
159

Chapter 5.

Refinement of stream X-machines.

This chapter presents the concept of refinement as a way of developing stream X-
machine specifications gradually. The concept will be illustrated with a case study
(an X-machine specification of a word processor). A refinement testing method
will also be given.

5.1. Refinement - definitions.

The concept of refinement we are presenting here provides a way of developing
(generalised) stream X-machine specifications gradually. Simpler machines are
used to construct a more complex specification. The way in which these machines
are joined together is specified by a ’control’ machine. The situation is similar to
that of an implementation that uses a ’main’ program that calls several sub-
programs. Let us explain now how our refinement works.

Let

i = (Σ, Γ1, Pi, Mi, Φi, Fi, pio), i = 0, ..., n,
be deterministic generalised stream X-modules (Pi is the state set, pio is the initial
state and all the states are assumed to be terminal). For i = 0, ..., n we assume that
the following conditions are satisfied:
 i) The associated automata of the modules i are minimal.
 ii) There exists a state pif ∈ Pio, pio ≠ pif, such that ∀ φi ∈ Φi, Fi(pif, φi) ≠ ∅
(i.e. no arcs emerge from the state pif).
We shall call pif the final state of the module (i.e. the name indicates that once the
module is in pif no further transitions are allowed).
Note: The notion of final state should not be confused with that of terminal state.

The modules i will be called the refinement modules.

Let
 = (I, Γ2, Q, M, Φ, F, qo, mo)

be a deterministic stream X-machine with the state set Q = { qo, q1,... qn} , the
input set I, the output set Γ2 and the memory set M and let

zi: M → Mi, yi: Mi → I, i = 0,..., n,
be functions.

Chapter 5. Refinement of stream X-machines.

160

 will be called the control machine. This will be refined using the modules i. In
fact, all the arcs that emerge from the state qi will be refined by the module i.
When is in the state qi, the module i will be initialised (via the function zi). In
turn, i will feed the machine with appropriate inputs (via the function yi).
These inputs will be processed by the φ’s that label arcs emerging from qi in the
control machine .

The refinement we shall be defining will be a system consisting of the control
machine and the modules i. The way in which these communicate can be seen
as a process in which the modules i receive inputs from the external environment
and feed with appropriate inputs (see figure 5.1). Only one i is active at a time,
depending on the state is in. The whole process works as follows.

Let us assume that i is active and let
(qi, m) ∈ Q × M and (pi, mi) ∈ (Pi - {pif }) × Mi,

be the current states and memory values of and i respectively. Also, let σ ∈ Σ
be the input received by i. Then we have the following situations:

 i) σ causes i to halt (i.e. there is no transition on σ from pi and mi). In this
case the whole system will halt.

 ii) σ causes i to go to a new state pi’ ≠ pif. Then i will remain active and the
state and memory values of will remain unchanged. In this case, the output
produced by the whole system will be the output g1 ∈ Γ1* produced by i. In this
case we say that the whole system performs a type A transition (see figure 5.2).

 ii) σ causes i to go to pif; let mi’ be the new memory value of i. Then i
becomes inactive and receives the input yi(mi’). If this input causes to halt,
then the whole system will halt. Otherwise, let qj and m’ be the new state and
memory value of respectively (i.e. the input yi(mi’) takes from qi and m to qj
and m’). Then the module j will become active; the current state of j will be pjo
(i.e. the initial state of the module j) and the current memory value zj(m’). The
output produced by the whole system will be g1γ2, where g1 ∈ Γ1* is the output
produced by i when σ is received in pi and mi and γ2 ∈ Γ2 is the output
produced by when yi(mi’) is received in qi and m. In this case we say that the
whole system performs a type B transition (see figure 5.2).

More formally, we have the following definition.

Chapter 5. Refinement of stream X-machines.

161

.

z1y1z0y0 znyn

0 1 n

Σ Σ Σ

M 10 M nM

I I IM M M

M 0 1M nM

Γ1

2Γ

Γ1 Γ1

’

Σ

UΓ1 2ΓΓ ’ =

Figure 5.1.

q

p

i jq

io i1 ifp p p pjo

i
j

φ

φ φ φi1 i2 in

z

y
zi

i
j

.

Type A transitions Type B transition

m

zi (m) mi

m’

zj (m’)

yi mi()

i n-1

Figure 5.2.

Chapter 5. Refinement of stream X-machines.

162

Definition 5.1.1.
Let i = (Σ, Γ1, Pi, Mi, Φi, Fi, pio) be deterministic generalised stream X-modules
as above and zi: M → Mi, yi: Mi → I be functions, i = 0, ..., n. Also, let

 = (I, Γ2, Q, M, Φ, F, qo, mo) be a deterministic stream X-machine with
Q = { qo, ... qn} and let Ref: Q → { (zi, yi, i)} i = 0,...,n be a function defined by
Ref(qi) = (zi, yi, i). We define a generalised stream X-machine

’ = (Σ, Γ’, Q’, M’, qo’, mo’, Φ’, F’)
as follows.

 1. The input alphabet is Σ.
 2. The output alphabet is Γ’ = Γ1 ∪ Γ2.

 3. The state set is Q’ =
i

n

=0

�
{ qi} × (Pi - {pif }).

 4. The memory is M’ = M × Μa, where Ma =
i

n

=0

�
Mi.

 5. The initial state is qo’ = (qo, poo).
 6. The initial memory value is mo’ = (mo, zo(mo)).
 7. The basic functions Φ’ are derived from the basic functions Φ and Φi by
application of two constructed functions c and d, which are defined below. Then

Φ’ = Φ1’ ∪ Φ2’,
where

Φ1’ = {c(φi)| φi ∈ Φi, i = 0, ..., n} and
Φ2’ = {d(qi, φ, φi)| φ ∈ Φ, φi ∈ Φi such that F(qi, φ) ≠ ∅ , i = 0,.., n}.

i) Let i ∈ {0, ..., n} and φi ∈ Φi. Then
c(φi): M’ × Σ → Γ’* × M’

is a (partial) function defined by:

  (g1, (m, ma’)), if ma ∈ Mi and (ma, σ) ∈ dom φi
c(φi)((m, ma), σ) = 

 î ∅ , otherwise
 ∀ σ ∈ Σ, m ∈ M, ma ∈ Ma,
where
 g1 ∈ Γ1*, ma’ ∈ Ma satisfy (g1, ma’) = φi(ma, σ).

So, Φ1’ are the functions Φ suitably embedded as functions acting on M’ × Σ.
These correspond to the type A transitions above.

ii) Let i ∈ { 0, ..., n} , φ ∈ Φ, φi ∈ Φi, such that F(qi, φ) ≠ ∅ (i.e. there is an arc
labelled φ in that emerges from qi). Then

d(qi, φ, φi): M’ × Σ → Γ’* × M’
is a (partial) function defined as follows.

Chapter 5. Refinement of stream X-machines.

163

Let σ ∈ Σ, m ∈ M, ma ∈ Ma. If ma ∈ Mi and (ma, σ) ∈ dom φi, then let
g1 ∈ Γ1* and mi’ ∈ Mi such that

(g1, mi’) = φi(ma, σ).
Obviously, yi(mi’) ∈ I. Also, if (m, yi(mi’)) ∈ dom φ, then let γ2 ∈ Γ2, m’ ∈ M
such that

(γ2, m’) = φ(m, yi(mi’)).
Then

  (g1γ2, (m’, ma’)), if ma ∈ Mi, (ma, σ) ∈ dom φi
 d(qi, φ, φi)((m, ma), σ) =  and (m, yi(mi’)) ∈ dom φ
 î ∅ , otherwise
 ∀ σ ∈ Σ, m ∈ M, ma ∈ Ma,
where
 g1 ∈ Γ1*, γ2 ∈ Γ2, m’ ∈ M, mi’ ∈ Mi are defined as above and
 ma’ = zj(m’),
 where j is chosen such that qj = F(qi, φ).

If d(qi, φ, φi) is the empty function, then d(qi, φ, φi) is not included in Φ2’.

So, if qi
φ → qj is an arc in and φi ∈ Φi, then φ’ = d(qi, φ, φi) is obtained by

applying φi and φ one after the other. The input received by φ will be the next
memory value computed by φi transformed through the function yi. The
processing functions d(qi, φ, φi) will correspond to type B transitions above. The
module currently ’active’ (i) is ’deactivated’ and a new module (j) is ’activated’.
The function zj is used to initialise the module j.

 8. The next state function F" is defined by:
  (qi, Fi (pi, φi)), if ∃ φi ∈ Φi such that c(φi) = φ’
  and Fi(pi, φi) ≠ pif
 

F"((qi , pi), φ’) =  (qj, pjo), if ∃ φ ∈ Φ, φi ∈ Φi such that d(qi, φ, φi) = φ’
  and Fi(pi, φi) = pif
  where j is chosen such that F(qi, φ) = qj,
 î ∅ , otherwise

∀ i ∈ {0, ..., n}, pi ∈ Pi - {pif } and φ’ ∈ Φ’.

So, if pi
φi → pi’ is an arc in i and pi’ ≠ pif then

(qi, pi)
c()iφ →  (qi, pi’)

is an arc in ’. This corresponds to type A transitions.

If pi
φi → pif is an arc in i and qi

φ → qj is an arc in , then

(qi, pi)
d(q , ,)i iφ φ →    (qj, pjo)

is an arc in ’. This corresponds to type B transitions.

Chapter 5. Refinement of stream X-machines.

164

Then ’ is said to be a refinement of w.r.t. Ref. The function Ref is called the
refinement function. We also say that (zi, yi, i) refines qi (written (zi, yi, i) =
ref(qi)). The set = { (zi, yi, i)} i = 0,...,n is called the refinement set. The
functions yi and zi will be called the input transfer functions and memory transfer
functions respectively.

Before we proceed further, we make the following remarks.

Observations.
 1. Let qi ∈ Q and pi ∈ Pi - {pif }. Then it can be easily verified that:
 i) ∀ φ, φ"∈ Φ, φi, φi" ∈ Φi, if d(qi, φ, φi) = d(qi, φ", φi") ∈ Φ2’ and
F(pi, φi) ≠ ∅ , F(pi, φi") ≠ ∅ then φ = φ" and φi = φi" (this is because and i are
deterministic).
 ii) ∀ φi, φi" ∈ Φi, if c(φi) = c(φi") ∈ Φ1’, then φi = φi".
 iii) ¬∃ φ ∈ Φ, φi, φi" ∈ Φi, φi ≠ φi", that satisfy d(qi, φ, φi) = c(φi") and
F(pi, φi) ≠ ∅ , F(pi, φi") ≠ ∅ (this is because and i are deterministic).
Hence F" is well defined.

 2. ' is deterministic (i.e. this follows from the fact that and i, i = 0, ..., n,
are deterministic).

 3. There may be elements of Φ' as defined above that do not actually appear in
the state transition diagram of '. If we restrict Φ' only to those basic functions
that are actually used by ', we get

Φ' = Ψ1' ∪ Ψ2',
where

Ψ1' = {c(φi)| φi ∈ Φi, i = 0, ..., n, such that ∃ pi ∈ Pi with Fi(pi, φi) ≠ ∅
 and Fi(pi, φi) ≠ pif },
Ψ2' = {d(qi, φ, φi)| i = 0,.., n, φ ∈ Φ, φi ∈ Φi such that F(qi, φ) ≠ ∅ and

∃ pi ∈ Pi with Fi(pi, φi) = pif }.

There may be some states in the machine in which the arcs that emerge from
them need not be refined (i.e. in the state qi, reads its inputs directly from the
external environment). In this case the module i attached to the state qi will have
the form i = (Σ, Γ1, Pi, Mi, Φi, Fi, pio), where:
 1. The state set is {pio, pif }.
 2. The memory is Mi = Σ.
 3. The type is Φi = {φi}, with φi: Σ × Σ → {1} × Σ a function defined by:
 φi(σ, σ') = (1, σ') ∀ σ, σ' ∈ Σ (i.e. 1 is the empty sequence).
 4. The state transition diagram determined by Fi consists of a single arc from
pio to pif labelled φi (see figure 5.3).

Chapter 5. Refinement of stream X-machines.

165

Pio Pif
φ

i

Figure 5.3.

In other words, i is used only to store the new input read and does nothing apart
from this. We call this a trivial refinement module.

In this case the definition of memory transfer function zi: M → Σ is irrelevant (i.e.
it does not affect the construction of the refined machine). For example, it can be
chosen to be a constant function. The input transfer function yi: Σ → I will be an
injective function that converts an input into the corresponding input in ∈ I for the
control machine; the actual expression of yi will depend on how I is chosen. For
example, if Σ ⊆ I, then yi will be the identity function.

