
data of Bai et al. indicate that amino acids

decrease the FKBP38-mTOR interaction and

increase binding of FKBP38 to Rheb-GTP,

consistent with FKBP38 involvement in

amino acid control of mTORC1. However,

decreasing the amount of FKBP38 in cells did

not prevent the dephosphorylation of 4E-BP1

that occurs when cells are starved of amino

acids. This suggests that the control of

mTORC1 signaling by amino acids does not

require FKBP38.

Although there are still important gaps in

our understanding of mTOR signaling, the

identification of FKBP38 as a regulator of

mTOR clarifies previous observations about

signaling events in this pathway. This is

good news for developing alternative drugs

that are not rapalogs to treat diseases that

involve mTOR. 
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S
ince the earliest days of computing,

people have sought ways to communi-

cate with computers in “natural” lan-

guage, rather than program them in symbolic

languages like FORTRAN and C. In the

1960s, MIT researcher Joseph Weizenbaum’s

ELIZA program was an entertaining simula-

tion of a Rogerian therapist (1). ELIZA took

words you had used and played them back, as

in: “Tell me why you feel like that about your

family?” It is an irony of the brief history of

machine dialog programs that ELIZA is

remembered and PARRY is not. PARRY ran

on the early ARPAnet at Stanford in the late

1960s and was designed by Kenneth Colby, a

psychiatrist who wanted to model paranoiacs

and their beliefs (2). PARRY was paranoid

about the Mafia, horse races, track betting,

and Italian-Americans; if anything you typed

could be linked to them, it would spew out a

paragraph of invective.

PARRY was more fun than the better-

remembered ELIZA, and is another example

of the “Betamax principle” (3). PARRY was

based on nothing that could be called a theory;

it was closer in spirit to the principal approach

for studying machine dialog today, which

could be captured as “big data + small theory.”

That is, PARRY had a tiny matching program

and a very large set of hand-crafted data:

about 6000 patterns it tried to match to what-

ever was typed to it. 

In the PARRY/ELIZA years, artificial

intelligence research typically took logic to be

the core of machine intelligence, and linguis-

tics was still strongly influenced by Noam

Chomsky at MIT; both AI and linguistics

assumed that small sets of axioms or grammar

rules explained large sets of data, i.e., proved

theorems or sentences. But neither approach

actually had any real data at all, only a few

made-up examples, whereas PARRY at least

had the large set of patterns made up by its

researchers. Any match found pointed to a set

of possible replies. This kind

of an approach was, and is,

anathema to Chomsky, who

said that data gathering is like

pre-Galilean physics and can

have no role in formal lin-

guistics (4). The underlying

problem with machine dialog,

viewed as a technology, was

that programs based on logic

or on formal linguistic gram-

mars had had little success

for more than 40 years in

producing usable computa-

tional artifacts.

All this changed in 1990,

with the astonishing success

of Frederick Jelinek’s team at

IBM (5). Originally speech-

processing engineers work-

ing on the automatic tran-

scription of speech into writ-

ten form, they decided to

apply their data-driven meth-

ods to machine translation,

using as data 200 million

words of parliamentary proceedings in paral-

lel English-French text. The method was a sta-

tistical one that learned from the parallel text

data what translation was but without creating

any rules at all. This was the first important

work in applying machine learning to lan-

guage processing. Jelinek and his co-workers

were not completely successful, but they had a

success rate of about 50% in translating sen-

tences that the program hadn’t seen before. 

The field has now settled into two main tra-

ditions of research on how to

produce machine conversa-

tionalists. Both schools take

successful work on speech

engineering, with data derived

from recorded conversations

(often on the phone), and seek

to derive structures and rules to

manage machine dialogs. One,

represented by researchers like

Steve Young at Cambridge

University, assumes that machine

learning methods from speech

processing can be trained to

manage dialogs directly, with-

out intermediate quasi-linguis-

tic structures (6). The second

follows the route Jelinek later

took and tries to recapitulate

those linguistic structures but

empirically, using machine

learning, rather than making

up rules, as linguists tradition-

ally did (7). 

Those in the latter camp

currently believe that the infor-

Several research projects are closing in on ways

to allow humans to effectively communicate

with machines in natural language.

Is There Progress on Talking
Sensibly to Machines?
Yorick Wilks

COMPUTER SCIENCE

Conversational companion. The
Nabaztag rabbit (11) shows the
feelings of a remote sender by
speech, changing colors, and
moving its ears. The speech is
generated via a wireless Internet
connection from typed input at a
Web site. As an initial incarnation
of a companion, the Companions
project (9) has adapted Nabaztag
to recognize speech as well.
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mation required to automatically transcribe

speech to written text is simply insufficient for

the larger task of creating a machine conversa-

tionalist that “understands.” For example, if

someone says something that contradicts his

or her earlier statement, we would expect a

plausible machine conversationalist to spot it.

