Chapter 5.

Refinement of stream X-machines.

This chapter presents the concept of refinement as a way of developing stream X-
machine specifications gradually. The concept will be illustrated with a case study
(an X-machine specification of a word processor). A refinement testing method
will also be given.

5.1. Refinement - definitions.

The concept of refinement we are presenting here provides a way of developing
(generalised) stream X-machine specifications gradually. Simpler machines are
used to construct a more complex specification. The way in which these machines
are joined together is specified by a 'control’ machine. The situation is similar to
that of an implementation that uses a 'main’ program that calls several sub-
programs. Let us explain now how our refinement works.

Let
M = &, 1, P, Mj, @}, F, pig), i =0, ..., n,

be deterministic generalised stream X-modules (P; is the state set, pjg is the initia
state and all the states are assumed to be terminal). For i =0, ..., n we assume that
the following conditions are satisfied:

i) The associated automata of the modtijesre minimal.

1) There exists a state pjf U Pjo, Pio Z Pjf, such that [¢ O ®j, Fi(pjf, @) # U
(i.e. no arcs emerge from the stgf.p
We shall call pjs the final state of the module (i.e. the name indicates that once the
module is in g no further transitions are allowed).
Note: The notion of final state should not be confused with that of terminal state.

The moduledj will be called the efinement modules.

Let
m=(,T2 Q, M,®,F, o Mg)
be a deterministic stream X-machine with the state set Q = {qg, 91,..- dn}, the
input set I, the output sEp and the memory set M and let
ziiM - Mj,yi: Mj - 1,i=0,..., n,
be functions.

159

Chapter 5. Refinement of stream X-machines.

m will be called the control machine. Thiswill be refined using the modules 7);. In
fact, all the arcs that emerge from the state gj will be refined by the module 7);.
When 7 isin the state gj, the module 7j will be initialised (via the function z;). In
turn, 7 will feed the machine 7 with appropriate inputs (via the function y;).
These inputs will be processed by the @'s that label arcs emerging from gj in the
control machiné).

The refinement we shall be defining will be a system consisting of the control
machine 7, and the modules 7lj. The way in which these communicate can be seen

as a process in which the modules 7; receive inputs from the external environment
and feed 7 with appropriate inputs (see figure 5.1). Only one 7; is active at atime,
depending on the stdteis in. The whole process works as follows.

Let us assume thay is active and let

(g, m)O QxMand (g my) U (R - {pif}) * M;,
be the current states and memory values of 71 and 7j respectively. Also, let o U X
be the input received b3y;. Then we have the following situations:

i) o causes 7lj to halt (i.e. there is no transition on o from pj and my;). In this
case the whole system will halt.

1) o causes 7lj to go to a new state pj’ # pjf. Then 7j will remain active and the
state and memory values of 7 will remain unchanged. In this case, the output
produced by the whole system will be the output g1 U I'1* produced by 7. In this
case we say that the whole system perfortygeaA transition (see figure 5.2).

1) o causes 7j to go to pjf; let m;’ be the new memory value of 7. Then 7;
becomes inactive and 7 receives the input yj(m;j’). If this input causes 7 to halt,
then the whole system will halt. Otherwise, let gj and m’ be the new state and
memory value of 7 respectively (i.e. the input yj(m;’) takes 7. from gj and m to q
and m). Then the module 7} will become active; the current state of 71} will be pjg
(i.e. the initia state of the module mj) and the current memory value Zj(m’). The
output produced by the whole system will be g1y, where g1 O I'1* is the output
produced by 7; when o is received in pj and mj and yp O > is the output
produced by 7 when yj(m;j’) is received in g; and m. In this case we say that the
whole system performstgpe B transition (see figure 5.2).

More formally, we have the following definition.

160

Chapter 5. Refinement of stream X-machines.

6M

s s s
Lo
MOOMO% MllM — ... M, "M —>
r=r,ur
g g il il 1¥'2
y z y z yn zn
| M | M | M|,
m >
m)
Figure5.1.
m
m ¢ m’
qj q;j
\\ Yi (mi)//] \
\Zi ml // \\ Zj
\ Yi / . m
0 @R O @i
Type A transitions Type B transition
Figure5.2.

161

Chapter 5. Refinement of stream X-machines.

Definition 5.1.1.

Let mj = (Z, 1, By, Mj, ®j, Fj, pjo) be deterministic generalised stream X-modules

as above and zj: M - M;j, yj: Mj - | be functions, i = 0, ..., n. Also, let

m=(Ty Q M, &, F, gg mg) be a deterministic stream X-machine with

Q={do, - an} and let Ref: Q - {(7, Vi, "i)}i = 0,...,n be afunction defined by

Ref(q) = (3, Vj, 1j)- We define a generalised stream X-machine
mw=rQ,M, g, ny,®, F)

as follows.

1. The input alphabet s
2. The output alphabetlis=T1 O Np.

3. The state set is QLnj {qi} x (R - {pit})-

i=0

4. The memory is M’ = M Mg, where M =

5. The initial state is¢1= (¢, Poo)-
6. The initial memory value isgr= (Mg, zo(Mg)).

7. The basic functions @’ are derived from the basic functions ® and ®; by
application of two constructed functioogndd, which are defined below. Then
® =d1' 0 Py,

M;.

n
i=0

where
®1’ ={c(@)| @ O Pj, =0, ..., n}and
®o" = {d(qj, ¢, @)l 0 P, ¢ O ®j such that Fg@) # T, i =0,.., n}.

i) Leti {0, ..., n} andg O ®j. Then
@) M x3 o * x M’
is a (partial) function defined by:

(91, (m, ny)), if mg O M;j and (ny, o) U dom
c(@)((m, mg), 0) = U
00, otherwise
Do 0%, mOM, mg Mg,
where
g UM 1% mg O Mg satisfy (@, mg) =@(mg, 0).

So, @1’ are the functions @ suitably embedded as functions acting on M’ x Z.
These correspond to the type A transitions above.

i) Leti O{0, .., n}, o O @, ¢ O ®j, such that F(qj, @) # O (i.e. thereis an arc
labelledgin 71 that emerges fromyg Then

d(oi, @ @): M"x X - ™ x M’
is a (partial) function defined as follows.

162

Chapter 5. Refinement of stream X-machines.

Lete c O, mOM, mgO Mg If mgO Mj and (mg, 0) O dom ¢, then let
g1 Ul 1* and m’ O M; such that

(91, M) = @(Mg, 0).
Obviously, yj(m;’) O 1. Also, if (m, yj(m;’)) U dom @, thenletyo O o, m O M
such that

(v2, M) =g(m, yi(m;)).
Then

Ho1y2, (M, my)), if Mg 0 M, (Mg, 0) U dome
d(ci, @ @)(m, my), 0) =0 and (m(y")) O dome
00, otherwise
Do 0%, mOM, mgO Mg,
where
g Uuri1* y2 00y, mOM, mj’ O Mj are defined as above and
g = z(m),
where j is chosen such thatd=(q, ¢).

If d(gj, @ @) is the empty function, thei{q;, @, @) is not included iry’.

So, if gj af- 0| isanarcin 7 and @ O ®j, then ¢ = d(qj, ¢, @) is obtained by
applying @ and @ one after the other. The input received by @ will be the next
memory value computed by ¢ transformed through the function yj. The
processing functions d(qj, @, @) will correspond to type B transitions above. The
module currently ‘active’ (7j) is 'deactivated’ and a new module (mj) is ‘activated'.
The function zis used to initialise the modulg.

8. The next state function F" is defined by:
O (g Fi (pi, @), if D@ O ®; such that(g) = ¢

O and ;. @) # pif
O

F*((Gi , pi), @) =0 (g, Pjo), if DT ®, ¢ O @j such thatl(qj, ¢, ¢f) = ¢
0 ap@iF@) = pif
O where j is chosen such thag,Rp) = G

0 O, otherwise
Oif{o,...,n},pOR-{pjffande O P

So, ifg 0¥ pi’ is an arc ifflj and B’ # pif then
(i,) 0 B @, pr)

is an arc inl’. This corresponds to type A transitions.

If pj o - pif is an arc ifllj and g ot gj is an arc irfl, then

(@i, m) 0 WP (4, po)

is an arc inl’. This corresponds to type B transitions.

163

Chapter 5. Refinement of stream X-machines.

Then 7" is said to be a refinement of 71 w.r.t. Ref. The function Ref is called the
refinement function. We also say that (zj, yj, 1) refines gj (written (z;, yj, M) =
ref(gj)). The set # = {(z, Vi, "i)}i = 0,..n is caled the refinement set. The
functions yj and zj will be called the input transfer functions and memory transfer
functions respectively.

Before we proceed further, we make the following remarks.

Observations.
1. Letq O Q and p O B - {pjs}. Then it can be easily verified that:

) 0o @0 o, ¢, " O, if daj, @ @) = dg, ¢, ") 0 ' and
F(pj, @) # O, F(pj, ¢") # U then = @' and @ = @" (thisis because 7 and 7}j are
deterministic).

N0 @, ¢" O, if c(@) =c(@") O Pq, theng = ¢".

i) D0 @&, ¢, ¢" O ®j, ¢ # @", that satisfy d(qj, 0, @) = c(@") and
F(p, @) # 0, F(g, ¢") # O (this is becaus® and7j are deterministic).
Hence F" is well defined.

2. ' is deterministic (i.e. this follows from the fact that 7 and 7, i =0, ..., n,
are deterministic).

3. There may be elements of @' as defined above that do not actually appear in
the state transition diagram of 7. If we restrict @' only to those basic functions
that are actually used by, we get

' =W'0WYo,
where
W1 ={c(®)| @ O Pj,i=0, ..., n, such thal pj O P; with F(pj, @) = J
and fpi, @) # pit},
Wo' = {d(qgj, ®, ¢)|i=0,.., ne0 P, @ O ®j such that F{ge) # J and
Opi O Py with Fi(pi, @) = pif}-

There may be some states in the machine 7, in which the arcs that emerge from
them need not be refined (i.e. in the state g, 7 reads its inputs directly from the
external environment). In this case the module 7 attached to the state gj will have
the form?j = &, 1, By, Mj, 9j, F, pio), where:

1. The state set isifp pif}-

2. The memory is M= Z.

3. The type i®j = {@}, with ¢: ZxZ - {1} x X a function defined by:

@¢(o,0)=(1,0) 00,0 0Z (i.e. 1 is the empty sequence).

4. The state transition diagram determined by F; consists of a single arc from

Pio to pf labelledy (see figure 5.3).

164

Chapter 5. Refinement of stream X-machines.

Figure5.3.

In other words, 7j is used only to store the new input read and does nothing apart
from this. We call this &ivial refinement module.

In this case the definition of memory transfer function zi: M - Z isirrelevant (i.e.
it does not affect the construction of the refined machine). For example, it can be
chosen to be a constant function. The input transfer function yj: = — | will be an
injective function that converts an input into the corresponding input in O | for the
control machine; the actual expression of yj will depend on how I is chosen. For
example, ifz O |, then y will be the identity function.

If the refinement modules have the additional property that al the transitions that
lead to anon-final state output a single character and that the remaining transitions
produce no output at al, then the refined machine will be a stream X-machine
rather then a generalised stream X-machine. This is formalised in what follows.

Definition 5.1.2.
Let ® = {(z, ¥i, "i)}i = 0,...n be arefinement set. Then & is called a proper
refinement set if] i O |, the typedj of the modulé?; can be written as
®j =®j1 U Pi2
such that:
DO@ O, Im@ O Mj xZ;
i) D@ O dDjp, Im@ O Mj x {1}, where 1 is the empty string.
iii) 0 @ O ®; and pj O P, - {pjf} such that F(pj, @) # 0, F(pj, @) = pif iff ¢ 0 ®
i2:

Lemmab5.1.3.
Let ' be a refinement of 7 w.r.t. Ref, where Ref: Q — ®# is the refinement
function. If® is a proper refinement set, théhis a stream X-machine.

