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1 Introduction

For the class of systems known as Categorial Grammars, grammar formalisms consist of
logics. Lexical assignment is of complex formulas or types, which by their structure may
encode various syntactic information such as subcategorisation and word order requirements.
Syntactic derivation is via deduction over lexical formulas. Alternative categorial systems
differ in the logic they employ to provide a notion of derivability.

There exist a wide range of different logics, which may be classified with respect to their
limitations (if any) on the use of the resources that are available to serve deduction, and their
consequent sensitivity to the specific structured nature of those resources. Comparison of
logics in terms of their resource sensitivity gives rise to the so-called ‘substructural hierarchy
of logics’. Various systems on this hierarchy have been employed within Categorial Grammar
(e.g. associative Lambek calculus, Lambek 1958; non-associative Lambek calculus, 1962).
Indeed, some systems situated at previously unoccupied locations on this hierarchy have
been proposed for specifically linguistic purposes (e.g. Moortgat & Morrill, 1991), and, no
doubt, further ones remain to be developed.

9The author is pleased to acknowledge the support of an I.R.C.S. Postdoctoral Fellowship award.
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It has become clear, however, that access to more than one substructural level is required
not only cross-linguistically, for producing the grammars of very different languages, but
also for specifying the grammar of any one language. The most plausible current model for
how this may be done involves firstly selecting a specific resource logic as the ‘basic’ logic,
providing the predominant level at which the grammar to be stated will operate. This choice
sets the default characteristics of resource sensitivity. Then, special modal operators, termed
structural modalities, may be used to allow controlled access to the resource sensitivity of
higher substructural levels, by restrictedly undermining sensitivity to some specific aspect of
resource structure. A number of theoretical and computational problems arise for the use
of such operators. Furthermore, the complexity of syntactic analyses where extensive use of
structural modalities is required tends to encourage the selection of the highest workable level
possible for the default level of the logic. The discarding of resource sensitivity that such
‘high selection’ involves may not always be in the long term interests of developing adequate
linguistic accounts.

It is my intention in this paper to propose an alternative general model of hybrid sub-
structural systems, which should eliminate the need for structural modalities, and avoid their
associated problems. The new model exploits natural relations between different substruc-
tural levels in terms of the relative informativeness of their characterisations. Under this
model, the range of substructural levels form a single unified descriptive system, which may
be used for different languages, although very different languages will tend to exploit different
modes of description made available by the overall system. Such a unified approach should
both facilitate producing grammars for individual languages, and provide a better basis for
cross-linguistic generalisation.

OUTLINE: I will begin by introducing the topic of resource sensitivity in the context of some
categorial logics, and illustrate how structural modalities may be used at a substructural level
to give controlled access to the resource sensitivity of stronger logics. Discussion of systems
involving structural modalities is used to arrive at a view of how different substructural levels
might be interrelated in hybrid logics where different substructural levels coexist without
structural rules. Then, a general approach for formulating hybrid logics from a sequent
perspective is presented. Issues of term assignment and the treatment of word order are
then discussed. An algebraic semantics for the hybrid approach is provided, and used in
formulating a labelled natural deduction formulation for hybrid logics. Finally, the general
approach is illustrated by discussion of some linguistic applications.

2 Some sample substructural systems

The topic of sensitivity to resource structure is most easily introduced in relation to sequent
formulations of logics. Restricting our attention to the intuitionistic realm, a sequent is an
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object of the form I' = A, indicating that the formula A may be deduced from the structured
configuration of antecedent formulas T'.

Let us consider a logic where I' of any sequent I' = A is a binarily bracketted sequence
of types, where the set of types is freely generated from a set of basic types using the three
binary connectives {o, <, —}, and which has the inference rules in (1) and (2). (I'[4]
represents a configuration having A as a subconfiguration, and I'[A’] represents the result of

replacing A with A’ in T[A].)

(1) A=A (id) A=B TI[B]=A .
I[A] = A feut]
(2) (B,T)= A . A=C T[B]=A L
I'=B_A ] I'[(A, C—=B)] = A B
(I, B)y= A A=C T[Bl=A
I' = A-B I[(B—C, A)] = A
I'sA A=B I[[(B,C)= A
———[oR] ————[ol]
(T, A) = AoB I'[BoC] = A

The axiom and Cut rule in (1) express the reflexivity and transitivity of derivability. From
the operational rules in (2) it should be clear that — and < are directional versions of
implicational connectives. The ‘product’ connective o is a form of conjunction, corresponding
to ‘matter-like addition’ of substructures.

If no further rules are added, the above logic is a version of what is known as the non-
associative Lambek calculus (Lambek, 1962). This logic is the weakest familiar system in
the substructural landscape,! where deduction is sensitive to the linear order and bracketting
of assumptions, each of which must be used precisely once in the course of a deduction.
However, it is possible to undermine sensitivity to aspects of resource structure by inclusion
of structural rules such as those in (3), which act to modify the structure of the antecedent
configuration. (The double line of the Association rule indicates that it may be used in either
direction.)

(3) Association Permutation Weakening Contraction
I'[(B, (C,D))]= A I'B,C]= A I'l= A I'B,B] = A
[A] ———[F] —[W —IC
I'[((B,C),D)] = A I'[C,B]= A I'B]= A I'B]= A

The rules of Association and Permutation undermine sensitivity to the bracketting and linear
order of assumptions, respectively. The Weakening rule allows resources to be ‘wasted’ (i.e.

'However, weaker systems are possible, and have been proposed, e.g. Moortgat & Morrill (1991).
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not used at all in a deduction), whilst the contraction rule allows multiple use of resources.?

Various logics may be defined via the structural rules that they include. For example, adding
the Association rule to the earlier non-associative logic undermines sensitivity to bracketting,
and gives a version of the associative Lambek calculus (Lambek, 1962). If Permutation
is also added, sensitivity to linear order is undermined, and we have a system sometimes
known as LP (‘Lambek+Permutation’) or the Lambek-van Benthem calculus (van Benthem,
1983; 1991), also corresponding to a fragment of linear logic (Girard, 1987).> Adding also
Weakening gives a resource discipline appropriate for Relevance logic (again, we have only a
fragment thereof). Including all four structural rules gives a resource discipline appropriate to
intuitionistic logic. The very free resource discipline of this latter system (as well as classical
logic) has been seen, historically, as the most natural, and so systems having less freedom are
called sub-structural. Comparison of such systems in terms of their resource discipline gives
rise to the so-called ‘substructural hierarchy’ of logics.? For the remainder of this paper, we
shall focus on systems with linear resource usage (i.e. where Contraction and Weakening are
excluded, so that each resource must be used precisely once.)