Without some structure and memory, however,

it is hard to see how a system could check state-

ments for consistency. One could never expect

to learn to do that simply from data: We just do

not see or hear enough sentences to have previ-

ously encountered all the inconsistencies that

we could spot immediately. 

At the moment, people encounter machine

conversationalists only in recreational chat-

bots on the Web, or in simple phone transac-

tions such as ordering travel tickets. But

research systems are already much better than

that, and the range of projects expected to

deliver usable prototypes has expanded in

recent years. These efforts range from the

Defense Advanced Research Projects Agency’s

Cognitive Assistant that Learns and Organizes

project (8) to the European Commission’s new

Companions project (9) to create a long-term

conversational partner (see the figure). Such a

Companion would learn its person’s likes and

dislikes, carry out Web-related tasks accord-

ingly, and prompt reminiscences about the

person’s photo collection so as to build up his

or her life story through conversation (10).

Researchers generally agree that although

these large goals need more research, speech

recognition technology is still not accurate

enough to build a reliable machine partner

capable of understanding what we say, unless

it has a considerable amount of stored knowl-

edge to enable it to understand; mere reactive

chatbots will be no more help than ELIZA

was. The current paradigm split in research is

about how it will be possible to capture and

store knowledge and language experience in

large enough detail and volume to build such

assistants, outside of very small domains

such as recording a complicated pizza order.

A long-term assistant to an astronaut on a

voyage to another planet, or one to help eld-

erly people recover their past through conver-

sation and organize it in text and images, is a

much larger goal, and one that will require

better machine learning techniques than have

been deployed so far. 

The crux of the current research issue is

this: Will a successful technology end up

recreating by means of automated learning

much of the linguistic and logical content that

was abandoned in the 1990s? That might be

closer to what our own cognitive structures

seem to be. In any case, language data will

remain central, and the World Wide Web has,

as an unexpected benefit through chat rooms,

provided researchers with potentially infinite

resources of data on human conversations.
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T
he World Health Organization esti-

mates that at least 1 in 10 adults world-

wide are obese, and in some western

countries, a far greater percentage (25% or

more) is affected (1). Obesity is a serious con-

cern because it increases the risk of cardiovas-

cular disease, type 2 diabetes, and some can-

cers, among other health problems. The evolu-

tion of public health policies and treatment

options depends upon an improved under-

standing of how genetic and environmental

factors interact to favor weight gain, and how

excessive weight disrupts metabolism. But

getting at the causes of obesity and related

metabolic disorders is a formidable challenge,

in part because so many body systems are

affected. Because disturbances in one organ or

tissue can compromise the function of several

others, separating cause and effect is often dif-

ficult. Yet common themes are emerging that

may offer a new viewpoint. Among these is

the notion that metabolic dysfunction arises

from exposure of the body’s cells to an excess

of nutrients (2). A possible extension of this

view is that although the cellular conse-

quences of nutrient excess are similar across

diverse cell types, the shared nature of the

underlying cellular responses can be obscured

by the complexity of the events they initiate.

In this light, successful identification of

shared cellular responses that underlie disease

requires a broad and integrative approach that

may ultimately reveal more effective obesity

treatment strategies.

Fundamental to understanding obesity is

the fact that, like body temperature, body fat

stores are ordinarily maintained within a nar-

row range through a process called “energy

homeostasis.” This process involves brain

areas that control appetite and energy metabo-

lism, as well as signals that circulate through-

out the body, conveying information about the

status of body fuel stores. Among the latter are

nutrients themselves, such as glucose and free

fatty acids, and hormones, such as insulin and

leptin (3). Specialized neurons in the hypo-

thalamus and other brain areas sense these

factors and control both metabolic rate and the

desire to eat. When circulating concentrations

of these signals decrease due to weight loss,

the drive to eat increases and energy expendi-

ture declines, favoring the recovery of

depleted fuel stores. Conversely, when food is

consumed in amounts that exceed energy

requirements, the circulating concentrations

of these signals increase. In this way, homeo-

static response mechanisms in the brain are

poised to protect the body against changes in

fat stores or swings in nutrient availability.

Thus, obesity does not simply arise from the

passive accumulation of excess weight; rather,

it involves the active defense of an elevated

level of body fat, and deciphering the causes

of obesity should take this into account.

Certainly, individual genetic makeup may

contribute to variations in the capacity to

mount these responses, and may explain why

some people are protected against weight gain

Comparisons of responses of various cell types

to excess nutrients are yielding patterns that

may provide insight into the causes and

consequences of obesity.
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