Proof:
We saw that if we restrict the type of 7’ only to those basic functions that are used

in the transition diagram of 7', we get @ = W1’ 0 Wo' where W1’ and W1’ are
defined above. It can be shown easily that any ¢ [0 @’ outputs exactly one output
symbol for each input symbol it receivés.

In what follows we shall be referring mainly to the case in which the refinement
set is proper (and therefore the resulting machine will be a stream X-machine).

165

Chapter 5. Refinement of stream X-machines.

The refinement described above allows machine specifications to be developed
gradually. Instead of constructing the whole specification in a single step, a
skeleton of the system (the 'control’ machine 1) is produced first. This will use
some fictitious inputs |. The way in which these inputs are obtained from the real
ones (those that come from outside) is then specified by the sub-modules 7j. The
transfer functions zj and yj are usually very simple (identities, projections,
constant functions, etc.).

The method is advantageous when we are dealing with complex systems. For
example, it can be used to separate the user interface from the core functionality of
the system (a simple example will be given later on, see example 5.1.6).
Furthermore, by providing a coarse specification first and showing explicitly how
this is refined, we ease the understanding of complex specifications. A
specification consisting of many simple machines linked in a well defined way
could give us a better idea of what the system is supposed to do than a single, but
very complex machine.

Before we proceed with an example, we show that the construction made in
definition 5.1.1 fits the informal description of refinement given at the beginning
of the chapter.

Lemma 5.1.4.
Let ' be the refinement of 71 w.r.t. Ref as defined above. Let u, U, uj, the
transition functions and A, A, Aj the output functions of 71, 7’ and 7lj respectively.
ThendiO{0, ..., n},cOZ, mOM, mg Mg p U P - {pj} we have:
1. If my O Mj or y(pj, Mg, 0) =0, then
u'((@ py), (m, my), o) =0 andN'((q,), (M, my), o) =0.
2. Otherwise let uj(pj, mj, o) = (pj’, M;’) and Aj (pj, mj, o) = g1, with pj’ O Bj,
mi’ O Mj, g1 O IM'1*. Then:
a. If pj’ # pif, then
u((ci, pi), (M, mg), 0) = (g, pi), (M, m})) and A((q;, pi), (M, my), o) =
01 (i.e. this is a type A transition)
b. If pj’ = pjf, then U'((qj, p;), (M, mg), o) # O iff u(gj, m, yj(m;’)) # 0. If thisis
the case let u(gj, m, yj(m;)) = (gj, M) and A(gj, m, yj(m;’)) = y2, with m’ O M,
y2 OT2. Then
u((@, pi), (M, M), 0) = (g, Bo). (m’, 3(m?))) and
N'((Gi, B), (M, M), 0) = g1y2
(i.e. this a type B transition).

Proof:
It follows from the construction of!’ (the definitions ofp’ and F')®

Notice that if the refinement set is proper then g1 U M1 for type A transitions and
g1 = 1 for type B transitions.

166

Chapter 5. Refinement of stream X-machines.

Lemma5.1.5.
Let 7" be the refinement of 7 w.r.t. Ref as defined above. Let u be the transition
function and A the output function of 71 . Let aso ug, uje be the extended
transition functions and Ag, Aje the extended output functions of 7’ and 1)
respectively. Leti O {0, ..., n}, sOZ*, mOM, mg O Mj, pj U B - {pjs} such that
UiePi, Mg S) # O and let Uig(pi, Mg, 9 = (pi’, mi) and Aje(pi, Mg, §) = g7 with
pi’ OB, m’ O Mj, g1 O 1* Then:
1. If g’ # pif, then
ug (G, B). (M, my), s) = (G, /). (M, my)) and
Ae (G p), (M, my), 8) = .
2. If pi’ = pjf, then u((gj, pj), (M, my), s) # O iff u(qgj, m, yj(m;’)) # O. If thisis
the case, let u(g;, m, yj(m;’)) = (gj, m’) and A(qj, m, yj(m;’)) = y2, withm’ O M,
y2 O 2. Then
ug (G, PY). (M, M), S) = (. o). (M, (m"))) and
Ae (G p), (M, my), S) = QY2

Proof:
It follows by induction on $®

So, if s takes the module 7); into a state pj’ which is not the fina state of the
module, then the corresponding transitions caused by s in the machine 7 will all
be of type A. If pj’ isthe final state of the module, then 7’ will perform |g}-1 type
A transitions followed by a transition of type B. If the refinement set is proper,
then |g1| = |g| if all the transitions performed are of type A and [g1| = |51 if the
machine performs a sequence of type A transitions followed by a type B transition.

Example5.1.6.

We present a stream X-machine specification of a simple program which enables
users to log in to a computer system using their username and password. We
require that each user can enter his/her password twice. Once the user has entered
the system, the program only alows him/her to exit the system; any other
command will be ignored.

The inputs used are: character keys, the Enter key and the Backspace key. Only
usernames and passwords of at most n characters will be considered valid. Thus, if
more than n characters have been entered, the rest will be ignored, unless one or
more of the first n characters have been deleted. The system will display the valid
characters (i.e. less then n) of the username, but nothing will be displayed when
the password is entered.

The number of characters in a command is unlimited.

167

Chapter 5. Refinement of stream X-machines.

5.1.6.1. The control machine.

We shall construct the stream X-machine specification /1’ of the program in two
stages. First, we give an 'unrefined’ stream X-machine specification 7. This will
operate on sequences of characters. The way in which these sequences of
characters are entered and fed to 7 will be detailed using the operation of
refinement (i.e! will be the control machine of the refinement).

The stream X-machin&! is defined as follows.

1. The input set is4 STRINGS,
where
STRINGS = CHARACTERS* is the set of all sequences of characters.

2. The output is N'p = MESSAGES is a set of messages or sequences of

messages,
MESSAGES = {rsg1, ...,nsg6},

where:
nsgl =’insert your password:’,
nsg2 =’login successful’,
nmsg3 = 'wrong password insert your password:’,
nsg4 =’login incorrect! login:’,
neg5 = ’exit system login:’,
nsg6 = 'unknown command’.

3. The set of states is:
Q = {Await_name, Await_pswl, Await_psw2, Await_command}.
The initial state is Await_name.

4. The memory is M = ACCOUNT_INFOSTRINGS,, where
STRINGSp = 3, CHARACTERSK i the set of sequences of at most n
characters.

We assume that the system keeps a data structure (i.e. acc 1 ACCOUNT_INFO)
for al the existing usernames and their associated passwords. As for the cash
machine example, we do not make any assumptions about the way in which thisis
implemented. Instead, we assume that it can be manipulated via the following
(partial) functions:

Onanme_f ound: ACCOUNT_INFO x STRINGS, - B (function), where B is
the set of Booleans.

i.e.name_f ound(acc, str) is true ifstr is a valid username and false otherwise .
[get _psw. ACCOUNT_INFO x STRINGS, —» STRINGS, (partial function)

i.e. this finds the corresponding password of a username if the username is valid.

168

Chapter 5. Refinement of stream X-machines.

The (partial) functions above satisfy:
domget psw=
{(acc, str) O ACCOUNT_INFOx STRINGS,| nane_f ound(acc, str)}

The system memory will be a tuple (acc, mem str), where acc [
ACCOUNT_INFO and mem _str [0 STRINGS, stores the last username that has
been entered.

5. The initial memory value is
mgp = (i n_acc, empty_seq),
wherein_acc istheinitial value of ACCOUNT _INFO and empty_seq denotes the
empty string (i.e. for the sake of clarity the empty string will be denoted by
empty_seq instead of 1).

6. The type is:
® ={ent er _nane, good_psw, w ong_pswl, w ong_psw2,
i gnor e_conmand, exi t _syst eni.

7. The state transition diagram is represented in figure 5.4.

good_psw
wrong_psw2 .
ignore_command

wrong_psw1

Await_psw1l

exit_system

enter_name

Await_name

good_psw

Await_command

Figure5.4.

8. The basic processing functions are defined as follows:
[doment er _nanme = M x STRINGS,
ent er _nane((acc, mem str), str)) = (591, (acc, str))

i.e. the name entered (i.e. str 0 STRINGSy)) is copied into the appropriate memory
register.

169

Chapter 5. Refinement of stream X-machines.

Cdom good_psw= {(acc, mem_str), str) O M x STRINGSp| nanme_f ound(acc,
mem _str) andget _psw(acc, mem str) = str}

good_psw((acc, mem str), str) = (nsg2, (acc, mem str))

i.e. this function is applied if the password matches the correct one.

Cdom wr ong_pswl = {(acc, mem _str), str) 0 M x STRINGS;|
- (nanme_f ound(acc, mem str) andget _psw(acc, mem str) = str)}

wr ong_pswl((acc, mem str), str) = (msg3, (acc, mem str))

Cdom wr ong_psw2 = {(acc, mem str), str) O M x STRINGSy|

= (name_f ound(acc, mem str) andget _psw(acc, mem str) = str)}
wr ong_psw2((acc, mem str), str) = (ms g4, (acc, mem str))

i.e. these functions are applied when the password does not match the correct one.

[fdomi gnor e_command = M x (STRINGS - {exit})
i gnor e_conmand((acc, mem_str), str) = (ms g5, (acc, mem str))

i.e. if str # ’exit’, the command is ignored.

[domexit _system= M x {"exit’}
exi t _syst en{(acc, mem str), 'exit’) = (g6, (acc, empty_seq))

i.e. otherwise, the system returns to its initial state; the memory register that holds
the last username entered becomes empty.

5.1.6.2. Therefinement function.

The stream X-machiné is refined using the refinement function
Ref: {Await_name, Await_pswl, Await_psw2, Await_commandl}

{(zi, vi, M}i=0,...3

defined by:
Ref(Await_name) = @, yo, "),
Ref(Await_psw1) = (7, y1, 1),
Ref(Await_psw2) = (z, y2, 12),
Ref(Await_command) = @ y3, 3).

170

Chapter 5. Refinement of stream X-machines.

5.1.6.2.1. Therefinement modules.

Mo, M1, Mo, M3 are generalised stream X-modules with the input and output
alphabets andr 1 respectively, where:

> = CHARACTERSLI {back_space,enter}
(i.e.Z contains all the keys allowed),

M1 = DISPLAYSUO {del et e_char, enpty_di spl ay},
where DISPLAYS is the set of displays of all characters, i.e. there is a bijective
functiondi spl ay: CHARACTERS - DISPLAYS.

Then, the four modules are defined as follows.

A.o.

1. The state seti$/P {po.0 ----» ®.n PO.N+1}
po.ois the initial state; g n+1Iis the final state.

2. Mg = STRINGS,.
3. The type is:
o =Po1 0 P2,
where
®Pg1={type_chl,type_ch2,press_bsl, press_bs2}
®go={press_enterl}
4. The transition diagram is shown in figure 5.5.

press_hs2

type_ch2

type_chl

press_bsl

press_enterl

press_enterl

Figure5.5.

171

Chapter 5. Refinement of stream X-machines.

