secondly, its computational power is too limited. One could argue that, in practice,
any system is a finite state machine (this is because the memory used will be always
finite). For example the language presented in example 2.1.1.5 will be approximated
in practice by

Lk = {ancbn| n < k}
for some sufficiently large k ∈ N. Since

Lk = {ancbn| n < k}
is regular, it can be accepted by some finite automaton. However, if k is large, the
number of states of the automaton accepting the language will be huge and such a
model will become too complicated.

The Pushdown Automaton and Turing Machines are more powerful models obtained
by augmenting the finite state machine model by using some form of unlimited
memory. But the models are too restrictive and low level to be used as vehicles for
description and analysis of serious applications. Indeed, in practice one might want to
use more complex memory structures than a tape or a stack and allow more
complicated functions to be performed on this memory structures. For example,
imagine a simple system which uses a set of registers as its memory, the value of a
register being a natural number. In this case it is natural to assume that a function
which compares the values of two registers exists and can be used to build the
specification of the system. Furthermore, the specification can use even more
complicated functions (for example arithmetic functions such as multiplication,
factorial, etc.), provided that these have been already specified. It is therefore obvious
that in practice the process of building a system specification is hierarchical, i.e. a
complex system is specified using simpler functions that in turn can be specified by
simpler machines, rather then always getting back to the lowest level (i.e. the push’s,

Chapter 2. X-machine - a computational model framework.

18

pop’s, remove symbol from the tape, write symbol onto the tape, etc.) used by the
traditional computational models. This approach can be accommodated by the X-
machine model.

2.2. X-machines.

The X-machine is a natural generalisation of the computational devices presented in
section 2.1. Recall that in the previous chapter we described the X-machine as
consisting of a state diagram in which the transitions are labelled with a set of basic
processing functions, Φ, which operate on a basic data set X. This fits exactly the
description of the computational models presented above. Unlike these though, the set
Φ is not restricted to a certain class of functions. Any function ϕ can be used as a
label in the state transition diagram as long as it is computable by some procedure
(one can also use non-computable functions, but this is obviously not desirable if the
X-machine is to be used to model computer systems; however, the use of
noncomputable ϕ’s could be useful in areas such as biocomputing, but this beyond the
scope of this chapter).

The following definition is due to Holcombe, [27].

Definition 2.2.1.
An X-Machine is a 10-tuple = (X, Y, Z, α, β, Q, Φ, F, I, T), where
 1. X is the fundamental data set that the machine operates on.
 2. Y and Z are the input and the output sets, respectively.
 3. α and β are the input and the output relations respectively, used to convert the
input and the output sets into, and from, the fundamental set, i.e.

α: Y ↔ X, β: X ↔ Z
 4. Q is the (finite) set of states.
 5. Φ is the type of , a set of non-empty relations on X, i.e.

Φ: (X ↔ X)
[Note: For a set A, A is the powerset of A].
The type of the machine is the class of relations (usually partial functions) that
constitute the elementary operations that the machine is capable of performing. Φ is
viewed as an abstract alphabet. Φ may be infinite, but only a finite subset Φ’ of Φ is
used (this is because has a finite number of edges despite the infinite number of
labels available).
 6. F is the ’next state’ partial function.
 F: Q → (Φ → Q)
So, for state q ∈ Q, F(q): Φ → Q is a partial function.

Chapter 2. X-machine - a computational model framework.

19

However, when it is convenient, F can be treated like a partial function with two
arguments, i.e.

F(q, ϕ) = (F(q))(ϕ).
F is often described by means of a state-transition diagram.
 7. I and T are the sets of initial and terminal states respectively.

I ⊆ Q, T ⊆ Q

An example of an X-machine will be given later (see example 2.3.5). Before we
continue, we give some basic definitions.

Definition 2.2.2.
If q, q’ ∈ Q, ϕ ∈ Φ and q’ ∈ F(q, ϕ), then

q qϕ → ’,
is the arc from q to q’.

Definition 2.2.3.
If q, q’ ∈ Q are such that there exist q1,..., qn ∈ Q and ϕ1,..., ϕn+1 ∈ Φ with
q1 ∈ F(q, ϕ1), q2 ∈ F(q1, ϕ2), ..., qn ∈ F(qn-1, ϕn), q’ ∈ F(qn, ϕn+1), then

q q q q qn
nϕ ϕ ϕ1 2 1

1 2 →  →  → +... ’
is the path from q to q’. Each path p is labelled with |p|, where

|p| = ϕ1... ϕn+1: X ↔ X
is the relation computed by the machine when it follows that path.
When the state sequence is not relevant we shall refer to a path as the sequence of
relations, i.e.

p = ϕ1... ϕn+1.
A successful path is one that starts in an initial state and ends in a terminal one.
A loop is a path whose initial state is also terminal (i.e. a path from a state to itself).

Definition 2.2.4.
The behaviour of is the relation

| |: X↔X
defined as
 | | = ∪ |p|
with the union extending over all the successful paths p in .

Given y ∈ Y, the operations of the X-machine on Y consist of:
 1. Picking a path p, from a start state qi (qi ∈ I), to a terminal state qt (qt ∈ T) i.e.

q qi
p

t → .
 2. Apply α to the input to convert it to the internal type X.
 3. Apply |p|, if it is defined for α(y). Otherwise, go back to step 1.
 4. Apply β to get the output.
Therefore, the operation can be summarised as β(|p|(α(y))).

Chapter 2. X-machine - a computational model framework.

20

Definition 2.2.5.
The composite relation
 f = Y X X Zα β← → ← → ← →|

is called the relation computed by .

A deterministic X-machine is an X-machine whose type Φ is a set of partial functions
rather than relations and in which there is at most one possible transition for any state
q and any x ∈ X. This will always be the case in practical applications considered in
this thesis.

Definition 2.2.6.
A X-machine is called deterministic if:
 1. α and β are partial functions, not relations:

α: Y → X, β: X → Z
 2. Φ contains only partial functions on X rather than relations:

Φ: (X →X)
 3. F maps each pair (q, ϕ) ∈ Q × Φ onto at most a single next state:

F: Q → (Φ → Q)
A partial function is used because each ϕ ∈ Φ will not necessarily be defined as the
label to an edge in every state. If F is treated as a function with two arguments, then F
is a partial function

F: Q × Φ → Q.
 4. I contains only one element (i.e. I = {qo}, where qo ∈ Q).
 5. If q pϕ → and q pϕ’ ’ → are distinct arcs emerging from the same state q,
then

dom ϕ ∩ dom ϕ’ = ∅ .
Note: dom ϕ denotes the domain of ϕ.

If we consider F as a function with two arguments, the condition 5 can be written as:
 5’. ∀ q ∈ Q, ϕ, ϕ’ ∈ Φ, if (q, ϕ), (q, ϕ’) ∈ dom F then

dom ϕ ∩ dom ϕ’ = ∅ .

The input and output sets will almost always comprise sequences of symbols from
some alphabets Σ and Γ. Therefore Y = Σ*, Z = Γ*, where Σ is called the input
alphabet and Γ the output alphabet. Thus relations

f: Σ* ↔ Γ*
will be computed. The set X will have the form

X = Γ* × M × Σ*,
where M is a monoid called memory. The first component of the above cartesian
product (i.e. Γ*) will be called the output register. The last component (i.e. Σ*) will
be called the input register. In what follows we shall only be referring to X-machines
having this form.

Chapter 2. X-machine - a computational model framework.

21

If is a X-machine acceptor (i.e. Γ = ∅ , hence Γ* = {1}, where 1 is the empty
sequence), then

X = M × Σ*
 and will compute a function f with only one output value, i.e.

  c, if x ∈ dom f
f(x) = 

 î ∅ , otherwise

with c = β(1).

We call L = dom f the language accepted by the machine.

Before we continue, we introduce the following notation:

Notation 2.2.7.
Given an X-machine with X = Γ*× M × Σ* we define the following functions:

Out: X → Γ*, Out(g, m, s) = g
 In: X → Σ*, In(g, m, s) = s
 Mem: X → M, Mem(g, m, s) = m
∀ g ∈ Γ*, m ∈ M, s ∈ Σ*.
If is a machine acceptor (i.e. Γ = ∅), then In: X → Σ* and Mem: X → M are
defined by

 In(m, s) = s, Mem(m, s) = m.

If is a deterministic X-machine, one would expect to compute a partial function
f: Σ* → Γ* rather than a relation. However, this is not always the case, an additional
condition being required.

Definition 2.2.8.
A path |p| = ϕ1... ϕn+1: X→X is called trivial, if ∃ x ∈ dom |p| such that

In(|p|(x)) = In(x).
In other words, a trivial path is one along which the machine does not change the
value of the input register for some values of X, while possibly changing the output
register and memory.

Then, we have the following straightforward result (see Eilenberg [12]):

Proposition 2.2.9.
If is a deterministic X-machine in which no trivial path connects two terminal
states, then computes a partial function.

Chapter 2. X-machine - a computational model framework.

22

The model presented so far is slightly too general and we now consider two natural
classes of these machines.

2.3. Straight move stream X-machines.

Consider a program (or a hardware device) that receives some external inputs from an
alphabet Σ and produces some outputs from an alphabet Γ. The program will have a
memory structure M and will consist of a set of ’basic’ moves or instructions
performing one of the following types of ’basic’ operations:
 ⋅ update the memory;
 ⋅ update the memory and produce an output γ ∈ Γ.
 ⋅ read an input σ ∈ Σ and update the memory.
 ⋅ read an input σ ∈ Σ, update the memory and produce an output γ ∈ Γ.

Also, a special input symbol that indicates when the program has finished reading all
the necessary inputs might be required. We denote this by δ and we call it the blank or
end marker. For the sake of simplicity we shall consider that δ ∉ Σ.

Obviously, more than one output can be produced at one time, but this can be dealt
with by a convenient augmentation of the output set Γ (i.e. we replace Γ with the
appropriate Γ’ ⊆ Γ*).

Therefore, it looks as though a very wide class of applications can be represented in
the way described above. Let us translate this model into an X-machine. First, we
introduce some notation that we shall be needing in what follows:

Definition 2.3.1.
Let Σ be a set. Then we define the functions

head: Σ* →Σ*, front: Σ* →Σ*, tail: Σ* →Σ*, rear : Σ* →Σ*
by:

head(σs) = σ, ∀ σ ∈ Σ, s ∈ Σ*; head(1) = 1;
front(sσ) = s, ∀ σ ∈ Σ, s ∈ Σ*; front(1) = 1;
tail(σs) = s, ∀ σ ∈ Σ, s ∈ Σ*; tail(1) = 1;
rear(sσ) = σ, ∀ σ ∈ Σ, s ∈ Σ*; rear(1) = 1.

Note: If s ∈ Σ*, t ∈ Σ*,st is s concatenated with t.

We can now define formally the particular type of X-machine described at the
beginning of this section.

Chapter 2. X-machine - a computational model framework.

23

Definition 2.3.2.
Let Σ and Γ two alphabets, and let δ ∉ Σ ∪ Γ and Σ’ = Σ ∪ {δ}. Then, an X-machine

 with
X = Γ* × M × Σ’*

is called a straight-move stream X-machine (denoted SMS X-machine) if:

 1. The input and output codes
α: Σ* → X, β: X → Γ*

are defined by
α(s) = (1, mo, sδ), ∀ s ∈ Σ*,

  g, if s = 1
β(g, m, s) = 

 î ∅ , otherwise
 ∀ g ∈ Γ*,

where mo ∈ M is called the initial memory value.

 2. The type is
Φ = Φ1 ∪ Φ2 ∪ Φ3 ∪ Φ4,

where

i) ∀ ϕ1 ∈ Φ1, ϕ1: X ↔ X is a relation of the form:

  (g ρ1(m, head(s)), µ1(m, head(s)), tail(s)), if s ≠ 1
 ϕ1(g, m, s) = 

 î ∅ , otherwise
where

 µ1: M × Σ’ ↔ M, ρ1: M × Σ’ ↔ Γ are relations;
i.e. any ϕ1 ∈ Φ1 reads the head of the input string (possibly δ) and adds an output
character to the end of the output string while updating the memory. Φ1 is called the
set of non-empty input and non-empty output operations.

ii) ∀ ϕ2 ∈ Φ2, ϕ2: X ↔ X is a relation of the form:

  (g, µ2(m, head(s)), tail(s)), if s ≠ 1
 ϕ2(g, m, s) = 
 î ∅ , otherwise
where

 µ2: M × Σ’ ↔ M is a relation;
i.e. any ϕ2 ∈ Φ2 reads the head of the input string (possibly δ) and leaves the output
string unchanged while updating the memory. Φ2 is called the set of non-empty input
and empty output operations.

Chapter 2. X-machine - a computational model framework.

24

iii) ∀ ϕ3 ∈ Φ3, ϕ3: X ↔ X is a relation of the form:

 ϕ3(g, m, s) = (g ρ3(m), µ3(m), s),
where

 µ3: M ↔ M, ρ3: M ↔ Γ are relations;
i.e. any ϕ3 ∈ Φ3 leaves the input string unchanged and adds an output character to the
end of the output string while updating the memory. Φ3 is called the set of empty
input and non-empty output operations.

iv) ∀ ϕ4 ∈ Φ4, ϕ4: X ↔ X is a relation of the form:

 ϕ4(g, m, s) = (g, µ4(m), s),
where

 µ4: M ↔ M is a relation;
i.e. any ϕ4 ∈ Φ4 leaves both the input and output strings unchanged while updating
the memory. Φ4 is called the set of empty input and empty output operations.

 3. We further assume that ∀ q ∈ T, ∀ ϕ ∈ Φ3 ∪ Φ4 then (q, ϕ) ∉ dom F.
Therefore, no empty input transition is allowed from a terminal state.

A SMS X-machine will be denoted as a tuple = (Σ, Γ, Q, M, Φ, F, Qo, T, mo).

Basically, a SMS X-machine can process the head of the input string or no input at all
and add one output character or no output at all at the end of the output string.
Furthermore, no transition is allowed to use information from the tail of the input or
any of the output. It is fairly clear that a SMS X-machine computes a relation

f: Σ* ↔ Γ*, f = α | | β.

Observation 2.3.3.
If is a SMS X-machine acceptor (i.e. Γ = ∅) then

X = M × Σ*
and the type can be written as

Φ = Φ1’ ∪ Φ2’,
where

i) ∀ ϕ1’ ∈ Φ1’, ϕ1’: X ↔ X is a relation of the form:

  (µ1’(m, head(s)), tail(s)), if s ≠ 1
 ϕ1’(g, m, s) = 
 î ∅ , otherwise
where

 µ1’: M × Σ’ ↔ M is a relation;

Chapter 2. X-machine - a computational model framework.