If the refinement modules have the additional property that all the transitions that
lead to a non-final state output a single character and that the remaining transitions
produce no output at all, then the refined machine will be a stream X-machine
rather then a generalised stream X-machine. This is formalised in what follows.

Definition 5.1.2.
Let = { (zi, yi, i)} i = 0,...,n be a refinement set. Then is called a proper
refinement set if ∀ i ∈ I, the type Φi of the module i can be written as

Φi = Φi1 ∪ Φi2
such that:
i) ∀ φi ∈ Φi1, Im φi ⊆ Mi × Σ;
ii) ∀ φi ∈ Φi2, Im φi ⊆ Mi × {1}, where 1 is the empty string.
iii) ∀ φi ∈ Φi and pi ∈ Pi - { pif} such that F(pi, φi) ≠ ∅ , F(pi, φi) = pif iff φi ∈ Φ
i2.

Lemma 5.1.3.
Let ’ be a refinement of w.r.t. Ref, where Ref: Q → is the refinement
function. If is a proper refinement set, then ’ is a stream X-machine.

Proof:
We saw that if we restrict the type of ’ only to those basic functions that are used
in the transition diagram of ’, we get Φ’ = Ψ1’ ∪ Ψ2’ where Ψ1’ and Ψ1’ are
defined above. It can be shown easily that any φ ∈ Φ’ outputs exactly one output
symbol for each input symbol it receives. �
In what follows we shall be referring mainly to the case in which the refinement
set is proper (and therefore the resulting machine will be a stream X-machine).

Chapter 5. Refinement of stream X-machines.

166

The refinement described above allows machine specifications to be developed
gradually. Instead of constructing the whole specification in a single step, a
skeleton of the system (the ’control’ machine) is produced first. This will use
some fictitious inputs I. The way in which these inputs are obtained from the real
ones (those that come from outside) is then specified by the sub-modules i. The
transfer functions zi and yi are usually very simple (identities, projections,
constant functions, etc.).

The method is advantageous when we are dealing with complex systems. For
example, it can be used to separate the user interface from the core functionality of
the system (a simple example will be given later on, see example 5.1.6).
Furthermore, by providing a coarse specification first and showing explicitly how
this is refined, we ease the understanding of complex specifications. A
specification consisting of many simple machines linked in a well defined way
could give us a better idea of what the system is supposed to do than a single, but
very complex machine.

Before we proceed with an example, we show that the construction made in
definition 5.1.1 fits the informal description of refinement given at the beginning
of the chapter.

Lemma 5.1.4.
Let ’ be the refinement of w.r.t. Ref as defined above. Let u, u’, ui, the
transition functions and λ, λ’, λi the output functions of , ’ and i respectively.
Then ∀ i ∈ {0, ..., n}, σ ∈ Σ, m ∈ M, ma ∈ Ma, pi ∈ Pi - {pif } we have:
 1. If ma ∉ Mi or ui(pi, ma, σ) = ∅ , then
 u’((qi, pi), (m, ma), σ) = ∅ and λ’((qi, pi), (m, ma), σ) = ∅ .
 2. Otherwise let ui(pi, mi, σ) = (pi’, mi’) and λi (pi, mi, σ) = g1, with pi’ ∈ Pi,
mi’ ∈ Mi, g1 ∈ Γ1*. Then:
 a. If pi’ ≠ pif , then

 u’((qi, pi), (m, ma), σ) = ((qi, pi’), (m, mi’)) and λ’((qi, pi), (m, ma), σ) =
g1 (i.e. this is a type A transition)
 b. If pi’ = pif, then u’((qi, pi), (m, ma), σ) ≠ ∅ iff u(qi, m, yi(mi’)) ≠ ∅ . If this is
the case let u(qi, m, yi(mi’)) = (qj, m’) and λ(qi, m, yi(mi’)) = γ2, with m’ ∈ M,
γ2 ∈ Γ2. Then

 u’((qi, pi), (m, ma), σ) = ((qj, pjo), (m’, zj(m’))) and
 λ’((qi, pi), (m, ma), σ) = g1γ2
(i.e. this a type B transition).

Proof:
It follows from the construction of ’ (the definitions of Φ’ and F’). �
Notice that if the refinement set is proper then g1 ∈ Γ1 for type A transitions and
g1 = 1 for type B transitions.

Chapter 5. Refinement of stream X-machines.

167

Lemma 5.1.5.
Let ’ be the refinement of w.r.t. Ref as defined above. Let u be the transition
function and λ the output function of . Let also ue’, uie be the extended
transition functions and λe’, λie the extended output functions of ’ and i
respectively. Let i ∈ { 0, ..., n} , s ∈ Σ* , m ∈ M, ma ∈ Mi, pi ∈ Pi - { pif} such that
uie(pi, ma, s) ≠ ∅ and let uie(pi, ma, s) = (pi’, mi’) and λie(pi, ma, s) = g1 with
pi’ ∈ Pi, mi’ ∈ Mi, g1 ∈ Γ1*. Then:
 1. If pi’ ≠ pif , then

 ue’((qi, pi), (m, ma), s) = ((qi, pi’), (m, mi’)) and
 λe’((qi, pi), (m, ma), s) = g1.
 2. If pi’ = pif, then ue’((qi, pi), (m, ma), s) ≠ ∅ iff u(qi, m, yi(mi’)) ≠ ∅ . If this is
the case, let u(qi, m, yi(mi’)) = (qj, m’) and λ(qi, m, yi(mi’)) = γ2, with m’ ∈ M,
γ2 ∈ Γ2. Then

 ue’((qi, pi), (m, ma), s) = ((qj, pjo), (m’, zj(m’))) and
 λe’((qi, pi), (m, ma), s) = g1γ2.

Proof:
It follows by induction on s. �
So, if s takes the module i into a state pi’ which is not the final state of the
module, then the corresponding transitions caused by s in the machine ’ will all
be of type A. If pi’ is the final state of the module, then ’ will perform |s|-1 type
A transitions followed by a transition of type B. If the refinement set is proper,
then |g1| = |s| if all the transitions performed are of type A and |g1| = |s|-1 if the
machine performs a sequence of type A transitions followed by a type B transition.

Example 5.1.6.

We present a stream X-machine specification of a simple program which enables
users to log in to a computer system using their username and password. We
require that each user can enter his/her password twice. Once the user has entered
the system, the program only allows him/her to exit the system; any other
command will be ignored.

The inputs used are: character keys, the Enter key and the Backspace key. Only
usernames and passwords of at most n characters will be considered valid. Thus, if
more than n characters have been entered, the rest will be ignored, unless one or
more of the first n characters have been deleted. The system will display the valid
characters (i.e. less then n) of the username, but nothing will be displayed when
the password is entered.
The number of characters in a command is unlimited.

Chapter 5. Refinement of stream X-machines.

168

5.1.6.1. The control machine.

We shall construct the stream X-machine specification ’ of the program in two
stages. First, we give an ’unrefined’ stream X-machine specification . This will
operate on sequences of characters. The way in which these sequences of
characters are entered and fed to will be detailed using the operation of
refinement (i.e. will be the control machine of the refinement).

The stream X-machine is defined as follows.

 1. The input set is I = STRINGS,
where

STRINGS = CHARACTERS* is the set of all sequences of characters.

 2. The output is Γ2 = MESSAGES is a set of messages or sequences of
messages,

MESSAGES = {msg1, ..., msg6},
where:
msg1 = ’insert your password:’,
msg2 = ’login successful’,
msg3 = ’wrong password � insert your password:’,
msg4 = ’login incorrect � login:’,
msg5 = ’exit system � login:’,
msg6 = ’unknown command’.

 3. The set of states is:
Q = {Await_name, Await_psw1, Await_psw2, Await_command}.

The initial state is Await_name.

 4. The memory is M = ACCOUNT_INFO × STRINGSn, where

STRINGSn =
k o

n

=∑ CHARACTERSk is the set of sequences of at most n

characters.

We assume that the system keeps a data structure (i.e. acc ∈ ACCOUNT_INFO)
for all the existing usernames and their associated passwords. As for the cash
machine example, we do not make any assumptions about the way in which this is
implemented. Instead, we assume that it can be manipulated via the following
(partial) functions:

⋅ name_found: ACCOUNT_INFO × STRINGSn → B (function), where B is
the set of Booleans.

i.e. name_found(acc, str) is true if str is a valid username and false otherwise .

⋅ get_psw: ACCOUNT_INFO × STRINGSn → STRINGSn (partial function)

i.e. this finds the corresponding password of a username if the username is valid.

Chapter 5. Refinement of stream X-machines.

169

The (partial) functions above satisfy:
 dom get_psw =
{(acc, str) ∈ ACCOUNT_INFO × STRINGSn| name_found(acc, str)}

The system memory will be a tuple (acc, mem_str), where acc ∈
ACCOUNT_INFO and mem_str ∈ STRINGSn stores the last username that has
been entered.

 5. The initial memory value is
mo = (in_acc, empty_seq),

where in_acc is the initial value of ACCOUNT_INFO and empty_seq denotes the
empty string (i.e. for the sake of clarity the empty string will be denoted by
empty_seq instead of 1).

 6. The type is:
Φ = {enter_name, good_psw, wrong_psw1, wrong_psw2,
 ignore_command, exit_system}.

 7. The state transition diagram is represented in figure 5.4.

Await_name
Await_psw1 Await_command

Await_psw2

enter_name

good_psw

wrong_psw1

wrong_psw2

Await_psw1
good_psw

ignore_command

exit_system

Figure 5.4.

 8. The basic processing functions are defined as follows:

⋅ dom enter_name = M × STRINGSn

enter_name((acc, mem_str), str)) = (msg1, (acc, str))

i.e. the name entered (i.e. str ∈ STRINGSn) is copied into the appropriate memory
register.

Chapter 5. Refinement of stream X-machines.

170

⋅ dom good_psw = { (acc, mem_str), str) ∈ M × STRINGSn| name_found(acc,
mem_str) and get_psw(acc, mem_str) = str}

good_psw((acc, mem_str), str) = (msg2, (acc, mem_str))

i.e. this function is applied if the password matches the correct one.

⋅ dom wrong_psw1 = { (acc, mem_str), str) ∈ M × STRINGSn|
¬ (name_found(acc, mem_str) and get_psw(acc, mem_str) = str)}

wrong_psw1((acc, mem_str), str) = (msg3, (acc, mem_str))

⋅ dom wrong_psw2 = { (acc, mem_str), str) ∈ M × STRINGSn|
¬ (name_found(acc, mem_str) and get_psw(acc, mem_str) = str)}

wrong_psw2((acc, mem_str), str) = (msg4, (acc, mem_str))

i.e. these functions are applied when the password does not match the correct one.

⋅ dom ignore_command = M × (STRINGS - {exit})
ignore_command((acc, mem_str), str) = (msg5, (acc, mem_str))

i.e. if str ≠ ’exit’, the command is ignored.

⋅ dom exit_system = M × {’exit’}
exit_system((acc, mem_str), ’exit’) = (msg6, (acc, empty_seq))

i.e. otherwise, the system returns to its initial state; the memory register that holds
the last username entered becomes empty.

5.1.6.2. The refinement function.

The stream X-machine is refined using the refinement function
Ref: {Await_name, Await_psw1, Await_psw2, Await_command} →

{(zi, yi, i)} i=0,...3

defined by:
Ref(Await_name) = (z0, y0, 0),
Ref(Await_psw1) = (z1, y1, 1),
Ref(Await_psw2) = (z2, y2, 2),
Ref(Await_command) = (z3, y3, 3).

Chapter 5. Refinement of stream X-machines.

171

5.1.6.2.1. The refinement modules.

0, 1, 2, 3 are generalised stream X-modules with the input and output
alphabets Σ and Γ1 respectively, where:

Σ = CHARACTERS ∪ {back_space, enter}
(i.e. Σ contains all the keys allowed),

Γ1 = DISPLAYS ∪ {delete_char, empty_display},
where DISPLAYS is the set of displays of all characters, i.e. there is a bijective
function display: CHARACTERS → DISPLAYS.

Then, the four modules are defined as follows.

A. 0.

 1. The state set is P0 = {p0.0,, p0.n, p0.n+1};
p0.0 is the initial state; p0.n+1 is the final state.
 2. M0 = STRINGSn.
 3. The type is:

Φ0 = Φ01 ∪ Φ02,
where

Φ01 = {type_ch1, type_ch2, press_bs1, press_bs2}
Φ02 = {press_enter1}

 4. The transition diagram is shown in figure 5.5.

Await_psw1
p

p p p

p

0.0

0.1 0.n-1 0.n

0.n+1

press_bs1

press_bs2

press_enter1 press_enter1 press_enter1 press_enter1

press_bs1 press_bs1 press_bs1

type_ch1 type_ch1 type_ch1 type_ch1

type_ch2

Figure 5.5.