5. The basic functions are defined by:
Cdomt ype_chl = STRINGS, x CHARACTERS
t ype_chi(str, ch) = (di spl ay(ch), str ch)
i.e. the character ch 0 CHARACTERS is displayed and is added at the end of
str [STRINGS,.
[tomt ype_ch2 = STRINGS, x CHARACTERS
type_ch2(str, ch) = (enpt y_di spl ay, str)
i.e. if the machineisin the state pg , (therefore |str| = n) then nothing is displayed
and the memory value (i.glr) remains unchanged.
Cdompr ess_bs1 = STRINGS, x {back_space}
press_bsi(str,back_space) = (del et e_char, tail(str))

i.e. the last character is removed from the screen and the sequence

Cdompr ess_bs2 = STRINGS, x {back_space}

press_bs2(str, back_space) = (enpt y_di spl ay, str)

i.e. if the machine is in the state pg o (therefore str = empty_seq), then nothing is
displayed and the current memory value remains unchanged.

Cdompr ess_enter1 = STRINGS, x {enter}

press_enter 1(str, ent er) = (empty_Secgtr)

i.e. whenent er is pressed, the machine goes to the final siate:p.

B. 1.

1. The state setigP {p1.0 ----» PL.n PL.n+12}
p1.0is the initial state; p nh+1is the final state.

2. M; = STRINGS,.
3. The type is:
P1=P110 P12,

172

Chapter 5. Refinement of stream X-machines.

where
®11={type_ch2,type_ch3,press_bs2, press_bs3},
®1o={press_enterl}
4. The transition diagram is shown in figure 5.6.

press_hs2

type_ch2

type_ch3

type_ch3 type_ch3 type_ch3

press_bs3

press_enterl press_enterl

Figure5.6.

5. The transition functions t ype _ch3 and press_bs3 are defined as
follows:

Cdomt ype_ch3 = STRINGS, x CHARACTERS

t ype_ch3(str, ch) = (enpt y_di spl ay, str ch)

Cdompr ess_bs3 = Mq x {back_space}

press_bs3(str, back_space) = (enpt y_di spl ay, tail(str))

The definitions above are similar to those of t ype_chl and press_bs1 apart
from the fact that nothing is displayed.

C. My is identical tall.

D. 3.

1. The set of states i3 P {p3.0 P3.1}:
p3.ois the initial state; g 1 is the final state;
2. M3 = STRINGS.

173

Chapter 5. Refinement of stream X-machines.

3. The type is:
b3 =310 P32,
where
P31 ={type_ch4, press_bs4},
®P3o={press_enter2}
4. The transition diagram is shown in figure 5.7.

type_ch4
press_bs4

press_enter2

Figure5.7.

5. The basic functions are defined by:
[domt ype_ch4 = STRINGSx CHARACTERS
t ype_chd4(str, ch) = (di spl ay(ch), str ch)

i.e the characteash is displayed and added at the endtof] STRINGS.

Cdompr ess_bs4 = STRINGSx {back_space}
press_bs4(str, back_space) = (displ, tail(str))
where:
O del et e_char, if str # empty_seq
displ = O
Oenpty_displ ay, if str = empty_seq
i.e. if, str # empty_seq, then the last character is removed from the screen and the
sequence str. Otherwise, nothing is displayed and the current memory value
remains unchanged.
[dompr ess_enter2 = STRINGSx {ent er}
press_hs4(str, ent er) = (empty_sedgtr)

i.e. whenent er is pressed, the machine goes to the final s@te:p.

174

Chapter 5. Refinement of stream X-machines.

5.1.6.2.2. Thetransfer functions.

Fori=0,.. 2 z:M - STRINGS, and yj: STRINGS,; — STRINGS are defined
by:

zj(m) = empty_sed,] m O M,

yj(str) =str, O str O STRINGS,.

z3: M - STRINGS and §STRINGS - STRINGS are defined by:
zj(m) = empty_sed,] m O M,
yj(str) =str, O str O STRINGS.

5.1.6.3. Therefined machine.

The specification of the system is the stream X-machine 7' which is the
refinement ofll w.r.t. Ref. Then!’ is defined as follows:
1. The input set is
> = CHARACTERSO {back_space, enter}.

2. The output set[S =1 O I'p. Therefore
" = DISPLAYSLI {del et e_char,enpty_di spl ay} 0 MESSAGES.

3. The state set is

Q" =100.0 - ©.n 410 - A.n R.0 -+ P.ny B30
(i.e. .0 = (Await_name, 9.0 -... ©.n= (Await_name, g n).

01.0= (Await_pswl, g o), -... q.n= (Await_pswil, g),

02.0= (Await_psw2, g o), ..., @.n= (Await_psw2, g),
03.0= (Await_command, $).

The initial state is @.o

4. The memory is M’ = ACCOUNT_INFOSTRINGS, x STRINGS
(iee M = M x Mg wheee M = ACCOUNT_INFO x STRINGS, and
Mg = STRINGS).

The initial memory value is
mg = (n_acc, empty_seq, empty_seq).

5. The type is
¢® = {type_chl, type ch2', type ch3, type ch4’,
press_bs1’, press_bs2’, press_bs3’, press_bs4’,
press_enterl.1’, press_enterl. 2, press_enterl. 3",

press_enterl.4’ ,press_enter2.1 ,press_enter2.2'}

where

175

Chapter 5. Refinement of stream X-machines.

type chl =c(type_chl’ 1),..,type _ch4’ =c(type_ch4), ...
press_bsl’ =c(press_bsl), ...,press_bs4’ =c(press_bs4)
press_enterl1l. 1’ =d(Await_namegent er _name, press_enter 1),

press_enterl. 2’ =d(Await_pswl,good psw, press_enterl)
dAwait_psw2,good_psw, press_enter1l),

press_enterl1l. 3 =d(Await_pswlw ong_pswl, press_enter1)
press_enterl1l. 4 =d(Await_psw2w ong_psw2, press_ent er 1),
press_enter2. 1 =d(Await_commandexi t _systempress_enter2)

press_enter2. 2" =d(Await_commandi gnor e_conmand,
press_enter2)

(i.e. the other functions obtained by applying ¢ and d will not appear in the

transition diagram).

For example type_chl’, press_enterl.2', press_enter2.1 are
defined by:

Odom type chl’ = (ACCOUNT_INFO x STRINGS, x STRINGS; x
CHARACTERS;

type_chl’ ((acc, mem strl, mem str2), ch) =
di spl ay(ch), (acc, mem strl, mem str2 ch))

Odom press_enterl. 2" = {((acc, mem strl, mem str2), ent er))| accl
ACCOUNT_INFO, mem strl, memstr2 [0 STRINGS, such that
(name_f ound(acc, mem strl) andget _psw(acc, mem strl) = mem str2)};

press_enter 1. 2’ ((acc, mem strl, mem strl), enter) =
(g2, (acc, mem strl, empty _seq)) .
Odom press_enter2. 1" = (ACCOUNT_INFO x STRINGS x {’exit}) x
{enter};
press_enter2. 1’ ((acc, mem strl, 'exit’),ent er) =

(msg6, (acc, empty_seq, empty_seq)).

6. The state transition diagram is represented in figure 5.8.

176

Chapter 5. Refinement of stream X-machines.

type_d|
type_ch3
presg_enterl.4 q2_1
press/enterl.4’ type_ch
9.0
press’enterl.4’
press_hs2’

press| enterl.3’

press_b

press_bs{

type_ch{

press_enierl.2’

erl.2,

press_er

press_exterl.3
presg/enterl.3’

tprh3’ type_ch3

press_enterl.l’

(911)

/@..0)

press_bs1’

pxess_bs1’
presq enterl.l’

Figure5.8.

177

press_bsB’\/ press_bs3’ press_bs3

type_ch4’
press_bs4’
press_enter2.2’

press_enterl.2’

type_ch2’

A1.n

Chapter 5. Refinement of stream X-machines.

5.2. Implementation.

A specification developed using the refinement approach admits a straightforward
implementation. The refined machine need not be constructed explicitly. Instead,
the whole system can be implemented as a ‘'master’ implementation (program) J

that calls the subimplementations (subroutines) Jj. J is obtained from the
implementation of the control machine 7 by replacing instructions that read inputs
from the outside environment with instructions that call the subroutines Jj. These
subroutines will feed J with appropriate inputs. Basically, the execution of J will
call a subroutingj before executing any .

A subimplementatior; will have the form:

apply z (initialise the subroutine);

implement 7j; the fina state pjs will correspond to the ’exit’ state of this
subroutine;

apply yj (return avariable or a set of variables v [I | that will be used as inputs
inJ).
In this case, we shall say thiats theimplementation of (7, y;, 7).
Since zj and y; are usualy very simple functions, writing the program J; will
consist mainly of implementing the X-modulg

If amodule 7 is trivial, then J; will just store the input received and convert it (if
necessary) into a suitable input for the control machine

5.3. Testing.

Let 7' be a specification of a system constructed using the refinement operation
described above. Then, one way of testing the implementation of the system is to
construct 7" explicitly, implement it and test the implementation against 71’ using
the method presented in the previous chapter. This approach might not be aways
convenient for the following reasons. Firstly, it requires 7’ to be constructed
explicitly, which might not be desirable if we are dealing with large systems. In
this case it might be more convenient to implement the refinement modules
separately and to construct the implementation of the system as described in the
previous section. Secondly, if the state set is very large, then the test set obtained
will also be large.

An alternative to this is to use a two phase approach in which the basic modules
are implemented and tested separately and the whole system is tested for
integration. Since the modules 7lj can be tested using the method presented in the
previous chapter, we shall discuss now how the system integration can be tested.

178

Chapter 5. Refinement of stream X-machines.

As in previous chapter, we shall be using a reductionist approach. We shall
assume that the implementation of the system is constructed from the following
components:

[the correct implementations of the basic functions ® of the control machine
m;

[the subimplementations Jj (J;j is the implementation of (zj, yj, 7j) as described
in the previous section). These can be separate subprograms or pieces of code that
can be identified in the main implementation. We assume that the implementation
of the transfer functions zj and y; are correct (these are usually simple functions).
We aso assume that the implementations of the refinement modules have been
tested against their specifications.

As for the stream X-machine testing, the consecutive execution of two @'s or two
Ji's has to be prevented (this can be done using a flag variable, that indicates

whether the last piece of code executed by the program represeraedrd;).

If these conditions are met, then the implementation of the whole system can be
viewed as a control program J, that receives inputs from the subprograms Jj. Since
the basic functions @ are assumed to be correct, J will be the implementation of a
stream X-machine 7* with the same type @ (of course in this implementation

instructions that read inputs from the outside environment are replaced by
instructions that call the subimplementatioy)s

Now, let g* be astate in 7*. Then, there will be a subimplementation Jj such that J
receives inputs from Jj when 71* isin the state g*. Let 7j* be the implementation
of 7 and 4j and ;* the associated automata of 7j and 7j* respectively. If M;j* has
been tested against 7j using the stream X-machine testing method, then 4; and
Min(4j*) are isomorphic, where Mig*) is the minimal automaton af*.

Then the whole system behaves as though (zj, yj, 7j) refines the state g*. Indeed,
the fact that 4j* might not be minimal does not make any difference as far as the
main program J is concerned (i.e. two equivalent states will behave identically as
far as! is concerned).

Therefore, the implementation of the whole system (let us call this 71*) can be
modelled as the refinement of M* w.r.t. Ref*, where Ref* is arefinement function
Ref*: Q* - {(z, i, ")}i=0,...,n» where Q* is the state set of 7* and
{(zi, vi» M)}i=0,... nis the refinement set of the specification (see figure 5.9).

Thus, once the basic functions ® and the refinement modules 7j have been tested,

the integration testing will be carried out to ensure that:
i) the implementation of the control machine 7 is correct (therefore testing 7*

againstn)
ii) each state in 7* is refined by the appropriate module 7j (therefore testing
Ref* against the refinement function of the specification, Ref).

179

Chapter 5. Refinement of stream X-machines.