Note that in systems with Permutation, the distinction between <« and — breaks down,
i.e. we have the interderivability Y—X<X«<Y, and more generally, substituting XY for
any subformula Y—X, or vice versa, in any sequent preserves theoremhood. Hence, «— and
— are not normally even distinguished in systems with Permutation. Crucial cases identi-
fying systems that include Association are the possibility of ‘composing’ implications (e.g.
X<Y, Y—Z = X<7Z), and the possiblity of transformations that change ‘order of combina-
tion’ (e.g. (Y—=X)—Z = Y—(X<2)).

It will be useful to distinguish notationally the cases of the three type constructors {o, —, —}
in systems have different structural rules. In general, for any product type constructor o (here
using o as a placeholder), the corresponding left and right implications (or ‘divisions’) may
be written — and <. The four possible linear systems that arise by selection of rules from
Association and Permutation will reappear throughout the paper, so it is convenient to have

2Tt is implicit here that the operation of Weakening should always be such as to induce an appropriate
bracketting. In practice, inclusion of Weakening and/or Contraction only really makes sense in systems with
Association and Permutation.

3Strictly, LP and linear logic differ. LP requires a non-empty antecedent whereas linear logic does not.

*See van Benthem (1991) and Moortgat (1992) for discussion of substructural hierarchy
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distinguished notations for the connectives in these systems, shown in (4).

(4) Association Permutation Connectives
— - ® § ¢ (non-associative Lambek)
- +

_I_ —
+ +

(associative Lambek)
(linear logic)

7~ 1o

=/
=

\
—0

® e O

3 Structural modalities

Structural modalities are unary operators that allow for controlled involvement of structural

rules, rules that are otherwise not freely available in a particular system.?

For example, a
version of particular structural rule might state that the rule can only apply if one, or perhaps
all, of the formulas directly affected by the rule’s use are marked with a given structural
modality. Let us consider a linguistic case to illustrate this possibility.

The associative Lambek calculus has received considerable attention as a possible gram-
matical formalism. Lexical assignment of directional implicational formulas readily allows
information of subcategorisation and word order to be encoded. The (usually implicit) avail-
ability of Association allows for considerable flexibility in derivation, flexibility which has
provided a basis for accounts of various phenomena, including non-constituent coordination
and extraction.

For example, a string such as John spoke to may be derived as s/np, effectively a ‘sentence
missing a NP on its right’, so that a relative clause such as whom John spoke to may be
derived by lexically assigning whom the type rel/(s/np). Such a treatment of extraction is
too limited however. The Lambek implications can only represent an ‘X missing Y’ where Y
is left or right peripheralin X, i.e. Y\X or X/Y. Thus, this approach does not extend to cases
of extraction from non-peripheral position, as in e.g. whom John gave __ a bagel. Morrill et al.
(1990) handle this problem using a permutation structural modality. Consider, for example,
a unary operator A with the following inference rules (where Al indicates a configuration
where all formulas are of the form AX):

(5) AT = A I'[B] = A I[(AB, C)] = A
——[AR ——[AL A
AT = AA [[AB] = A I'[(C, AB)] = A

The left and right rules for /A are the same as for necessity in S4. The restricted permutation

®The original structural modalities are linear logic’s ‘exponentials’ (Girard, 1987). For categorial work on
linguistic uses of structural modalities, and on their proof theory and semantics, see Morrill et al. (1990),
Barry et al. (1991), Moortgat (1992), Venema (1993a, 1993b), Versmissen (1992, 1993), Hollenberg (1991).
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rule [AP] allows that any formula of the form AX may permute freely, i.e. undermining
linear order for such an assumption. The left rule [AL] allows that such a marking may be
freely discarded. A formula such as s/(Anp) corresponds to a sentence missing a NP at some
position, and so a type assignment rel/(s/(Anp)) for whom allows for extraction from both
peripheral and non-peripheral location.

Other structural modalities may be used to give controlled reintroduction of other structural
rules. A single modality may even be used to readmit more than one structural rule. Linear
logic’s exponentials ! and ? give controlled reintroduction of Contraction and Weakening. In
a non-associative system, an associativity modality could be used to reintroduce Associativity.

Structural modalities allow that stronger logics may be embedded within weaker ones, via
embedding translations. For example, the translation (6) embeds a fragment of linear logic
within associative Lambek calculus, so that I' = A is a theorem of the former iff A|l'| = |A]
is a theorem of the latter (see Dosen, 1990, for discussion). Another example is that intuistion-
istic logic can be embedded within (intuistionistic) linear logic, via an embedding translation
using the exponentials !, 7. Of course, what such an embedding shows is that when the
appropriate structural modalities are added to a weaker logic, the resulting combined system
is anything but ‘weaker’ than the related ‘stronger’ logic.

(6) |A| = A (A atomic)
((A@B)[ = ((AlA]) o (A[B]))
(B—oA)| = ((AIB]) \ |A])

((Ao=B)] == (|A] / (A[B])

4 Relations between substructural levels

Consider again the case of Lambek calculus and linear logic and the embedding translation
(6). The successful embedding shows that linear logic may be ‘represented’ within the system
of Lambek calculus plus permutation modality (‘LCA’). Of course, it is also true that pure
Lambek calculus may also be ‘represented’ within LCA, trivially so indeed. In a sense then,
LCA is a system where we can observe coexistence of linear logic and Lambek calculus, or
rather perhaps coexistence of ‘images’ of these systems (in one case, an image obtained by a
trivial mapping). Furthermore, the involvement of the permutation modality A allows us to
observe relations between the two levels.