25

ii) ∀ ϕ2’ ∈ Φ2’, ϕ2’: X ↔ X is a relation of the form:

 ϕ2’(g, m, s) = (µ2’(m), s),
where

 µ2’: M ↔ M is a relation.

From condition 3 of definition 2.3.2, it follows that no trivial paths start from a
terminal state in a deterministic SMS X-machine. Hence we have the following result.

Proposition 2.3.4.
Any deterministic straight-move stream X-machine computes a partial function
f: Σ* → Γ*.

In practice Σ and Γ will be almost always finite. However, our model does not make
any such assumption. A simple SMS X-machine example is given below.

Example 2.3.5.
Let Σ = {a, b}, Γ = {x, y}. Then is a SMS X-machine defined as follows.
 1. The set of states is
 Q = {qo, q1, q2 ,q3}.
qo is the initial state; q3 is the terminal state.
 2. The memory is the set of positive integers, M = N. Therefore, the fundamental
data set is

X = Γ* × N × Σ’*,
where Σ’ = Σ ∪ {δ}. The initial memory value is mo = 0.
 3. Φ = Φ1 ∪ Φ2 ∪ Φ3 ∪ Φ4
with

Φ1 = {ϕ2}, Φ2 = {ϕ1, ϕ5}, Φ3 = {ϕ4}, Φ4 = {ϕ3},
where

ϕ1, ϕ1, ϕ3, ϕ4, ϕ5: Γ* × N × Σ’* → Γ* × N × Σ’*
 are partial functions defined as follows:

 dom ϕ1 = Γ* × N × {a}Σ’*,
 ϕ1(g, n, as) = (g, n+1, s), ∀ g ∈ {x, y}*, n ∈ N, s ∈ {a, b, δ}*;

 dom ϕ2 = Γ* × N × {b}Σ’*,
 ϕ2(g, n, bs) = (gy, n+1, s), ∀ g ∈ {x, y}*, n ∈ N, s ∈ {a, b, δ}*;

Chapter 2. X-machine - a computational model framework.

26

 dom ϕ3 = Γ* × N × Σ’*,
 ϕ3(g, n, s) = (g, n+1, s), ∀ g ∈ {x, y}*, n ∈ N, s ∈ {a, b, δ}*;

 dom ϕ4 = Γ* × (N - {0}) × Σ’*,
 ϕ4(g, n, s) = (gx, n-1, s), ∀ g ∈ {x, y}*, n ∈ N - {0}, s ∈ {a, b, δ}*;

 dom ϕ5 = Γ* × {0} × {δ}Σ’*,
 ϕ5(g, 0, δs) = (g, 0, s), ∀ g ∈ {x, y}*, s ∈ {a, b, δ}*.

 4. The next state function F follows from the diagram in figure 2.2.

2 3

4

5

1

ϕ

ϕ

ϕ

ϕ

ϕ
q0 q1 q2 q3q3

Figure 2.2.

It is clear that is deterministic and it computes a partial function
f: {a, b} → {x, y}

defined by
dom f = {anb| n ∈ N} and f(anb) = yxn+1, ∀ n ∈ N.

At the beginning of this section we claimed the SMS X-machine could be used as a
general model of a program or of a hardware device. We can now support this claim
by showing that the computational models presented in section 2.1 are all particular
types of SMS X-machines. We show that finite state machines, pushdown automata
and Turing machines can be described as SMS X-machines. First, introduce some
notation that we shall be using later.

Definition 2.3.6.
Let Σ be an alphabet and let s ∈ Σ*. Then we define the functions Ls, Rs: Σ* → Σ* by

Ls(x) = sx, Rs(x) = xs, ∀ x ∈ Σ*
and the partial functions L-s, R-s: Σ* → Σ* by

L-s(x) = s-1x (i.e. dom L-s = {s}Σ* and L-s(sx) = x, ∀ x ∈ Σ*)
R-s(x) = xs-1 (i.e. dom R-s = Σ*{s} and R-s(xs) = x, ∀ x ∈ Σ*)

Obviously, LsLt = Lts, RsRt = Rst, L-sL-t = L-st, R-sR-t = R-ts, ∀ s, t ∈ Σ*.
We shall denote by I: Σ* → Σ* the identity function.

Chapter 2. X-machine - a computational model framework.

27

Notation 2.3.7.
Let be an X-machine with X = Γ* × M × Σ* and M = A1 × ... × Ak (k possibly 0).
Let also φΓ: Γ* → Γ*, φΣ: Σ* → Σ* and φi: Ai → Ai, i = 1, ..., k be (partial)
functions. Then we denote by

ϕ = (φΓ, φ1, ..., φk, φΣ)
the (partial) function ϕ: X → X defined by:

ϕ(g, a1, ..., ak, s) = (φΓ(g), φ1(a1), ..., φk(ak), φΣ(s))
∀ g ∈ Γ*, s ∈ Σ*, a1 ∈ A1, ..., ak ∈ Ak
(i.e. ϕ(g, a1, ..., ak, s) is defined iff φΓ(g), φ1(a1), ..., φk(ak) and φΣ(s) are all
defined).
Also, let ΦΓ be a set of (partial) functions from Γ* to Γ*, ΦΣ be a set of (partial)
functions from Σ* to Σ* and Φi sets of (partial) functions from Ai to Ai, i = 1, ..., k.
Then

ΦΓ × Φ1 × ... × Φk × ΦΣ
denotes the set

{ϕ = (φΓ, φ1, ..., φk, φΣ)| φΓ ∈ ΦΓ, φΣ ∈ ΦΣ, φi ∈ Φi, i = 1, ..., k}.
If is an X-machine acceptor (i.e. Γ = ∅), then we denote by

ϕ = (φ1, ..., φk, φΣ)
the (partial) function ϕ: X → X defined by:

ϕ(a1, ..., ak, s) = (φ1(a1), ..., φk(ak), φΣ(s)), ∀ s ∈ Σ*, a1 ∈ A1, ..., ak ∈ Ak.
Also

Φ1 × ... × Φk × ΦΣ
denotes the set

{ϕ = (φ1, ..., φk, φΣ)| φΣ ∈ ΦΣ, φi ∈ Φi, i = 1, ..., k}.

 A. Finite state machines
Let M = ∅ , Γ = ∅ , X = Σ’*.
The type is given by

Φ = Φ1’ = { L-σ| σ ∈ Σ’}.
If we consider finite state machines with outputs (Γ ≠ ∅), then

X = Γ* × Σ’*
and the type becomes

Φ = Φ1 = {Rγ| γ ∈ Γ} × { L-σ| σ ∈ Σ’}.

 B. Pushdown automata
Let M = Ω*, Γ = ∅ , X = Ω* × Σ’*, mo = ∆, where ∆ is the bottom of stack character
(we consider that ∆ ∈ Ω).

The type is given by
Φ = Φ1’ ∪ Φ2’,

with

Chapter 2. X-machine - a computational model framework.

28

 Φ1’ = {I} × { L-σ| σ ∈ Σ’} and
 Φ2’ = { R-ω| ω ∈ Ω} × {I} ∪ { Rω| ω ∈ Ω} × {I}.

The model can be generalised by considering SMS X-machine models whose
memory structure is a stack or a finite set of stacks, the basic operations on stacks
being the usual ’push’ and ’pop’.

Definition 2.3.8.
Let = (Σ, Γ, Q, M, Φ, F, qo, T, mo) be a straight move stream X-machine with Σ
and Γ finite. If
 1. M = Ω1* × ... × Ωk* (hence X = Γ* × Ω1* × ... × Ωk* × Σ’*,
where Ω1, ... Ωk are finite alphabets.
 2. Φ = Φ1 ∪ Φ2 ∪ Φ3 ∪ Φ4
with

Φ1 = {Rγ| γ ∈ Γ} × Φ1" × ...× Φk" × {L-σ| σ ∈ Σ’},
Φ2 = {I} × Φ1" × ...× Φk" × {L-σ| σ ∈ Σ’},
Φ3 = {Rγ| γ ∈ Γ} × Φ1" × ... × Φk" × {Ι} ,
Φ4 = {I} × Φ1" × ... × Φk" × { I},

where
Φi" = {R-ω| ω∈ Ωi} ∪ {Rω|ω∈ Ωi} ∪ {I}, i = 1, ..., k.

then is called a k-stack straight-move stream X-machine (denoted k-stack SMS X-
machine).

Obviously, a PDA is a 1-stack SMS X-machine acceptor.

Note: We can consider that Φi also includes a partial function
E: Ωi* → Ωi*

that checks whether the stack is empty or not, i.e. E is defined by
dom E = {1} and E(1) = 1.

This follows since E = R-∆ R∆, where ∆ is the bottom of stack character.

 C. Turing machines
This case is more complicated since the Turing machine uses only one tape both as an
input and output device and moves in both directions are allowed. However, a Turing
machine can be simulated by a 2-stack SMS X-machine.

Theorem 2.3.9.
Let Σ and Γ be two finite alphabets and let f: Σ* → Γ* be a partial recursive function.
There exists then a deterministic 2-stack straight-move stream X-machine which
computes f.

Chapter 2. X-machine - a computational model framework.

29

Proof:
If f is recursively enumerable, then there exists a Turing machine with the state set

Q = {q1,..., qn}
(q1 is the Start state), Ω the set of tape symbols, which computes f. Hence, if t is the
initial value of the tape and t’ its end value, then

Rmb(t’) = f(t),
where

Rmb: (Γ ∪ {δ})* → Γ*
is a function which removes all occurrences of the blank symbol δ from the tape.

Any transition of can be described as
(q, a) → (p, a’, d),

where q is the state currently is in, a the character read, p the next state, a’ the
replacement character and d ∈ {L, R} is the direction the tape head moves in.

We can now simulate the Turing machine on the following 2 stack SMS X-machine
:

 1. The set of states is
Q’ = {q1’, q1", ..., qn’, qn"} ∪ Q".

The states set of is obtained by duplicating each state from Q and adding some
extra states (viz. Q"). The set Q" will explicitly follow from the construction of .
will be in the state qi’, i = 1, ..., n if is in the state qi and it has not read a blank (δ)
from the tape (therefore the Turing machine has not finished reading the input
sequence); will be in the state qi", i = 1, ..., n, if is in the state qi and it has read a
blank (δ) from the tape (the Turing machine has read the whole input sequence).

 2. The initial state is q1’ and the set of terminal states is
T’ = {qi"| qi is a Halt state of }.

 3. The memory is
M = Ω* × Ω*, where Ω = Σ ∪ Ω ’ and Ω ’ = Ω ∪ {δ}.

The values of the two stacks s and s’ will hold the tape of the Turing machine up to
the rightmost location of the tape that has been read by the tape head, i.e. if

t = a1 ...aj, (a1,..., aj ∈ Ω),
is the tape up to the rightmost location that has been read by the head tape and i is the
current position of the tape head, i ≤ j, then

s = a1 ...ai-1, s’ = aj ...ai.
Hence t = s rev(s’), where rev(x) denotes the reverse of the string x.

The initial value of the memory is mo = (1, 1).

Chapter 2. X-machine - a computational model framework.

30

 4. F results by the following simulation of on :

a. For a transition in of the form
(q, σ) → (p, b, R), σ ∈ Σ, b ∈ Ω ’,

the corresponding transitions in are:
F(q’, ϕ1) = p’, F(q’, ϕ2) = p’, F(q", ϕ2) = p",

where
ϕ1 = (I, Rb, E, L-σ), ϕ2 = (I, Rb, R-σ, I).

Therefore, if has not finished reading the input string (is in state q’) and s’ = 1 then
 reads a new input character. Otherwise, no input is read and only operates on its

stacks.

b. For a transition in of the form
(q, a) → (p, b, R), a ∈ Ω - Σ, b ∈ Ω ’,

the corresponding transition in is:
F(q", ϕ3) = p",

where
ϕ3 = (I, Rb, R-a, I).

Since a is not an input character, has finished reading the input string; therefore
operates only on its stacks.

c. For a transition in of the form
(q, δ) → (p, b, R), b ∈ Ω ’,

the corresponding transitions in are:
F(q’, ϕ4) = p", F(q’, ϕ5) = p’, F(q", ϕ5) = p",

where
ϕ4 = (I, Rb, E, L-δ), ϕ5 = (I, Rb, R-δ, I).

Therefore can read the end marker of the input string only if a δ has not yet been
read. Otherwise, the machine operates only on its stacks.

d. The transitions
(q, σ) → (p, b, L), (q, a) → (p, b, L), (q, δ) → (p, b, L),

σ ∈ Σ, a ∈ Ω - Σ, b ∈ Ω ’,
can be obtained from those above by replacing ϕi, i = 1, ..., 5 by ϕi’ = ϕi Tf2, where
Tf is the function which transfers any character from the first stack to the second.
Such transitions can be transformed into a sequence of three SMS X-machine
operations by adding two new states r1, r2 ∈ Q" for each transition. For example

F(q’, ϕ1Tf2) = p’
is equivalent to

F(q’, ϕ1) = r1, F(r1, ψ) = r2, F(r2, ψ) = p’,
∀ ψ ∈ {(I, R-a, Ra, I)| a ∈ Ω} (i.e. ψ takes all the values of the set
{(I, R-a, Ra, I)| a ∈ Ω}).

Chapter 2. X-machine - a computational model framework.