Therefore, our testing method constructs a test set that tests the system for
integration in the sense mentioned above, provided that the assumptions we have
made at the beginning of the section are met. We shall assume that the refinement
set is proper (and hence the resulting machine is a stream X-machine).

m m*
m [29 m i [29
r'=r,ur
b2 17'2 =
[[[[
m g s (g 0 N Mg S 0 N
2y 2y = 2y
Specification Implementation
Figure5.9.

5.3.1.’Design for testing’ conditions.

Similar to the previous chapter, our specification has to satisfy some 'design for
testing’ conditions.

5.3.1.1. Simplerefinement.

Notation 5.3.1.1.1.

Let 7; and mj be two (generalised) stream X-modules and «j and 4 their associated
automata. Then 77)j = 7l}j denotes that 7lj and 7j have the same type (Pj = ®j) and 4
andyj are isomorphic.

Definition 5.3.1.1.2.
Let M be the refinement of a stream X-machine 7 w.rt. Ref, where

Ref: Q - {(z, Yi» "i)}i = 0,..,n is the refinement function. Then we say that 71’ isa
simple refinement itl i, j 0 {0, ..., n} 7 = Mj implies y = Y and 7 = Z.

For instance, the refinement from example 5.1.6. is simple.

180

M= F1UF2

Chapter 5. Refinement of stream X-machines.

5.3.1.2. Complete refinement.

For similar reasons to those discussed in the previous chapter, our testing method
requires some completeness and output-distinguishability conditions.
Definition 5.3.1.2.1.

Let 7 be the refinement of a stream X-machine 7 w.rt Ref,

Ref: Q - {(z, Yi» ")}i = 0,..,n- Leti O {0, ..., n} and let uje be the generalised
transition function offlj. Then we say thét; is completew.r.t. ¢ O & if:
OmOM, OsO 2* with |s|2 2 and m [Mj such that

Uie(Pios zi(M), s) = (B, M)
and
(m, yi(m;j)) O dome.

In other words sis astring of length at least two that takes the module 7; from the
initial state pjo and memory value zj(m) to the final state pjf and mj such that
(m, yi(m;)) O dome.

Definition 5.3.1.2.2.
Let M be the refinement of a stream X-machine M w.rt. Ref with

Ref: Q - {(zj, i, Mi)}i = 0,..,n Thenll’ is said to be eomplete refinement if:
0§00, ..., n}ande O ®, M is complete w.r.tg.

5.3.1.2.1. Enforcing the completeness condition.

This completeness condition can be enforced on a machine refinement by
augmenting botk and I. A possible method is presented in what follows.

ForilO{1, ..., n} let

Zj = {0 @| mj is not complete w.r.tp}
and k = cardgj). Let also= = U =j and k = card).

i=0

Leting, ... ink’ and o1’, 02’ be new inputs such that {in7’, ... ing}} n 1 =0 and
{01,092} n Z=0. Let also

a=-{ing, ..}
and

bi:= - {1,...,k},i=0,..,n,
be bijective functions. Thei and?”j are augmented as follows.

DMm=(,T2 Q,M,d, F, op M) is transformed into

A = (I, T2, Q, M, ®p, Fa, do, Mp)
defined by:
1. The input setigl=10 {in7, ... inc’}.

2. The typebp is defined byba = {pa| @ T P}, where
OeUd, oo M x1p - N1 xMis a (partial) function defined as follows.

181

Chapter 5. Refinement of stream X-machines.

Of 0 @ - =, then
dom@p = domgand
@a(m,in) =@m,in), OmOM, inO;

Of @O =, then
dom@p = dome] (M x {a(p)}) and
@ea(m,in) =@m,in), OmOM,inOl,
oa(m, a(@)) = (y2, m),0 m O M, whereyp O I is arbitrarily chosen.

3. The next state function will be defined by:
FA(Q, @) = F(0,9), DO ®.

Basicaly, the functions in = are augmented by using an extra input for each of
them. Everything else remains unchanged.

i) My =&, M1, B, Mj, ®j, F, pio) is transformed into

mia = Ea, 1 P, Mja, ®ia, KA, Pio),
where:
1. The input set Bp =% [{01, 02’}

2. The memory set isiNl = M; x {0, ..., k}.

3. The type&bjp is defined by

Dia = {gal @ O @i} U {G, &},
where:

M@ 0Py, ga: (Mj x{0, ..., K}) xZp - I1* x (M x {0, ..., l§}) is defined by:
dom@a = {((mj,), o) mIMj,c0Z,jI{0, ..., k} such that
(m, o) O domg};
@A ((mj,), 0) = (M,)), 9),
where ny' O Mj, g I'1* such that (i, g) =@(m;, 0).

CEi: (Mj x {0, ..., k}) xZa - M1 x (M x{0, ..., k}) is defined by:
domgj = (Mj x {0, ..., k}) x{o1’};
&((m;,), 01) = (1, (M, 1), 0 my O M;, j 010, ..., k},
where j = (j + 1) modijkandyq U "1 is arbitrarily chosen.

[Zi: (Mj x {0, ..., k}) xZa - M1 x (Mj x{0, ..., k}) is defined by:

domg; = (Mj x {0, ..., k}) x {o2'};

¢i((m;,), 02) = (1, (M;j, j)), O m; O My,] O{O, ..., kj} (i.e. 1isthe empty
string)

Basically, we augment the machine memory by adding an extra register which
takes values in {0, ..., kj}; the functions in ®; are essentially unaffected by this

182

Chapter 5. Refinement of stream X-machines.

memory augmentation. The §j changes only the value of this extra register,
whereas thé; leaves the entire memory unchanged.

3. The next state functioqafFis defined by
dom Fa ={(pi, ¢ia) O B x ®jal (B, @) O dom F} [
{pEdI p 0P -{pil} O {(Pi. I a R -{pilk;
Fia(Pi, 4a) = F(pi, @), U pi O P, ¢ O &,
Fia(pi, &) = U pi O B,
Fia(pi, ¢i) = af O pj O A

For each state pj U P} - {pjf}, we add two extra arcs: one from pj to itself (thisis
labelledg;), the other from joto the final state ofij, pif (this is labelled;;).

At the first sight, the process of augmentation of the refinement modules appears
to be quite complicated. Indeed, we could think of many other simpler methods in
terms of extra memory and extra processing functions needed. However, the
advantage of this method is that the augmentation of the implementation can be
trandated in a straightforward manner into a change in the implementation.
Indeed, let us assume that we have a program that implements 7j. Then, what we
really have to do in order to ssimulate the above augmentation is to define a new
memory register with valuesin {0, ..., kj} and to add two new pieces of code after
each read’ instruction in the program. The first implements &j. This will be
selected when the input read is 01’ and will only update the extra memory register.
Everything else (including state variables) remains unchanged. The second
implements ¢j. This will be selected when the input read is o2’ and will cause the
program to exit.

The transition functionsjand y will be transformed into

zipn: M - Mia, viai Mia - Ia
defined by:
zip(m) = (z(m), 0)),0 mO M;

Yia (mj, 0) = y(m), O m;j O M;;
via(mi, j) =a(b;-1()), Om O M;, jO{1, ..., k.

We can now show that O @ O =j, 7ja iscomplete w.r.t. @. Indeed, let @ 0 =; Then
0j 041, ...k} and I O {1, ..., kj} such that inj’: a(g) and | = bj(¢). Then O
mOdM,s= 01| oo takes 7 from the initial state pjg and memory value
(zj(m), 0) to pjf and (zj(m), I). Since yja(zj(m), I) = inj’ and (m, inj’) [0 dom g, it
follows that7ljp is complete w.r.tg.

Clearly Tjp iscomplete w.r.t. @, [0 @ [0 & - =j. Hence, the augmented refinement
is complete.

Example5.3.1.2.1.1.

183

Chapter 5. Refinement of stream X-machines.

Let 7" be the refinement from example 5.1.6. If we assume that n > 4 (i.e. the

maximum allowed length of the usernames and passwords is no less then 4), then
we have:

Z0==1==2==3={good_psw.
= ={good_psw}.

Observations: We assume that not all the user names that can be entered are
valid, hencegood_psw[=j,i =0, ..., 3. Also, sincen> 4, exi t _systemQ =
i»1=0, .., 2 (i.e. the length of the string "exit’ is 4).

Hence g =kj=ko=kz=1and k= 1.

Thenleting’ and a1’, 02’ be the extrainputs required. The augmented machine 7 a

will have the input set 1o = | O {in1}; good_psw will be augmented to
good_pswp, where:
domgood_pswp =good_pswO (M x {in1}).

The augmented modules 7ja will have the input set 3o = Z O {01/, 027}. The
augmented memory sets will be Mga = M1a = M2a = STRINGS,, % {0, 1} and
M3a = STRINGSx {0, 1}.

The main difficulty in this method is determining the sets =j. In the worst case we
cantake =j = @, i =0, ..., n. In this case, the resulting augmented refinement will
be complete irrespective of whether th&s are complete or not with agy] ®.

5.3.1.3. Output-distinguishable r efinement set.

The second condition required by our refinement testing method will be the
output-distinguishability of the modules 7j. In what follows we shall assume that
the refinement set is proper. Recall that if the refinement set # = {(z;, i, i)} =
0,....n is proper the the type of the module 7}j can be written as @; = ®j1 0 ®jp,

where ®j1 contains single output operations and ®jo> contains empty output
operations. Let us also define the set

Pj1[piol = {@ U Pj1| F(pio. ¥) # U}
(in other words the set ®j1[pjg] contains all ¢ [®djq that are labels of arcs
emerging from the initial state of the modulg.

Then we have the following definitions.
Definition 5.3.1.3.1.

Let ® ={(z, i, "i)}i = 0,... n be aproper refinement set. Let i, j U {0, ..., n},
@ U ®jp and ¢ U ®@j1. Then ¢ and ¢ are said to be fully output-distinguishable
if:

184

Chapter 5. Refinement of stream X-machines.

Oo 02, mOMj, mj O Mj, if gj(mj, o) = (M, y), (pj(mj, 0) = (mj’, Y) with
mi’ O Mj, mj’ O M;j, v,y 0T g, thenyzy.
In other words ¢ and 0] produce different outputs on any input character,
regardless of the memory values chosen.

Definition 5.3.1.3.2.

Let # ={(z, yi, "i)}i = 0,...,n be a proper refinement set and let i, j U {0, ..., n}.
Then 7lj and 71)j are said to be output-distinguishable if U ¢ U ®j1[pjg] and

@O dbjl[pjo], 0 andcq are fully output-distinguishable.

Definition 5.3.1.3.3.

Let ® = {(z, Yi, "i)}i = 0,...,n be a proper refinement set. Then £ is said to be
output-distinguishable if U i, j O {0,.., n}, either 7 = mj or 1; and Mj are output-
distinguishable

This condition can be enforced by augmenting the output aphabet to M1 x Gq,
where the number of elements of the extra component of the output, G1, will be at
most the number of non-identical (up to an isomorphism of the associated
automata) refinement modules.

5.3.2. Fundamental test function and the refinement testing theorem.

As for stream X-machines, we define a fundamental test function of a refinement
that transforms sequences frdminto sequences frora*.

Definition 5.3.2.1.
Let ' be the refinement of a stream X-machine 7 w.r.t. Ref with

Ref: Q - {(z, Vi, ")}i = 0,..,n- We assume that 7’ is a complete refinement.
Then we define recursively afunction t: ®* - 2* and apartia function ty;: ®* -
M as follows:
i).
Ot(1) = 1,
Ci(1) = my,
where ng, is the initial memory value of and 1 is the empty string.

). Ok =0and @, ..., & @+1 U P, the recursion step that defines
t(@1... ,k+1) and fq(@1...9k) function of tpy... @) and f,(@1... k) is as follows.