Chapter 5. Refinement of stream X-machines.

172

 5. The basic functions are defined by:

⋅ dom type_ch1 = STRINGSn × CHARACTERS

type_ch1(str, ch) = (display(ch), str ch)

i.e. the character ch ∈ CHARACTERS is displayed and is added at the end of
str ∈ STRINGSn.

⋅ dom type_ch2 = STRINGSn × CHARACTERS

type_ch2(str, ch) = (empty_display, str)

i.e. if the machine is in the state p0.n (therefore |str| = n) then nothing is displayed
and the memory value (i.e. str) remains unchanged.

⋅ dom press_bs1 = STRINGSn × {back_space}

press_bs1(str, back_space) = (delete_char, tail(str))

i.e. the last character is removed from the screen and the sequence str.

⋅ dom press_bs2 = STRINGSn × {back_space}

press_bs2(str, back_space) = (empty_display, str)

i.e. if the machine is in the state p0.0 (therefore str = empty_seq), then nothing is
displayed and the current memory value remains unchanged.

⋅ dom press_enter1 = STRINGSn × {enter}

press_enter1(str, enter) = (empty_seq, str)

i.e. when enter is pressed, the machine goes to the final state p0.n+1.

B. 1.

 1. The state set is P1 = {p1.0,, p1.n, p1.n+1};
p1.0 is the initial state; p1.n+1 is the final state.
 2. M1 = STRINGSn.
 3. The type is:

Φ1 = Φ11 ∪ Φ12,

Chapter 5. Refinement of stream X-machines.

173

where
Φ11 = {type_ch2, type_ch3, press_bs2, press_bs3},
Φ12 = {press_enter1}

 4. The transition diagram is shown in figure 5.6.

Await_psw1
p

p p p

p

press_bs2

press_enter1 press_enter1 press_enter1 press_enter1

1.0
1.1 1.n-1 1.n

1.n+1

press_bs3 press_bs3 press_bs3 press_bs3

type_ch3

type_ch2

type_ch3 type_ch3 type_ch3

Figure 5.6.

 5. The transition functions type_ch3 and press_bs3 are defined as
follows:

⋅ dom type_ch3 = STRINGSn × CHARACTERS

type_ch3(str, ch) = (empty_display, str ch)

⋅ dom press_bs3 = M1 × {back_space}

press_bs3(str, back_space) = (empty_display, tail(str))

The definitions above are similar to those of type_ch1 and press_bs1 apart
from the fact that nothing is displayed.

C. 2 is identical to 1.

D. 3.

 1. The set of states is P3 = {p3.0, p3.1};
p3.0 is the initial state; p3.1 is the final state;
 2. M3 = STRINGS.

Chapter 5. Refinement of stream X-machines.

174

 3. The type is:
Φ3 = Φ31 ∪ Φ32 ,

where
Φ31 = {type_ch4, press_bs4},
Φ32 = {press_enter2}

 4. The transition diagram is shown in figure 5.7.

type_ch4

press_bs4

p p
3.0 3.1

press_enter2

Figure 5.7.

 5. The basic functions are defined by:

⋅ dom type_ch4 = STRINGS × CHARACTERS

type_ch4(str, ch) = (display(ch), str ch)

i.e the character ch is displayed and added at the end of str ∈ STRINGS.

⋅ dom press_bs4 = STRINGS × {back_space}

press_bs4(str, back_space) = (displ, tail(str))
where:

  delete_char, if str ≠ empty_seq
displ = 
 î empty_display, if str = empty_seq

i.e. if, str ≠ empty_seq, then the last character is removed from the screen and the
sequence str. Otherwise, nothing is displayed and the current memory value
remains unchanged.

⋅ dom press_enter2 = STRINGS × {enter}

press_bs4(str, enter) = (empty_seq, str)

i.e. when enter is pressed, the machine goes to the final state p3.n+1.

Chapter 5. Refinement of stream X-machines.

175

5.1.6.2.2. The transfer functions.

For i = 0, ..., 2, zi: M → STRINGSn and yi: STRINGSn → STRINGS are defined
by:

zi(m) = empty_seq, ∀ m ∈ M,
yi(str) = str, ∀ str ∈ STRINGSn.

z3: M → STRINGS and y3:STRINGS → STRINGS are defined by:
zi(m) = empty_seq, ∀ m ∈ M,
yi(str) = str, ∀ str ∈ STRINGS.

5.1.6.3. The refined machine.

The specification of the system is the stream X-machine ’ which is the
refinement of w.r.t. Ref. Then ’ is defined as follows:
 1. The input set is

Σ = CHARACTERS ∪ {back_space, enter}.

 2. The output set is Γ’ = Γ1 ∪ Γ2. Therefore
 Γ’ = DISPLAYS ∪ {delete_char, empty_display} ∪ MESSAGES.

 3. The state set is
Q’ = {q0.0, ..., q0.n, q1.0, ..., q1.n, q2.0, ..., q2.n, q3.0}

(i.e. q0.0 = (Await_name, p0.0) ..., q0.n = (Await_name, p0.n),
q1.0 = (Await_psw1, p1.0), ..., q1.n = (Await_psw1, p1.n),
q2.0 = (Await_psw2, p1.0), ..., q2.n = (Await_psw2, p1.n),
q3.0 = (Await_command, p3.0)).

The initial state is q0.0.

 4. The memory is M’ = ACCOUNT_INFO × STRINGSn × STRINGS
(i.e. M’ = M × Ma, where M = ACCOUNT_INFO × STRINGSn and
Ma = STRINGS).

The initial memory value is
mo’ = (in_acc, empty_seq, empty_seq).

 5. The type is
Φ’ = {type_ch1’, type_ch2’, type_ch3’, type_ch4’,

press_bs1’, press_bs2’, press_bs3’, press_bs4’,
press_enter1.1’, press_enter1.2’, press_enter1.3’,
press_enter1.4’, press_enter2.1’, press_enter2.2’},

where

Chapter 5. Refinement of stream X-machines.

176

type_ch1’ = c(type_ch1’1), ..., type_ch4’ = c(type_ch4), ...

press_bs1’ = c(press_bs1), ..., press_bs4’ = c(press_bs4)

press_enter1.1’ = d(Await_name, enter_name, press_enter1),

press_enter1.2’ = d(Await_psw1, good_psw, press_enter1)
 = d(Await_psw2, good_psw, press_enter1),

press_enter1.3’ = d(Await_psw1, wrong_psw1, press_enter1)

press_enter1.4’ = d(Await_psw2, wrong_psw2, press_enter1),

press_enter2.1’ = d(Await_command, exit_system, press_enter2)

press_enter2.2’ = d(Await_command, ignore_command,
 press_enter2)

(i.e. the other functions obtained by applying c and d will not appear in the
transition diagram).

For example type_ch1’, press_enter1.2’, press_enter2.1’ are
defined by:

⋅ dom type_ch1’ = (ACCOUNT_INFO × STRINGSn × STRINGSn) ×
CHARACTERS;

type_ch1’((acc, mem_str1, mem_str2), ch) =
 (display(ch), (acc, mem_str1, mem_str2 ch))

⋅ dom press_enter1.2’ = { ((acc, mem_str1, mem_str2), enter))| acc∈
ACCOUNT_INFO, mem_str1, mem_str2 ∈ STRINGSn such that
(name_found(acc, mem_str1) and get_psw(acc, mem_str1) = mem_str2)};

press_enter1.2’((acc, mem_str1, mem_str1), enter) =
 (msg2, (acc, mem_str1, empty_seq)) .

⋅ dom press_enter2.1’ = (ACCOUNT_INFO × STRINGSn × { ’exit’}) ×
{enter};

press_enter2.1’((acc, mem_str1, ’exit’), enter) =
 (msg6, (acc, empty_seq, empty_seq)).

6. The state transition diagram is represented in figure 5.8.

Chapter 5. Refinement of stream X-machines.

177

�	�	�	�	�

�
�	�	�	�

�	�	�
�	�

q q q q

q

q

q

q

q

q

0.1

0.0

0.n

1.11.0 1.n

2.1

2.0

2.n

3.0

type_ch1’

type_ch2’

type_ch3’

type_ch4’

press_bs1’

press_bs2’

press_bs3’

press_bs4’

press_enter1.1’

press_enter1.2’

press_enter1.3’

press_enter2.1’

press_enter2.2’

type_ch1’

type_ch1’

press_bs1’

press_bs1’

type_ch2’

press_bs2’

press_bs3’press_bs3’

type_ch3’ type_ch3’

press_bs2’

type_ch2’

type_ch3’

type_ch3’

type_ch3’

press_bs3’

press_bs3’

press_bs3’

press_enter1.1’

press_enter1.1’

press_enter1.2’

press_enter1.2’

press_enter1.3’

press_enter1.3’

press_enter1.4’

press_enter1.4’

press_enter1.4’

press_enter1.2’

press_enter1.2’

press_enter1.2’

Figure 5.8.

Chapter 5. Refinement of stream X-machines.

178

5.2. Implementation.

A specification developed using the refinement approach admits a straightforward
implementation. The refined machine need not be constructed explicitly. Instead,
the whole system can be implemented as a ’master’ implementation (program)
that calls the subimplementations (subroutines) i. is obtained from the
implementation of the control machine by replacing instructions that read inputs
from the outside environment with instructions that call the subroutines i. These
subroutines will feed with appropriate inputs. Basically, the execution of will
call a subroutine i before executing any φ ∈ Φ.

A subimplementation i will have the form:
 apply zi (initialise the subroutine);

implement i; the final state pif will correspond to the ’exit’ state of this
subroutine;
 apply yi (return a variable or a set of variables v ∈ I that will be used as inputs
in).
In this case, we shall say that i is the implementation of (zi, yi, i).
Since zi and yi are usually very simple functions, writing the program i will
consist mainly of implementing the X-module i.

If a module i is trivial, then i will just store the input received and convert it (if
necessary) into a suitable input for the control machine .

5.3. Testing.

Let ’ be a specification of a system constructed using the refinement operation
described above. Then, one way of testing the implementation of the system is to
construct ’ explicitly, implement it and test the implementation against ’ using
the method presented in the previous chapter. This approach might not be always
convenient for the following reasons. Firstly, it requires ’ to be constructed
explicitly, which might not be desirable if we are dealing with large systems. In
this case it might be more convenient to implement the refinement modules
separately and to construct the implementation of the system as described in the
previous section. Secondly, if the state set is very large, then the test set obtained
will also be large.

An alternative to this is to use a two phase approach in which the basic modules
are implemented and tested separately and the whole system is tested for
integration. Since the modules i can be tested using the method presented in the
previous chapter, we shall discuss now how the system integration can be tested.

Chapter 5. Refinement of stream X-machines.

179

As in previous chapter, we shall be using a reductionist approach. We shall
assume that the implementation of the system is constructed from the following
components:
 ⋅ the correct implementations of the basic functions Φ of the control machine

;
 ⋅ the subimplementations i (i is the implementation of (zi, yi, i) as described
in the previous section). These can be separate subprograms or pieces of code that
can be identified in the main implementation. We assume that the implementation
of the transfer functions zi and yi are correct (these are usually simple functions).
We also assume that the implementations of the refinement modules have been
tested against their specifications.

As for the stream X-machine testing, the consecutive execution of two φ’s or two

i’s has to be prevented (this can be done using a flag variable, that indicates
whether the last piece of code executed by the program represented a φ or an i).

If these conditions are met, then the implementation of the whole system can be
viewed as a control program , that receives inputs from the subprograms i. Since
the basic functions Φ are assumed to be correct, will be the implementation of a
stream X-machine * with the same type Φ (of course in this implementation
instructions that read inputs from the outside environment are replaced by
instructions that call the subimplementations i)

Now, let q* be a state in * . Then, there will be a subimplementation i such that
receives inputs from i when * is in the state q* . Let i* be the implementation
of i and i and i* the associated automata of i and i* respectively. If i* has
been tested against i using the stream X-machine testing method, then i and
Min(i*) are isomorphic, where Min(i*) is the minimal automaton of i*.

Then the whole system behaves as though (zi, yi, i) refines the state q* . Indeed,
the fact that i* might not be minimal does not make any difference as far as the
main program is concerned (i.e. two equivalent states will behave identically as
far as is concerned).

Therefore, the implementation of the whole system (let us call this ’*) can be
modelled as the refinement of * w.r.t. Ref* , where Ref* is a refinement function
Ref* : Q* → { (zi, yi, i)} i=0,...,n, where Q* is the state set of * and
{(zi, yi, i)} i=0,...,n is the refinement set of the specification (see figure 5.9).