31

In order to complete our construction, we have to address the following two
problems:

e. has to read the entire input sequence even if halts earlier. This can be easily
addressed by adding an extra state ri’ ∈ Q" for each i ∈ {1, ..., n} such that qi is a Halt
state of , and the following transitions:

F(qi’, ξ1) = qi’, F(qi’, ξ2) = ri’, F(ri’, ξ3) = ri’, F(ri’, ξ4) = qi", i = 1,..., n,
∀ ξ1 ∈ {(I, Ra, R-a, I)| a ∈ Ω} and ξ3 ∈ {(I, Rσ, I, L-σ)| σ ∈ Σ},
where

ξ2 = (I, I, E, I), ξ4 = (I, Rδ, I, L-δ).
Therefore if has halted without finishing reading the input string, will store the
part of the tape already read in the first stack, read the remaining part (until a δ is
reached) and store the remaining part of the tape into the first stack. Since no path
can leave a Halt state in , remains deterministic.

f. So far does not produce any outputs. Therefore, any transition of the type
F(q, ϕ) = qi",

where q ∈ Q’ (Q’ is the state set of constructed so far) and qi" ∈ T’ (i.e. qi" is a
terminal state) has to be replaced by

F(q, ϕGH) = qi",
where G stores s’ rev(s) into s’ (therefore s’ will hold the reverse of the tape value t),
where s and s’ are the values of the two stacks, and H outputs Rmb(rev(s’)) (i.e. the
string obtained by erasing all the blanks from the tape t). This can be achieved by
adding 2 extra states r1", r2" ∈ Q" for each qi" ∈ T’ and replacing each transition of
the type F(q, ϕ) = qi" with the following sequence of transitions:

F(q, ϕ) = r1", F(r1", ζ1) = r1", F(r1", ζ2) = r2", F(r2", ζ3) = r2",
F(r2", ζ4) = r2", F(r2", ζ5) = qi",

∀ ζ1∈ {(I, R-a, Ra, I)| a ∈ Ω}, ζ4 ∈ {(Rγ, I, R-γ, I)| γ ∈ Γ},
where

ζ2 = (I, E, I, I), ζ3 = (I, I, R-δ, I), ζ5 = (I, I, E, I).

From the construction above it is clear that f = α| |β. Therefore computes f.
�

Example 2.3.10.
Let be the Turing machine described in figure 2.3, where:

Σ = {0, 1}, Γ = {0, 1}, Ω = {0, 1},
qo is the initial state and q2 the Halt state.

Chapter 2. X-machine - a computational model framework.

32

q0 q1 q2
(0,0,R)

(1,1,R)

(,0,L)δ

Figure 2.3.

 computes the partial function f: Σ* → Γ* with
dom f = {01k| k ∈ N}

defined by
f(01k) = 01k0, k ≥ 0.

By applying the transformations given by 4.a - d, 4.e and 4.f, is transformed
successively as described in figures 2.4, 2.5 and 2.6 respectively.

q0’ q1’

q2’ q2"

q1"q0"

r1

r2

r3

r4

(I, R0, E, L-0)

(I, R0, R-0, I)

(I, R1, R-1, I)

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)

(I, R0, R-0, I)

(I, R1, R-1, I)

δ δ

δ

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

(I, R1, E, L-1)

δ(I, R0, E, L-) (I, R0, R- , I)

q2" is the terminal state
q0’ is the initial state

r5

r6

δ(I, R0, R- , I)

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

Figure 2.4.

Chapter 2. X-machine - a computational model framework.

33

q0’ q1’

q2’ q2"

q1"q0"

r1

r2

r3

r4

(I, R0, E, L-0)

(I, R0, R-0, I)

(I, R1, R-1, I)

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)

(I, R0, R-0, I)

(I, R1, R-1, I)

δ δ (I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

(I, I, E, I)

(I, R0, R-0, I)
(I, R1, R-1, I)
(I, R , R- , I)δδ

(I, R0, I, R-0)
(I, R1, I, R-1)

δ δ

(I, R1, E, L-1)

r’
(I, R , I, L-)

δ δ(I, R0, E, L-) (I, R0, R- , I)

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

r5

r6

δ(I, R0, R- , I)

Figure 2.5.

Chapter 2. X-machine - a computational model framework.

34

q0’ q1’

q2’

q2"

q1"q0"

r1

r2

r3

r4

(I, R0, E, L-0)

(I, R0, R-0, I)

(I, R1, R-1, I)

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)

(I, R0, R-0, I)

(I, R1, R-1, I)

δ δ (I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

(I, I, E, I)

(I, R0, R-0, I)
(I, R1, R-1, I)
(I, R , R- , I)δδ

(I, R0, I, R-0)
(I, R1, I, R-1)

δ δ

(I, E, I, I)

(I, I, R- , I)

(R0, I, R-0, I)
(R1, I, R-1, I)

δ

q2"

(I, R1, E, L-1)

r’

(I, I, E, I)

r1"

r2"

(I, R , I, L-)

δ δ(I, R0, E, L-) (I, R0, R- , I)δ(I, R0, R- , I)

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

r5

r6

Figure 2.6.

Since qo", q1", r3 and r4 are not connected to the initial state qo’, they can be deleted
together with the arcs that emerge from them or leave them. Hence, the 2-stack SMS
X-machine obtained has the ’state transition’ diagram given in figure 2.7, where qo’ is
the initial state and q2" is the terminal state.

Chapter 2. X-machine - a computational model framework.

35

q0’ q1’

q2’

q2"

r1

r2

(I, R0, E, L-0)

(I, R0, R-0, I)

(I, R1, R-1, I)

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

(I, I, E, I)

(I, R0, R-0, I)
(I, R1, R-1, I)
(I, R , R- , I)δδ

(I, R0, I, R-0)
(I, R1, I, R-1)

δ δ

(I, E, I, I)

(I, I, R- , I)

(R0, I, R-0, I)
(R1, I, R-1, I)

δ

q2"

(I, R1, E, L-1)

r’

(I, I, E, I)

r1"

r2"

(I, R , I, L-)

δ(I, R0, E, L-)δ(I, R0, R- , I)

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

(I, R-0, R0, I)
(I, R-1, R1, I)
(I, R- , R , I)δ δ

r5

r6

Figure 2.7.

Obviously, adding extra stacks to a 2-stack SMS X-machine (by constructing a n-
stack SMS X-machine with n > 2) will not increase the power of the machine beyond
that of a Turing machine (i.e. it can be shown fairly easily that any n-stack SMS X-
machine can be simulated by a Turing machine by placing the input string, the n

Chapter 2. X-machine - a computational model framework.

36

stacks and the output string on the Turing machine tape separated by an extra
symbol).

2.3.1. SMS X-machines as a basis for a specification and testing method.

The SMS X-machine model is general enough to model any computation performed
by a Turing machine. Furthermore, the model is much more flexible and does not
necessarily require the computation to be specified at the lowest level in the way that
Turing machines do. Indeed, the type Φ of a top level SMS X-machine of a system
can use fairly complex functions that can be defined by other means or can be even
described themselves as SMS X-machines. Any function can be used as an arc label
as long as we know that it is computable by some procedure.

However, our intention in investigating various X-machine models is to find a formal
specification (i.e. a particular type of X-machine) that can be also used as basis for
developing a theoretical testing strategy. The generality of the SMS X-machine model
offers little hope in this direction. Indeed, a very simple SMS X-machine with two
stacks together with the basic ’push’ and ’pop’ operations is as complex as a Turing
machine. For instance, let be a 2-stack SMS X-machine specification of a system
and let be its implementation. Then testing against would mean finding an
algorithm which determines whether and compute the same function. This is
impossible since is an arbitrary Turing machine. Indeed there is no algorithm that
establishes whether an arbitrary Turing machine halts for an arbitrary input sequence,
let alone an algorithm that determines that two arbitrary Turing machines compute the
same function. Since, in practice, a specification will be more complex than the 2
stack SMS X-machine model, the development of a well founded testing
methodology based on this model appears to be impossible.

On the other hand, many real applications correspond to Turing machines that halt.
Therefore, one might imagine a less general X-machine model that can be used to
specify these systems and also provide a basis for a testing methodology. Also, it is
fairly clear that the ’empty input’ moves (i.e. when the machine does not consume an
input) are the ones that cause all the problems in the SMS X-machine model. Indeed,
an infinite loop caused by a certain input string s will contain only a finite number of
’non-empty input’ moves but an infinite number of ’empty input’ ones.

2.4. (Generalised) stream X-machines.

These are X-machines with no ’empty input’ moves.

Chapter 2. X-machine - a computational model framework.

37

Definition 2.4.1.
Let Σ and Γ two alphabets, and let δ ∉ Σ ∪ Γ and Σ’ = Σ ∪ {δ}. Then, an X-machine

 = (Σ, Γ, Q, M, Φ, F, Qo, T, mo) with
X = Γ* × M × Σ’* is called a stream X-machine (denoted S X-Machine) if:

 1. The input and output codes
α: Σ* → X, β: X → Γ*

are defined by
α(s) = (1, mo, sδ) ∀ s ∈ Σ*,

  g, if s = 1
 β(g, m, s) = 
 î ∅ , otherwise

∀ g ∈ Γ*,
where mo ∈ M is the initial memory value.

 2. The type is Φ such that
∀ ϕ ∈ Φ, ϕ: X ↔ X is a relation of the form:
  (g ρ(m, head(s)), µ(m, head(s)), tail(s)), if s ≠ 1
 ϕ(g, m, s) = 
 î ∅ , otherwise
 where µ: M × Σ’ ↔ M, ρ: M × Σ’ ↔ Γ are relations.

If the relation ρ is defined as ρ: M × Σ’ ↔ Γ* instead of ρ: M × Σ’ ↔ Γ then the X-
machine is called a generalised stream X-machine (denoted GS X-Machine).

In any state q ∈ Q, a stream X-machine reads the first character σ of the input string s,
removes it from s and adds a new character γ to the output string. The new value of
the memory and γ depend on σ, but they are not affected by the rest of the input
string. A generalised stream X-machine can add a string of characters (possibly the
empty one) to the output string for each input character it processes. S X-machines
and GS X-machines compute relations from Σ* to Γ*.

Obviously, S X-machines are special types of GS X-machines. Conversely, one could
transform a generalised stream X-machine into a stream X-machine by augmenting
the output alphabet to a (possibly infinite) set Γ1 ⊆ Γ*, the set of sequences from Γ*
produced by ρ (i.e. there exists an injection h: Γ1 → Γ*). If f: Σ* ↔ Γ* is the relation
computed by the generalised stream X-machine and f1: Σ* ↔ Γ1* is the relation
computed by the stream X-machine obtained in this way, then f = f1H, where
H: Γ1* → Γ* is the morphism induced by h. Obviously, if only machine acceptors are
considered (i.e. the output is not relevant) then the S X-machine and GS X-machine
models are equivalent.

Chapter 2. X-machine - a computational model framework.

38

Obviously, no trivial paths exist in a (generalised) stream X-machine. Hence a
deterministic (generalised) stream X-machine computes a function f: Σ* → Γ*.

Obviously, the S X-machine model is more restrictive than the SMS X-machine
model. However, the more restrictive nature of the model makes it more attractive as
a basis for a specification based testing method. Indeed, if each basic function in Φ
can be computed by a procedure that terminates in finite time (i.e. a Turing machine
that halts) then, given any input s ∈ Σ*, the computation determined by s through
also terminates in finite time (this is because the machine consumes an input symbol
each time it performs a transition). Let us formalise this idea.

Definition 2.4.2.
A partial function ϕ is called fully computable if there exists an algorithm A (i.e. a
Turing machine that halts) such that A computes ϕ. A type Φ is called fully
computable if ∀ ϕ ∈ Φ, ϕ is fully computable.

Note: If X = Γ* × Ω1* × ... × Ωk* × Σ’* with Γ, Ω1, ..., Ωk and Σ’ finite, then let
ϕ: X → X

and
ϕo: X → Γ*, ϕ1: X → Ω1*, ..., ϕk: X → Ωk*, ϕk+1: X → Σ’*

be its projections on Γ*, Ω1*, ..., Ωk* and Σ’* respectively. Then ϕ is fully
computable iff ϕo.t, ϕ1.t, ..., ϕk.t, ϕk+1.t are total recursive, where

ϕo.t: X → (Γ ∪ {c})* is defined by

  ϕo(x), if x ∈ dom ϕo
ϕo.t(x) = 

 î c, otherwise
where c ∉ (Γ ∪ Ω1 ∪ ... ∪ Ωk ∪ Σ); ϕ1.t, ..., ϕk.t, ϕk+1.t are defined similarly.

Proposition 2.4.3.
Let = (Σ, Γ, Q, M, Φ, F, Qo, T, mo) be a deterministic (generalised) stream X-
machine with Φ fully computable. Then, the partial function f: Σ* → Γ* computed by

 is fully computable. Hence, the class of fully computable relations is closed under
the (generalised) stream X-machine operator.

Proof:
Let s = σ1 ... σn, with σ1, ..., σn ∈ Σ. Hence

α(s) = (1, mo,..., σ1... σnδ).

Chapter 2. X-machine - a computational model framework.

39

Then, the path determined by α(s) consists of at most n+1 transitions. Therefore, ϕ(s)
is determined by applying at most n+1 algorithms (i.e. an algorithm for each ϕ which
processes either σi or δ). Hence, f = α | | β is fully computable. �

Obviously, if is a stream X-machine acceptor with Φ fully computable, then the
language accepted by is recursive.

Thus, if each ϕ can be computed by a Turing machine that halts, then the whole
machine can be represented as a Turing machine that halts. Then let us assume that
we have specified a system as a stream X-machine with a fully computable type Φ
and that we can assume that the implementation is also a stream X-machine with the
same type. Then, is guaranteed to halt. Hence if is fed with an arbitrary input string
s, then we are guaranteed to obtain the output in finite time. This is an important fact
if the implementation is to be tested against the specification since we no longer have
to solve the unsolvable halting problem.

Obviously, proposition 2.4.3 is not true for a SMS X-machine since it can contain
loops consisting of only empty input operations which can cause the the machine to
loop forever.

Obviously, if the stream X-machine is to be used as a specification tool, it is
important to know how general this model is, i.e. how far can we get in the language
hierarchy by using stream X-machines with a certain memory structure and a certain
type Φ. Similarly to definition 2.3.8, we can define a k-stack stream X-machine.

Definition 2.4.4.
Let = (Σ, Γ, Q, M, Φ, F, Qo, T, mo) be a stream X-machine with Σ and Γ finite. If
 1. M = Ω1* × ... × Ωk* (hence X = Γ* × Ω1* × ... × Ωk* × Σ’*), where
Ω1, ... Ωk are finite alphabets
 2. Φ = {Rγ| γ ∈ Γ} × Φ1 ×...× Φk × {L-σ| σ ∈ Σ’},
where

Φi = {R-ω| ω∈ Ωi} ∪ {Rω|ω∈ Ωi} ∪ {I, E}, i = 1, ..., k,
then is called a k-stack stream X-machine (denoted k-stack S X-machine).

We saw that the class of 2-stack SMS X-machine was equivalent to the class of
Turing machines. However, k-stack S X-machines are much more restrictive. Let us
denote by Lk the class of languages accepted by k-stack S X-machines acceptors (i.e.
Γ = ∅) and

L =
k =

∞

1

�
Lk.