1). If there exists apath in 7 |abelled @1... @ that starts from qg (i.€. qg isthe
initial state ofl) then let ¢ be the final state of this path.
Then:

(1. O+ = @1) Sk+1
where g4+1 U Z* with |5+1] = 2 is chosen such that

185

Chapter 5. Refinement of stream X-machines.

Om;j O M; such that Uje(Pjo, zi(M), Sk+1) = (Fif. M) and (m, yj(m;)) O dom @+1,

where m = (¢1...9«)
Note: Since the refinement is complete, there exist sp¢h and .

The expression of(¢1...¢9«+1) depends on the following two cases.
1.a). If there exists an arc labefied; that emerges fromjgthen
Cm (@1 O+ = ',
where m’ is chosen such that (m’, y) = @k+1(m, yj(m;j)) for somey O Mo (i.e. m'is
the next memory value computed by @+1), where mj O M is the value from the
above definition of t... k+1)-
1.b) Otherwise

DM((pl([k+1) =[.

2. If there is no path ifi labelled... @k that starts from g then:

U1 B) = U@L)
Tt (@1 @) = 0.

Then tis called fundamental test function of the refinement.

The construction of the fundamental test function of a refinement is similar to that
of a stream X-machine. Basicaly, if a path exists in the control machine 7, then
the corresponding value of the test function will exercise that path. If a path does
not exist in 7, then the corresponding value of the test function will exercise the
part of the path that does existlirplus one extra arc.

The reason requiring |sk+1| = 2 will become clear when we prove our refinement
testing theorem. Basically, the first character of s4+1 (i.e. head(si+1)) tests that a
state in the implementation will be refined similarly to the corresponding state in
the specification (i.e. the refinement module attached to those states are identical);
therest (i.e. tail(sk+1)) will be used to prove the equivalence of these states in the
associated automata of the control machines.

Example5.3.2.2.

Let 7’ be the refinement from examples 5.1.6 and 5.3.1.2.1.1 (i.e. we consider the
augmented version). Let name [0 STRINGS, be a valid user name and
pswl, psw2 [STRINGSp be a valid and an invalid password, respectively, for
this username with |namel, [pswi|, [psw2| = 1. Then, we illustrate the construction
of t and f, with the following examples.

[i(ent er _nane) = nameent er
(y(ent er _nane) = (i n_acc, name)

[i(ent er _name good_psw) = nameent er pswlent er
(tyr(ent er _name good_psw) = (i n_acc, name)

186

Chapter 5. Refinement of stream X-machines.

[i(ent er _name wr ong_pws1) = nameent er psw2ent er
(Iy(ent er _name wr ong_pswl) = (i n_acc, name)

(i(ent er _nanme i gnor e_conmand) = nameent er strent er,
where st STRINGS,, strz 'exit’
(dy(ent er _nane i gnor e_comand) =[]

Ot(ent er _nanme good_psw exit_system = name enter pswl enter
‘exit’ent er
[y(ent er _nanme good_pswexit _system = (i n_acc, empty_seq)

Ot(enter _nane ignore_command exit_system = name enter str
ent er

(ty(ent er _nane i gnore_comand exi t _systen) =0

We can now assemble the following result which is the basis for our refinement
testing method.

Theorem 5.3.2.3.

Letm=(,T2 Q M, d, F qo mpg), M* = (I, 2, Q*, M, ®, F*, qg*, mg) be two
stream X-machines with @ output-distinguishable Let # = {(zj, ¥j, "i)}i = 0, ...n
be a proper refinement set, 7 = (Z, I'1, B, Mj, ®j, Fi, Pio): zi: M - Mj, yj: Mj -
[, i=0,..,nandletRef: Q - # and Ref*: Q* - [betwo refinement functions.
We assume that 4, the associated automaton of 71, is minimal and that £ is output-
distinguishable. Let 71" be the refinement of 71 w.r.t. Ref and 7*’ the refinement of
m* w.r.t. Ref* and let f and f* the functions computed by 7’ and 71*’ respectively.
We assume that 7*’ is a simple and complete refinement. Let also T and W be a
transition cover and a characterisation set of 4, Z=®oKW O ok-I1w O .. O W,
with k a positive integer and t: ®* - 3* a fundamental test function of the
refinement 7). If card(Q*) - card(Q) <k, M1 n 2 =0 (i.e. the output alphabets of
the control machine 7 and the refinement modules 7}j are digoint) and f(s) =
f*(s),0 s Pref(t(TZ2)), then f = f*,

Proof:
First, let us introducewing notation. Let

Q={do a1, ---» P}
be the state set df, and let

Q*={ao" a1, ---» ™}
be the state set of 71* (qg and gp* are theinitia states). Without loss of generality

we shall assume that the refinement function Ref: @ is defined by

Ref(q) = (3, ¥, 1), 1 =0, ..., n.
Also, forj=0, ..., n’, we shall denote

Ref(q*) = (Zj*, yj*, mj*)

187

Chapter 5. Refinement of stream X-machines.

(of coursedj 040, .., n'}0i O{O, .., n} such thath* =2zj, Y* =i = mi)-
Then we prove the following intermediary results.

Lemma5.3.2.3.1.

1. Letqq, ..., O @ be such that there exists a path
Qo [T g OF > gio.... Qi - [TF > Qi

in 7 and let t@1) = s, t(@1... %) = SL---%k-

If f(s) = f*(s), U sO Pref(y...%), then:

a. There exists a pailp* [1TF - g.* OF - g.*...qx-* (T gu* in M*.

b. 25 =25*, Yo = Yo*, o = llg* and zjr = Zj*, Yir = Yjr*, Mir = 1", r
=1, .., k1.

c. After receiving the string sq...r, r < k, 7" will be in the state (gj;, pjro) and
m*" will be in the state (qjy*, pjro*), where pj;o and pj;o* are the initial states of
My and 7jy* respectively. The corresponding memory values will be (my, zj;(my)),
(m¢*, zj(my)), with my, me* 0O M.

d. mq = mp*, ..., mg = mg*, where my and my*, r = 1, ..., k, are the memory
values fronc.

2. Let @x+1 O @ such that there is no arc labelled @41 emerging from gjy. Let

also ... %Sk+1 = t(@1.. ,Pk+1)- If f(s) = f*(s), T s Pref(g...%Sk+1), then:
a. There is no arc labellep+1 emerging from g*.

b. Zik = Z*, Yik = Yjk" Mik = Mjk™-

Proof:

1. a - d follow by simultaneous induction on r O {0, ..., k}. For r = 0, they are
obvious. The induction step from r to r+1 is as follows.

Since a - d are true for r, the string s7...5¢ will take 7’ and 7*’ into the states
(Qiy» Pjro) and (qj s Pj ro*) respectively. The corresponding memory states will be
(my, zj (my)), (mg*, er(mr*)), with my = my*. Our strategy is to apply inputs to 7’
and?”* in the above mentioned states and memory values.

Let 0 = head(sr+1). Let y be the output produced by 7" when it receives . From
the way in which sy41 is chosen it follows that 71" will perform atype A transition

when it receives o (see lemma 5.1.4). Hence y O 1 (this is because the
refinement set 2 is proper). From the hypothesis, it follows that 71** produces the

same output y when o is applied. Now, we have two possible cases: o will cause
m*’ to perform atype A or atype B transition. If the transition was of type B, then

we would have y O ' (this is because the refinement set £ is proper). Since
M1 n F'2=0, thisis not possible. Therefore the transition is of type A. Since £ is
output-distinguishable, it follows that 7lj, = 1ij;*. Since 71" is a simple refinement,
we have ¢ = 7,* and y; = yj;*.

We now apply sy+1 to 7 in state (i, Pjro) With memory value (my, zj,(my)) and to
m*" in state (qu*, pjro) with memory value (my*, er(mr*)). Let g be the output

188

Chapter 5. Refinement of stream X-machines.

sequence produced by 1" and 71** when they receive sy4+1 (i.e. the fact that the two
machines produce the same output is guaranteed by the hypothesis). Then
g=01 Y2, withgyr O IM*, 1911 = Isr+1] - 1, and yp O I'> (seelemma 5.1.5) . Let us
assume that there is no arc labelled @y+1 emerging from gj* in 71*. Then, since
My = mMy*, Zjy = Zj*, Mip = Wy, Yir = Yjr*, it follows that thereis @ U @, @ # @yr+1,
that produces the same output y2 as @+1 on the same input and memory value.
This contradicts the output-distinguishability of the type ®. Therefore, there is an
arc labelledp+1 emerging from g*. Also mp4+1 = My+1*.

Therefore, we have proved the induction step for a, b and d. Clearly, c follows
from these.

2. Zik = ZjKk*, Yik = YjKk*» Mik = Mjk* follow as above. Let us assume that there is an
arc labelled @k+1 emerging from Ojk*- Then, using similar arguments as at 1, it
follows that there exists an arc labelled @x+1 emerging from gjy, which contradicts
our assumption.

Then, from the lemma above it follows that qg and qg* are TZ-equivalent as states
in 4 and 4* respectively. From Theorem 4.1.4.1.6 (Chow), it follows that 4 and

Min({*) are isomorphic, where {* is the associated automaton of M* (or
aternatively that do and do* are @*-equivalent).
Without loss of generality we assume tfails accessible. Then
P=T@KDO k10 ...0{1)
isatransition cover for 4*. Indeed, since T is atransition cover for 4, there exists a
state cover of 4, S, such that T [0 S O S®. Then, since g and qg* are ®*-
equivaent, it follows that at least card(Q) states of 4* will be accessed by some
sequence in S. Sin@é&is accessible and card(@)xard(Q) + k, it follows that
R=Sekook-1g..0{1)
is a state cover of 4* (this can be proven easily using simple induction). Since
P O RO RO, it follows that P is a transition cover &t

Now, let g 4* - 4 defined by g(qj*) = gj be such that gj and q* are ®*-
equivaent. Since 4 is minimal, {* is accessible and 4 and Min({*) are isomorphic
it can be easily verified that g is well defined and it is a proper automata
morphism. Then let q* U Q and g = g(qj*). Since P = T(d)k 0okl .. 0
{1}) isatransition cover for {*, thereexist @1, ..., Pk, Pk+1 [P such that @1...¢k,
@1...cPk+1 O P and @1...9x is the label of a path from gg* to gj*. Since g =
g(q*), there also exists a pagy...q¢ from oy to g.
Since

f(s) = f*(s), 0 s O Pref(t(TZ2)),
it follows that

f(s) = f*(s), 0 sO Pref({@q... ,«+1})-
If (zj, yj, M) = Ref(q;) and (Zj* Y mj*) = Ref(qj*), using the above lemma, we
have 7= 7% yj =y, Mj =™,

189

Chapter 5. Refinement of stream X-machines.

Therefore, there exists a proper morphisntg- 4 with the following property:
Do U Q% if gj = 9(q*) then 7 = 7%, yj = yj*, T =Tj*.

Fori O{O, ... n} andj {0, ..., n} let Pj and P* be the state sets of 7}j and 77)j*,

pif and pjf* their final states and 4j and «j* their associated automata. Also, for

j 0{0,..,n}andi O{O, .., n} such that g = g(qj*), let hj: A = A be the

isomorphism betweef) and{j*. Then, the function

nU @t x @ -pe) - U Qi x G- pin)

defined by
h(g*, pj*) = (9(g). hj(Rj*))
is a proper morphism between the associated automata of 71* and 7’ respectively

(this follows easily from definition 5.1.1). Hence, by applying proposition
3.4.1.1.7 and lemma3.4.2.2, it follows that 7’ and 7* " compute the same function.
®

5.3.3. Therefinement testing method.
Our refinement testing method is based on the theorem above.

It assumes that the following conditions are met:

1. The specification 7’ is a refinement of a deterministic stream X-machine 71
w.rt. Ref, where Ref is a refinement function that takes values in the set
i ={(zi, Yi, M)};

2. The set of basic functions ® of the control machine 7 is output-
distinguishable;

3. The refinement setis proper and output-distinguishable;

4. The associated automaitaut 7 is minimal;

5. The refinemerit’ is simple and complete;

6. The output-alphabets of the control machine 7 and that of the basic
modules?j are disjoint (i.e[1 n Mo =0)

7. The implementation can be modelled as a refinement of deterministic
stream X-machine 7* w.r.t. Ref*, where Ref* takes values in the same refinement
set®, as Ref. Furthermor& and’* have the same type.