Consider, for example, a linear logic formula such as X®@Y and its translation under (6)
(AX)e(AY) (or strictly its translation assuming X,Y are atomic — the difference doesn’t mat-
ter for the immediate point). The translated formula exhibits the following interderivability:
(AX)e(AY)=(AY)e(AX), akin to X®Y < Y®X for the original formula. Furthermore, the
As may be ‘dropped’, i.e. (AX)o(AY) = XeY, and (AX)e(AY) = YeX. In this context
then, a formula such as X®Y may be viewed as telling us that X,Y may be related to each
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other in either order. The transformation to a term XeY or YeX may be viewed as merely the
step of selecting one of the permitted orders. Hence, there appears to be a natural relation
between X®Y and XeY, as if X®Y = XeY were a theorem of some mixed logic.

Consider next a linear implicational such as Xo—Y, whose translation might be X/(AY).
Here it is notable that LCA allows the transition X/Y = X/(AY) (as well as X/Y = X\(AY)).
This transformation may again be viewed as a step of selecting a particular one of a range
of options allowed by a formula. Thus, X/Y merely requires an argument Y to its right.
One particular case of a Y that can ‘appear to the right’ is a Y that can appear anywhere,
i.e. AY. In this case then, there appears a natural relation between Xo—Y and X/Y, as if
X/Y = Xo—Y were a theorem.

The above discussion raises the interesting possibility of having a logic where substructurally
different connectives coexist, and where transformations illustrating ‘natural relations’ be-
tween the levels, such as those discussed above, are indeed theorems. In particular, we might
expect that for systems with products * and o, where the former system has greater freedom
for resource usage, the following transformations should be allowed:

XoY = XY
X&Y = X&Y

Such an approach is outlined in the next section.

5 A hybrid substructural system

Let us consider a system in which connectives that are subject to different structural rules
coexist.® Again, I of any I' = A is a binarily bracketted sequence, but now there is a different
bracket pair corresponding to each system specific product operator, e.g. for the linear
subsystem, with multiplicative @, there is a bracket pair (.,.)?. In the following statement
of the rules, the symbol o is used in place of any of the product constructors. Note that
the operational rules for the connectives of the different systems are the same. However,
the different systems may differ regarding the structural rules that apply for them (see the
side conditions on the structural rules in (9)).  For present purposes we consider only
systems arising by choices from the structural rules Association and Permutation, although
the approach readily generalises.

(7) A=A (id) A=B T[Bl=A
I[A] = A

[cut]

®Ochrle & Zhang (1989) and Morrill (1990) propose systems in which there is coexistence of different
substructural levels — associative and non-associative systems in both cases. However, there is no interrelation
between the different levels, in contrast to the hybrid system to be described here.
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0 B, o ey
roBoA LiA, CEB)T = A
B =A L >0 HB=A .
EyEr e oAl
r=A A=B I[(B, )] = A
S T T oA
(I, A)® = AoB [[BoC] = A

(9) I[(B, (C,D)°)°] = A {o € {o,®}
I[((B, C)°, D)°] = A
ACIOVET {o € (00
T[(C, B)*] = A

10 LB, ©)"1 = A ’

(10) ME 02 A g o s
T[(B, €)°]

With only the rules (8-9), we would have a system where different substructural levels
merely coexist, with no interrelation. Such interrelation is effected by the rule (10). Note
that the rule’s side condition employs a relation <g, for relating different levels in term of
‘degree of structural freedom’. In particular, o’ <g o just in case o’ and o are corresponding
product operators where the latter’s system exhibits greater freedom for resource usage than
the former’s.” Thus, the pairs (o, o’) such that 0,0’ € {®, 0, e,®} are:

Ho,0), (0,0, (0,8), (5,8), (s,8)}

The rule [<g] allows a bracket pair of one system to be replaced in the conclusion sequent
by the bracket of another system, just in case the latter’s system exhibits greater freedom of
resource usage.

Let us examine some consequences of linking substructural levels in this way. In the previous
section, I suggested that A@B = AeB would be an appropriate theorem in a hybrid system.

"The phrasing ‘corresponding product operators’ is unnecessary for the example systems {®,0,0,0} we
have addressed so far, but is important with regard to ‘dependency systems’ (Moortgat & Morrill, 1991),
to be discussed later in the paper. In dependency systems, a level typically has two complementary product
operators, one left-biased and one right-biased. In a hybrid framework, we may have more than one such biased
level, and interrelation of products under <s should preverve bias, e.g. relating the left-biased connective of
one level to the left-biased connective of the other level, etc. Note that for our non-biased example systems
({®,6,0,8}), we find o' <s o iff the structural rules of o’ are a subset of those for o. Again, the situation
is not quite so simple when we consider dependency systems.
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This transition is derivable in the present approach, as shown in (11).

(11) B=B A:>A[.R] (12) A=A B:>B[/L]
(A, B)® = AeB (A/B,B)* = A

(A, B)® = AoBE;i]] (A/B, B)® = AE:—SL]
A®B = AeB A/B = Ao-B

Note that the converse transition is not derivable, i.e. since the converse substitution of
brackets under [<g] to that in (11) is not allowed. The transformation A/B = Ao—B, also
discussed earlier, can be derived as in (12). More generally, transformations similar to (11)
and (12) may be derived for the connectives of any two appropriately related subsystems,
e.g. AOB = ASB and A¢B = A/B.

Let us consider some other theorems of this hybrid system. Note that although the compo-
sition (13a) is not allowed within a non-associative level, the same types may be composed,
provided the result is in an associative level, as in (13b), proven in (14). (The inference
step marked [<g*] corresponds to multiple uses of [<s].) Likewise, two counterdirectional
arguments cannot be reordered purely within a non-associative system, as in (13c), but can
if the result type is in an associative system, e.g. (13d), proven in (15).

(13) a. * (A¢B, BEC)® = A4C
b. (A¢B, B4C)®* = A/C
c. * (BRA)$C = BR(A4C)
d. (BRA)4C = B\(A/C)
(14) c=cC B=B (15) B=B A=A
(B4C, C)° = B [#L] A=A C=>C (B, BRA)® = A [AL]
(A¢B, (BgC, C)2)° = A [iL] (B, ((BRA)$C, C)*)® = A Mf]
(A#B, (B4C, C)*)* = A[[:]S ] (B, (BYA)$C, 0)*)* = A[[; ]
((A¢B, BC)®, C)® = A[/R] ((B, (BRA)$C)®, C)® = A[/R]
(AgB, B§C)* = A/C (B, (BRA)$C)® = A/C

\R]
(BRA)4C = B\(A/C)

Although associative Lambek calculus allows composition, directionally mixed compositions
such as (16a) are not permitted. However, such types may be composed provided that the
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result is in the permutative linear subsystem, as in (16b), which has proof (17).