We shall call L the class of real time stack languages (i.e. in this context real time
refers to the fact that the machine does not have empty input moves, hence it decides
whether to accept an input string immediately after it reads it). Obviously any Lk will

Chapter 2. X-machine - a computational model framework.

40

contain all regular languages. However, L does not contain all deterministic context-
free languages. In fact we have the following result.

Proposition 2.4.5.
Ln and the class of deterministic context-free languages are incomparable ∀ n ∈ N,
n ≥ 2.

Proof:
Let Σ = {a, b, c} and

L = {anbncn| n ∈ N}.
Obviously, L is not context-free (see Cohen [8]). It can be proven easily that L ∈ L2.

Conversely, let
L’ = {ai1bai2b ... air-1baircsair-s+1| r ≥ 1, 1 ≤ s ≤ r, ij ≥ 1 for all 1 ≤ j ≤ r}.

Harrison, [24], proves that L’ is deterministic context-free and L’ ∉ Ln, ∀ n ∈ N. �

From the proof above it also follows that Ln and the class of (non-deterministic)
context-free languages are incomparable ∀ n ∈ N, n ≥ 2. The position of L in the
language hierarchy is shown by the diagram in figure 2.8.

Deterministic
Context-free
Languages

Regular
Languages

Context-free
Languages

Real Time
Stack
Languages

Context-sensitive
Languages

Figure 2.8.

It is clear that the k-stack S X-machines cannot cope with many applications. For
example an arbitrary push-down automaton cannot be represented in this way. This is

Chapter 2. X-machine - a computational model framework.

41

because such a pushdown automaton might require an unbounded number of ’empty
input’ moves between two moves in which the machine consumes input symbols.
However, we can ’hide’ these empty moves by choosing more complex φ’s which will
allow the machine to perform an unbounded number of operations on its stack each
time it reads an input symbol. Indeed, the fact that the X-machine does not restrict us
to using only very low level functions such as push and pop is one of the main
advantages of this model. We can use more complicated basic functions as long as we
know that they can be computed by some computational models. Those models will,
preferably, be simpler stream X-machines themselves, so the X-machine model can
be used as a specification tool hierarchically. In this way we can have a high level
stream X-machine model and several low-level models that specify each φ ∈ Φ. Since
the finite automaton is the simplest stream X-machine, then we can try to construct a
stream X-machine whose φ’s are computed by finite automata.

2.4.1. Regular stack stream X-machines.

Before proceeding any further, we introduce some preliminary concepts.

Definition 2.4.1.1.
Let Ω be a finite alphabet and L be a subset of Ω*. Then, following Eilenberg, [12],
we call L a prefix if
 s-1L = {1}, ∀ s ∈ L.

Example 2.4.1.2.
Let Σ= {a, b, c}. Then L = {ab*c} is a prefix.

In what follows we prove some properties of prefixes that we shall need later on.
Proposition 2.4.1.3 is from Eilenberg, [12].

Proposition 2.4.1.3.
Let L ⊆ Ω*. Then the following conditions are equivalent:
 1. L is a prefix.
 2. If s, st ∈ L, then t = 1.
 3. If st = s’t’ with s, s’ ∈ L, then s = s’ and t = t’.
 4. L = ∅ or the minimal automaton (possibly infinite) of L has one terminal state t
and no arcs leave t.
 5. L is the behaviour of a deterministic (possibly infinite) automaton such that no
arcs leave a terminal state.

Proposition 2.4.1.4.
1. If L is a prefix and 1 ∈ L, then L = {1}.
2. Any subset of a prefix is a prefix.

Chapter 2. X-machine - a computational model framework.

42

Proof:
1 is obvious. 2 follows from proposition 2.4.1.3. �

Lemma 2.4.1.5.
If g: Σ* → Ω* is a morphism such that g-1(1) = {1} and L ⊆ Ω* is a prefix, then g-
1(L) is a prefix.

Proof:
If s, st ∈ g-1(L), then g(s), g(s)g(t) ∈ L. Hence g(t) = 1 and t = 1. �

Definition 2.4.1.6.
Let Ω be a finite alphabet and L be a subset of Ω*. Then L is called a regular prefix if
L is both a prefix and a regular language.

Proposition 2.4.1.7.
Let L ⊆ Ω*. Then the following conditions are equivalent:
 1. L is a regular prefix.
 2. L = ∅ or the minimal finite automaton of L has one terminal state t and no arcs
leave t.
 3. L is the behaviour of a deterministic finite automaton such that no arcs leave a
terminal state.

Proof:
This follows from the fact that L is both a regular language and a prefix. �

Lemma 2.4.1.8.
If g: Σ* → Ω* is a morphism such that g-1(1) = {1}, L ⊆ Ω* is a regular prefix and
K ⊆ Σ* is a regular language, then

g-1(Lu) - K
is a regular prefix ∀ u ∈ Ω*.

Proof:
Let u ∈ Ω*. Since L is a regular language, Lu is a regular prefix. Therefore g-1(Lu) is
a regular language (this is because the class of regular languages is closed under
inverse morphisms (see Hopcroft & Ulman [34]). Since K is also a regular language,
it follows that

g-1(Lu) - K
is a regular language (this is because the class of regular languages is closed under ’-’
(see Hopcroft & Ulman [34]). Using the minimal automata of L and Lu, it can be
shown easily that Lu is a regular prefix. From lemma 2.4.1.5, it follows that g-1(Lu) is
a prefix. Hence any subset of g-1(Lu) is a prefix. Therefore

g-1(Lu) - K
is a prefix. �

Chapter 2. X-machine - a computational model framework.

43

Having a non-empty regular prefix L ⊆ Ω*, we can define a partial function
R-L: Ω* → Ω*

 as described bellow. This type of function will be used to construct our new type of
stream X-machine.

Definition 2.4.1.9.
Let Ω be a finite alphabet and L ⊆ Ω* be a non-empty prefix. Then we define a partial
function

R-L: Ω* → Ω*
by:

  s rev(v)-1, if ∃ v ∈ L such that s rev(v)-1 ≠ ∅ ,
R-L(s) = 

 î ∅ , otherwise
Note: rev(x) denotes the reverse of x. For s, u ∈ Ω*, su-1 ≠ ∅ means that ∃ t ∈ Ω*
such that s = tu.

Observation 2.4.1.10.
Since L is a prefix, there exists at most one v ∈ L such that s rev(v)-1 ≠ ∅ (see
proposition 2.4.1.3, 2). Therefore R-L is well defined.

Example 2.4.1.11.
Let Ω = {a, b, c} and L = {ab*c}.
 1. If the value of the stack is s = aacbba, then R-L (s) = aa.
 2. If the value of the stack is s = aacbbab, then R-L (s) is not defined.

If L is a regular prefix, then R-L(s) removes symbols from the end of the input string s
like a finite state machine in which no arcs leave a terminal state. Therefore R-L can
be computed using a finite automaton. We shall use such functions to construct a new
type of stream X-machine.

Definition 2.4.1.12:
Let = (Σ, Γ, Q, M, Φ, F, Qo, T, mo) be a stream X-machine. If:
 1. M = Ω* (hence X = Γ* × Ω* × Σ’*), where Ω is a finite alphabet
 2. Φ = {Rγ| γ ∈ Γ} × ΦM × {L-σ| σ ∈ Σ’},
where

ΦM = {R-LRu| u ∈ Ω*, L ⊆ Ω* is a non-empty regular prefix},
then is called a regular stack stream X-machine (denoted RStack S X-machine).
A regular stack generalised stream X-machine (denoted RStack GS X-machine) will
have the type
 {Rg| g ∈ Γ*} × ΦM × {L-σ| σ ∈ Σ’},
with ΦM defined as above.

Chapter 2. X-machine - a computational model framework.

44

Note: R-LRu denotes the functional composition of R-L and Ru. R-LRu removes
symbols from the end of the memory stack like a finite state machine and then adds a
fixed string u.

 We shall prove that the class of regular stack stream X-machine acceptors accepts
exactly the deterministic context-free languages. We shall do this by showing that a
deterministic pushdown automaton (i.e. a deterministic 1-stack SMS X-machine
acceptor) can be converted into a RStack S X-machine.

2.4.2. RStack S X-machines and 1-stack SMS X-machines acceptors are
equivalent.

In this section we shall be referring to X-machine acceptors (i.e. Γ = ∅).

Let us consider a deterministic SMS X-machine acceptor,
= (Σ, ∅ , Q, M, Φ, F, q, T, mo).

Then Φ = Φ1’ ∪ Φ2’, where Φ1’ and Φ2’ are defined in Observation 2.3.3.

Let q ∈ Q and m ∈ M. Let
(q, m) = (Σ, ∅ , Q, M, Φ2’, F’, qo, Q, m)

be the deterministic X-machine obtained from by removing all the arcs with labels
in Φ1’ (i.e. F’|Q × Φ2’ = F|Q × Φ2’ and F’|Q × Φ1’ is null, where F|Q × Φi’ denotes the
restriction of F to the set Q × Φi’, i = 1, 2) with q the initial state, m the initial memory
value and the set of terminal states T’ = Q.

Since (q, m) operates only on empty input moves, it is clear that the computation of
(q, m) is independent of the value of the input register and it depends only on the

initial state q and the initial memory value m.

We say that (q, m) halts if:
 i) ∃ q’ ∈ Q, m’ ∈ M and a path q qp → ’ in (q, m) such that

|p|(m, s) = (m’, s), ∀ s ∈ Σ’*
(|p| is the partial function computed along p) and
 ii) ∀ ϕ ∈ Φ2’ with (q’, ϕ) ∈ dom F, we have ϕ(m’, s) = ∅ , ∀ s ∈ Σ’*
(in other words p is the maximal path that (q, m) can follow).

We assume that (q, m) halts ∀ q ∈ Q, m ∈ M (i.e. there is such a maximal path).
Then we can define a function

τ: Q × M → Q × M
by

Chapter 2. X-machine - a computational model framework.

45

τ(q, m) = (q’, m’),
where q’ is the state in which (q, m) halts and m’ is the final memory value.

Note: More rigorously, we can use an auxiliary function π: Q × M → Q × M, which
keeps track of the states and memory values of the computation of on empty
moves, i.e.

  (F(q, ϕ), Mem(ϕ(m, 1))), if ∃ ϕ ∈ Φ2’ such that
π(q, m) =  (q, ϕ) ∈ dom F and ϕ(m, 1) ≠ ∅

 î ∅ , otherwise
Hence τ(q, m) = πn(q, m),
where

n = max{k ∈ N| πk(q, m) ≠ ∅ }.
Since we assumed that ∀ q ∈ Q, m ∈ M, ’(q, m) halts, n is finite and τ is well
defined.

Finally, we define the set of functions
{ψq.q’}q,q’∈ Q,

which describes the computation on empty moves:

ψq.q’: M × Σ’* → M × Σ’*

is defined by

  (m’, s), if ∃ m’ ∈ M such that (q’, m’) = τ(q, m)
ψq.q’(m, s) = 
 î ∅ , otherwise

Therefore, ψq.q’(m, s) is defined if (q, m) halts in q’; ψq.q’ keeps the input register
unchanged (this is because empty input moves do not affect this) while the machine
transforms m into m’, where m’ is the final memory value of the computation of (q,
m).

Let
Ψ = {ψq.q’| q, q’ ∈ Q and (q’ ∈ T or ∃ ϕ ∈ Φ1’ such that F(q’, ϕ) ≠ ∅)}.

Thus Ψ is the set of those functions ψq.q’ for which q’ is either a terminal state of or
there exists an arc emerging from q’ labelled by a non-empty input function.

Then, we have the following result.

Proposition 2.4.2.1.
Let = (Σ, ∅ , Q, M, Φ, F, qo, T, mo) be a deterministic SMS X-machine acceptor
and L be the language accepted by it. If ∀ q ∈ Q, m ∈ M, (q, m) halts, then there
exists a deterministic S X-machine acceptor " with the type Φ" = Φ1’ Ψ, where

Chapter 2. X-machine - a computational model framework.

46

Φ1’ Ψ = {ϕ ψq.q’| ϕ ∈ Φ1’, q, q’ ∈ Q and (q’ ∈ T or ∃ ϕ ∈ Φ1’ such that
 F(q’, ϕ) ≠ ∅)},

which accepts the same language L.

Proof:
We define the deterministic S X-machine " as follows:
 1. The set of states Q, the memory M and the input alphabet (i.e. Σ) remain
unchanged. Obviously, the output alphabet is empty (Γ = ∅).
 2. qo" and mo" the initial state and the initial value of the memory are chosen such
that (qo", mo") = τ(qo, mo).
 3. The set of terminal states is T (therefore unchanged).
 4. The type is Φ" = Φ1’ Ψ.
 5. The next state function F": Q × Φ" → Q is defined by
  q’, if q = F(p, ϕ)

F"(p, ϕψq.q’) = 
 î ∅ , otherwise
 ∀ q, q’, p ∈ Q such that q’ ∈ T or ∃ ϕ ∈ Φ1’ such that F(q’, ϕ) ≠ ∅ .

Let L and L" be the languages accepted by and " respectively. Then, we have to
prove that L = L".

Let s ∈ L, s = σ1σ2...σn-1 and let

(, , ...) ’ ... ’ (", ", ...) (, , ...)
’ ... ’

(", ", ...)... (, ,)
’ ... ’

(", ",)

, , , ,

, ,

q m q m q m

q m q m q m

o o n
k

o o n n
k

n n n
n n k

n n
n n

σ σ δ ϕ ϕ σ σ δ ϕ σ σ δ ϕ ϕ

σ σ δ ϕ ϕ ϕ
1 1

0 1 0
1 1

1
1 1 2 1

1 1 1

1 2 1
1

0 1

1 1 1

− − −

−

 →     →  →   

 →  →    

be the computation determined by sδ through , where ko, ..., kn ∈ N, qo" and mo"
are the initial state and memory value of " and qn" is a terminal state (obviously,
ϕi ∈ Φ1’, i = 1, ..., n and ϕ’i,1 ... ϕ’i,ki ∈ Φ2’, i = 0, ..., n).
Then

ϕ’i,1 ... ϕ’i,ki(mi, x) = ψqi.qi" (mi, x), ∀ x ∈ Σ’*, i = 0,..., n,
hence the computation determined through by sδ is

(", ", ...) (", ", ...) ... (", ",)
. . ." " "

q m q m q mo o n
q q

n
q q n q q

n n
n nσ σ δ ϕ ψ σ σ δ ϕ ψ ϕ ψ

1 1
1

1 1 2 1
21 1 2 2

1− − →    →    →  

Hence s ∈ L".