Thus, once the basic functions Φ and the refinement modules i have been tested,
the integration testing will be carried out to ensure that:
 i) the implementation of the control machine is correct (therefore testing *
against)
 ii) each state in * is refined by the appropriate module i (therefore testing
Ref* against the refinement function of the specification, Ref).

Chapter 5. Refinement of stream X-machines.

180

Therefore, our testing method constructs a test set that tests the system for
integration in the sense mentioned above, provided that the assumptions we have
made at the beginning of the section are met. We shall assume that the refinement
set is proper (and hence the resulting machine is a stream X-machine).

UΓ1 2ΓΓ ’ =

.

I I

Σ Σ

Γ1Γ1

2Γ

0 n

’

Σ UΓ1 2ΓΓ ’ =

.

I I

Σ Σ

Γ1Γ1

2Γ

0 n

Σ

*

*’

 Specification Implementation

Figure 5.9.

5.3.1. ’Design for testing’ conditions.

Similar to the previous chapter, our specification has to satisfy some ’design for
testing’ conditions.

5.3.1.1. Simple refinement.

Notation 5.3.1.1.1.
Let i and j be two (generalised) stream X-modules and i and j their associated
automata. Then i ≡ j denotes that i and j have the same type (Φi = Φj) and i
and j are isomorphic.

Definition 5.3.1.1.2.
Let ’ be the refinement of a stream X-machine w.r.t. Ref, where
Ref: Q → { (zi, yi, i)} i = 0,..,n is the refinement function. Then we say that ’ is a
simple refinement if ∀ i, j ∈ {0, ..., n} i ≡ j implies yi = yj and zi = zj.

For instance, the refinement from example 5.1.6. is simple.

Chapter 5. Refinement of stream X-machines.

181

5.3.1.2. Complete refinement.

For similar reasons to those discussed in the previous chapter, our testing method
requires some completeness and output-distinguishability conditions.
Definition 5.3.1.2.1.
Let ’ be the refinement of a stream X-machine w.r.t. Ref,
Ref: Q → { (zi, yi, i)} i = 0,..,n. Let i ∈ { 0, ..., n} and let uie be the generalised
transition function of i. Then we say that i is complete w.r.t. φ ∈ Φ if:
 ∀ m ∈ M, ∃ s ∈ Σ* with |s| ≥ 2 and mi ∈ Mi such that

uie(pio, zi(m), s) = (pif , mi)
 and

(m, yi(mi)) ∈ dom φ.

In other words s is a string of length at least two that takes the module i from the
initial state pio and memory value zi(m) to the final state pif and mi such that
(m, yi(mi)) ∈ dom φ.

Definition 5.3.1.2.2.
Let ’ be the refinement of a stream X-machine w.r.t. Ref with
Ref: Q → {(zi, yi, i)} i = 0,..,n. Then ’ is said to be a complete refinement if:
 ∀ i ∈ {0, ..., n} and φ ∈ Φ, i is complete w.r.t. φ.

5.3.1.2.1. Enforcing the completeness condition.

This completeness condition can be enforced on a machine refinement by
augmenting both Σ and I. A possible method is presented in what follows.

For i ∈ {1, ..., n} let
Ξi = {φ ∈ Φ| i is not complete w.r.t. φ}

and ki = card(Ξi). Let also Ξ =
i

n

=0

�
Ξi and k = card(Ξ).

Let in1’, ... ink’ and σ1’, σ2’ be new inputs such that { in1’, ... ink’} ∩ I = ∅ and
{ σ1’, σ2’} ∩ Σ = ∅ . Let also

a: Ξ → {in1’, ... ink’}
and

bi: Ξi → {1, ..., ki}, i = 0, ..., n,
be bijective functions. Then and i are augmented as follows.

i) = (I, Γ2, Q, M, Φ, F, qo, mo) is transformed into

A = (IA, Γ2, Q, M, ΦA, FA, qo, mo)
defined by:
 1. The input set is IA = I ∪ {in1’, ... ink’}.

 2. The type ΦA is defined by ΦA = {φA| φ ∈ Φ}, where
∀ φ ∈ Φ, φA: M × IA → Γ1 × M is a (partial) function defined as follows.

Chapter 5. Refinement of stream X-machines.

182

⋅ if φ ∈ Φ - Ξ, then
dom φA = dom φ and
φA(m, in) = φ(m, in), ∀ m ∈ M, in ∈ I;

⋅ if φ ∈ Ξ, then
dom φA = dom φ ∪ (M × {a(φ)}) and
φA(m, in) = φ(m, in), ∀ m ∈ M, in ∈ I,
φA(m, a(φ)) = (γ2, m), ∀ m ∈ M, where γ2 ∈ Γ2 is arbitrarily chosen.

 3. The next state function will be defined by:
FA(q, φA) = F(q, φ), ∀ φ ∈ Φ.

Basically, the functions in Ξ are augmented by using an extra input for each of
them. Everything else remains unchanged.

ii) i = (Σ, Γ1, Pi, Mi, Φi, Fi, pio) is transformed into

iA = (ΣA, Γ1, Pi, MiA, ΦiA , FiA, pio),
where:
 1. The input set is ΣA = Σ ∪ {σ1’, σ2’}.

 2. The memory set is MiA = Mi × {0, ..., ki}.

 3. The type ΦiA is defined by
ΦiA = {φiA | φi ∈ Φi} ∪ {ζi, ξi},

where:

⋅ ∀ φi ∈ Φi, φiA : (Mi × {0, ..., ki}) × ΣA → Γ1* × (Mi × {0, ..., ki}) is defined by:
dom φiA = {((mi, j), σ)| mi ∈ Mi, σ ∈ Σ, j ∈ {0, ..., ki} such that

 (mi, σ) ∈ dom φi};
φiA((mi, j), σ) = ((mi’, j), g),

where mi’ ∈ Mi, g ∈ Γ1* such that (mi’, g) = φi(mi, σ).

⋅ ξi: (Mi × {0, ..., ki}) × ΣA → Γ1 × (Mi × {0, ..., ki}) is defined by:
dom ξi = (Mi × {0, ..., ki}) × {σ1’};
ξi((mi, j), σ1’) = (γ1, (mi, j’)), ∀ mi ∈ Mi, j ∈ {0, ..., ki},

where j’ = (j + 1) mod ki and γ1 ∈ Γ1 is arbitrarily chosen.

⋅ ζi: (Mi × {0, ..., ki}) × ΣA → Γ1 × (Mi × {0, ..., ki}) is defined by:
dom ζi = (Mi × {0, ..., ki}) × {σ2’};
ζi((mi, j), σ2) = (1, (mi, j)), ∀ mi ∈ Mi, j ∈ { 0, ..., ki} (i.e. 1 is the empty

string)

Basically, we augment the machine memory by adding an extra register which
takes values in { 0, ..., ki} ; the functions in Φi are essentially unaffected by this

Chapter 5. Refinement of stream X-machines.

183

memory augmentation. The ξi changes only the value of this extra register,
whereas the ζi leaves the entire memory unchanged.

 3. The next state function FiA is defined by
dom FiA = {(pi, φiA) ∈ Pi × ΦiA | (pi, φi) ∈ dom Fi} ∪

 {(pi, ξi)| pi ∈ Pi - {pi}} ∪ {(pi, ζi)| pi ∈ Pi - {pi}};
FiA(pi, φiA) = Fi(pi, φi), ∀ pi ∈ Pi, φi ∈ Φi,
FiA(pi, ξi) = pi ∀ pi ∈ Pi,
FiA(pi, ζi) = pif ∀ pi ∈ Pi.

For each state pi ∈ Pi - { pif} , we add two extra arcs: one from pi to itself (this is
labelled ξi), the other from pi to the final state of i, pif (this is labelled ζi).

At the first sight, the process of augmentation of the refinement modules appears
to be quite complicated. Indeed, we could think of many other simpler methods in
terms of extra memory and extra processing functions needed. However, the
advantage of this method is that the augmentation of the implementation can be
translated in a straightforward manner into a change in the implementation.
Indeed, let us assume that we have a program that implements i. Then, what we
really have to do in order to simulate the above augmentation is to define a new
memory register with values in { 0, ..., ki} and to add two new pieces of code after
each ’read’ instruction in the program. The first implements ξi. This will be
selected when the input read is σ1’ and will only update the extra memory register.
Everything else (including state variables) remains unchanged. The second
implements ζi. This will be selected when the input read is σ2’ and will cause the
program to exit.

The transition functions zi and yi will be transformed into
ziA: M → MiA, yiA: MiA → IA

defined by:
ziA(m) = (zi(m), 0)), ∀ m ∈ M;

yiA(mi, 0) = yi(m), ∀ mi ∈ Mi;
yiA(mi, j) = a(bi-1(j)), ∀ mi ∈ Mi, j ∈ {1, ..., k}.

We can now show that ∀ φ ∈ Ξi, iA is complete w.r.t. φ. Indeed, let φ ∈ Ξi Then
∃ j ∈ { 1, ..., k} and l ∈ { 1, ..., ki} such that inj’= a(φ) and l = bi(φ). Then ∀
m ∈ M, s = σ1l σ2 takes i from the initial state pio and memory value
(zi(m), 0) to pif and (zi(m), l). Since yiA(zi(m), l) = inj’ and (m, inj’) ∈ dom φ, it
follows that iA is complete w.r.t. φ.
Clearly iA is complete w.r.t. φ, ∀ φ ∈ Φ - Ξi. Hence, the augmented refinement
is complete.

Example 5.3.1.2.1.1.

Chapter 5. Refinement of stream X-machines.

184

Let ’ be the refinement from example 5.1.6. If we assume that n ≥ 4 (i.e. the
maximum allowed length of the usernames and passwords is no less then 4), then
we have:

Ξ0 = Ξ1 = Ξ2 = Ξ3 = {good_psw}.
Then

Ξ = {good_psw}.

Observations: We assume that not all the user names that can be entered are
valid, hence good_psw ∈ Ξi, i = 0, ..., 3. Also, since n > 4, exit_system ∉ Ξ
i, i = 0, .., 2 (i.e. the length of the string ’exit’ is 4).

Hence k0 = k1= k2 = k3 = 1 and k = 1.

Then let in1’ and σ1’, σ2’ be the extra inputs required. The augmented machine A
will have the input set IA = I ∪ { in1’} ; good_psw will be augmented to
good_pswA, where:

dom good_pswA = good_psw ∪ (M × {in1’}).

The augmented modules iA will have the input set ΣA = Σ ∪ { σ1’, σ2’} . The
augmented memory sets will be M0A = M1A = M2A = STRINGSn × { 0, 1} and
M3A = STRINGS × {0, 1}.

The main difficulty in this method is determining the sets Ξi. In the worst case we
can take Ξi = Φ, i = 0, ..., n. In this case, the resulting augmented refinement will
be complete irrespective of whether the i’s are complete or not with any φ ∈ Φ.

5.3.1.3. Output-distinguishable refinement set.

The second condition required by our refinement testing method will be the
output-distinguishability of the modules i. In what follows we shall assume that
the refinement set is proper. Recall that if the refinement set = { (zi, yi, i)} i =
0,...,n is proper the the type of the module i can be written as Φi = Φi1 ∪ Φi2,
where Φi1 contains single output operations and Φi2 contains empty output
operations. Let us also define the set

Φi1[pio] = {φi ∈ Φi1| Fi(pio, φi) ≠ ∅ }
(in other words the set Φi1[pio] contains all φi ∈ Φi1 that are labels of arcs
emerging from the initial state of the module i).

Then we have the following definitions.

Definition 5.3.1.3.1.
Let = { (zi, yi, i)} i = 0,...,n be a proper refinement set. Let i, j ∈ { 0, ..., n} ,
φi ∈ Φi1 and φj ∈ Φj1. Then φi and φj are said to be fully output-distinguishable
if:

Chapter 5. Refinement of stream X-machines.

185

 ∀ σ ∈ Σ, mi ∈ Mi, mj ∈ Mj, if φi(mi, σ) = (mi’, γ), φj(mj, σ) = (mj’, γ’) with
mi’ ∈ Mi, mj’ ∈ Mj, γ, γ’ ∈ Γ1, then γ ≠ γ’.
In other words φi and φj produce different outputs on any input character,
regardless of the memory values chosen.

Definition 5.3.1.3.2.
Let = { (zi, yi, i)} i = 0,...,n be a proper refinement set and let i, j ∈ { 0, ..., n} .
Then i and j are said to be output-distinguishable if ∀ φi ∈ Φi1[pio] and
φj ∈ Φj1[pjo], φi and φj are fully output-distinguishable.