(16)

*

a. * (A/B, C\B)® = C\A
b.  (A/B, C\B)® = Ao—C
c. * (A/B,C\B)® = Ao—C
d.  (C\B,A/B)® = Ao—C

(17) C=C B=B
. [\L]

(C,C\B)* = B A=A
(A/B, (C,C\B)*)®* = A
(A/B, (C, C\B)®)? = A ;5
(A/B, (C\B, C)®)® = A N
(A/B, C\B)?, 0)® = A
(A/B, C\B)® > AoC '

[/L]

This example is suggestive that linear implication in a hybrid system might allow treatment of
non-peripheral extraction, e.g. with relative pronouns bearing type rel/(so—np), eliminating
the need for a permutative structural modality. However, the same example also brings up a
potential problem. Note that the twoimplicationals in the antecedent of (16b) are configured
with the linear brackets (.,.)®. This is necessarily so: the similar sequent in (16¢), where the
associative Lambek brackets appear, is not a theorem. Obviously then, the sequent (16d),
where the two implicationals appear ‘out of order’, is also a theorem. If word order were to be
determined from the linear order of formulas in a configuration, then the approach would be
unable to distinguish (e.g.) a relative clause from some of its ungrammatical permutations.
The method for determining the word order consequences of proofs depends on augmenting
proofs with a system of term assignment, introduced in the next section.

6 Term assignment for hybrid substructural systems

I will next describe a system of term assignment for the logic introduced in the previous
section, by which the formulas in a proof are associated with lambda terms in accordance
with the well known Curry-Howard interpretation of proofs (Howard, 1969). Antecedent
formulas are associated with variables. The terms associated with succedent formulas record
the natural deduction structure of the dominating subproof.

(18) Av= Arv (id) A=B:b TI[B:v]=A:a
T[A] = A:alb/v]

[cut]
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(19) (B:'U,F)°:>A:a[oR] A= C:c T[B:v]=> A:a =
I' = B2A:[J]v.a I'[(A, C2B:w)°] = A:a[(cs w)/v]
(I, B:v)° = A:a A= C:c T[B:v]=> A:a 1]
I'= ASB:[S]v.a I[(BEC:w, A)°] = A:a[(wsc)/v]
I'>A:a A= B:b I[[(B:v, C:w)°] = A:a
" ~[oR] [oL]
(T, A)° = AoB:{a,b) T'[BoC:z] = A:[z/vow].a
(20) T[(B:b, (C:c, D:d)°)°] = A:a[A] { o€ {o0)
I[((B:b, C:c)°, D:d)°] = A:a
I[[(B:b, C:c)’] = A:a {o c {0,
I[(C:¢, B:0)°] = A:a
21 : i) a ,
(21) T[(B:b, C:¢)°] = A <s {o <s o

For implicational connectives, left inferences (corresponding to natural deduction elimina-
tion inferences) are interpreted via functional application, whilst right inferences (c.f. natural
deduction introduction inferences) are interpreted via functional abstraction. Note, however,
that a different abstraction and application operator is required for each distinct implica-
tional connective, so that terms fully record the proof structure.® For an implication <, for
example, the corresponding application operator is notated as 5, e.g. a’5 b is a applied to b
in the relevant mode. Note carefully that in a3 b the term b is applied to a, not vice versa.
The corresponding abstraction operator is notated as [5], e.g. [5]v.a represents abstraction
over v in a. Left inferences for product operators are interpreted via system specific pairing,
e.g. (a,b)°. Note the labelling of the corresponding right rule. A term such as e.g. [b/vow].a
implicitly represents the substitution of b for v+w in a.? Observe that the structural and
[<s] rules have no term assignment effect.

8 Buszkowski (1987) specifies a term system for implicational associative Lambek calculus, where the typing
of functional expressions encodes directional distinctions, and where two directional modes of application
and abstraction are distinguished. A straightforwardly identifiable subclass of the possible expressions of
this system correspond to correct deductions of implicational associative Lambek calculus. Wansing (1990)
discusses ‘formulas-as-types’ term systems for a range of substructural logics.

°This labelling operator is essentially just a compact notation for an operator used with the linear mul-
tiplicative ® by Benton et al. (1992) in their system of term assignment for linear logic. Their opera-
tor is let _ be _®_ in _ , giving terms such as e.g. let b be vQw in a, parallel to [b/v®w].a for us.
It is important to note that the operator serves to bind the variables v and w in the subterm a. Thus,

FV([b/vow].a) = (FV(a) — {v,w}) UFV(b) (where FV returns the set of variables free in a term).
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7 Word order, semantics and term labelling

Consider again the type combinations (16b,d), repeated here as (22a,b), which illustrate
the inadequacy of determining word order consequences of combinations from the order of
formulas in configurations. For example, infering by this method that either order is possible
for the two antecedent formulas in (22a,b), we appear to have lost the word order import
of the directional connective of A/B, indicating that this functor requires its complement to
appear to its right.

(22) a. (A/B, C\B)® = Ao—C
¢. (C\B,A/B)® = Ao-C

(23) Gl 29 (29y)

Note that (22a) would receive proof term (23) under proof (17), and (22b) would receive
the same proof term under a proof differing from (17) only by a semantically non-potent use
of [P]. This common proof term for the two related theorems implicitly encodes the linear
order import of the A/B functor’s connective. Thus, since e is a non-permutative operator,
an applicative term of the form a9 b indicates that the ‘orderable elements’ of @ precede those
of b. For the subterm z e (279 y), this suggests that z precedes y, and that z precedes z and y.
The abstraction over z in the complete term (23) would seem to discount z as an ‘orderable
element’, leaving just the result that z precedes y, i.e. that the A/B functor precedes the
C\B functor, as we would expect.

Since @ is permutative, we expect less ordering information to be available from a term
such as ag b, but this does not mean that no consequences follow for the relative ordering
of the ‘orderable elements’ of a,b. For example, although the position of z relative to y, z in
x5 (y % 2) is not completely fixed, the non-associativity of @ implies an ‘integrity’ for y, z in
(y 3 z) such that we would not expect y < < z to be a possible order. These observations
suggest that the method for determining the linear order consequences of proofs must be
sensitive to the specific modes of structuring and their properties.