Note: The notation (, ,) (’, ’, ’)...q m t q m tnζ ζ1 →  used above denotes that the machine
follows the path ζ1 ... ζk and ζ1 ... ζk(m, t) = (m’, t’), with ζ1 ... ζk being transition
functions, m, m’ memory values and t, t’ input strings.

Chapter 2. X-machine - a computational model framework.

47

This follows from the following two facts:

i). ϕ’i,1 ... ϕ’i,ki ϕi+1(mi, σi+1 ...σn-1δ) = ϕi+1(mi", σi+1 ...σn-1δ) ≠ ∅
for i = 0, ..., n-1.
Since

ϕ’i,1 ... ϕ’i,ki ϕi+1(mi, σi+1 ...σn-1δ) ≠ ∅ ,
and

(qi", ϕi+1) ∈ dom F,
it follows that ∀ ϕ ∈ Φ2’ with (qi", ϕ) ∈ dom F, we have

ϕ’i,1 ... ϕ’i,ki ϕ(mi, σi+1 ...σn-1δ) = ∅
(this is because is deterministic).
Therefore

ϕ’i,1...ϕ’i,ki(mi ,σi+1...σn-1δ) = ψqi.qi"(mi, σi+1...σn-1δ), i = 0,..., n-1
and hence

ϕ’i,1 ... ϕ’i,ki(mi, x) = ψqi.qi" (mi, x), ∀ x ∈ Σ’*, i = 0,..., n.

ii). Since qn" is a terminal state of , we have
F(qn", ϕ) = ∅ , ∀ ϕ ∈ Φ2’.

Thus
ϕ’n,1 ... ϕ’n,kn(mn, x) = ψqn.qn"(mn, x), ∀ x ∈ Σ’*.

The converse implication (i.e. if s ∈ L", then s ∈ L) can be proven similarly since
∀ m ∈ M and ψq.q’ ∈ Ψ, there is a set of functions ϕ’j1, .., ϕ’jk ∈ Φ2’, such that

ψq.q’(m, x) = ϕ’j1... ϕ’jk (m, x) ∀ x ∈ Σ’*
and ϕ’j1... ϕ’jk label a path from q to q’. �

Therefore, if ’(q, m) halts ∀ q ∈ Q, m ∈ M, can be converted into a S X-machine
with type Φ" = Φ1’ Ψ. We show now that, given a 1-stack SMS X-machine , there
exists a 1-stack SMS X-machine e equivalent to (i.e. and e accept the same
language) such that e’(q, m) halts for any state q and memory value m. As a
consequence, e can be converted into a S X-machine (we shall prove later that the
S X-machine obtained is a RStack S X-machine).

Lemma 2.4.2.2.
Let = (Σ, ∅ , Q, M, Φ, F, qo, T, mo) be a deterministic 1-stack SMS X-machine
acceptor. There exists then a deterministic 1-stack SMS X-machine acceptor

e = (Σ, ∅ , Qe, M, Φ, Fe, qoe, Te, mo) equivalent to such that e’(q, m) halts ∀
q ∈ Qe, m ∈ M.

Proof:
In this case

Chapter 2. X-machine - a computational model framework.

48

 Φ1’ = Φ1’ ∪ Φ2’,
where

Φ1’ = ΦΜ × {L-σ| σ ∈ Σ’}, Φ2’ = ΦΜ × {Ι },
with

ΦΜ = {R-a| a ∈ Ω} ∪ {Ra| a ∈ Ω}∪ {I},
where Ω is the stack alphabet.

Without loss of generality, we can assume that
Φ1’ = {I} × {L-σ| σ ∈ Σ’}

(this is because (R-a, L-σ) can be written as the composition of two functions,
(R-a, L-σ) = (I, L-σ) (R-a, I);

similarly,
(Ra, L-σ) = (I, L-σ) (Ra, I))

Let G be the graphical representation of F (i.e. the state diagram associated with F).
We shall transform G into a new diagram G’ such that the computation of the machine

 remains unaffected. The following two procedures are used:

1) If there is an arc q q’(I, I) → (i.e. I is the identity function), then q and q’ are
merged. We have the following two cases:

a. There is no arc labelled (I, I) from q’ to q (Fig. 2.9). By merging q and q’, figure
2.9 is transformed into figure 2.10.

q’q. . .

r1

. . .

rj

. . .

s1, ..., si

t1 tk

u1

ul

(I, I)

Note: r1, .., rj are arcs that are incident on q, s1, .., si arcs from q’ to q, u1, .., ul arcs
from q’ to any state other than q and q’, t1, .., tk arcs that are incident on q’.

Figure. 2.9.

Chapter 2. X-machine - a computational model framework.

49

. . .

r1

. . .

rj

. . .

s1, ..., si

t1 tk

u1

ul
q=q’

Figure 2.10.

b. If there is an arc labelled (I, I) from q’ to q, then there is no other arc leaving q’
(otherwise the machine will be non-deterministic) and, once the machine is in the
state q (or q’), it will loop forever. Then, figure 2.11 is transformed into figure. 2.12.

q’q

r1

rj

. . .t1 tk

(I, I)

(I, I)

Figure 2.11.

. . .

r1

rj

. . .t1 tk

q=q’

loop forever
Figure 2.12.

We apply these two rules until all the edges labelled (I, I) bave been eliminated. Since
their number is finite, the procedure will also be finite.

Chapter 2. X-machine - a computational model framework.

50

2) Since
Ra R-a = I, ∀ a ∈ Ω
Ra R-b = ∅ , ∀ a, b ∈ Ω, a ≠ b,

any (Ra, I) followed by an (R-b, I) can be eliminated.

Let q and q’ be two states such that:
 i) there exists an arc labelled (Ra, I), a ∈ Ω, that connects them, i.e.

q (R , I) q’a →   ;
 ii) there exists at least one arc (R-b, I), b ∈ Ω, that leaves q’.
Then, since is deterministic, all of the arcs that leave q’ will be labelled by functions

belonging to the set {(R-ω, I), ω ∈ Ω}. We show now that the arc q (R , I) q’a →   can
be eliminated. We have the following cases:

a. There is no arc labelled (R-a, I) leaving q’. Then the arc q (R , I) q’a →   can be
deleted.

b. There is an arc labelled (R-a, I) from q’ to a third state q" (figure 2.13). By

eliminating the arc q (R , I) q’a →   , q and q" are merged and figure 2.13 is modified
as shown in figure 2.14.

q q’

q"r1

rk

. . .

. . .

. . . q1

qj

s1 sl
. . .

. . .
t1 tm

t1’

tn’

(Ra, I)
(R-a, I)

(R-c1, I)

(R-cj, I)

(R-b1, I) ..., (R-bi, I)
b1, .., bi, c1, .., cj ∈ Ω - {a}.

Figure 2.13.

Chapter 2. X-machine - a computational model framework.

51

q’

r1

rk

.

. . . q1

qj

s1 sl
. . .

. . .

t1 tm

t1’

tn’q=q"

(R-a, I)

(R-c1, I)

(R-cj, I)

(R-b1, I) ..., (R-bi, I)

Figure 2.14.

c. There is an arc labelled (R-a, I) from q’ to itself (figure 2.15). By eliminating the arc

q (R , I) q’a →   , q and q’ are merged (figure 2.16).

q q’

r1

rk

. . .
. . . q1

qj

s1 sl
. . .

(Ra, I) (R-c1, I)

(R-a, I)

(R-cj, I)

(R-b1, I) ..., (R-bi, I)

b1, .., bi, c1, .., cj ∈ Ω - {a}.

Figure 2.15.

Chapter 2. X-machine - a computational model framework.

52

r1

rk

. . .
. . . q1

qj

s1 sl
. . .

q = q’
(R-c1, I)

(R-a, I)

(R-cj, I)

(R-b1, I) ..., (R-bi, I)

Figure 2.16.

d. There is an arc labelled (R-a, I) from q’ to q (figure 2.17). In this case, when the
machine reaches state q, it will loop forever; therefore, figure 2.17 is transformed into
figure 2.18.

q q’

r1

rk

. . .
. . . q1

qj

s1 sl
. . .

(Ra, I) (R-c1, I)

(R-a, I) (R-cj, I)

(R-b1, I) ..., (R-bi, I)
b1, .., bi, c1, .., cj ∈ Ω - {a}.

Figure 2.17.

q q’

r1

rk

. . .
. . . q1

qj

s1 sl
. . .

loop forever

(R-c1, I)(R-a, I)

(R-cj, I)

(R-b1, I) ..., (R-bi, I)

Figure 2.18.

Chapter 2. X-machine - a computational model framework.

53

Since the number of arcs of graph G labelled with functions of the type (Ra, I) is
finite, the procedure which results from applying the rules above is finite. The
resulting graph will contain no paths in which a (Ra, I) is followed by a (R-b, I).

Since any input string which causes to loop forever will not be accepted by this, we
can further modify the graph G without affecting the computation of as follows:
 i). Any arc labelled ’loop forever’ can be removed.
 ii). Any loop formed only by arcs labelled with functions of type (Ra, I) can be
opened by removing any of them.

Let G’ be the graph resulting from transforming G as above. Then we can construct

e = (Σ, ∅ , Qe, M, Φ, Fe, qoe, Te, mo)
a 1 stack SMS X-machine where:
 1. Qe is the state set of the graph G’,
 2. Te is the set of all states q ∈ Qe such that either:

q ∈ T is a terminal state of that has not been affected by the above
transformation (i.e. it has not been merged with another state) or

q is a state obtained by merging a number of states of which at least one was a
terminal state of ;
 3. qoe is either:

qo, if this has not been affected by the above transformations or
the state that resulted from merging the initial state qo of with other states;

 4. Fe is the next state function determined by the graph G’.
Obviously the memory (M = Ω*), the type Φ and the initial memory value remain the
same as for .

From the construction of G’, it is obvious that and e are equivalent (i.e. they
accept the same language). We can now prove that the computation of e’(q, m) halts
∀ q ∈ Qe, m ∈ M.

Let N = card(Qe). Let q ∈ Qe be a state of the graph G’, m ∈ M be a value of the stack
and n be the length of m (i.e. the number of characters that m contains). Also, let p be
an arbitrary path in G’ that starts from the state q containing only elements of Φ2’ and
let |p| be the partial function computed along this path. We show that if
|p|(m, 1) ≠ ∅ , then p contains at most n + N arcs. Indeed, since |p|(m, 1) ≠ ∅ and
because p cannot contain a function of type (Ra, I) followed by another of type
(R-b, I), p may be written as p = p’p", where:

p’ = (R-a1, I) (R-ai, I), with a1, .., ai ∈ Ω , 0 ≤ i ≤ n,
p" = (Rb1, I) (Rbj, I) with b1, .., bj ∈ Ω.

Since G’ does not contain any loops formed only of functions of type (Ra, I) it follows
that j ≤ N (otherwise there will be a state which appears twice, and so G’ will have
such loops). Thus p has at most N + n arcs.
Therefore e’(q, m) halts ∀ q ∈ Qe, m ∈ M. 	

Chapter 2. X-machine - a computational model framework.

54

We can now prove that the classes of 1-stack SMS X-machines and RStack S X-
machines acceptors are equivalent.

Proposition 2.4.2.3.
Let be a deterministic 1-stack SMS X-machine acceptor. Then there exists a
deterministic RStack S X-machine acceptor " such that " and accept the same
language.

Proof:
We shall refer to e, the machine that results by applying lemma 2.4.2.2. As in the
proof of this lemma, we shall assume (without loss of generality) that the set of non-
empty input moves of e is

Φ1’ = {I} × {L-σ| σ ∈ Σ’}.
From lemma 2.4.2.1 it follows that e can be converted into a S X-machine with the
type Φ1’ Ψ.

Let q, q’ ∈ Q be such that q’ is either a terminal state of e or there exists an arc
emerging from q’ labelled by a non-empty input function. Then we prove that ψq.q’
can be written as a finite union of functions of the form (R-LRu, I), where L ⊂ Ω* is
a non-empty regular prefix and u ∈ Ω* a finite string.

Note: If f, g: A → B are two partial functions with dom f ∩ dom g = ∅ , then their
union f ∪ g is a (partial) function h: A → B defined by:
  g(a), if a ∈ dom g

h(a) =  h(a), if a ∈ dom h
 î ∅ , otherwise

from the way in which q’ is chosen it follows that
ψq.q’ = ∪ |p|,

where the union extends over all the paths p containing only empty input moves that
start in q and end in q’. Let p be such a path. Then p = p’ p", where

p’ = (R-a1, I) (R-ai, I), where a1, .., ai ∈ Ω,
p" = (Rb1, I) (Rbj, I), where b1, .., bj ∈ Ω.

We saw in the proof of the lemma above that j ≤ N, where N is the number of states
of the graph G’. Therefore the number of such p" is finite. We denote by {p1", ...,
pn"} the set of all such p". Then let s ∈ {1, ..., n} be such that ps" = p" and let qs be
the initial state of ps". Then p can be written as p = p’ ps", where p’ is a path that
starts from q and finishes in qs. The machine e removes symbols from the stack
along p’ and adds symbols to the stack along ps".

Now, for s = 1, ..., n, let Hs be the (partial) function defined by
Hs = ∪ |p’|,

where the union extends over all the paths p’ of the form

Chapter 2. X-machine - a computational model framework.

55

p’ = (R-a1, I) (R-ai, I) a1, .., ai ∈ Ω, starting in q and ending in qs.
Then

ψq.q’ = H |ps s

s 1

n

=

"|.

It is clear that there is no arc from qs labelled with a function of the type (R-a, I),
a ∈ Ω (otherwise the machine would be non-deterministic). Therefore Hs removes
symbols from the end of the stack like a finite state machine with a single terminal
state (qs) and without any arc emerging from the terminal state. Hence, there is a
regular prefix Ls such that Hs can be written as (R-Ls, I). If we denote by (Rus, I) the
computation along ps", then we have

ψq.q’ = (
j

n

=1

�
{R-LjRuj}, I) . �

Obviously, the converse implication is also true (since an arc labelled by a function of
the form (R-LRu, L-σ) can be replaced by a diagram whose arcs are labelled by 1-
stack SMS X-machine type functions). Thus proposition 2.4.2.3. has been established.

Corollary 2.4.2.4.
The class of regular stack stream X-machine acceptors accept exactly the
deterministic context-free languages.