Definition 5.3.1.3.3.
Let = { (zi, yi, i)} i = 0,...,n be a proper refinement set. Then is said to be
output-distinguishable if ∀ i, j ∈ { 0,.., n} , either i ≡ j or i and j are output-
distinguishable

This condition can be enforced by augmenting the output alphabet to Γ1 × G1,
where the number of elements of the extra component of the output, G1, will be at
most the number of non-identical (up to an isomorphism of the associated
automata) refinement modules.

5.3.2. Fundamental test function and the refinement testing theorem.

As for stream X-machines, we define a fundamental test function of a refinement
that transforms sequences from Φ* into sequences from Σ*.

Definition 5.3.2.1.
Let ’ be the refinement of a stream X-machine w.r.t. Ref with
Ref: Q → { (zi, yi, i)} i = 0,..,n. We assume that ’ is a complete refinement.
Then we define recursively a function t: Φ* → Σ* and a partial function tM: Φ* →
M as follows:
 i).
 ⋅ t(1) = 1,
 ⋅ tM(1) = mo,
where mo is the initial memory value of and 1 is the empty string.

 ii). ∀ k ≥ 0 and φ1, ..., φk, φk+1 ∈ Φ, the recursion step that defines
t(φ1... φk+1) and tM(φ1...φk) function of t(φ1... φk) and tM(φ1...φk) is as follows.

 1). If there exists a path in labelled φ1... φk that starts from qo (i.e. qo is the
initial state of) then let qi be the final state of this path.
Then:
 ⋅ t(φ1... φk+1) = t(φ1... φk) sk+1
where sk+1 ∈ Σ* with |sk+1| ≥ 2 is chosen such that

Chapter 5. Refinement of stream X-machines.

186

∃ mi ∈ Mi such that uie(pio, zi(m), sk+1) = (pif, mi) and (m, yi(mi)) ∈ dom φk+1,
where m = tM(φ1...φk)
Note: Since the refinement is complete, there exist such sk+1 and mi.

The expression of tM(φ1...φk+1) depends on the following two cases.
 1.a). If there exists an arc labelled φk+1 that emerges from qi, then

 ⋅ tM(φ1...φk+1) = m’,
where m’ is chosen such that (m’, γ) = φk+1(m, yi(mi)) for some γ ∈ Γ2 (i.e. m’ is
the next memory value computed by φk+1), where mi ∈ Mi is the value from the
above definition of t(φ1... φk+1).
 1.b) Otherwise
 ⋅ tM(φ1...φk+1) = ∅ .

2. If there is no path in labelled φ1... φk that starts from qo, then:
 ⋅ t(φ1... φk+1) = t(φ1... φk)
 ⋅ tM(φ1... φk+1) = ∅ .

Then t is called a fundamental test function of the refinement.

The construction of the fundamental test function of a refinement is similar to that
of a stream X-machine. Basically, if a path exists in the control machine , then
the corresponding value of the test function will exercise that path. If a path does
not exist in , then the corresponding value of the test function will exercise the
part of the path that does exist in plus one extra arc.

The reason requiring |sk+1| ≥ 2 will become clear when we prove our refinement
testing theorem. Basically, the first character of sk+1 (i.e. head(sk+1)) tests that a
state in the implementation will be refined similarly to the corresponding state in
the specification (i.e. the refinement module attached to those states are identical);
the rest (i.e. tail(sk+1)) will be used to prove the equivalence of these states in the
associated automata of the control machines.

Example 5.3.2.2.

Let ’ be the refinement from examples 5.1.6 and 5.3.1.2.1.1 (i.e. we consider the
augmented version). Let name ∈ STRINGSn be a valid user name and
psw1, psw2 ∈ STRINGSn be a valid and an invalid password, respectively, for
this username with |name|, |psw1|, |psw2| ≥ 1. Then, we illustrate the construction
of t and tM with the following examples.

⋅ t(enter_name) = name enter
⋅ tM(enter_name) = (in_acc, name)

⋅ t(enter_name good_psw) = name enter psw1 enter
⋅ tM(enter_name good_psw) = (in_acc, name)

Chapter 5. Refinement of stream X-machines.

187

⋅ t(enter_name wrong_pws1) = name enter psw2 enter
⋅ tM(enter_name wrong_psw1) = (in_acc, name)

⋅ t(enter_name ignore_command) = name enter str enter,
where str ∈ STRINGSn, str ≠ ’exit’
⋅ tM(enter_name ignore_command) = ∅

⋅ t(enter_name good_psw exit_system) = name enter psw1 enter
’exit’ enter
⋅ tM(enter_name good_psw exit_system) = (in_acc, empty_seq)

⋅ t(enter_name ignore_command exit_system) = name enter str
enter
⋅ tM(enter_name ignore_command exit_system) = ∅

We can now assemble the following result which is the basis for our refinement
testing method.

Theorem 5.3.2.3.
Let = (I, Γ2, Q, M, Φ, F, qo, mo), * = (I, Γ2, Q*, M, Φ, F* , qo* , mo) be two
stream X-machines with Φ output-distinguishable Let = { (zi, yi, i)} i = 0, ..,n
be a proper refinement set, i = (Σ, Γ1, Pi, Mi, Φi, Fi, pio), zi: M → Mi, yi: Mi →
I, i = 0, ..., n, and let Ref: Q → and Ref* : Q* → be two refinement functions.
We assume that , the associated automaton of , is minimal and that is output-
distinguishable. Let ’ be the refinement of w.r.t. Ref and * ’ the refinement of

* w.r.t. Ref* and let f and f* the functions computed by ’ and * ’ respectively.
We assume that * ’ is a simple and complete refinement. Let also T and W be a
transition cover and a characterisation set of , Z = Φk W ∪ Φk-1 W ∪ ... ∪ W,
with k a positive integer and t: Φ* → Σ* a fundamental test function of the
refinement ’. If card(Q*) - card(Q) ≤ k, Γ1 ∩ Γ2 = ∅ (i.e. the output alphabets of
the control machine and the refinement modules i are disjoint) and f(s) =
f*(s),∀ s ∈ Pref(t(TZ)), then f = f*.

Proof:
First, let us introducewing notation. Let

Q = {qo, q1, ..., qn}
be the state set of and let

Q* = {qo*, q1*, ..., qn’*}
be the state set of * (qo and qo* are the initial states). Without loss of generality
we shall assume that the refinement function Ref: Q → is defined by

Ref(qi) = (zi, yi, i), i = 0, ..., n.
Also, for j = 0, ..., n’, we shall denote

Ref(qj*) = (zj*, yj*, j*)

Chapter 5. Refinement of stream X-machines.

188

(of course ∀ j ∈ {0, .., n’} ∃ i ∈ {0, .., n} such that zj* = zi, yj* = yi, j* = i).

Then we prove the following intermediary results.

Lemma 5.3.2.3.1.
1. Let φ1, ..., φk ∈ Φ be such that there exists a path

q q q q qi i i ik
k

k0
1

1
2

2 1
φ φ φ →  →  →−...

in and let t(φ1) = s1, t(φ1...φk) = s1...sk.
If f(s) = f*(s), ∀ s ∈ Pref(s1...sk), then:
 a. There exists a path q q q q qj j j ik

k
k0

1
1

2
2 1* * *... * *φ φ φ →  →  →− in *.

 b. zo = zo* , yo = yo* , o ≡ o* and zir = zjr* , yir = yjr* , ir ≡ jr* , r
= 1, ..., k-1.
 c. After receiving the string s1...sr, r ≤ k, ’ will be in the state (qir, piro) and

* ’ will be in the state (qjr* , pjro*), where piro and pjro* are the initial states of

ir and jr* respectively. The corresponding memory values will be (mr, zir(mr)),
(mr*, zjr(mr*)), with mr, mr* ∈ M.
 d. m1 = m1*, ..., mk = mk*, where mr and mr* , r = 1, ..., k, are the memory
values from c.

2. Let φk+1 ∈ Φ such that there is no arc labelled φk+1 emerging from qik. Let
also s1...sksk+1 = t(φ1...φkφk+1). If f(s) = f*(s), ∀ s ∈ Pref(s1...sksk+1), then:
 a. There is no arc labelled φk+1 emerging from qjk*.
 b. zik = zjk*, yik = yjk*, ik ≡ jk*.

Proof:
1. a - d follow by simultaneous induction on r ∈ { 0, ..., k} . For r = 0, they are
obvious. The induction step from r to r+1 is as follows.
Since a - d are true for r, the string s1...sr will take ’ and * ’ into the states
(qir, piro) and (qjr* , pjro*) respectively. The corresponding memory states will be
(mr, zir(mr)), (mr* , zjr(mr*)), with mr = mr* . Our strategy is to apply inputs to ’
and *’ in the above mentioned states and memory values.

Let σ = head(sr+1). Let γ be the output produced by ’ when it receives σ. From
the way in which sr+1 is chosen it follows that ’ will perform a type A transition
when it receives σ (see lemma 5.1.4). Hence γ ∈ Γ1 (this is because the
refinement set is proper). From the hypothesis, it follows that * ’ produces the
same output γ when σ is applied. Now, we have two possible cases: σ will cause

* ’ to perform a type A or a type B transition. If the transition was of type B, then
we would have γ ∈ Γ2 (this is because the refinement set is proper). Since
Γ1 ∩ Γ2 = ∅ , this is not possible. Therefore the transition is of type A. Since is
output-distinguishable, it follows that ir ≡ jr* . Since ’ is a simple refinement,
we have zir = zjr* and yir = yjr*.

We now apply sr+1 to ’ in state (qir, piro) with memory value (mr, zir(mr)) and to
* ’ in state (qjr* , pjro) with memory value (mr* , zjr(mr*)). Let g be the output

Chapter 5. Refinement of stream X-machines.

189

sequence produced by ’ and * ’ when they receive sr+1 (i.e. the fact that the two
machines produce the same output is guaranteed by the hypothesis). Then
g = g1 γ2, with g1 ∈ Γ1*, |g1| = |sr+1| - 1, and γ2 ∈ Γ2 (see lemma 5.1.5) . Let us
assume that there is no arc labelled φr+1 emerging from qjr* in * . Then, since
mr = mr* , zir = zjr* , ir ≡ jr* , yir = yjr* , it follows that there is φ ∈ Φ, φ ≠ φr+1,
that produces the same output γ2 as φr+1 on the same input and memory value.
This contradicts the output-distinguishability of the type Φ. Therefore, there is an
arc labelled φr+1 emerging from qjr*. Also mr+1 = mr+1*.

Therefore, we have proved the induction step for a, b and d. Clearly, c follows
from these.

2. zik = zjk* , yik = yjk* , ik = jk* follow as above. Let us assume that there is an
arc labelled φk+1 emerging from qjk* . Then, using similar arguments as at 1, it
follows that there exists an arc labelled φk+1 emerging from qik, which contradicts
our assumption. �
Then, from the lemma above it follows that qo and qo* are TZ-equivalent as states
in and * respectively. From Theorem 4.1.4.1.6 (Chow), it follows that and
Min(*) are isomorphic, where * is the associated automaton of * (or
alternatively that qo and qo* are Φ* -equivalent).
Without loss of generality we assume that * is accessible. Then

P = T(Φk ∪ Φk-1 ∪ ... ∪ {1})
is a transition cover for * . Indeed, since T is a transition cover for , there exists a
state cover of , S, such that T ⊇ S ∪ SΦ. Then, since qo and qo* are Φ* -
equivalent, it follows that at least card(Q) states of * will be accessed by some
sequence in S. Since * is accessible and card(Q’) ≤ card(Q) + k, it follows that

R = S(Φk ∪ Φk-1 ∪ ... ∪ {1})
is a state cover of * (this can be proven easily using simple induction). Since
P ⊇ R ∪ RΦ, it follows that P is a transition cover of *.

Now, let g: *→ defined by g(qj*) = qi be such that qi and qj* are Φ* -
equivalent. Since is minimal, * is accessible and and Min(*) are isomorphic
it can be easily verified that g is well defined and it is a proper automata
morphism. Then let qj* ∈ Q* and qi = g(qj*). Since P = T(Φk ∪ Φk-1 ∪ ... ∪
{ 1}) is a transition cover for * , there exist φ1, ..., φk, φk+1 ∈ Φ such that φ1...φk,
φ1...φkφk+1 ∈ P and φ1...φk is the label of a path from qo* to qj* . Since qi =
g(qj*), there also exists a path φ1...φk from qo to qi.
Since

f(s) = f*(s), ∀ s ∈ Pref(t(TZ)),
it follows that

f(s) = f*(s), ∀ s ∈ Pref({φ1... φk+1}).
If (zi, yi, i) = Ref(qi) and (zj* yj* , j*) = Ref(qj*), using the above lemma, we
have zi = zj*, yi = yj*, i ≡ j*.