The first step in extracting word order information from proof terms involves deriving a
second term called a yield term. For each syntactic product operator, we require a corre-
sponding ‘yield’ operator, which will be notated identically. The set of possible yield terms Y
is derived by closing the set (VAR U ATOM) under the yield operators (VAR the set of variables,
ATOM the set of atoms).!° The yield term is generated by a procedure F, which is defined
by induction on the structure of proof terms as in (24) (where o is used in place of any
conjunctive operator, and [5] and %5 are used to represent abstraction and application where

1ONote that atoms are included here to allow that word order may be derived after lexical substitution.
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directionality doesn’t matter).

(24) Q(a) = a, where a € (VARU ATOM)
(a3 b) — pogq, where Q(a)=p, Qb) =
Q((a,b)%) = pogq, where Q(a)=p, Qb)=
Q([cv.a) = plg,  where Q(a) = p[vo'q] or Q(a)= plgo'r]
Q[b/vow].a) = plgl,  where Q(a) = plvo'w], Qb) = ¢

The cases for applicative and pair terms merely put together the yield terms for the subex-
pressions. The case for abstraction deletes the variable from within the yield term of the
subexpression. The final case, for product introduction labellings, is the most problematic.
It is not always true that F(a) = p[vo’w] for the subterm a, in which case the procedure
fails, and the word order consequences of the term cannot be projected. I will return to this
problem shortly.

A yield term returns the orderable elements of a proof term structured in accordance with
their original manner of combination. E.g. 2% (y& 2) gives a yield term z®(y©z), and
[5]z.z 9 (279 y) gives zoy. Let ~ represent restructuring of yield terms in ways appropriate
to the different operators. E.g. since the syntactic product @ is subject to [P], ‘commutation’
restructurings are allowed for the yield term operator ®, i.e. for yield terms a,b, a ~ b if
a = plg®r]and b = p[r@ q|. Likewise for other operators and structural rules. Possible linear
orders allowed by a proof term can be simply ‘read off” the variants of its yield term under re-
structuring, e.g. the proof term z g (y & z) gives orders z-y-z and y-z-z, since F(z 5 (y&5 2))=
t®@(y©z), and z@(yOz) ~ (yOz)Dz.

Consider next the theorem (25) and its two alternative proofs (26) and (27), which
assign the readings in (28a,b), respectively.

(25) (X/Y,Y)? = X

(26) Y=Y X=X (27) Y=Y X=X
. (/L] S [/L]
(X/Y,Y)* =X (X/Y,Y)* = X
(X/Y,Y)® = xki Y=Y X=X L (X/Y, Y)® = x[<s
X/Y = Xo-Y >Rl (Xo-Y, Y)® = X[o_t]]

(X/Y, Y)® = X



hybrid substructural 14

Despite the directional connective of (26), (28a) gives a yield term z®y leaving z and y
unordered (i.e. allows both orders z-y and y-z). This example suggests that order should
be determined from the normal form of proof terms. Thus, (28a) normalises to (28b), from
which order can be appropriately determined (z-y). The contraction rules for normalising
terms of this systems are given in (29).11

(29) ([5]v.a)5b L ab/vl
b2 ([5]v.a) L ab/vl
[(b, ¢)° Jvow].a L /v, e/w]
([b/vo'w].a)%5 ¢ L [bjvo'w]. (a5 c)
¢z ([b/vo'w].q) S [b/vo'w].(c5a)

A function 2, which returns the set of possible orderings allowed by a proof term may be
defined as in (30) (where (a) returns the normal form of ¢, and STRING(«) a string of the
atomic elements in the yield term a, in the order that they appear therein).

(30) (a) = { STRING(p) | F(f(a)) ~p }

We noted above that F fails to produce a yield term for some proof terms. For example, the
proof term (25 y)& z has yield term (z®y)©z, which contains no subterm of the form yo'z.
Hence, the proof term [w/yez].(z 5 y) & 2 (corresponding to a proof of ((X¢Z)4Y, YeZ)® = X)
has no yield term. I will take the position that linear order determinations should be of word
order, assessed only after substitution of lexical strings. The assumption is that lexical string
terms may be complex expressions of the term labelling system, and that lexical assignments
will specify string terms that provide ‘appropriate resources’ to allow a proper word order
determination to be made. For example, a lexical assignment bearing a product type would
have a pair string term. Substituting this for (e.g.) win [w/yez].(z 5 y) G z would give a term
that simplified with normalisation to a result that did allow a full word order determination.

Allowing complex string terms constructed using the operators of the term labelling system
in lexical assignments raises various possibilities concerning lexical encoding of partial deriva-
tions and string term encoding of word order relevant information. A simple (unrealistic)
example of this possibility is that we might assign a word W a type such as so—np, whose
connective does not specify an order relative to its argument, but provide a string term such

"The correctness of the two commutative conversion rules (notated ~>) requires that v,w ¢ FV(c), i.e.
to avoid changes of meaning due to accidental binding of v, w occurrences in ¢. Given the linear usage
characteristic of the systems under consideration, all proof terms are such that no problem arises in relation
to this requirement.
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as [g]v.w'e v, which does encode information of the relative order of W and its argument,
which could emerge when word order was determined via normalisation and F. Note that
this lexical string term lexically encodes a derivation corresponding to the transformation:
s/np = so—np.