Example 2.4.2.5.
Let Σ = {a, b, c} and

L = {ai1bai2b ... air-1baircsair-s+1| r ≥ 1, 1 ≤ s ≤ r, ij ≥ 1 for all 1 ≤ j ≤ r}.
We know that L is deterministic context-free, but it is not a real time stack language.

A deterministic regular stack stream X-machine that accepts L is the following.
 1. Ω = {x, y}
 2. mo = y
 3. The state transition diagram is presented in figure 2.19; qo is the initial state and
q4 the terminal state and ϕ1, ... ϕ6 are defined as follows:

ϕ1 = (Rx, L-a)
ϕ2 = (Ry, L-b)
ϕ3 = (I, L-c)
ϕ4 = (R-L’, L-c)
ϕ5 = (R-x, L-a)

 ϕ6 = (R-y, L-δ),
where L’ = {xny| n ≥ 0}.

Chapter 2. X-machine - a computational model framework.

56

1

2

3

4
51

5

ϕ

ϕ

ϕ

ϕ ϕ

ϕ ϕ

q0 q1 q2 q3
ϕ

6 q4

Figure 2.19.

We saw that a regular stack stream X-machine used stack functions of the form
R-LRu, where R-L removes symbols from the stacks like a finite state machine and
Ru adds a finite number of symbols at the end of the stack. An alternative (but similar
in principle) approach would be to use an additional set of symbols (called the set of
markers) to mark each stack location and to allow the machine to remove all the stack
symbols until a certain marker is encountered. We will call these stream X-machine
with markers and we will show that they are equivalent to the class of regular stack
stream X-machines.

2.4.3. Stack stream X-machines with markers.

The stack stream X-machine with markers (denoted MStack S X-machine) is a
generalisation of the tabulator machine introduced by Cole, [9]. The model is
somewhat similar to a regular stack stream X-machine, since the machine can remove
in a single move an unlimited number of characters from the stack. Unlike the regular
stack stream X-machine though, the stack stream X-machine with markers uses an
additional set of symbols to mark the locations where the machine stops removing
characters from the stack. Therefore, each stack symbol will be a pair (a, Bi), where a
is a pushdown symbol and Bi is a set of markers.
Cole, [9], claims that a tabulator machine is equivalent to a pushdown automaton.
However, there are some apparent gaps in the proof provided. We prove this result by
showing the equivalence between MStack S X-machines and RStack S X-machines.

Definition 2.4.3.1.
Let = (Σ, Γ, Q, M, Φ, F, Qo, T, mo) a stream X-machine. If
 1. M = Ω* (hence X = Γ* × Ω* × Σ’*),
with Ω = A × (B), where A and B are finite alphabets and (B) is the powerset of B.
A is called the set of push-down symbols and B the set of markers.
 2. Φ = {Rγ| γ ∈ Γ} × ΦM × {L-σ| σ ∈ Σ’},
where each φ ∈ ΦM is determined by a pair of partial functions (z, w),

z: A × (B) → B,
w: A × (B) → ((A × (B)) ∪ {1}) (1 is the empty string)

such that

Chapter 2. X-machine - a computational model framework.

57

∀ u ∈ Ω*, u = ((a0, B0) ... (ak, Bk)), φ is defined by:

  (a0, B0) ... (am, Bm) w(ak, Bk), if w(ak, Bk) ≠ ∅ and z(ak, Bk) ≠ ∅
φ(u) = 

 î ∅ , otherwise

where
m = max {n ≤ k| z(ak, Bk) ∈ Bn},

then is called a stack stream X-machine with markers.
A stack generalised stream X-machine with markers (denoted MStack GS X-
machines) will have the type
 {Rg| g ∈ Γ*} × ΦM × {L-σ| σ ∈ Σ’},
with ΦM defined as above.

Therefore, z indicates the location where the machine stops removing symbols from
the stack (i.e. when the marker indicated by z is found) and w indicates the pushdown
symbol and the set of markers which have to be added on top of the stack; if
w(ak, Bk) = 1 nothing is added on top of the stack.

To prevent the stacks becoming empty, the bottom-most location is required to
contain (ao, Bo), with Bo= B, the entire set of markers.

Example 2.4.3.2.
Let Σ = {a, b, c} and

L = {ai1bai2b ... air-1baircsair-s+1| r ≥ 1, 1 ≤ s ≤ r, ij ≥ 1 for all 1 ≤ j ≤ r}.
A deterministic stack stream X-machine with markers that accepts L is the following.

 1. Σ = {a, b, c}, Γ = ∅ . Hence X = Ω* × Σ*, where Ω is the stack alphabet.
 2. A = {x, y}; B = {s, t, u, v}.
Hence Ω = {x, y} × {∅ , {s}, {t}, {u}, {v}, {s, t}, {s, u}, {s, v}, {t, u}, {t, v}, {u, v},
{s, t, u}, {s, t, v}, {t, u, v}, {s, t, u, v}}.
 3. mo = (y, B).
 4. The transition diagram is presented in figure 2.20; qo is the initial state and q4
the terminal state and ϕ1, ... ϕ8 are defined as follows:

ϕ1 = (φ1, L-a)
ϕ2 = (φ2, L-a)
ϕ3 = (φ3, L-b)
ϕ4 = (φ4, L-c)
ϕ5 = (φ5, L-c)
ϕ6 = (φ6, L-a)
ϕ7 = (φ7, L-a)

Chapter 2. X-machine - a computational model framework.

58

ϕ8 = (φ8, L-δ)
with φi determined by zi and wi, i = 1, ..., 8.

zi: Ω → B and wi: Ω → (Ω ∪ {1}) are partial functions defined by:

Note: For the sake of simplicity the values for which the partial functions above are
not defined will not be listed.

z1(y, {s, t, u, v}) = s w1(y, {s, t, u, v}) = (x, {s, u})
z1(y, {s, u}) = s w1(y, {s, u}) = (x, {t, u})
z1(y, {t, u}) = t w1(y, {t, u}) = (x, {s, u})
z1(y, {s, v}) = s w1(y, {s, v}) = (x, {t, v})
z1(y, {t, v}) = t w1(y, {t, v}) = (x, {s, v})

z2(x, {s, u}) = s w2(x, {s, u}) = (x, {t, u})
z2(x, {t, u}) = t w2(x, {t, u}) = (x, {s, u})
z2(x, {s, v}) = s w2(x, {s, v}) = (x, {t, v})
z2(x, {t, v}) = t w2(x, {t, v}) = (x, {s, v})

z3(x, {s, u}) = t w3(x, {s, u}) = (y, {s, v})
z3(x, {t, u}) = s w3(x, {t, u}) = (y, {t, v})
z3(x, {s, v}) = t w3(x, {s, v}) = (y, {s, u})
z3(x, {t, v}) = s w3(x, {t, v}) = (y, {t, u})

z4(x, {s, u}) = t w4(x, {s, u}) = 1
z4(x, {t, u}) = s w4(x, {t, u}) = 1
z4(x, {s, v}) = t w4(x, {s, v}) = 1
z4(x, {t, v}) = s w4(x, {t, v}) = 1

z5(x, {s, u}) = v w5(x, {s, u}) = 1
z5(x, {t, u}) = v w5(x, {t, u}) = 1
z5(x, {s, v}) = u w5(x, {s, v}) = 1
z5(x, {t, v}) = u w5(x, {t, v}) = 1

z6(x, {s, u}) = s w6(x, {s, u}) = 1
z6(x, {t, u}) = t w6(x, {t, u}) = 1
z6(x, {s, v}) = s w6(x, {s, v}) = 1
z6(x, {t, v}) = t w6(x, {t, v}) = 1

z7(x, {s, u}) = t w7(x, {s, u}) = 1
z7(x, {t, u}) = s w7(x, {t, u}) = 1
z7(x, {s, v}) = t w7(x, {s, v}) = 1
z7(x, {t, v}) = s w7(x, {t, v}) = 1

z8(y, {s, t, u, v}) = s w8(y, {s, t, u, v}) = 1

Chapter 2. X-machine - a computational model framework.

59

z8(y, {s, u}) = s w8(y, {s, u}) = 1
z8(y, {t, u}) = t w8(y, {t, u}) = 1
z8(y, {s, v}) = s w8(y, {s, v}) = 1
z8(y, {t, v}) = t w8(y, {t, v}) = 1

1

2

3

4

5

ϕ

ϕ

ϕ

ϕ

ϕ
q0 q1 q2 q3

ϕ
6

q4

ϕ
7

ϕ
8

Figure 2.20.

Another interpretation of each φ ∈ ΦM is the following.
For each topmost symbol of the stack (ak, Bk), each φ ∈ ΦM removes symbols from
the memory stack like a finite state machine with two states and with no arc leaving
the terminal state (see figure 2.21) and adds the last symbol removed and another
(possibly empty) symbol w(ak, Bk).

Ω
1
(ak, Bk)

Ω (ak, Bk)
2

q1 q2

Ω1(ak, Bk) = {(c, D) ∈ Ω| z(ak, Bk) ∈ D}, Ω2(ak, Bk) = Ω - Ω1(ak, Bk).
q1 is the initial state, q2 is the terminal state.

Figure 2.21.

Thus, as with the regular stack model, finite automata can be used to compute each
φ ∈ ΦM; unlike these, though, the MStack S X-machine uses more than one (a finite
number, one for each stack symbol) finite automaton to compute each φ ∈ ΦM, but
these automata are simpler.

We now prove that deterministic MStack S X-machines and RStack S X-machines
are equivalent.
2.4.4. RStack S X-machines and MStack S X-machines are equivalent.

Chapter 2. X-machine - a computational model framework.

60

Proposition 2.4.4.1.
For any deterministic stack stream X-machine with markers there exists a
deterministic regular stack stream X-machine ’ such that and ’ are equivalent (i.e.
they compute the same function).

Proof:
Let = (Σ, Γ, Q, M, Φ, F, qo, T, mo) be a MStack S X-machine with M = Ω* and
Ω = A × (B).
Then ∀ ϕ ∈ Φ, ϕ will have the form

ϕ = (φΓ, φ, φΣ),
with φΓ ∈ {Rγ|γ∈ Γ}, φΣ ∈ {L-σ|σ∈ Σ’} and φ ∈ ΦM (ΦM is as defined in definition
2.4.3.1).

We show that can be simulated by the RStack S X-machine
’ = (Σ, Γ, Q, M, Φ’, F’, Qo, T, mo)

in which each ϕ ∈ Φ, ϕ = (φΓ, φ, φΣ) is replaced by a set of functions
{ϕ1’, ..., ϕk’} ⊆ Φ’ (i.e. Φ’ is the type of the RStack S X-machine ’),

with ϕi’ = (φΓ, φi’, φΣ,), i = 1, ...k.
Therefore the ’next state’ function of ’ will be defined by

F’(q, ϕi’) = F(q, ϕ), ∀ q ∈ Q, i = 1, ..., k.
The mapping φ → {φ1’, ... φk’} is defined below.

Let φ: (A × (B))* → (A × (B))* defined by
z: A × (B) → B and w: A × (B) → A × (B).

Let (a, C) ∈ A × (B) and φ|(a, C) be the restriction of φ to Ω*{(a, C)}. If z(a, C) = ∅
or w(a, C) = ∅ then φ|(a, C) is the empty function. Otherwise, we prove that φ|(a, C)
can be written as a finite union of functions of the form R-LRu (L ⊆ Ω* is a non-
empty regular prefix and u ∈ Ω*). We have the following two cases.

i) Let b = z(a, C). If b ∈ C, then let L = {a, C} and u = w(a, C). Then
φ|(a, C) = R-LRu.

ii) Otherwise let
D = {B’ ⊆ B| b ∉ B’} and E = {B’ ⊆ B| b ∈ B’}.

Then, we define
Lxy = (a, C) ((a’,B’))*

a’ A,B’ D∈ ∈
∑ (x, y) ∀ x ∈ A, y ∈ E.

It is clear that Lxy is a regular prefix. We also define
uxy = (x, y) w(a, C).

It is easy to verify that φ|(a, C) can be written as
x A y E∈ ∈,

R-LxyRuxy.

Chapter 2. X-machine - a computational model framework.

61

Since φ =
a A,C (B)∈ ∈

�
φ|(a, C), φ can be simulated by a finite set {φ1’, ... φk’} of functions

of the form R-LRu.

From the construction of ’ it is clear that if is deterministic, ’ is deterministic. �

The converse implication is also true. First we need the following technical result.

Lemma 2.4.4.2.
Let be a regular stack stream X-machine. Then, by a suitable enrichment of the
stack alphabet, ΦM can be considered as
 ΦM = {R-LRu|u ∈ {1} ∪ Ω ∪ Ω2, where L ⊆ Ω* is a regular prefix, L ≠ ∅ , {1}}

∪ {Ru| u ∈ {1} ∪ Ω}.
Also, we can consider that the initial memory value of a can be chosen as
mo ∈ {1} ∪ Ω.

Proof:
Without loss of generality we shall consider that ΦM is finite (this is because only a
finite number of functions are used to label the arcs in). Then

ΦM = {R-LiRui| i = 1, ..., n}.
Let m = max ({|ui| | i = 1, ..., n} ∪ {|mo|}). Then let Ω’ be an alphabet with the same
number of elements as the set Ω ∪ ... ∪ Ωm and

h: Ω ∪ ... ∪ Ωm → Ω’
be a bijective function.
In what follows h(x) will be denoted by [x], ∀ x ∈ Ω ∪ ... ∪ Ωm.

The idea we shall employ is to transform into a RStack S X-machine ’ with the
stack alphabet Ω’. The state set, the initial state and the set of terminal states will
remain unchanged. The initial memory value of ’ will be [mo]. The next state
function of ’ will be obtained from the next state function of by replacing any arc

q
(, I)

q
φ →  ’, φ ∈ ΦM,

with a number of arcs

q
(, I)

q
φ1 →   ’, ..., q

(, I)
q

φk →   ’

such that ψ =
i

k

=1

�
φk simulates φ.

Then, for each
φ ∈ {R-LiRui| i = 1, ..., n}

Chapter 2. X-machine - a computational model framework.

62

we have to find the corresponding function ψ such that ψ simulates φ and φ can be
written as a finite union of partial functions of the form R-L’Ru’, with L’ ⊆ Ω’* a non-
empty regular prefix and u’ ∈ {1} ∪ Ω’. In other words, let

g: Ω’* → Ω*
be the surjective morphism induced by

g([u]) = u, ∀ u ∈ Ω’.
Then for each φ as above, we have to find ψ such that the diagram

Ω

Ω

Ω

Ω
� �

g g

� ����

φ

ψ

commutes and ψ can be written as a finite union of the functions as described above.