Chapter 5. Refinement of stream X-machines.

190

Therefore, there exists a proper morphism g: * → with the following property:
∀ qj* ∈ Q*, if qi = g(qj*) then zi = zj*, yi = yj*, i ≡ j*.

For i ∈ { 0, ..., n} and j ∈ { 0, ..., n’} let Pi and Pj* be the state sets of i and j* ,
pif and pjf* their final states and i and j* their associated automata. Also, for
j ∈ { 0, ..., n’} and i ∈ { 0, ..., n} such that qi = g(qj*), let hj: j* → i be the
isomorphism between i and j*. Then, the function

h:
j

n

=0

’

({qj*} × (Pj* - pjf *)) →

i

n

=0

�
({qi} × (Pi - pif))

defined by
h(qj*, pj*) = (g(qj*), hj(pj*))

is a proper morphism between the associated automata of ’* and ’ respectively
(this follows easily from definition 5.1.1). Hence, by applying proposition
3.4.1.1.7 and lemma 3.4.2.2, it follows that ’ and * ’ compute the same function. �

5.3.3. The refinement testing method.

Our refinement testing method is based on the theorem above.

It assumes that the following conditions are met:
 1. The specification ’ is a refinement of a deterministic stream X-machine
w.r.t. Ref, where Ref is a refinement function that takes values in the set

= {(zi, yi, i)};
 2. The set of basic functions Φ of the control machine is output-
distinguishable;
 3. The refinement set is proper and output-distinguishable;
 4. The associated automaton of is minimal;
 5. The refinement ’ is simple and complete;
 6. The output-alphabets of the control machine and that of the basic
modules i are disjoint (i.e. Γ1 ∩ Γ2 = ∅)
 7. The implementation can be modelled as a refinement of deterministic
stream X-machine * w.r.t. Ref* , where Ref* takes values in the same refinement
set , as Ref. Furthermore and * have the same type Φ.
 8. The number of states of * is bounded by a certain number, say n’.

Then, under these circumstances Y = Pref(t(TZ)) is an adequate test set, where:
 ⋅ t is a fundamental test function of the refinement ’
 ⋅ T is a transition cover of
 ⋅ W is a characterisation set of
 ⋅ Z = ΦkW ∪ Φk-1W ∪ ... ∪ W
 ⋅ k = card(Q*) - card(Q) is the difference between the (estimated) maximum
number of states of * and the number of states of .

Chapter 5. Refinement of stream X-machines.

191

Obviously, the method relies on the system being specified as a refinement of a
stream X-machine. Conditions 2 - 6 lie within the capability of the designer. We
have shown that the completeness of the refinement can be achieved by adding
new inputs to the alphabet Σ and expanding and i in a straightforward manner.
The output-distinguishability of can be achieved by a simple augmentation of
the output alphabet Γ1. Similarly, Γ1 and Γ2 can be transformed into disjoint
alphabets. The fact that we require that the refinement is simple is not a major
problem. Indeed, if there exist i and j such that i ≡ j and zi ≠ zj or yi ≠ yj, then
we transform i and j into output-distinguishable modules.

The 7’th condition is the most problematical. As we have discussed at the
beginning of this section, it relies on the implementation of the system being
constructed from the following components.
⋅ the correct implementations of the basic functions Φ;
⋅ the correct implementations i of (zi, yi, i). The implementations of the
modules i can be tested using the stream X-machine testing method.

If these conditions are met, the test set given by this method will test the
integration of the above mentioned components. This consists of two things:
testing that the control machine of the implementation * is correct and testing
that each state in this machine is refined by the appropriate module.

Therefore, if the system is to be tested completely, a two phase approach is
required.
 ⋅ First, the φ’s and the modules i are implemented and tested separately.
Alternatively, their individual testing can be assumed to be done if either the
implementations are very simple or they are objects that the designer is confident
are essentially fault-free (i.e. objects from a library, etc.)
 ⋅ The integration testing is carried out using the method presented above.
Notice that the changes in the specifications of the refinement modules and
processing functions required by the ’design for testing’ conditions (i.e.
completeness of the refinement, output-distinguishability of the φ’s, etc.) can be
easily translated into changes in the corresponding implementations. As we have
seen earlier on, these changes will involve augmenting the processing functions
and the refinement modules. Therefore, extra bits of code will be added to the
existing implementations. These can be removed once the testing has been
completed.

The maximum number of the test sequences required is similar to that for the
stream X-machine testing method. The total length of the set is bigger since the
fundamental test function of the refinement uses a sequence of characters to
exercise each φ instead of single characters.

Clearly, it is much more difficult to automate the process of generating the test set
required by this method than the one required by the method presented in the
previous chapter. This is because in this case the test function generates a
sequence of input characters rather then a single character for each extra φ it

Chapter 5. Refinement of stream X-machines.

192

processes. However, we could require that each such sequence of inputs has the
length less then a certain number l; obviously, in this case the same condition will
be imposed on the sequence of characters required by the completeness of the
refinement condition (see definition 5.3.1.2.1). If l is sufficiently small, it could be
possible to generate the test set automatically (obviously, the complexity of the
algorithm will depend on the complexity of the basic functions of the refinement
modules and the control machine).

Also, the method requires careful testing management. Extra code has to be added
to the existing implementation and removed after the testing has been completed,
so it is essential that these changes are kept track of. However, this is not a major
drawback of the method, since it is common practice to modify a program in order
to test it. The trouble is that in most cases the fact that the program has passed the
test does not enable us to say to much about its correctness. The advantage of our
method is that it guarantees the correctness of the implementation of the whole
system given correct implementation of its basic components.

5.4. Stream X-machine specification of a word processor.

We illustrate the concept of refinement with a specification of a simple word
processor that allows the following operations:
⋅ type a character;
⋅ delete a character;
⋅ move the cursor to the right or to the left (i.e. the inputs associated with these
actions will be called move_r and move_l respectively);
⋅ select (highlight) text; this can be done as follows:
 the word processor starts selecting text when a certain input (called
sel_text) is received
 the text is selected by moving the cursor to the right or to the left
 the action ends when a certain input (called des_text) is received, when a
character is inserted or deleted or when the main menu of the processor is selected.

The word processor has a main menu with the following options: ’cut’, ’paste’,
’copy’, ’search’ and ’replace’. We assume that the ’cut’ and ’copy’ operations are
active only when some text has been highlighted. We also assume that the ’paste’
operation is active only when there is some text copied into the clipboard.

We do not specify the user interface of the system in the sense that the inputs we
shall be using will not match exactly the physical ones.

We shall assume that the main menu can be activated and deactivated by two
inputs called sel_menu and des_menu respectively. There are also five inputs
(i.e. sel_copy, sel_paste, sel_cut, sel_search, sel_replace) that
activate each of the menu options.

Chapter 5. Refinement of stream X-machines.

193

When, the ’search’ option is chosen, the user will be required to enter the string to
be searched for, the direction of search and to choose one of the following options:
 ⋅ find the next string of characters that matches the string to be searched for; if
the search is successful, the string found will be highlighted;
 ⋅ end the search
The corresponding input to the word processor in this case will be a tuple
(opt, str, dir), where opt represents one of the above options, str is the string to be
searched for and dir is the direction of search.

When, the ’replace’ option is chosen, the user will be required to enter the string to
be searched for, the replacement string and to choose one of the following options:
 ⋅ find the next string of characters that matches the string to be searched for; the
string found will be highlighted;
 ⋅ replace the string that has been found (if any) and find the next string of
characters that matches the string to be searched for; again, this will be
highlighted;
⋅ replace all the strings that match the string to be searched for; in this case no part
of the document will be highlighted.
 ⋅ end the replace operation.
Similar to the search operation, we shall consider that the system receives an input
(opt, str1, str2), where opt is one of the above options, str1 is the string to be
searched for and str2 the replacement string. Unlike the ’search’ operation there
will be only one search direction, from the position of the cursor downwards.

Inputs and outputs

Let CHARACTERS be the set of characters that the system can process and let
CHARACTERS’ = CHARACTERS ∪ {enter}
STRINGS = CHARACTERS*,
STRINGS’ = CHARACTER’*
STRINGS’+ = STRINGS’ - {empty_seq},

where empty_seq denotes the empty string.

Let also
DIRECTIONS = {up, down}.

Then, the set of inputs received by the word processor will be:

Σ = Σo ∪ ΣSe ∪ ΣRe,
where

Σo = CHARACTERS ∪ {back_space, enter, move_l, move_r,
sel_text, des_text, sel_menu, des_menu, sel_cut, sel_paste,
sel_copy, sel_search, sel_replace},

ΣSe = {f_nextSe, cancelSe} × STRINGS+ × DIRECTIONS,
ΣRe = {f_nextRe, repl, repl_all, cancelRe} × STRINGS+ ×

STRINGS,

Chapter 5. Refinement of stream X-machines.

194

We shall consider that the outputs produced by the system will be:

Γ = DOCUMENT_DISPLAYS × {Doc, Me, Re, Se} × MESSAGES,
where

DOCUMENT_DISPLAYS = STRINGS’ × STRINGS’ × STRINGS’.
MESSAGES = {’Text not found’, empty_msg}.

The display of the document is considered to be a tuple of three sequences
(a, c, b), where a and b are the non-highlighted parts of the text and c the
highlighted one.

Doc, Me, Re, Se stand for ’document’, ’menu’, ’replace’ and ’search’ respectively
and indicate which one of these is currently active.

The word processor will display the message ’Text not found’ when it performs an
unsuccessful search operation.

5.4.1. Stream X-machine specification.

We specify the word processor in two stages. First, we shall construct a stream X-
machine specification of the system without detailing the ’search’ and ’replace’
operations. This machine will later on be refined and the ’search’ and ’replace’
operations will be expanded using appropriate refinement modules.

The set of documents the word processor operates on is defined as
DOCUMENTS = STRINGS’ × STRINGS’ × STRINGS’ × POSITIONS,

where
POSITIONS = {left, right}.

The document is considered to be a tuple (x, z, y, p), where x is the first non-
highlighted part of the document and rev(y) is the other non-highlighted part of the
document. If p = right, then the selected text is z and the cursor is on the right
hand side of this. If p = left, then the highlighted text is rev(z) and the cursor is
on the left hand side of this.

For example, if the document is
’abcdef g’
 ↑

then x = ’ab’, y = ’g f’, z = ’cde’ and p = right (i.e. ↑ marks the position of the
cursor).
If the document is

’abcdef g’
 ↑

then x = ’ab’, y = ’g f’, z = ’edc’ and p = left.

Chapter 5. Refinement of stream X-machines.

195

If no part of the document is selected (i.e. z = empty_seq), then the value of p is
not relevant.

The position of the cursor with respect to the selected text will influence the ’select
text’ operation. For example, let us imagine that we are selecting text by moving
the cursor one position to the right. If the cursor is positioned on the right of the
highlighted text, then the first character to the right of the cursor will be also
highlighted. If the cursor is positioned on the left of the highlighted text, then the
leftmost character of the highlighted text will be deselected.

5.4.2. The control machine.

The control stream X-machine will be defined as follows.

 1. The input set is
I = Σo ∪ DOCUMENTS.

Since will not specify in detail the ’search’ and ’replace’ operations, the inputs
associated with these operations (ΣSe and ΣRe) are not included in I. Instead, if a
’search’ or ’replace’ operation has been performed, the machine will receive an
input representing the updated document and will simply replace the current
document with this new one. The way in which the updated document is obtained
will be specified later by an appropriate refinement module.

 2. The output set is
Γ2 = DOCUMENT_DISPLAYS × {Doc, Me, Re, Se} × {empty_msg}.

 3. The state set is
Q = {Typing, SelectingText, Menu, Search, Replace).

The initial state is Typing.

 4. The memory is
M = DOCUMENTS × STRINGS’

The current memory value will be denoted by ((x, y, z, p), c), where (x, y, z, p)
represents the current document and c is the text copied into the clipboard.
The initial memory value is

mo = ((empty_seq, empty_seq, empty_seq, left), empty_seq).

 5. The type is
Φ = {type, delete, move, select_text,

activate_select_text, deactivate_select_text, select_menu,
deselect_menu, cut, paste, copy, select_search,
select_replace, update_document}.

 6. The transition diagram is represented in figure 5.10.

Chapter 5. Refinement of stream X-machines.