Proof terms are also useful for determining the natural language semantic consequences of
type combinations. However, the fine-grained distinctions between different forms of func-
tional abstraction and application etc. seems somewhat inappropriate for linguistic semantics.
I assume a procedure ~» that transforms a proof term to a a simpler form, with only a sin-
gle form of abstraction (A) and application notated by juxtaposition (with f functor and a
argument in any fa). B.g.: [glz.2e(29y) ~ Az.a(yz)

8 Algebraic semantics for categorial logics

We can define semantics for various categorial logics which include a ‘product’ conjuction
operator o and dual division operators —, < in terms of algebras (L,0), where the algebra’s
binary operator o is the semantic counterpart of the syntactic 0.}? An intepretation function
I assigns some subset of £ to each type, satisfying the following conditions for non-primitive
types and antecedent configurations:

31)  [[XoY] ={zoyeL|ze[[X] A yellY]}
[X2Y] ={zel|Vyel]Y]. zoye[X]}
[Y=SX] ={zel|vyelY] yoze[X]}

[(T,A)] =A{soyel|ze[T] A yela]}

A sequent I' = A holds in a model ((£,0), Il ), if IIJCIAD. A sequent I' = A is valid if it

is true in all models. For systems defined in this way, the following laws hold:
A=CEB iff AoB=C iff A=B=2C

The particular categorial logic for which a semantics of the above pattern is appropriate
depends on the further properties of the semantic operator o. For example, if o is associative
(i.e. we assume the equivalence axiom zo(yoz) = (zoy)oz) then we have a semantics for

12In general, I will notate such corresponding syntactic and semantic operators identically, though obviously
the operators of the two domains are distinct. It should always be clear from context whether an object is in
the syntactic or interpretive domain. Note in particular that lower case italics are used for semantic objects
(e.g. ®y), whereas syntactic types are written in in upper case roman (schematic types) or lower case roman
(actual types).
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the associative Lambek calculus. With no such additional equivalences, we have a system
appropriate for the non-associative Lambek calculus.'?

The properties of a semantics that is appropriate for a categorial logic gives some extent of a
perspective on the relation between that logic and natural language. The algebraic objects in
interpretations in some sense constitute abstract representations or descriptions of ‘linguistic
objects’. Given the character of o in the semantics for associative Lambek calculus, we might
loosely say that this system ‘views’ natural language as a system of strings. Similarly we
might say that non-associative Lambek calculus views natural language as if it consisted of
binary branching tree-like structures.!?

9 Types as categories of partial descriptions

Let us consider how the above approach to algebraic semantics for categorial logics may
be modified to be applicable for a hybrid substructural system. We have seen how the
sets of objects categorised by types under the above interpretation scheme may be seen as
abstract descriptions of linguistic objects. The crucial change for the hybrid approach is that
the interpretive algebra must provide a range of operators for constructing ‘descriptions’,
where these different modes of description are comparable. Thus, it is possible to have
two objects in the algebra which may be possible descriptions of the same linguistic object,
where one description may be ‘less informative’ than the other. Types are then viewed
as categorising partial descriptions of linguistic objects, only categorising linguistic objects
themselves indirectly.

For example, consider an interpretive algebra which includes at least the three operators
{®, o, @}, for which we assume the following equivalence axioms:

ze(yez) = (vey)ez z@(y®z) = (2Qy)®z (2@y) = (y®2)

Consider a possible object of this algebra j©(s®m), which might loosely be viewed as provid-
ing a structural description of a particular sentence (perhaps John saw Mary). The object
je(sem) provides a less informative description of the same sentence, i.e. it indicates the
words that are present, and their linear order, but not a specific (linguistic) bracketting (i.e.
since jo(sem) = (jes)em). Likewise, the object j®(s®m) provides an even less informative
description, which does not encode the (linguistic) order for the words that appear (since @
is commutative).

This example suggests that different semantic operators may be compared in terms of the

13See Buszkowski (1986) for associative Lambek calculs, and Kandulski (1988) for the non-associative case.
See Moortgat & Morrill (1991) for broader discussion of applying the general groupoid semantic approach to
a range of categorial logics.

M Note quite trees, however, since the above model does not impose a condition of acyclicity, c.f. Venema,
1993 /draft.
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degree of informativeness of the descriptions whose construction they allow, e.g. for any z,y,
the description z®y is less informative than the description zey. Assume an ordering <;
of ‘degree of informativeness’ over semantic operators.!> We can define a relation >; over
obects of the algebra (‘descriptions’) in terms of <; as in (32), which is such that z I>; y
just in case the description z is at least as informative as y,e.g. 2Oy >; 2 Qy, c Oy >; zey,
z©yl; y®@ . (This definition uses a convention such that p[g] is an expression containing
a subexpression ¢, and p[r] is the result of replacing that subexpression by r.)

(32) if z=wluov] & y=wluov] & o<;0 then z>;y
if x=vy then D>,y
if Py & yb; z then ab; 2

If we assume that types categorise partial descriptions, it seems reasonable to expect that
interpretations should satisfy a criterion of coherence, stated in (33). The criterion requires
that if a description x is in an interpretation, then so also should be all related less informative
descriptions (i.e. all descriptions y such that @ >; y). (The idea behind the naming of the
criterion is that if a certain description of a possible linguistic object is in an interpretation,
it would be incoherent for the interpretation to deny any weaker description of the same
object. I will sometimes loosely say that a type is coherent, meaning that its interpretation
is coherent.) The interpretive scheme to be specified is such that all types are coherent in
this sense.

(33) Coherence (of interpretation 9):
Ve,y. (€S5S AN zbyy)—yes

A model is a triple M = ((L,u),<;,[]), where p is a set of semantic operators and
(L, ) an algebra defined on those operators, where <; is a partial ordering (of ‘degree of
informativeness’) over u, and []] is an interpretation function which assigns to each primitive
type a coherent subset of £ and satisfies the following conditions for non-primitive types and
antecedent configurations:

(34) [XoY] ={zel|Fz,y.ze[X] Aye[Y] A zoy;z}
[X2Y]  ={sec|VyelY]. zoye[X]}
[Y2X]  ={eel|Vye[Y] yoze[[X]}

[, AP ={zeL |3,y ze[[T]] A ye[[A] A zoyb;z}

*Note that for our (non-biased) example systems (i.e. for any o,0’ € {®,8,0,®}), o <; o' ff the
equivalence axioms of o’ are a subset of those of o (c.f. the discussion of footnote 7). Again, the situation is
not so simple when we consider dependency systems.
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As before a sequent I' = A holds in a model if r] clA] , and is valid if it is true in all models.
The conditions in (34) for product types and antecedent configurations directly ensure that
their interpretations are coherent (assuming coherence for subtypes and subconfigurations
assembled). The conditions for implicationals do not need any special manoeuvring to ensure
coherence, coherence follows automatically. Thus, the coherence of any type also ensures
coherence with respect to ‘fragments’ of descriptions in the type, i.e. if z[y] € [T], then for
all z such that y>;z, z[2] € [T]. All objects in (e.g.) [ XY ] are fragments of objects in
[X], and so [[ X< Y] is coherent provided that [[ X ] is. Since primitive types are coherent
by stipulation, and the []| conditions for complex types/configurations preserve coherence,
it follows that all interpretations are coherent.!® Note that in the case where p is singleton,
the ; relation collapses to equality, and this interpretation scheme becomes the same as
that described in the previous section for single level categorial logics. Note that ‘degree
of informativeness’ for algebraic operators (c.f. <;) and ‘degree of structural freedom’ for
syntactic operators (c.f. <g) are intimately related. In particular, for any syntactic o, o', we
have o' <g o if and only if o <; o’ for the corresponding semantic operators.