8. The number of states/of is bounded by a certain number, say n'.

Then, under these circumstances Y = Pref(t(TZ)) mdaquate test set, where:
[1 is a fundamental test function of the refinenignt

[T is a transition cover af

W is a characterisation setof

Z=dkwook-lwpo ...ow

[k = card(Q*) - card(Q) is the difference between the (estimated) maximum
number of states ¢f* and the number of states /6f

190

Chapter 5. Refinement of stream X-machines.

Obvioudly, the method relies on the system being specified as a refinement of a
stream X-machine. Conditions 2 - 6 lie within the capability of the designer. We
have shown that the completeness of the refinement can be achieved by adding
new inputs to the alphabet % and expanding 71 and 7}j in a straightforward manner.
The output-distinguishability of # can be achieved by a simple augmentation of
the output alphabet 1. Similarly, '1 and ' can be transformed into disoint
alphabets. The fact that we require that the refinement is smple is not a major
problem. Indeed, if there exist i and j such that 7 = mj and zj # Zj or yj #Yj, then
we transfornil); andmj into output-distinguishable modules.

The 7'th condition is the most problematical. As we have discussed at the
beginning of this section, it relies on the implementation of the system being
constructed from the following components.

[thecorrect implementations of the basic functiohs

Othe correct implementations Jj of (zj, yj, 7j). The implementations of the
modulesllj can be tested using the stream X-machine testing method.

If these conditions are met, the test set given by this method will test the
integration of the above mentioned components. This consists of two things:
testing that the control machine of the implementation 7* is correct and testing
that each state in this machine is refined by the appropriate module.

Therefore, if the system is to be tested completely, a two phase approach is
required.

OFirst, the @s and the modules 7; are implemented and tested separately.
Alternatively, their individua testing can be assumed to be done if either the
implementations are very simple or they are objects that the designer is confident
are essentially fault-free (i.e. objects from a library, etc.)

OThe integration testing is carried out using the method presented above.
Notice that the changes in the specifications of the refinement modules and
processing functions required by the 'design for testing’ conditions (i.e.
completeness of the refinement, output-distinguishability of the @s, etc.) can be
easily trandated into changes in the corresponding implementations. As we have
seen earlier on, these changes will involve augmenting the processing functions
and the refinement modules. Therefore, extra bits of code will be added to the
existing implementations. These can be removed once the testing has been
completed.

The maximum number of the test sequences required is similar to that for the
stream X-machine testing method. The total length of the set is bigger since the
fundamental test function of the refinement uses a sequence of characters to
exercise eactpinstead of single characters.

Clearly, it is much more difficult to automate the process of generating the test set
required by this method than the one required by the method presented in the
previous chapter. This is because in this case the test function generates a
sequence of input characters rather then a single character for each extra @ it

191

Chapter 5. Refinement of stream X-machines.

processes. However, we could require that each such sequence of inputs has the
length less then a certain number |; obviously, in this case the same condition will
be imposed on the sequence of characters required by the completeness of the
refinement condition (see definition 5.3.1.2.1). If | is sufficiently small, it could be
possible to generate the test set automatically (obviously, the complexity of the
algorithm will depend on the complexity of the basic functions of the refinement
modules and the control machine).

Also, the method requires careful testing management. Extra code has to be added
to the existing implementation and removed after the testing has been completed,
so it is essentia that these changes are kept track of. However, this is not a major
drawback of the method, since it is common practice to modify a program in order
to test it. The trouble is that in most cases the fact that the program has passed the
test does not enable us to say to much about its correctness. The advantage of our
method is that it guarantees the correctness of the implementation of the whole
system given correct implementation of its basic components.

5.4. Stream X-machine specification of a word processor .

We illustrate the concept of refinement with a specification of a simple word
processor that allows the following operations:
[type a character;
[delete a character;
[OOmove the cursor to the right or to the left (i.e. the inputs associated with these
actions will be calledrove _r andnove_| respectively);
[kelect (highlight) text; this can be done as follows:

the word processor starts selecting text when a certain input (called
sel _text)isreceived

the text is selected by moving the cursor to the right or to the left

the action ends when a certain input (called des_t ext) isreceived, when a
character is inserted or deleted or when the main menu of the processor is selected.

The word processor has a main menu with the following options. 'cut’, ‘paste,
‘copy’, 'search’ and 'replace’. We assume that the 'cut’ and ‘copy’ operations are
active only when some text has been highlighted. We also assume that the 'paste’
operation is active only when there is some text copied into the clipboard.

We do not specify the user interface of the system in the sense that the inputs we
shall be using will not match exactly the physical ones.

We shall assume that the main menu can be activated and deactivated by two
inputs caled sel _nmenu and des_nenu respectively. There are aso five inputs
(i.e.sel _copy,sel paste,sel cut,sel _search,sel repl ace) that
activate each of the menu options.

192

Chapter 5. Refinement of stream X-machines.

When, the 'search’ option is chosen, the user will be required to enter the string to

be searched for, the direction of search and to choose one of the following options:
[find the next string of characters that matches the string to be searched for; if

the search is successful, the string found will be highlighted,;
[end the search

The corresponding input to the word processor in this case will be a tuple

(opt, str, dir), where opt represents one of the above options, str is the string to be

searched for and dir is the direction of search.

When, the 'replace’ option is chosen, the user will be required to enter the string to
be searched for, the replacement string and to choose one of the following options:

[find the next string of characters that matches the string to be searched for; the
string found will be highlighted;

Creplace the string that has been found (if any) and find the next string of
characters that matches the string to be searched for; again, this will be
highlighted:;

Creplace al the strings that match the string to be searched for; in this case no part
of the document will be highlighted.

[end the replace operation.

Similar to the search operation, we shall consider that the system receives an input
(opt, strl, str2), where opt is one of the above options, strl is the string to be
searched for and str2 the replacement string. Unlike the 'search’ operation there
will be only one search direction, from the position of the cursor downwards.

I nputs and outputs

Let CHARACTERS be the set of characters that the system can process and let
CHARACTERS’ = CHARACTERS {ent er }
STRINGS = CHARACTERS?,
STRINGS’ = CHARACTER™
STRINGSt = STRINGS' - {empty_seq},
where empty_seq denotes the empty string.

Let also
DIRECTIONS = {up, down}.

Then, the set of inputs received by the word processor will be:

2= ZO O ZSeD ZRe
where

2o = CHARACTERS 0O {back_space, enter, nove_|, nove_r,
sel _text, des_text, sel _nenu, des_nenu, sel cut, sel paste,
sel _copy,sel search,sel repl ace},

Sge={f _next gg, cancel gg} x STRINGS x DIRECTIONS,

SRe = {f _next ge, repl, repl _al |, cancel e} x STRINGS* x
STRINGS,

193

Chapter 5. Refinement of stream X-machines.

We shall consider that the outputs produced by the system will be:

= DOCUMENT DISPLAYS x {Doc, Me, Re, Se} x MESSAGES,
where

DOCUMENT _DISPLAYS = STRINGSX STRINGS* STRINGS'.

MESSAGES = {'Text not foundgnpty _nsg}.

The display of the document is considered to be a tuple of three sequences
(a ¢, b), where a and b are the non-highlighted parts of the text and c the
highlighted one.

Doc, Me, Re, Se stand for 'document’, ‘'menu’, replace’ and 'search’ respectively
and indicate which one of these is currently active.

The word processor will display the message 'Text not found’ when it performs an
unsuccessful search operation.

5.4.1. Stream X-machine specification.

We specify the word processor in two stages. First, we shall construct a stream X-
machine specification of the system without detailing the 'search’ and 'replace’
operations. This machine will later on be refined and the 'search’ and replace’
operations will be expanded using appropriate refinement modules.

The set of documents the word processor operates on is defined as
DOCUMENTS = STRINGS x STRINGS' x STRINGS x POSITIONS,
where
POSITIONS ={eft,ri ght}.

The document is considered to be a tuple (x, z, vy, p), where x is the first non-
highlighted part of the document and rev(y) is the other non-highlighted part of the
document. If p =ri ght, then the selected text is z and the cursor is on the right
hand side of this. If p=1 ef t , then the highlighted text is rev(z) and the cursor is
on the left hand side of this.

For example, if the document is

‘alrdef g’

1

thenx="ab,y="gf,z="cde and p=ri ght (i.e. t marks the position of the
cursor).
If the document is

‘alrdef g’

1

thenx="ab'y="g f,z="edc’ angp=1 ef t .

194

Chapter 5. Refinement of stream X-machines.

If no part of the document is selected (i.e. z = empty_seq), then the value of p is
not relevant.

The position of the cursor with respect to the selected text will influence the 'select
text’ operation. For example, let us imagine that we are selecting text by moving
the cursor one position to the right. If the cursor is positioned on the right of the
highlighted text, then the first character to the right of the cursor will be also
highlighted. If the cursor is positioned on the left of the highlighted text, then the
leftmost character of the highlighted text will be deselected.

5.4.2. The control machine.

The control stream X-machiffewill be defined as follows.

1. The input set is
| =350 DOCUMENTS.

Since 7 will not specify in detail the 'search’ and replace’ operations, the inputs
associated with these operations (Xgg and >XRe) are not included in I. Instead, if a
'search’ or 'replace’ operation has been performed, the machine will receive an
input representing the updated document and will simply replace the current
document with this new one. The way in which the updated document is obtained
will be specified later by an appropriate refinement module.

2. The output set is
N> = DOCUMENT_DISPLAYSx {Doc, Me, Re, Se} x {enpty_nsg}.

3. The state set is
Q = {Typing, SelectingText, Menu, Search, Replace).
The initial state is Typing.

4. The memory is
M = DOCUMENTSx STRINGS’
The current memory value will be denoted by ((x, v, z p), €), where (X, Y, z, p)
represents the current document amglthe text copied into the clipboard.
The initial memory value is

Mo = ((empty_seq, empty_seq, empty_sexf,t), empty_seq).

5. The type is
® = {type, del et e, nove, sel ect _text,
activate_sel ect _text,deactivate_sel ect text,sel ect _nenu,
desel ect _nenu, cut, past e, copy, sel ect _search,

sel ect _repl ace,updat e_docunent }.

6. The transition diagram is represented in figure 5.10.

195

Chapter 5. Refinement of stream X-machines.

Search

type update document
delete

select [search

deselect_menu
copy
cut
paste

select_menu Menu

activate_select | select fenu

degctivate_select_te seleci_replace

type
dglete
update dpocument

select_text Selecting

Text Replace

Figure5.10.

7. Basic function definitions.

Before we give the formal definitions of the processing functions we define the
following auxiliary functions.

[ti spl ay_doc: DOCUMENTS - DOCUMENT_DISPLAYS

O, z revly)) if p=ri ght

196

Chapter 5. Refinement of stream X-machines.

di spl ay_doc(x,zy,p) =0
O, rev(), revly)), ifp=1eft

i.e. it displays a document.

(M rror: DOCUMENTS - DOCUMENTS

[y, z x I eft), ifp=right
mrror(xzyp) =0
O,z xright),ifp=Ileft

i.e. it reverses a document.