196

type
delete
move

select_menu

deselect_menu

select_search

select_replace

activate_select_text

deactivate_select_text

select_text

type
delete

Typing

Selecting
Text

Search

Replace

Menu

update_document

update_document

copy
cut
paste

select_menu

Figure 5.10.

 7. Basic function definitions.

Before we give the formal definitions of the processing functions we define the
following auxiliary functions.

⋅ display_doc: DOCUMENTS → DOCUMENT_DISPLAYS

  (x, z, rev(y)) if p = right

Chapter 5. Refinement of stream X-machines.

197

display_doc(x, z, y, p) = 
 î (x, rev(z), rev(y)), if p = left

i.e. it displays a document.

⋅ mirror: DOCUMENTS → DOCUMENTS

  (y, z, x, left), if p = right
mirror(x, z, y, p) = 
 î (y, z, x, right), if p = left

i.e. it reverses a document.

⋅ move_left_doc: DOCUMENTS → DOCUMENTS

move_left_doc(x, y, z, p) = (x’, y’, z’, p),

where

  front(x), if z = empty_seq
 x’ = 
 î x, if z ∈ STRINGS’+

  y rear(x) , if z = empty_seq
y’ =  y rev(z), if z ∈ STRINGS’+ and p = right
 î yz, if z ∈ STRINGS’+ and p = left

z’ = empty_seq.

i.e. it moves the cursor one position to the left.
If no part of the document is selected (i.e. z = empty_seq), then:

if the cursor is not on the left of the document, then the cursor moves one
position to the left;

otherwise, the document is left unchanged.

If a part of the document is selected (i.e. z ≠ empty_seq), then this is deselected
(i.e. z’ = empty_seq) and the cursor is positioned on the left of the part of the text
that had been selected.

For example:
’abcdefg’ is transformed into ’abcdefg’,
 ↑ ↑
’abcdefg’ remains unchanged,

 ↑
’abcdefg’ is transformed into ’abcdefg’.

Chapter 5. Refinement of stream X-machines.

198

 ↑ ↑

⋅ select_left_doc: DOCUMENTS → DOCUMENTS

select_left_doc(x, y, z, p) = (x’, y’, z’, p),

where
  x, if z ∈ STRINGS’+ and p = right
x’ = 
 î front(x), if z = empty_seq or p = left

  y rear(z), if p = right
y’ = 
 î y, if p = left

  front(z), if z ∈ STRINGS’+ and p = right
z’ = 
 î z rear(x), if z = empty_seq or p = left

  p, if z ∈ STRINGS’+

p’ = 
 î left, if z = empty_seq

i.e. it selects text by moving the cursor one position to the left.

If the cursor is on the left of the document, then the document remains unchanged.
Otherwise

if no part of the document is selected (z = empty_seq), then the first
character on the left hand side of the cursor is selected and the cursor moves one
position to the left;

if a part of the document is selected (z ≠ empty_seq), then
if the cursor is on the right hand side of the selected text, then the

first character on the left hand side of the cursor is deselected and the cursor
moves one position to the left;

if the cursor is on the left hand side of the selected text, then the
first character on the left hand side of the document is selected and the cursor
moves one position to the left.

For example:
’abcdefg’ is transformed into ’abcdefg’,
 ↑ ↑
’abcdefg’ remains unchanged,

 ↑
’abcdefg’ is transformed into ’abcdefg’.

 ↑ ↑

Chapter 5. Refinement of stream X-machines.

199

Then the basic processing functions are defined as follows:

⋅ dom type = M × CHARACTERS’

type(((x, z, y, p), c), ch) = (γ, ((x’, z’, y, p), c))

where
γ = (display_doc(x’, z’, y, p), Doc, empty_msg),
x’ = x ch,
z’ = empty_seq

i.e. if no part of the document is selected, then ch ∈ CHARACTERS’ is inserted
on the left of the cursor. Otherwise, the selected text is removed and ch is inserted
on the left hand side of the cursor.

⋅ dom delete = M × {back_space}

delete(((x, z, y, p), c), back_space) = (γ, ((x’, z’, y, p), c))

where
γ = (display_doc(x’, z’, y, p), Doc, empty_msg)
  x, if z ∈ STRINGS’+

x’ = 
 î front(x), if z = empty_seq
z’ = empty_seq

i.e. it deletes a character.
If no part of the document is selected (i.e. z = empty_seq), then

if the cursor is not on the left hand side of the document, then the first
character on the left hand side of the cursor is deleted;

otherwise the document remains unchanged.
If a part of the document is selected (i.e. z ≠ empty_seq), then this is removed.

⋅ dom move = M × {move_l, move_r}

move(((x, z, y, p), c), mv) = (γ, ((x’, z’, y’, p’), c))

where
γ = (display_doc(x’, z’, y’, p’), Doc, empty_msg)
  move_left_doc(x, z, y, p), if mv = move_l
(x’, y’, z’, p’) = 

 î mirror(move_left_doc(mirror(x, z, y, p))),
 if mv = move_r

Chapter 5. Refinement of stream X-machines.

200

i.e. when the system is in the state Typing, the cursor is moved to the left or to the
right when move_r or move_l are received.

⋅ dom select_text = M × {move_l, move_r}

select_text(((x, z, y, p), c), mv) = (γ, ((x’, z’, y’, p’), c))

where
γ = (display_doc(x’, z’, y’, p’), Doc, empty_msg)

  select_left_doc(x, y, z, p), if mv = move_l
(x’, z’, y’ p’) = 

 î mirror(select_left_doc(mirror(x, y, z, p))),
 if mv = move_r

i.e. when the system is in the state SelectingText state, it selects text by moving
the cursor to the left or to the right (i.e. when move_r or move_l are received).

⋅ dom activate_select_text = M × {sel_text}

activate_text(((x, z, y, p), c), sel_text} = (γ, ((x, z, y, p), c))

where
γ = (display_doc(x, z, y, p), Doc, empty_msg)

i.e. the word processor starts selecting text when sel_text is received.

⋅ dom deactivate_select_text = M × {des_text}

deactivate_text(((x, z, y, p), c), des_text} = (γ, ((x, z, y, p), c))

where
γ = (display_doc(x, z, y, p), Doc, empty_msg)

i.e. the word processor stops selecting text when des_text is received.

⋅ dom select_menu = M × {sel_menu}

select_menu(((x, z, y, p), c), sel_menu) = (γ, ((x, z, y, p), c))

where
γ = (display_doc(x, z, y, p), Me, empty_msg)

Chapter 5. Refinement of stream X-machines.

201

i.e. the main menu is selected using sel_menu.

⋅ dom deselect_menu = M × {des_menu}

deselect_menu(((x, z, y, p), c), des_menu) = (γ, ((x, z, y, p), c))

where
γ = (display_doc(x, z, y, p), Doc, empty_msg)

i.e. the main menu is deselected using des_menu.

⋅ dom cut = {((x, z, y, p), c) ∈ M| z ≠ empty_seq} × {sel_cut}

cut(((x, z, y, p), c), sel_cut) = (γ, ((x, z’, y, p), c’))

where
γ = (display_doc(x, z’, y, p), Doc, empty_msg)
z’ = empty_seq
  z, if p = right
c’ = 
 î rev(z), if p = left

i.e. the ’cut’ option can be selected only if a part of the document has been selected.
In this case, the selected text is removed and copied into the clipboard.

⋅ dom paste = {((x, z, y, p), c) ∈ M| c ≠ empty_seq} × {sel_paste}

paste((((x, z, y, p), c), sel_paste) = (γ, ((x’, z’, y, p), c))

where

γ = (display_doc(x’, z’, y, p), Doc, empty_msg)
x’ = xc,
z’ = empty_seq

i.e. the ’paste’ option can be selected only if the clipboard is not empty. In this
case, the selected part of the document is removed and the text in the clipboard is
copied into the document on the left of the cursor.

⋅ dom copy = {((x, z, y, p), c) ∈ M| z ≠ empty_seq} × {sel_copy}

copy(((x, z, y, p), c), sel_copy) = (γ, ((x, z, y, p), c’))

Chapter 5. Refinement of stream X-machines.

202

where
γ = (display_doc(x, z, y, p), Doc, empty_msg)
  z, if p = right
c’ = 
 î rev(z), if p = left

i.e. the ’copy’ option can be selected if a part of the document has been selected. In
this case, the selected text is copied into the clipboard.

⋅ dom select_search M × {sel_search}

select_search(((x, z, y, p), c), des_menu) = (γ, ((x, z, y, p), c))

where

γ = (display_doc(x, z, y, p), Doc, empty_msg)

i.e. the ’search’ option is selected using sel_search.

⋅ dom select_replace M × {sel_replace}

select_replace(((x, z, y, p), c), des_menu) = (γ, ((x, z, y, p), c))

where
γ = (display_doc(x, z, y, p), Doc, empty_msg)

i.e. the ’replace’ option is selected using sel_replace.

⋅ dom update_document = M × DOCUMENTS

update_document(((x, z, y, p), c), (n_x, n_z, n_y, n_p)) =
 (γ, ((n_x, n_z, n_y, n_p), c))
where

γ = (display_doc(n_x, n_z, n_y, n_p), Doc, empty_msg)

i.e. this function is used to perform the unrefined ’search’ and ’replace’ operations.
The updated document (n_x, n_z, n_y, n_p) is received by the machine and
replaces the current document.

5.4.3. Refinement.

Chapter 5. Refinement of stream X-machines.

203

We now detail the ’search’ and ’replace’ operations. This will be done using the
operation of refinement. The refinement set will be = { (zi, yi, i)} i=0,..2 and the
refinement function Ref: Q → will be defined by:

Ref(Typing) = Ref(SelectingText) = Ref(Menu) = (zo, yo, o),
Ref(Search) = (z1, y1, 1),
Ref(Replace) = (z2, y2, 2).

Since the only operations that need refining are the ’search’ and ’replace’
operations, the module o will only be used to read the appropriate inputs and
pass them to . 1 and 2 will be used to detail the ’search’ and ’replace’
operations respectively.

The input alphabet of o, 1 and 2 will be Σ. The output alphabet will be
Γ2 = DOCUMENT_DISPLAYS × {Se, Re} × MESSAGES

(i.e. the output alphabet for 1 will be Γ21 = DOCUMENT_DISPLAYS × {Se} ×
MESSAGES; the output alphabet for 1 will be Γ22 = DOCUMENT_DISPLAYS
× {Re} × MESSAGES; the output alphabet for o is not relevant since o will
not produce any outputs; hence Γ2 = Γ21 ∪ Γ22}

The refinement modules and the transfer functions are defined as follows.

5.4.3.1. The module o.

 1. The state set is Po = { po.o, po.1} ; po.o is the initial state and po.1 is the final
state.
 2. The memory set is Mo = Σo.
 3. The type is Φo = {φo}, where

dom φo = Σo × Σo,
φo(σ, σ’) = (empty_seq, σ’) ∀ σ, σ’ ∈ Σo.

 4. The next state transition diagram is represented in figure 5.11.

p0.0 p0.10φ

Figure 5.11.

Basically o reads all the inputs in Σo and rejects the inputs in Σ - Σo without
producing any output.

5.4.3.2. The transfer functions zo and yo.

The transfer functions

Chapter 5. Refinement of stream X-machines.

204

zo: DOCUMENTS × STRINGS’ → Σo
and

yo: Σo → (Σo ∪ DOCUMENTS)
are defined by:

zo((x, z, y, p), c) = σo, where σo ∈ Σo is an arbitrary fixed element.

yo(σ) = σ.

5.4.3.3. Preparatory definitions.

Before continuing we define the following (partial) functions that we shall be
needing for the definitions of the two remaining modules.

⋅ selected_text: STRINGS’ × POSITIONS → STRINGS (function)

  z, if p = right
selected_text(z, p) = 
 î rev(p), if p = left

 i.e. it outputs the part of the document that is selected.

⋅ found: STRINGS’ × STRINGS’+ → B (function)
[Note: B is the set of Booleans]

found(x, f) = (∃ a, b ∈ STRINGS’ such that x = a f b).

i.e. found returns true if the string x contains the string f.

⋅ find_text: STRINGS’ × STRINGS’+ → STRINGS’ × STRINGS’ (partial
function)

dom find_text = {(x, f) ∈ STRINGS’ × STRINGS’+| found(x, f)}

find_text(x, f) = (a, b), where a and b are chosen such that
x = a f b and
∀ a’ ∈ {c ∈ STRINGS’| ∃ d ∈ STRINGS’ such that x = c f d}, |a| ≤ |a’|.

i.e. basically, find_text returns two strings a and b such that x = a f b and a is
the shortest string which satisfies this condition.