Crucial issues arise as to the soundness and completeness of the proof system with respect
to this semantics. A proof system is sound with respect to a semantics if all derivable sequents
are valid. It is complete if all valid sequents are derivable. I will briefly sketch a soundness
proof. The problem of completeness is left for further research.

9.1 Soundness

We require the following lemma:

(35) Lemma 1.
For all configurations A, 1L : if [A] C [1] then [T[A]] C [I[I1]]

Proof (sketch): By definition of 0D, if [A] C [11], then for any configuration I', [[(A,F)O]] C
[(1,1)°] and [(T,A)°] € [(T,11)°]. Lemma follows by simple induction.

(36) Theorem.
If a sequent is derivable, then it is valid

(i.e. if I' = A is derivable, then Il C MA] in all models).

Proof (sketch): By induction on length of derivation.
Cases for final inference of a derivation:

¢ X=X Immediate.

16 As we have just seen, coherence is directly imposed in this approach. It is possible that such coherence,
or at least its effects, could be achieved more simply, by conditions which link together the behaviour of the
different semantic operations, in the manner of Moortgat (1993/77). This possibility remains to be explored.
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e A=> B TI[B]=> A[ | By induction hypothesis (IH), and Lemma 1.
cut
ra]= A
o IB)Y°=A | Assume t € [T]. By IH, (tob) € [A]l for any b € [B].
I = ASB [—R] Hence, t € [[A«iB]].
e A=>C TI[B]=A [(B<c, ¢)° ¢ [B], by definition of [l. Hence, by IH and Lemma 1,
fo ay o Al [B2c a7 ¢ [B], and [riBC, 2)°1) € [PB]] € [A]

s '=>A A= B[ R] [[(A, B)°]] = [[AOB]] by definition of [H] Hence, by IH and Lemma 1
-  Te 0
(I, A)° = AoB [T, 2)°] ¢ [AcBI
¢ T[(B, O)°] = A[ I [(A, B)°’]l = [AoBIl, by definition of [[]. Hence, by ITH and Lemma 1,
-0 0
I[BoC] = A [rBoC]l C IT[(B, C)°1l <€ [Al
o I'[(B, (C,D))°] = A For any syntactic o€{e,®}, [((B,C)°,D)°] = [(B,(C,D)°)°[,
5 [A] {OE{‘a@)} by associativity of corresponding semantic o. Hence, by TH
TI((B, €)%, D)*] = and Lemma 1, [T[((B,C)°,D)°]l C [T[(B,(C,D)*)°N clIA].
¢ I[(B,O)]= A For any syntactic o€{c,®}, [(B, C)°ll = [(C, B)°], by com-
I[(C, B)°] = A[P] {OE{@a@)} mutativity of corresponding semantic o. Hence, by IH and
’ Lemma 1, [(C, B)° ] C [(B, C)° I clA].
e T[(B, O)° ] = A Syntactic o’ <s o implies semantic o<;o’. Hence, by definition

€] {o' <so0 of [, [[(B’ C)"]] C [[(B, C)°I]]. Hence, by Lemma 1 and IH,
TI(B, €] = A [r(B, ¢y ¢ [r((B, ©)°10 ¢ [Al.

10 Natural deduction and for hybrid substructural systems

Although sequent formulations have various proof-theoretic advantages, it is useful for lin-
guistic purposes to be able to present proofs in the more readable format of natural deduction.
I shall develop such a natural deduction formulation in this section. The natural deduction
proofs of this approach are isomorphic in structure to their associated proof terms.!” Thus,
merely stating the basic form of the natural deduction rules presents little problem, since
these map trivially to the rules of formation for terms of the enriched lambda system. The
difficulty lies in appropriately restricting the use of the rules to only allow correct inferencing.
This is achieved by adopting an approach which falls within the general framework of labelled
deductive systems (LDS: Gabbay, 1991).

In labelled deduction, every formula is associated with a label, which records information
of the use of resources in proving that formula. Inference rules indicate how labels are

17 Given this isomorphism, proof normalisation for natural deduction proofs maps trivially to normalisation
of terms (for which the requisite contraction rules are given above). Proof normalisation for natural deduction
is addressed in detail in Prawitz (1965). For the case of natural deduction linear logic see Benton et al. (1992),
and for Lambek calculus, see Morrill et al. (1990), Barry et al. (1991).
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propagated. Of course, this characterisation applies to any logic with a standard system of
term assignment. Crucially in LDS, however, inference rules may have conditions on their
use, which refer to labels, and which serve to ensure correct inferencing. Such labelling may
be used for the purpose of “bringing semantics into syntax”, as a basis for ensuring that the
proof system behaves in a way appropriate to its intended semantics.

For the natural deduction formulation of the hybrid substructural sytem, the labelling
discipline required is a standard style system of term assignment, i.e. formulas in proofs are
associated with terms of the (enriched) lambda system, where assumptions are labelled with
variables, and propagation of labels is in accordance with the Curry—Howard interpretation
of proofs (Howard, 1969). This labelling system is used to ‘import’ the system of algebraic
semantics presented in the previous section, via a mapping from label terms to objects which
(in some sense) correspond to elements in the interpretive domain. Let us begin by stating
the natural deduction rules, with term labelling.'®

(37) ASB:a B:b o [B:v]
—_— <k Aa
A:ash 0
ALB:[Sv.a
B:b B—°>A:ao [B:v]
-k A:a

A:boa
B2A:[F]v.a

—1

[B:v] [C:w] A:a B:b
. . —ol
A:a BOCbOE AOB:(a,b)o
A:[b/vow].a

Note that there are no rules corresponding to the sequent structural rules. All structure
sensitivity is handled in terms of constraints on rule use.