Let φ = R-LRu. Then we have the following two cases.

i) If L = {1}, then
ψ = R[u], [u] ∈ {1} ∪ Ω’ (i.e. if u = 1, [u] denotes the empty string 1).

ii) Otherwise L ≠ {1}. Then let s’ ∈ Ω’*, s’ = [y1] ... [yk]. Then we define ψ by
ψ = h R[u],

where

  [y1] ... [yi-1] [yi’], if ∃ v ∈ L such that yi ... yk = yi’ rev(v)
 h(s’) =  with |yi’| < |yi|
 î ∅ , otherwise

It is clear that h is well defined and gf = f’g.

Therefore h removes the string [yi+1] ... [yk]; [yi] is either removed (i.e. if
yi ... yk = rev(v)) or replaced by [yi’], 0 < |yi’| < |yi|, if yi ... yk = yi’ rev(v).

Since |yi’| ∈ {0, ..., m-1}, h can be written as a union of functions of the form

| |y m<

�
R-L’yR[rev(y)],

where

L’1 = g-1(L)
.
L’x1 ... xj = g-1(Lx1 ... xj) - (g-1(Lx1 ... xj-1)[xj] ∪ g-1(Lx1 ... xj-2)[xj-1][xj] ∪

g-1(Lx1 ... xj-2)[xj-1xj] ∪ g-1(Lx1 ... xj-3)[xj-2][xj-1][xj] ∪

Chapter 2. X-machine - a computational model framework.

63

g-1(Lx1 ... xj-3)[xj-2xj-1][xj] ∪ g-1(Lx1 ... xj-3)[xj-2][xj-1xj] ∪
g-1(Lx1 ... xj-3)[xj-2xj-1xj] ∪ ... ∪ g-1(L)[x1 ... xj])

∀ x1,... xj ∈ Ω, j < m.
Aside. An example will illustrate the construction.
Let Ω = {a, b, c} and m = 2. Then

Ω’ = {[a], [b], [c], [aa], [ab], [ac], [ba], [bb], [bc], [ca], [cb], [cc]}.
If L = {ab*c}, then

g-1(L) = ([a] + [ab]) ([b] + [bb])* ([c] + [bc]) + [ac].
The minimal automata and ’ of L and L1’ = g-1(L), respectively, are represented in
figures 2.22 and 2.23.

q1 q2 q3

a

b

c

The minimal automaton of L
Figure 2.22.

q1 q2 q3

[ac]

[a], [ab]

[b], [bb]

[c], [cb]

The minimal automaton of L1’

Figure 2.23.

Then
La’ = g-1({ab*ca}) - g-1({ab*c})[a]
Lb’ = g-1({ab*cb}) - g-1({ab*c})[b]
Lc’ = g-1({ab*cc}) - g-1({ab*c})[c] •

Since L is a regular prefix, all the sets L’y are regular prefixes (this follows from
lemma 4.2.1.7). Therefore, the function ψ can be written as

ψ = (
| |y m<

�
R-L’yR[rev(y)]) R[u],

where all of the sets L’y are regular prefixes.

The equivalence of the two machines (and ’) follows since for all input sequences
x ∈ Σ*, x takes from its initial state and initial memory value into the state q and
memory value s iff x takes ’ from its initial state and its memory value into the state
q and the memory value s’, such that s’ ∈ g-1(s); also, the output sequences produced

Chapter 2. X-machine - a computational model framework.

64

by the two machines when they receive x are the same (this follows using a simple
inductive argument). �

Proposition 2.4.4.3.
For any deterministic regular stack stream X-machine , there exists a deterministic
stack stream X-machine with markers ’ such that and ’ are equivalent.

Proof:
Let = (Σ, Γ, Q, M, Φ, F, qo, T, mo) be a deterministic RStack S X-machine with
stack alphabet Ω. Hence

Φ = {ϕ = (φΓ, φ, φΣ)| φΓ: Γ*→ Γ*, φΣ: Σ*→ Σ*, φ: Ω*→ Ω*,
 φΓ ∈ {Rγ| γ ∈ Γ}, φΣ ∈ {L-σ| σ ∈ Σ’}, φ ∈ ΦM}.

Without loss of generality we shall consider that ΦM is finite. From lemma 2.4.4.2, it
follows that ΦM will have the form
 ΦM = {R-LiRui| Li ≠ {1}, ui ∈ {1} ∪ Ω ∪ Ω2, i = 1,..., n} ∪ {Ru| u∈ {1} ∪ Ω}.
We also assume that mo ∈ {1} ∪ Ω .

Let

i = {Li x-1| x ∈ Ω*, Li x-1 ≠ ∅ }, i = 1, ..., n.
Since Li is a regular language, i is finite. Let ki = card(i), i = 1, ..., n.

We shall prove that can be simulated by a MStack S X-machine ’. The proof will
employ the following ideas:
 Let y ∈ Ω* be a stack value and L ⊆ Ω* be a non-empty regular prefix. Then R-
L(y) ≠ ∅ iff ∃ t ∈ Ω*, ξ ∈ L such that y = t rev(ξ). Hence y = tϖ, with ϖ = rev(ξ).
Therefore the end part of the stack is the reverse of an element of L. Hence R-L(y) ≠
∅ iff y can be written as y = tϖ, with rev(ϖ) ∈ L (or {1} ∈ L rev(ϖ)-1).
 On the other hand, since ∀ x, x’ ∈ Ω*, L rev(xx’)-1 = L rev(x)-1rev (x’)-1, we can
keep track of all values L rev(ϖ)-1 ≠ ∅ , where ϖ is the end part of the stack (i.e.
∃ t ∈ Ω* such that s = tϖ).

Construction of ’.
We construct ’ = (Σ, Γ, Q’, M’, Φ’, F’, q’o, T’, mo’) a MStack S X-machine as follows.

 1. Q’ = Q × ({1} ∪ Ω ∪ Ω2), q’o = (qo, mo), T’ = T × ({1} ∪ Ω ∪ Ω2).

 2. M’ = Ω’*, with the stack alphabet Ω’ = A × (B), where the set of pushdown
symbols and the set of markers are defined as follows.
Let {Bi}i =1, ..., n be a family of sets such that

card(Bi) = ki + 1 and
i

n

=1

�
Bi = ∅ .

Then the set of markers is

Chapter 2. X-machine - a computational model framework.

65

B =
i

n

=1

�
Bi.

The set A will be
A = A1 × × An,

where
Ai = {gi| gi: i → Bi is a partial function}.

Notation: In order to simplify the notation in what follows we define, for an arbitrary
finite set X, the random function Rd[X]: ((X) - X) → X, where for each proper
subset of X, X’, Rd[X](X’) = x, where x ∈ X and x ∉ X’ is chosen at random.

 3. The initial memory value is
mo’ = ((g10, ..., gn0), B),

where gi0 is the initial value of gi, i = 1, ..., n, defined by:
gi0(Li) = Rd[Bi](∅) and undefined for i - {Li}.

The initial value of the markers set is B0 = B.

 4. The next state function F’ of ’ follows from the next state function F of by
applying the following transformations:

a) Each arc from of the form

q q’
ϕ → , with ϕ = (φΓ, φ, φΣ), φ = R-LiRui, Li ≠ {1}, ui ∈ {1} ∪ Ω ∪ Ω2,

is replaced in ’ by the set of arcs

(q, v)
’

(q’, u)
v

i
ϕ → , v ∈ {1} ∪ Ω ∪ Ω2.

b) Each arc from of the form

q q’
ϕ → , with ϕ = (φΓ, φ, φΣ), φ = Ru, u ∈ {1} ∪ Ω,

is replaced in ’ by two sets of arcs as follows:

(q, v)
’

(q’, u)
vϕ → , v ∈ {1} ∪ Ω,

(q, v)
’

(q’, rear(v) u)
vϕ → , v ∈ Ω2.

Note: head and rear are defined in definition 2.3.1.

For ϕ = (φΓ, φ, φΣ) and v ∈ {1} ∪ Ω ∪ Ω2 we denoted by ϕv’ the function
ϕv’ = (φΓ, φv’, φΣ), where each φv’ is determined by a pair of functions (z, w),

 w: A × (B) → ((A × (B)) ∪ {1}) and z: A × (B) → B.
The definitions of these functions (and therefore the definition of φv’) depend on the
following two cases.

 Case A. φ = R-LiRui, Li ≠ {1}, ui ∈ {1} ∪ Ω ∪ Ω2.

Chapter 2. X-machine - a computational model framework.

66

Let a ∈ A and C ∈ (B), a = (g1, .., gn), C =
i

n

=1

�
Ci with Ci ⊆ Bi, the pushdown

symbol and the markers set respectively of the topmost location of ’.

i). We define w by:
  ((g1’ .., gn’), b’), if v ∈ Ω2 and rear(v) ∈ Li

w(a, C) =  1, if ∃ L ∈ dom (gi), such that rev(v) ∈ L (1)
 î ∅ , otherwise

where b’ = {b1’,..., bn’} with bj’ ∈ Bj, j = 1, ..., n.
The expressions of gj’, bj’, j = 1, ..., n, are given below.

Let dom (gj) = {Lj1, ..., Ljr}, r ≤ kj. Then

dom (gj’) = {Lj1head(v)-1, ..., Ljrhead(v)-1} - ∅ ∪ {Lj}, (2)

gj’(Ljshead(v)-1) = gj(Ljs), if Ljshead(v)-1 ≠ ∅ , s = 1, ..., r, (3)

gj’(Lj) = Rd[Bj]({gj(Ljs)| Ljshead(v)-1 ≠ ∅ , s = 1, ..., r}), (4)

bj’ = gj’(Lj). (5)

ii). z is defined by:

  Rd[C](∅), if v ∈ Ω2 and rear(v) ∈ Li
z(a, C) =  gi(L), if ∃ L ∈ dom (gi) such that rev(v) ∈ L (6)

 î ∅ , otherwise

 Case B. φ = Ru, u∈ {1} ∪ Ω.
Then φv’ is determined by the pair of functions z, w as follows.

i). We define w by:

  ((g1’ .., gn’), b’), if v ∈ Ω ∪ Ω2

w(a, C) =  (1’)
 î 1, otherwise

where b’ = {b1’,..., bn’} with bj’ ∈ Bj, j = 1, ..., n.
The expressions of gj’, bj’, j = 1, ..., n, are given below.

Let dom (gj) = {Lj1, ..., Ljr}, r ≤ kj. Then

Chapter 2. X-machine - a computational model framework.

67

dom (gj’) = {Lj1head(v)-1, ..., Ljr head(v)-1} - ∅ ∪ {Lj}, (2’)

gj’(Ljshead(v)-1) = gj(Ljs), if Ljshead(v)-1 ≠ ∅ , s = 1, ..., r, (3’)

gj’(Lj) = Rd[Bj]({gj(Ljs)| Ljshead(v)-1 ≠ ∅ , s = 1, ..., r}), (4’)

bj’ = gj’(Lj). (5’)

ii). z is defined by:

z(a, C) = Rd[C](∅) (6’)

From the construction of ’ it follows that the set of markers of each location except
the bottom-most will contain n markers, one from each Bi.

Let us now explain how ’ simulates . If a certain input sequence will take into
the state q with the stack value y, then the same input sequence will take ’ into a
state (q, v), v ∈ {1} ∪ Ω ∪ Ω2, such that v is the end part of the stack value s, i.e. (∃
τ ∈ Ω* such that y = τv). The function gi of the topmost location will associate a
marker with each non-empty set Lix-1, where x is the end part of τ reversed (i.e. ∃ t ∈
Ω* such that τ = t rev(x)). Also, each stack location (apart from the bottommost) will
be marked by n markers, one from each Bi. When adds or removes symbols from
its stack, ’ will add updated versions of the functions gi and a new set of markers or
removes symbols from its stack such that at any time |υ| = |τ| + 1, where υ is the stack
value of ’.

The fact that is well defined and that and ’ are equivalent follows from the
following three lemmas.

Lemma 2.4.4.3.1 (inside proof).
Let υ ∈ Ω’* the stack value of ’, υ = ωoω1... ωk, with ω0, ω1,..., ωk ∈ Ω’ (i.e. ωo is
the value of the bottommost location of the stack). Let (g1j,..., gnj) be the pushdown
symbol of ωj and Cj = {b1j,..., bnj}, bij ∈ Bi, the set of markers of ωj. Then, for
i = 1, ..., n we have:
1. ∃ τ ∈ Ω* , |τ| = |υ| -1 (i.e. the length of υ without the bottommost location is the
length of τ), such that

dom gij = {Li(rev(x))-1 ≠ ∅ | ∃ t ∈ Ω* such that xj = tx}, j = 0, ..., k,
where xj ∈ Ω* satisfies |xj| = j and xj-1τ ≠ ∅ (i.e. ∃ dj ∈ Ω* such that τ = xjdj).
2. gij is well defined, j = 0, ..., k.
3. gij is injective, j = 0, ..., k.
4. Let j ∈ 0, ..., k-1 and let dj = xj-1τ. If Li(rev(dj))-1 ≠ ∅ , then bij ∉ Cr, r = j+1,.., k.
Also, bij = gik(Li(rev(dj))-1).

Chapter 2. X-machine - a computational model framework.

68

Proof:
1. It follows by induction on k using the definition of φv’ (i.e. the expressions of gj’
function of gj, as given in relations (3), (4) and (3’), (4’)). We use the fact that

Li rev(xα)-1 = L rev(x)-1rev (α)-1, ∀ x ∈ Ω*, α ∈ Ω.
2. Since Li is a prefix, the sets {Li(rev(x))-1 ≠ ∅ | ∃ t ∈ Ω* such that xj = tx} will be
disjoint. Hence gij is well defined.
3. It follows by induction on k using the same definition and relations as 1.
4. Let dj = α1 ... αk-j, with α1,... αk-j ∈ Ω. From 1 it follows that

Li(α1)-1... (αr-j)-1 ∈ dom gir, r = j+1, ..., k.
Since gir is injective it follows that

gir(Li(α1)-1... (αr-j)-1) ≠ gir(Li).
Hence, since bir = gir(Li) (relations (5) and (5’)) it follows that bij ∉ Cr, r = j+1, ..., k.
By induction on the length of dj it follows that gik(Li(rev(dj))-1) = gij(Li). Hence
bij = gik(Li(rev(dj))-1). �

From lemma 2.4.4.3.1, 2, it follows that gij is well defined for any stack location.
Hence w is well defined. Also, z is well defined since the two conditions from
relation (6) yield disjoint domains.