[hove | eft _doc: DOCUMENTS . DOCUMENTS
nmove_ | eft_doc(x, v,z p) =X,Y,Z,p),
where

Ofront(x), if z= empty_seq
X =0
Ox, if zO STRINGS*

Oy rear) , if z= empty_seq
y' = Oyrev(), if zO STRINGSY andp =ri ght
Oyz, ifzO STRINGSt andp =1 ef t

Z = empty_seq.

i.e. it moves the cursor one position to the left.
If no part of the document is selected (z.e.empty_seq), then:

if the cursor is not on the left of the document, then the cursor moves one
position to the left;

otherwise, the document is left unchanged.

If a part of the document is selected (i.e. z # empty_seq), then this is deselected
(i.e. Z = empty_seq) and the cursor is positioned on the left of the part of the text
that had been selected.

For example:
'abcdefg’ is transformed into "abcdefq’,
1 1
'abcdefg’ remas unchanged,
T
'alrdefg’ is transformed into "abcdefq’.

197

Chapter 5. Refinement of stream X-machines.

1 1
(el ect | eft _doc: DOCUMENTS - DOCUMENTS
select left _doc(xy,zp)=X,Y,Z,p),

where
Ox, if zO STRINGSt andp =ri ght
X =0
Ofront(x), if z=empty_seqap =1 ef t

Oy rearg), if p=ri ght
y =0
Oy, ifp=1eft

Ofront(z), if zO STRINGST andp =ri ght
zZ=101
Ozrear§), if z=empty_seqao=1eft

Op, if zO STRINGS*
p=0
Ol ef t, if z=empty_seq

i.e. it selects text by moving the cursor one position to the left.

If the cursor is on the left of the document, then the document remains unchanged.
Otherwise
if no part of the document is selected (z = empty_seq), then the first
character on the left hand side of the cursor is selected and the cursor moves one
position to the left;
if a part of the document is selected(empty_seq), then
if the cursor is on the right hand side of the selected text, then the
first character on the left hand side of the cursor is deselected and the cursor
moves one position to the left;
if the cursor is on the left hand side of the selected text, then the
first character on the left hand side of the document is selected and the cursor
moves one position to the left.

For example:
'abcdefg’ is transformed into "dedg’,
1 1
'abcdefg’ remains unchanged,
)
‘alrdefg’ is transformed into 'edbefg’.
1 1

198

Chapter 5. Refinement of stream X-machines.

Then the basic processing functions are defined as follows:

[domt ype = M x CHARACTERS’

type((x zy, p),c), ch) = (. (X, Z,y, p), ©))

where
y= (i spl ay_doc(x,Z,y, p), Doc,enpty_nsqg),
X =xch,
Z = empty_seq

i.e. if no part of the document is selected, then ch 0 CHARACTERS ' is inserted
on the left of the cursor. Otherwise, the selected text is removed and ch is inserted
on the left hand side of the cursor.

[domdel ete = M x {back_space}

del et e(((x, z Y, p), €), back_space) =(y, ((X,Z,V, p),)

where
y=(di spl ay_doc(x,Z,y, p), Doc,enpty_nsg)
Ox, if zO STRINGS*
X =0
Ofront(x), if z= empty_seq
Z = empty_seq

i.e. it deletes a character.
If no part of the document is selected (ze.empty_seq), then
if the cursor is not on the left hand side of the document, then the first
character on the left hand side of the cursor is deleted;
otherwise the document remains unchanged.
If a part of the document is selected Z&.empty_seq), then this is removed.

[domnove =M x {nove_| ,nove_r}

move(((x, z y, p),), V) = (. (X, 2, Y,), €))

where
y=(di spl ay_doc(x,Z,y,p),Doc,enpty_mnsg)
Onmove | eft _doc(x, zYy, p), if mv=nove_|
x,y,z,p) =0
Omi rror(move_l eft _doc(m rror (X zY,p))),
mv #nove_r

199

Chapter 5. Refinement of stream X-machines.

i.e. when the system is in the state Typing, the cursor is moved to the left or to the
right whenmove r ornmove_ | are received.

[domsel ect _text =M x{nove_| ,nove_r}

sel ect _text (((x,zY,p),c),mv) =, (X,Z,y,p),)

where
y=(di spl ay_doc(x,Z,y,p),Doc,enpty_mnsg)

Osel ect | eft _doc(x, Y,z p), if mv=nove_|
(X,’ Z,’ yi pi) - |:|
Om rror(select _left _doc(mrror(xy,zp))),
mv ifnove_r
i.e. when the system is in the state SelectingText state, it selects text by moving
the cursor to the left or to the right (i.e. whove_r ornove_| are received).
[domacti vate _sel ect _text =Mx{sel text}

activate_text(&, z, v, p), ¢), sel _text}=(y, (x,z YV, p), C))

where
y = i spl ay_doc(x, zy, p), Doc, enpty_nsg)

i.e. the word processor starts selecting text véedn t ext is received.

[domdeacti vat e_sel ect _text =M x{des_t ext}
deactivate_text(& z v, p), ¢), des_text } = (y, (X, z V, p), ©))

where
y = di spl ay_doc(x, zy, p), Doc, enpty_nsQ)

i.e. the word processor stops selecting text v t ext is received.

[domsel ect _nenu = Mx{sel nenu}
sel ect _menu(((x, z Y, p),), sel _menu) =, ((x,z Y, p), ©))

where
y=(di spl ay_doc(x,zy, p), Me, enpty_nsg)

200

Chapter 5. Refinement of stream X-machines.

i.e. the main menu is selected usé®j _nenu.

[domdesel ect _nmenu =M x {des_rnenu}
desel ect _nmenu(((x, z, ¥, p), €), des_menu) = (y, (X, z, Y, p), €)

where
y = i spl ay_doc(x, zy, p), Doc, enpty_nsg)

i.e. the main menu is deselected usieg_nenu.

Cdomcut ={((x,z Y, p),c) 0M|z#empty_seqk {sel _cut}

cut (x z y, p),), sel _cut) =, (x Z,y, p), ¢))

where
y= (i spl ay_doc(x, Z,y, p), Doc,enpty_nsgq)
Z = empty_seq
Oz if p=ri ght
c=0
Orev(), ifp=1eft

i.e. the'cut’ option can be selected only if a part of the document has been sel ected.

In this case, the selected text is removed and copied into the clipboard.

[dompast e ={((x,z vy, p), ¢) O M| c# empty_seqk {sel _past e}

paste((((x zy,p), c),sel _paste) =y, (X,Z,y,p),)

where

y = di spl ay_doc(x,Z,y, p), Doc, enpty_nsg)
X = Xc,
Z = empty_seq
i.e. the ‘paste’ option can be selected only if the clipboard is not empty. In this

case, the selected part of the document is removed and the text in the clipboard is
copied into the document on the left of the cursor.

Cdomcopy ={((x,z Y, p), ¢) O M| z# empty_seqk {sel _copy}

copy(((x,zy, p),), sel _copy) =, (x 2y, p), C))

201

Chapter 5. Refinement of stream X-machines.

where
y=(di spl ay_doc(x, zV, p), Doc,enpty_nsqQ)
Oz if p=ri ght
c =0

Orev(), ifp=1eft
i.e. the 'copy’ option can be selected if a part of the document has been selected. In
this case, the selected text is copied into the clipboard.
[domsel ect _search M x{sel _sear ch}
sel ect _search(((x,z Y, p), c),des_nenu) = (y, (X z YV, p),)
where
y=(di spl ay_doc(x, zV, p), Doc,enpty_nsq)

i.e. the 'search’ option is selected usiaj_sear ch.

[domsel ect _replace M x{sel repl ace}
sel ect _repl ace(((x,zy, p),), des_menu) = (y, ((x, z Y, p), ©))

where
y = i spl ay_doc(x, zy, p), Doc, enpty_nsg)

i.e. the 'replace’ option is selected usieg) _r epl ace.

[domupdat e_docunent = M x DOCUMENTS

updat e_docunent (((x, z y, p),), ("X, n_z n_y,n_p)) =

Y.(((n_x, n_z,n_y, n_p), ¢))
where

y=(di spl ay_doc(n _x,n_z n_y,n p), Doc, enpty_msQ)
i.e. this function is used to perform the unrefined 'search’ and 'replace’ operations.

The updated document (n_x, n_z n.y, n_p) is received by the machine and
replaces the current document.

5.4.3. Refinement.

202

Chapter 5. Refinement of stream X-machines.

We now detail the 'search’ and 'replace’ operations. This will be done using the
operation of refinement. The refinement set will be # ={(z, y;, 7j)}i=0,..2 and the

refinement function Ref: Q. £ will be defined by:

Ref(Typing) = Ref(SelectingText) = Ref(Menu) 5,0, o),
Ref(Search) = (g y1, 1),
Ref(Replace) = ¢ yo, 12).

Since the only operations that need refining are the 'search’ and ’replace
operations, the module 7q will only be used to read the appropriate inputs and
pass them to 71. 71 and 7o will be used to detail the 'search’ and 'replace’
operations respectively.

The input alphabet ofq, 71 and?l will be Z. The output alphabet will be

N> = DOCUMENT_DISPLAYSx {Se, Re} x MESSAGES
(i.e. the output aphabet for 71 will be 91 = DOCUMENT_DISPLAYS x { Se} x
MESSAGES; the output alphabet for 71 will be "2 = DOCUMENT_DISPLAY S
x {Re} x MESSAGES, the output aphabet for 7q is not relevant since g will
not produce any outputs; hericg=T21 0 29}

The refinement modules and the transfer functions are defined as follows.

5.4.3.1. The modulél.

1. The state set isPg = {Pg.o, Po.1}; Po.o istheinitial state and pg 1 is the final
state.
2. The memory set isdvE 2.
3. The type i®g = {¢p}, where
dom@gy =Zg % Zp,
¢p(0, 0") = (empty_seqp’) J 0,0’ U Z.
4. The next state transition diagram is represented in figure 5.11.

Figure5.11.

Basically 7 reads all the inputs in Xg and rejects the inputs in X - ¥4 without
producing any output.

5.4.3.2. The transfer functionsyzand y.

The transfer functions

203

Chapter 5. Refinement of stream X-machines.

zo: DOCUMENTSx STRINGS'- %,
and
Yo 2o - (2o 0 DOCUMENTS)
are defined by:
zo((%, z, ¥, p), C) = 0g, Whereog U Zg is an arbitrary fixed element.

Yo(0) =o0.

5.4.3.3. Preparatory definitions.

Before continuing we define the following (partial) functions that we shall be
needing for the definitions of the two remaining modules.

[5el ect ed_t ext : STRINGSx POSITIONS- STRINGS (function)
Oz if p=ri ght
selected_text(z p =0
Orev@), ifp=1eft
i.e. it outputs the part of the document that is selected.
[f ound: STRINGSx STRINGS* -, B (function)
[Note: B is the set of Booleans]
found(x, f) = (da, b O STRINGS’ such that=afb).
i.e.f ound returns true if the string contains the strinfy
Of i nd_t ext: STRINGS x STRINGS* - STRINGS x STRINGS (partia
function)
domfind_text ={(x f) O STRINGSx STRINGS*|f ound(x, f)}
find_text(xf)=(,b), wherea andb are chosen such that
x=afband
Oa 0{cOSTRINGS'[Id O STRINGS’ such that=cf d}, |a| < [a].
i.e. basicaly, fi nd_t ext returnstwo stringsaand b suchthat x=afbandais

the shortest string which satisfies this condition.