⋅ update_all: STRINGS’ × STRINGS’ × STRINGS’+ × STRINGS’ →
STRINGS’ × STRINGS’ (function)

Chapter 5. Refinement of stream X-machines.

205

update_all(x, y, f, r) = (x’, y’), where
if ¬found(y, f), then x' = x and y' = y
otherwise, (x', y') = update_all(x a r, b, f, r), with (a, b) =

find_string(y, f)

i.e. if x and y are two strings of characters, then update_all(x, y, f, r) = (x’, y’),
where x’ y’ is a string obtained by replacing all the occurrences of f in x y with r
starting from the left most character of y. Also y’ is the part of y that remains
unchanged
5.4.3.4. The module 1.

 1. The state set is
P1 = {p1.o, p1.1};

p1.o is the initial state and p1.1 is the final state.
 2. The memory set is

M1 = DOCUMENTS.
 3. The type is

Φ1 = Φ11 ∪ Φ12,
where

Φ11 = {find_succ1, find_unsucc1},
Φ12 = { cancel_search}

 4. The transition diagram is represented in figure 5.12.

cancel_search

find_unsucc

find_succ1

1

p1.0 p1.1

Figure 5.12.

 5. The processing functions are defined as follows.

⋅ dom find_succ1 = { ((x, z, y, p), (f_nextSe, f, d))| (x, z, y, p) ∈
DOCUMENTS, f ∈ STRINGS+, d ∈ DIRECTIONS and ((d = down and
found(rev(y), f)) or (d = up and found(rev(x), rev(f))))}

find_succ1((x, z, y, p), (f_nextSe, f, d)) = (γ, (x', z', y', p'))

where
γ = (display_doc(x', z', y', p'), Se, empty_message) and

if d = down then

Chapter 5. Refinement of stream X-machines.

206

x’ = x selected_text(z, p) a
z’ = f
y’ = rev(b)
p’ = right

 where a and b satisfy (a, b) = find_text(rev(y), f)

if d = up then
x’ = rev(b)
z’ = f
y’ = y a
p’ = right
where a and b satisfy (a, b) = find_text(rev(x), rev(f))

i.e. it finds the next occurrence of the string f in the document. There are two
possible search directions: ’down’ and ’up’.

⋅ dom find_unsucc1 = { ((x, z, y, p), (f_nextSe, f, d))| (x, z, y, p) ∈
DOCUMENTS, f ∈ STRINGS+, d ∈ DIRECTIONS and ¬((d = down and
found(rev(y), f)) or (d = up and found(rev(x), rev(f))))}

find_unsucc1((x, z, y, p), (f_nextSe, f, d)) = (γ, (x, z, y, p))

where
γ = (display_doc(x, z, y, p), Se, 'Text not found')

i.e. if the search is unsuccessful, then the document remains unchanged.

⋅ dom cancel_search = { ((x, z, y, p), (cancelSe, f, d))| (x, z, y, p) ∈
DOCUMENTS, f ∈ STRINGS, d ∈ DIRECTIONS}

cancel_search ((x, z, y, p), (cancelSe, f, d)) (γ, (x, z, y, p))

where
γ = empty_seq

i.e. if the 'cancel' option is chosen, then the document is left unchanged.

5.4.3.5. The transfer functions z1 and y1.

The transfer functions
z1: DOCUMENTS × STRINGS' → DOCUMENTS

and
y1: DOCUMENTS → (Σo ∪ DOCUMENTS)

are defined by:
z1((x, z, y, p), c) = (x, z, y, p)

Chapter 5. Refinement of stream X-machines.

207

y1(x, z, y, p) = (x, z, y, p).

5.4.3.6. The module 2.

 1. The state set is
P2 = {p2.0, p2.1, p2.2};

p2.0 is the initial state and p2.2 is the final state.

2 will be in the state p2.1 when some test has already been found and selected;
otherwise 2 will be in the state p2.0.
 2. The memory set is

M2 = DOCUMENTS.
 3. The type is

Φ2 = Φ21 ∪ Φ22,
where

Φ21 = {find_succ2, find_unsucc2, replace&find_succ,
replace&find_unsucc, replace_all_succ,
replace_all_unsucc}.

Φ22 = {cancel_replace}
 4. The transition diagram is represented in figure 5.13.

find_unsucc

find_succ

replace&find_unsucc

cancel_replace

replace&find_succ
replace_all_succ
replace_all_unsucc

p2.0 p2.1

p2.2

2

2

cancel_replace

replace_all_succ

replace_all_unsucc

find_succ2
find_unsucc2

Figure 5.13.

 5. The processing functions are defined as follows.

⋅ dom find_succ2 = { ((x, z, y, p), (f_nextSe, f, r))| (x, z, y, p) ∈
DOCUMENTS, f ∈ STRINGS+, r ∈ STRINGS and found(rev(y), f)}

find_succ2((x, z, y, p), (f_nextSe, f, r)) = (γ, (x’, z’, y’, p’))

Chapter 5. Refinement of stream X-machines.

208

where
γ = (display_doc(x’, z’, y’, p’), Se, empty_message)
x’ = x selected_text(z, p) a
z’ = f
y’ = rev(b)
p’ = right
where a and b satisfy (a, b) = find_text(rev(y), f)

i.e. this is similar to find_succ1 when the direction of search is ’down’.

⋅ dom find_unsucc2 = { ((x, z, y, p), (f_nextSe, f, r))| (x, z, y, p) ∈
DOCUMENTS, f ∈ STRINGS+, r ∈ STRINGS and ¬(found(rev(y), f))}

find_unsucc2((x, z, y, p), (f_nextSe, f, r)) = (γ, (x, z, y, p))

where
γ = (display_doc(x, z, y, p), Se, 'Text not found')

i.e. this is similar to find_unsucc1 when the direction of search is 'down'.

⋅ dom replace&find_succ = { ((x, z, y, p), (repl, f, r))| (x, z, y, p) ∈
DOCUMENTS, f ∈ STRINGS+, r ∈ STRINGS and found(rev(y), f)}

replace&find_succ((x, z, y, p), (repl, f, r)) = (γ, (x', z', y', p'))

where

γ = (display_doc(x', z', y', p'), Re, empty_message}

x' = x r a
z' = f
y' = rev(b)
p’ = right
here a and b satisfy (a, b) = find_text(rev(y), f)

i.e. it replaces the selected text with r, deselects it and finds the next occurrence of
f in the document on the right hand side of the text that had been selected. The text
found is selected and the cursor is positioned on its right hand side.

⋅ dom replace&find_unsucc = { ((x, z, y, p), (repl, f, r))| (x, z, y, p) ∈
DOCUMENTS, f ∈ STRINGS+, r ∈ STRINGS and found(rev(y), f)}

replace&find_unsucc((x, z, y, p), (repl, f, r)) = (γ, (x', z', y, p))

Chapter 5. Refinement of stream X-machines.

209

where
γ = (display_doc(x’, z’, y, p), Re, ’Text not found’}
x’ = x r
z’ = empty_seq

i.e. this function is applied when there is no occurrence of f in the document on the
right hand side of the selected text. In this case, the selected text is replaced by r
and deselected and the cursor is positioned on the right hand side of this.

⋅ dom replace_all_succ = { ((x, z, y, p), (repl, f, r))| (x, z, y, p) ∈
DOCUMENTS, f ∈ STRINGS+, r ∈ STRINGS and (f = selected_text(z, p)
or found(rev(y), f))}

replace_all_succ((x, z, y, p)), (repl_all, f, r)) = (γ, (x’, z’, y’, p))

where
γ = ((display_doc(x’, z’, y’, p), Re), empty_message)

  x r a, if selected_text(z, p) = f
x’ = 
 î x selected_text(z, p) a, otherwise
z’ = empty_seq
y’ = rev(b)
(a, b) = update_all(empty_seq, rev(y), f, r)

i.e. this function is applied only if the selected text is identical to f or there is at
least one occurrence of f on the left hand side of the selected text. The operations
performed by the function on the document are:

if the selected text is identical to f, then it is replaced with r
and/or

replace all the occurrences of f in the left part of the document with r.
No part of the resulting document will be selected.

⋅ dom replace_all_unsucc = { ((x, z, y, p), (repl, f, r))| (x, z, y, p) ∈
DOCUMENTS, f ∈ STRINGS+, r ∈ STRINGS and ¬(f = selected_text(z,
p)) and ¬(found(rev(y), f)))}

replace_all_unsucc((x, z, y, p)), (repl_all, f, r)) = (γ, (x, z, y, p))

where
γ = ((display_doc(x', z', y', p), Re), 'Text not found').

Chapter 5. Refinement of stream X-machines.

210

i.e. if the selected text is not identical to f and there are no occurrences of f on the
left hand side of the selected text, then the document is left unchanged and the
word processor gives an appropriate message.

⋅ dom cancel_replace = { ((x, z, y, p), (cancelRe, f, r))| (x, z, y, p) ∈
DOCUMENTS, f ∈ STRINGS, d ∈ STRINGS}

cancel_replace((x, z, y, p), (cancelRe, f, r)) =
(γ, (x, z, y, p)),

where
γ = empty_seq;

i.e. if the ’cancel’ option is chosen, then the document is left unchanged.

5.4.3.7. The transfer functions z2 and y2.

The transfer functions are z2 = z1 and y2 = y1.

5.4.4. Further refinements.

The specification we have obtained can be refined further. For example, we can
detail the way in which the inputs associated with the search and replace
operations are entered. This results in a new level of refinement which specifies
how the string to be searched for, the replacement string and the direction of
search can be obtained from simple characters and possibly some extra inputs (i.e.
we need to consider how to mark the beginning and the end of these strings - this
can be done using the enter key or possibly some new inputs). This will be
similar to example 5.1.6.

5.4.5. Using stream X-machines (X-modules) for specifying the processing
functions.

The processing functions of and o are straightforward, involving simple
operations on strings like concatenation, removing the first of the last element of
the string, etc. The processing functions of 1 and 2 are more complex.
However, they can be constructed easily from three functions (found,
find_text, update_all) that we have defined recursively in section 5.4.3.3
In turn, these can be specified easily using quite simple stream X-machines (X-
modules).

For example, let us consider update_all. This is not itself a stream function,
but it can be defined using u, the following stream X-module.

Chapter 5. Refinement of stream X-machines.

211

 1. The input alphabet is CHARACTERS’.
 2. The output alphabet is STRINGS’ × STRINGS’.
 3. The state set is Q = {q}.
 4. The memory set is

M = STRINGS’ × STRINGS’ × STRINGS’ × STRINGS’+ × STRINGS’.
 5. The type is

Φ = {read_input1, read_input2, read&update}
 6. The transition diagram is represented in figure 5.14.

����������� ������� ������������ �������"!��������#$�%�������"�

q

Figure 5.14.

 7. The processing functions are defined as follows.

⋅ dom read_input1 = { ((a, b, c, d, e), ch)| (a, b, c, d, e) ∈ M, ch
∈ CHARACTERS’ and |c| < |d|-1}

read_input1((a, b, c, d, e), ch) = (γ, (a, b, c’, d, e))

where
γ = (a, b c’), c’ = c ch.

⋅ dom read_input2 = { ((a, b, c, d, e), ch)| (a, b, c, d, e) ∈ M, ch
∈ CHARACTERS’, |c| ≥ |d|-1 and c ch ≠ d}

read_input2((a, b, c, d, e), ch) = (γ, (a, b’, c’, d, e))

where
γ = (a, b’ c’), b’ = b head(c), c’ = tail(c) ch.

⋅ dom read&update = { ((a, b, c, d, e), ch)| (a, b, c, d, e) ∈ M,
ch ∈ CHARACTERS’, c ch = d}

read&update((a, b, c, d, e), ch) = (γ, (a’, b’, c’, d, e)

Chapter 5. Refinement of stream X-machines.

212

where
γ = (a’, b’ c’), where a’ = a b e, b’ = empty_seq, c’ = empty_seq.

Now, let mo = (x, empty_seq, empty_seq, f, r) the initial memory value, (i.e. f is
the string to be searched for and r is the replacement string). Let y be the string of
inputs received by u, let g be the corresponding output sequence and let
γ = rear(g) be the last symbol of the sequence g. Then γ = (z, w), where z w is a
string obtained by replacing all the occurrences of f in x y by r starting from the
leftmost character of y. Also w is the part of y that remains unchanged. Therefore

update_all(x, y, f, r) = (z, w).

Let
fu: (STRINGS’ × STRINGS’ × STRINGS’ × STRINGS’+ × STRINGS’) ×

STRINGS’ → (STRINGS’ × STRINGS’)*
be the function computed by u. Then

update_all(x, y, f, r) = rear(fu((x, empty_seq, empty_seq, f, r), y)).