We can now prove the equivalence of and ’. This is done using the following two
lemmas.

Lemma 2.4.4.3.2 (inside proof).
Let s ∈ Σ* be an input sequence. If s takes from its initial state and memory value
to the state q ∈ Q and stack value y ∈ Ω*, while producing an output sequence g ∈ Γ
, then there exist v ∈ {1} ∪ Ω ∪ Ω2, τ ∈ Ω and υ ∈ Ω’* such that:
1. τv = y.
2. s takes ’ from its initial state and memory value to the state (q, v) and the memory
value υ while producing the same output sequence g.
3. υ satisfies |υ| = |τ| + 1.
4. Let υ = ωoω1... ωk, with ω0, ω1,..., ωk ∈ Ω’ (i.e. ωo is the value of the
bottommost location of the stack). Let j ∈ {0, ..., k} and (g1j .., gnj) be the pushdown
symbol of ωj. Then:

dom gij = {Li(rev(x))-1 ≠ ∅ | ∃ t ∈ Ω* such that xj = tx}, i = 1,..., n,
where xj ∈ Ω* satisfies |xj| = j and xj-1τ ≠ ∅ (i.e. ∃ dj ∈ Ω* such that τ = xjdj).

Proof:
We prove this lemma by induction on the length of the input sequence s. For s = 1
statements 1 - 4 are true (i.e. we take τ = 1, v = mo (the initial memory value of)
and υ containing only the bottommost location of the stack of ’).

Chapter 2. X-machine - a computational model framework.

69

Let us assume that 1 - 4 are true for s and let σ ∈ Σ be such that there exists an arc

q q’
ϕ → , ϕ = (Rγ, φ, L-σ), γ ∈ Γ, φ ∈ ΦM

such that φ(y) ≠ ∅ . Then let φ(y) = y’. We prove that there exist v’ ∈ {1} ∪ Ω ∪ Ω2,
τ’ ∈ Ω* and υ’ ∈ Ω’* such that:
1. τ’v’ = y’.
2. There exists an arc

(q, v)
’

(q’, v’)
vϕ → , ϕv’ = (Rγ, φv’, L-σ),

in ’ such that φv’(υ) = υ’.
3. υ’ satisfies |υ’| = |τ’| + 1.
4. Let υ’ = ωo’ω1’... ωk’’, with ω0’, ω1’,..., ωk’’ ∈ Ω’. Let j ∈ {0, ..., k’} and (g1j

,.., gnj) the pushdown symbol of ωj’. Then:
dom gij = {Li(rev(x))-1 ≠ ∅ | ∃ t ∈ Ω* such that xj’ = tx}, i = 1,..., n,

where xj’ ∈ Ω* satisfies |xj’| = j and xj’-1τ’ ≠ ∅ (i.e. ∃ dj ∈ Ω* such that τ’ = xj’dj).

We have the following cases:

A. φ = Ru, u ∈ {1} ∪ Ω.
 i) If v = 1, then v’ = u, τ’ = τ and υ’ = υ.
 ii) If v ∈ Ω, then v’ = u and τ’ = τv. υ’ = υω, where ω ∈ Ω’ has the pushdown
symbol (g1 .., gn) with

dom gi = {Li(rev(x))-1 ≠ ∅ | ∃ t ∈ Ω* such that τv = tx}, i = 1,..., n.
 iii) If v ∈ Ω2, then v’ = rear(v) u and τ’ = τ head(v). υ’ = υω, where ω ∈ Ω’ has the
pushdown symbol (g1 .., gn) with

dom gi = {Li(rev(x))-1 ≠ ∅ | ∃ t ∈ Ω* such that τ head(v) = tx}, i = 1,..., n.
It can be easily verified that the statements 1 - 4 are true.

B. φ = R-LiRui, Li ≠ {1}, ui ∈ {1} ∪ Ω ∪ Ω2.
In this case R-Li(y) ≠ ∅ iff ∃ ϖ ∈ Li, a ∈ Ω* such that y = a rev(ϖ). Hence
τv = a rev(ϖ). So we have the following cases:
 i) v ∈ Ω2 and rear(v) = rev(ϖ). Hence rear(v) ∈ Li. In this case we have v’ = ui and
τ’ = τ head(v). υ’ = υω, where ω ∈ Ω’ has the pushdown symbol (g1 .., gn) with

dom gi = {Li(rev(x))-1 ≠ ∅ | ∃ t ∈ Ω* such that τ head(v) = tx}, i = 1,..., n.
It can be easily verified that the statements 1 - 4 are true.
 ii) ∃ b ∈ Ω* such that rev(ϖ) = bv and τ = ab. Hence rev(v) rev(b) ∈ Li. Therefore
rev(v) ∈ Li rev(b)-1. Let L = Li rev(b)-1. Then φv’ removes symbols from υ until the
marker gik(L) is encountered. Using lemma 2.4.4.3.1, 4, and relation (6) it follows
that φv’(υ) = υ’, such that υ’ is obtained by removing |b| symbols from the end of υ.
Therefore conditions 1 - 4 are satisfied for τ’ = a and v’ = ui. �

Lemma 2.4.4.3.3 (inside proof).

Chapter 2. X-machine - a computational model framework.

70

Let s ∈ Σ* be an input sequence. We assume that s takes ’ from its initial state and
memory value to the state (q, v) ∈ Q × ({1} ∪ Ω ∪ Ω2) and stack value υ ∈ Ω’*
while producing an output sequence g ∈ Γ*. Then there exists τ ∈ Ω* such that:
1. s takes ’ from its initial state and memory value to the state q and the memory
value τv while producing the same output sequence g.
2. |υ| = |τ| + 1.
3. Let υ = ωoω1... ωk, with ω0, ω1,..., ωk ∈ Ω’. Let j ∈ {0, ..., k} and (g1j .., gnj) the
pushdown symbol of ωj. Then:

dom gij = {Li(rev(x))-1 ≠ ∅ | ∃ t ∈ Ω* such that xj = tx}, i = 1,..., n,
where xj ∈ Ω* satisfies |xj| = j and xj-1τ ≠ ∅ (i.e. ∃ dj ∈ Ω* such that τ = xjdj).

Proof:
By induction, in a manner similar to lemma 2.4.4.3.2. The induction step consists of
showing that if ’ follows an arc

(q, v)
’

(q’, v’)
vϕ → , ϕv’ = (Rγ, φv’, L-σ), with φv’(υ) = υ’

then ’ will follow the arc

q q’
ϕ → , ϕ = (Rγ, φ, L-σ) with φ(τv) = τ’v’, where τ’ satisfies conditions 1-3

with respect to υ’ and v’. � �

Corollary 2.4.4.4.
The class of stack stream X-machines with markers accept exactly the deterministic
context-free languages.

2.4.5. Assessment of the stream X-machine model

At first sight the stream X-machine model appeared to be too restrictive to cope with
many common applications. We investigated the k-stack stream X-machines and we
saw that there were context-free languages that could not be accepted by such
machines.

But the power of the model increases by using more complex φ’s. We have presented
two classes of stream X-machines (i.e. RStack S X-Machines and MStack S X-
machines) that accept exactly the deterministic context-free languages. These stream
X-machines use φ’s that can be computed using simpler stream X-machines (i.e. finite
automata). In this way we can build even more complex stream X-machine models.
For example, we can define a k regular stack (generalised) stream X-machine
(denoted k-RStack (G)S X-machine) like a regular stack machine but with k stacks
instead of one. These machines will accept a larger class of languages (i.e. it will
include both the deterministic context-free language and real time stack languages).

Chapter 2. X-machine - a computational model framework.

71

Also, the hierarchy of (G)S X-machines can be continued further using the idea
employed in the construction of RStack S X-machines. Following this approach we
can construct (G)S X-machines with one stack (i.e. M = Ω*) and the set of functions
that operate on that stack

ΦM = {R-LRu| u ∈ Ω*, L ⊆ Ω* is a non-empty prefix},
where L is a language for which we already have a computational model (e.g. L is a
language accepted by a RStack S X-machine or a k-RStack S X-machine).

2.5. Conclusions and further work.

We have investigated two particular classes of X-machines. Firstly, a very general
class, the straight-move stream X-machines, that can model any type of Turing
computation. However, the generality of the model makes it an unlikely basis for a
theoretical testing methodology.

Secondly, we investigated a more restrictive class, the stream X-machines. These are
the machines on which our testing method will be based. We have seen that, although
more restrictive than the straight-move stream X-machine, the stream X-machine can
be used to build models of complex computational devices. The approach employed
was a hierarchical one, in which a machine uses basic operations that have been
specified by simpler S X-machines. This appears to fit the approach used in practice
for developing specifications of complex systems (i.e. a complex specification is built
in terms of simpler ones). On the other hand, the use of the stream X-machine as a
specification tool has been tried on numerous systems, some of them fairly complex
(see Laycock [41], Howe [35], Chiu [5]) and the model appears to cope successfully
with a wide range of applications.

Further work could concentrate on extending the hierarchy of stream X-machines.
Following the approach used in this chapter, if is a class of languages accepted by a
certain class of (G)S X-machines, then the next level in the hierarchy will be the class
of (G)S X-machines with one stack (i.e. M = Ω*) and the set of functions that operate
on that stack

ΦM = {R-LRu| u ∈ Ω*, L ⊆ Ω* is a non-empty prefix, L ∈ }.

An alternative (and more powerful) approach we can employ for building hierarchies
of GS X-machines could be as follows. Let Σ a finite alphabet and f: Σ* → Σ* a
partial function such dom f is a non-empty prefix. We denote by R-f a (partial)
function R-f: Σ* → Σ*
defined by:

  s rev(v)-1rev(f(v)), if ∃ v ∈ dom f such that s rev(v)-1 ≠ ∅ ,

Chapter 2. X-machine - a computational model framework.

72

 R-f (s) = 
 î ∅ , otherwise

If f is a function computed by a GS X-machine and s ∈ Σ*, then R-f(s) operates as
though starts removing inputs /adding outputs from the end of the sequence s. This
is similar to the definition of R-L, but in this case does not only remove input
symbols, it replaces them with outputs.

For example, let Σ = {a, b, c, x, y, z} and f: Σ* → Σ* be the partial function with
dom f = {ab*c}

defined by
f(abic} = xyiz, i ≥ 0.

Then:
 1. If the value of the stack is s = aacbba, then R-f (s) = aazyyx.
 2. If the value of the stack is s = aacbbab, then R-f (s) is not defined.

Then, we can say that a GS X-machine is a (n+1)-complex Stack GS X-machine,
n ≥ 0, if its memory is M = Ω* and its type is

Φ = {Rγ| γ ∈ Γ} × ΦM × {L-σ| σ ∈ Σ’},
where

ΦM = {R-f| f: Ω* → Ω* is a partial function computed by a n-complex Stack
GS X-machine such that dom f is a non-empty regular set}.

We shall also define a 0-complex Stack GS X-machine to be any machine that
computes the partial function f: Σ* → Σ* with

dom f = {1}, defined by f(1) = 1.

Let us denote by Mn the class of n-complex Stack GS X-machines and Fn the class of
functions they compute. Then M1 will be the class of finite state machines with
outputs (and with the property that when an input symbol is read the machine can
produce a sequence of output symbols, not only one). However, F2 is larger then the
class of functions computed by RStack GS X-machines. In fact F2 includes all of the
functions computed by k-RStack GS X-machines. This follows easily from the
following two remarks.

1). Let L ⊆ Σ* a non-empty regular prefix and u ∈ Σ*. Then R-LRu = R-f, where f:
Σ* → Σ* is a partial function with dom f = L defined by

f(s) = rev(u), ∀ s ∈ L.
It is easy to show that f ∈ F1.

2). Let φ: (Σ*)k → (Σ*)k a partial function defined by
φ = (R-L1Ru1,..., R-LkRuk),

Chapter 2. X-machine - a computational model framework.

73

with L1, ..., Lk ⊆ Σ* non-empty regular prefixes and u1, ..., uk ∈ Σ*. Using 1) it
follows that φ can be written as

φ = (R-f1, ..., R-fk)
for some partial functions fi: Σ* → Σ*, fi ∈ F1, i = 1, ..., k. Then the function φ
operating on k stacks can be simulated by a function ψ = R-g, where g: Ω* → Ω* is a
function that operates on a single stack. The values of the k stacks will be placed on a
single stack separated by some special symbols a1, ..., ak such that ai ∉ Σ, i = 1, ..., k
(i.e. if s1, s2, ..., sk are the values of the k stacks, then the value of the new stack will
be a1s1a2s2...aksk).
Then the stack alphabet will be Ω = Σ ∪ {a1, ..., ak}. The partial function g will have

dom g = dom fk Σ* {ak} ... dom f2 Σ* {a2} dom f1 Σ* {a1}
and will be defined by

g(xkykak...x1y1a1) = fk(xk)ykak...f1(x1)y1a1,∀ x1 ∈ dom f1,..., xk ∈ dom fk,
y1, ..., yk ∈ Σ*.

Since dom f1, ..., dom fk are prefixes, g is well defined. It can be shown easily that
g ∈ F1.

Obviously, this hierarchical approach requires much further investigation. Two
interesting questions that arise are:
 How far can we get using this approach? We know that any language accepted by
a n-complex stack GS X-machine is recursive (see proposition 2.4.3). But how close
to the set of recursive languages can we get?
 Does this hierarchy continue infinitely, is there any n such that
{n-complex Stack GS X-machines} = {(n+1)-complex Stack GS X-machines}?
This approach could provide us with a natural way of classifying context-sensitive
(or even recursive) languages.

Another interesting area to explore is whether the X-machine model could be used to
classify non-Turing computable functions, i.e. having a certain set Φ of
noncomputable functions and Ξ(Φ) the set of functions computed by the X-machines
with type Φ, under what conditions Φ is strictly included in Ξ(Φ)?

Acknowledgement:
Theorem 2.3.9 is a generalisation of a result stating that a Turing machine acceptor
can be simulated by a 2-PDA (i.e. a PDA with two stacks) (see Cohen [8]). The
concept of S X-machine was introduced by Laycock, [41]. The concept of MStack S
X-machine is a generalisation of the tabulator machine introduced by Cole, [9].