Oupdate_al | : STRINGS x STRINGS x STRINGS*t x STRINGS -
STRINGSx STRINGS’ (function)

204

Chapter 5. Refinement of stream X-machines.

update_al |l (x,y,f,r)=(X,Y), where

if =f ound(y, f), thenx =x andy' =y

otherwise, (X, y) = update_all(x a r, b, f, r), with (a, b) =
find_string§y, f)

i.e. if x and y are two strings of characters, thenupdate_al | (x,y, f, r) = (X, V),
where X' y' is a string obtained by replacing all the occurrences of fin x y with r
starting from the left most character of y. Also y' is the part of y that remains
unchanged

5.4.3.4. The moduléellq.

1. The state set is

P1={P1.0 PL.1"
p1.ois the initial state andqpy is the final state.

2. The memory set is
M1 = DOCUMENTS.

3. The type is
®1=®110 P12

where

®11={find_succq, find_unsucc},
®12={cancel _search}

4. The transition diagram is represented in figure 5.12.

find_su0f
find_unsuclc

cancel_search

pl.0

Figure5.12.

5. The processing functions are defined as follows.
Odom find_succy = {((X z Yy, p), (Ff_nextge, f, d)| X, z vy, p O

DOCUMENTS, f O STRINGS', d O DIRECTIONS and ((d = down and
f ound(rev(y), f)) or (d =up andf ound(rev(x), rev())))}

find_succi((x zy,p), f_nextge,f,d)=F X, 2,V,p))

where
y=(di spl ay_doc(x, Z,VY, p), Se, empty_message) and

if d = down then

205

Chapter 5. Refinement of stream X-machines.

X =xsel ected_text(zp) a
zZ =f
y =revp)
p =right
wheraandb satisfy @, b) =f i nd_t ext (rev(y), f)

if d =up then
X =revp)
zZ =f
y =ya
p =right
wherea andb satisfy @, b) =f i nd_t ext (rev(x), rev())

i.e. it finds the next occurrence of the string f in the document. There are two
possible search directions: '"down’ and 'up’.

Odom find_unsuccy = {((X, z Yy, p), (f_nextge, f, d)| X, z vy, p) O
DOCUMENTS, f O STRINGS*, d O DIRECTIONS and —~((d = down and
f ound(rev(y), f)) or (d =up andf ound(rev(x), rev())))}

find_unsucci((x zy,p), f_nextge, f,d)=§ X zV p)

where
y=(di spl ay_doc(x, zYV, p), Se, 'Text not found’)

i.e. if the search is unsuccessful, then the document remains unchanged.

Odom cancel _search = {((x, z v, p), (cancel g, f, d))| (X, z vy, p) U
DOCUMENTS,f 0 STRINGS, dJ1 DIRECTIONS}

cancel _search (x,z Yy, p), (cancel gg,f, d)) §, (X, z Y, p))

where
y = empty_seq

i.e. if the 'cancel option is chosen, then the document is left unchanged.

5.4.3.5. Thetransfer functionszy and y1.

The transfer functions

z1: DOCUMENTSx STRINGS'->» DOCUMENTS
and

y1: DOCUMENTS - (3o 0 DOCUMENTS)
are defined by:

z21(x 2y, p),C) =Xz Y, p)

206

Chapter 5. Refinement of stream X-machines.

y1(% 2y, p) = X, Z Y, p).

5.4.3.6. The moduléels.

1. The state set is
P2=1{p2.0 P2.1, P2.2h
p2.ois the initial state andyy is the final state.
Mo will be in the state p2 1 when some test has already been found and selected;
otherwiséllo will be in the state po
2. The memory set is
Mo = DOCUMENTS.

3. The type is
b2 =210 @22,
where
®o1 = {find_succyp, find_unsuccy, replace&find_succ,
repl aceé&f i nd_unsucc, repl ace_al |l _succ,

repl ace_al |l _unsucc}.
®oo={cancel _repl ace}
4. The transition diagram is represented in figure 5.13.

find_suc§
find_unsuré: find_unsuré:
replace_all_unsucc replace&find_succ
replace_all_succ replace_all_unsucc
find_sucg
[p2.1

replace_all_succ
replace&find_unsucc

Figure5.13.
5. The processing functions are defined as follows.

Odom find_succy = {((x z Vy, p), (F_nextge, f, 1)) X z vy, p) U
DOCUMENTS,f 0 STRINGS, r 0 STRINGS and ound(rev(y), f)}

find_succo((x zy,p), f_nextge, f,r)=F X,Z,y,p))

207

Chapter 5. Refinement of stream X-machines.

where
y=(di spl ay_doc(x,Z,y,p), Se, empty_message)
X =xsel ected_text(zp) a
zZ =f
y =revp)
p =right
wherea andb satisfy @, b) =f i nd_t ext (rev(y), f)

i.e. this is similar td i nd_succ when the direction of search is 'down’.

Odom find_unsuccy = {((x, z VY, p), (f_nextge, f, 1)) (X, z y, p) O
DOCUMENTS,f O STRINGS", r O STRINGS and “$(ound(rev(y), f))}

find_unsucco((x, zy,p), f_nextge,f,r)= &zYy,p)

where
y=(di spl ay_doc(x zY, p), Se, 'Text not found’)

i.e. this is similar td i nd_unsuccq when the direction of search is 'down'.
Odom repl ace&f i nd_succ = {((x, z v, p), (repl, f,) (x z vy p O
DOCUMENTS,f O STRINGS, r 0 STRINGS and ound(reviy), f)}
repl ace&f i nd_succ((x,zy,p), (repl,f,nN)=(,Z,y,p))
where
y=(di spl ay_doc(x,Z,VY, p), Re, empty_message}

X =Xra

zZ =f

y =revp)
p =right
herea andb satisfy @, b) =f i nd_t ext (rev(y), f)

i.e. it replaces the selected text with r, deselects it and finds the next occurrence of
f in the document on the right hand side of the text that had been selected. The text
found is selected and the cursor is positioned on its right hand side.

Odom r epl ace&f i nd_unsucc ={((x, z vy, p), (repl,f,)| X z vy, p) O
DOCUMENTS,f O STRINGS, r O STRINGS and ound(rev(y), f)}

repl aceé&find_unsucc((x,zy,p), (repl,f,r)=(X,z,y,p))

208

Chapter 5. Refinement of stream X-machines.

where
y= (i spl ay_doc(x,Z,y, p), Re, 'Text not found’}
X =Xr
Z = empty_seq

i.e. thisfunction is applied when there is no occurrence of f in the document on the

right hand side of the selected text. In this case, the selected text is replaced by r
and deselected and the cursor is positioned on the right hand side of this.

Odom replace_all _succ ={((x, z vy, p), (repl, f,)| X, z vy, p) O
DOCUMENTS, f 0 STRINGS™, r O STRINGS and (f = sel ect ed_t ext (z p)
or f ound(rev(y),)}

replace_all _succ((x,zy,p), (repl _all,f,nN)=(X,Z,y,p)

where
y=(di spl ay_doc(x,Z,Y,p), Re), empty_message)

Oxr a, if sel ect ed_t ext (z p) =f

X =101

[Ox sel ect ed_t ext (z p) a, otherwise
Z = empty_seq
y =revp)

(a, b) =updat e_al | (empty_seq, rev}, f, r)

i.e. this function is applied only if the selected text is identical to f or there is at
least one occurrence of f on the left hand side of the selected text. The operations
performed by the function on the document are:

if the selected text is identical tothen it is replaced with
and/or

replace all the occurrencesfaf the left part of the document with
No part of the resulting document will be selected.

Odom repl ace_al | _unsucc ={((x, z y, p), (repl, f,)] X z vy, p) O
DOCUMENTS, f O STRINGS', r O STRINGS and —(f = sel ect ed_t ext (z
p)) and = ound(rev(y), f)))}

replace_all _unsucc((x,zYy,p), (repl _all,f,r)= zvy,p)

where
y= (i spl ay_doc(x, Z,V, p), Re), 'Text not found").

209

Chapter 5. Refinement of stream X-machines.

i.e. if the selected text is not identical to f and there are no occurrences of f on the
left hand side of the selected text, then the document is left unchanged and the
word processor gives an appropriate message.

Odom cancel _replace = {((x, z v, p), (cancel e, f, N)| (X, z vy, p) U
DOCUMENTS,f 0 STRINGS, dJ STRINGS}

cancel _repl ace((x, z Yy, p), (cancel ge,f, 1)) =

Y, Xz Y, p),
where

y = empty_seq;

i.e. if the 'cancel’ option is chosen, then the document is left unchanged.

5.4.3.7. The transfer functionspzand y.

The transfer functions are@ z zy and yp = y;.

5.4.4. Further refinements.

The specification we have obtained can be refined further. For example, we can
detail the way in which the inputs associated with the search and replace
operations are entered. This results in a new level of refinement which specifies
how the string to be searched for, the replacement string and the direction of
search can be obtained from simple characters and possibly some extra inputs (i.e.
we need to consider how to mark the beginning and the end of these strings - this
can be done using the ent er key or possibly some new inputs). This will be
similar to example 5.1.6.

5.4.5. Using stream X-machines (X-modules) for specifying the processing
functions.

The processing functions of 7 and 7g are straightforward, involving simple
operations on strings like concatenation, removing the first of the last element of
the string, etc. The processing functions of 71 and 7l are more complex.
However, they can be constructed easily from three functions (f ound,
find_text,update_all) that we have defined recursively in section 5.4.3.3
In turn, these can be specified easily using quite ssimple stream X-machines (X-
modules).

For example, let us consider updat e_al | . Thisis not itself a stream function,
but it can be defined usirig,, the following stream X-module.

210

Chapter 5. Refinement of stream X-machines.

1. The input alphabet is CHARACTERS'.
2. The output alphabet is STRINGSTRINGS'.
3. The state setis Q = {q}.
4. The memory set is
M = STRINGSx STRINGSx STRINGSx STRINGS" x STRINGS..
5. The type is
® = {read_inputl, read_input2, read&update}
6. The transition diagram is represented in figure 5.14.

read_input1
read_input2
read&update

Figure5.14.

7. The processing functions are defined as follows.

Cdom read_inputl ={((a, b, ¢, d, €), ch)| (a, b, ¢, d, €) O M, ch
0 CHARACTERS' andg| < H]-1}

read_inputl@, b, c,d, e),ch)=(y, (a b, c,d, e)
where
y=(@ bc),c=cch.
Cdom read_input2 ={((a, b, ¢, d, €), ch)| (a, b, ¢, d, €) O M, ch
0 CHARACTERS',d| = |d|-1 andc ch # d}
read_input2@, b, c,d, e),ch) = (y, (a b, c,d,)
where
y=(a b'c),b =bheadf), ¢ = tail(c) ch.
0 dom read&update = {((& b, ¢, d, €, ch)| (a b, ¢, d e O M,

ch O CHARACTERS’,cch =d}

read&updatef, b, c, d, e), ch) = (y, (@, b’,c’, d, e

211

Chapter 5. Refinement of stream X-machines.

where
y=(@,b'c), wherea’ =abe b =empty_seq; = empty_seq.

Now, let mg = (X, empty_seq, empty_seq, f, r) the initial memory value, (i.e. f is

the string to be searched for and r is the replacement string). Let y be the string of

inputs received by 7, let g be the corresponding output sequence and let

y = rear(g) be the last symbol of the sequence g. Theny = (z, w), wherezw is a

string obtained by replacing all the occurrences of f in x y by r starting from the

leftmost character of. Alsow is the part ofy that remains unchanged. Therefore
update_all (x,y,f,r)=(z w).

Let

fu: (STRINGS' x STRINGS' x STRINGS' x STRINGS™* x STRINGS) x
STRINGS'- (STRINGSx STRINGS')*
be the function computed By,. Then

updat e_al | (x,y,f,r) = rear(f((x, empty_seq, empty_sdqr), y)).

212