Let us consider how the inference rules must be constrained. In this paper, we have confined
our attention to systems with linear resource usage, i.e. where each assumption must be
used precisely once. We can ensure firstly that no assumption is used more than once by
excluding proofs where two or more assumptions are labelled with the same variable. This
may be achieved either by simple stipulation, or indirectly by conditions on inferencing. In
particular, we may require for all rules that combine two subproofs (i.e. all rules except the
implicational introduction rules) that their proof terms have disjoint free variable sets, i.e.

¥ Morrill et al. (1990) and Barry et al. (1991) give natural deduction formulations of the associative Lambek
calculus. See Troelstra (1993) and Benton et al. (1992) for natural deduction formulations of linear logic. The
[0E] rule is of a form akin to multiplicative elimination rules discussed by Schroeder-Heister (1984), which
ensure that both projections of the multiplicative must be used.
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FV(b) NFV(c) = 0 for inferences of the form: B:b C:c
A:a

I will adopt this second approach, but leave the condition as implicit. We can ensure that
each resource is used al least once by requiring that rules which discharge assumptions do
discharge at least one assumption,'® or, equivalently, that the associated label abstractions
bind non-vacuously. This requirement need not be directly imposed, since it follows from
later conditions. As is standard with categorial logics, we require that deductions depend on
at least one assumption. This condition can be enforced by requiring that the proof term
that results with any inference must contain at least one free variable, i.e. for any proof term
a, FV(a) # 0.

All further conditioning of the inference rules is directed toward importing the system of
algebraic semantics discussed in the previous section. The method involves mapping from
proof terms to objects that I will call markers, which in some sense denote elements of the
model. We require an operator in the marker domain for each operator of the interpretive
algebra (i.e. each o € u), which will be notated identically. The set of possible marker terms
M is derived by closing the set of variables VAR under the marker operators. A relation >;
over marker terms operates in a precisely analogous manner to the >; relation over elements
of the algebra (bringing with it the relation <; and the equivalence axioms of the algebra).
Each proof term maps to a set of marker terms, under a procedure Y, which is defined as in

(38) by induction on the structure of terms.2’
(38) X(v) ={v}, v€EVAR
Y(agh) ={zeM|Jz,y.z € X(a) AN y€ X(b) A zoy >; 2}
Y({a, b)) ={zeM|3Jz,y.x € B(a) A y€ X(b) A zoy >; z}
Y([5]v.a) = {z€ M| zov € X(a)}
Y([5]v.a) = {z€ M| voz € X(a)}
S([b/vow]l.a) = {ze M|3z,y.z € X(a) N y€ X(b) N z=ufvow] A uly] >; 2}

Under the Curry—Howard ‘formulas-as-types’ interpretation of proofs, a proof of A from
B1,..,B,, may be seen as a method or function for constructing an element in (the interpre-
tation of) A from elements in the By,..,B,,. A proof term is essentially just a representation

¥Compare, for example, to intuitionistic logic where (e.g.) use of [—I] may be accompanied by discharge
of any number of assumptions, including zero.

20 A similar method is used in Hepple (1993 /draft), although there terms map to a single marker whose form
is used in determining the applicability of inference rules. Both of these ‘marker’ systems may be compared
to Buszkowski (19**), where a mapping is specified from directionally typed lambda terms (for implicational
associative Lambek calculus) to the interpretive model (of strings).
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of such a proof / method in a different notation. For us, the elements in the By,..,B,, map
to a set of elements in A. The procedure ¥ serves to make explicit the schematic form of
those elements in A so constructed. The crucial point for our purposes is that proof terms
which do not correspond to correct deductions fail as methods of construction, so that for
any term a not corresponding to a correct deduction, ¥(a) = (. Hence, we can ensure that
deduction is appropriate for the semantics by requiring that the proof term a that results
with any inference must be such that X(a) # 0.

For example, consider the following two proofs, of which the second is incorrect. As the
reader can easily verify, applying ¥ to the proof term of (39) gives a non-empty set of
markers, whereas the marker set for the proof term of (40) is empty.

(39) XeY:w [X:z] [Y:y] (40) XeY:w [X:z] [Y:¥]
—01 —RI
XOY: {z,y)® “ XY : {z,y)® “
XOY :[w/reg] {7, 9)° XY - [w/res] (7, 9)°

Thus, for the subterm (z,4)®, ¥ gives {z®y, 20y, zoy, z®y}. Crucially, this contains the
element zey, and so ¥ on [w/zey].(z,y)® gives {w}. For the second proof, ¥ on (z,4)% gives
only {z®y}, and so X([w/zey].(z,y)?) is empty. Note that it is only uses of inferences that
discharge assumptions (i.e. [21], [ 21], [oE] ) that are liable to produce incorrect proofs. The
reason why should be clear from the definition of ¥. The clauses for these inference rules
require that there are markers for the subterms which have certain forms, and if there are
none such, an empty marker set results. The X clauses for the other cases merely put subterm
markers together.

As another example, consider the following two proofs. Again the first proof is correct
whilst the second is not. The crucial observation is that the marker set {zey, 2@y} of the
subterm ¢ y contains an element z®y so that the [o-1] inference of (41) goes through, but
contains no element @y and so the [41] inference of (42) is incorrect.

41 X/Y: Y 42 X/Y: Y
(41) [Y:z [ y]/E (42) [Y:z | y]/E
X:zoy X:zoy
R —_— 1
Xo-Y:[gly.-zey X4Y: [Qly.z oy

Since this natural deduction formulation is intended to be convenient for presenting lin-
guistic derivations, it is undesirable that users should have to compute (potentially large)
marker sets for labels at each stage of derivation. In practice, the natural method to employ
is to construct only a single ‘exemplar’ marker term alongside each subderivation, which is
arrived at in a goal directed fashion, and constructed from the marker terms that have been
built for the immediate subterms. The marker term so generated at each stage should be
the ‘strongest description’ possible, which is ‘diluted” (by steps replacing a marker operator
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with a ‘less informative’ marker operator) only so far as is necessary to guarantee that the
intended next inference goes through. Such dilution is only required to allow for inferences
[£1], [21] or [oE] (for reasons that should be clear from the above discussion). For example,
consider the following derivation, where an exemplar marker for each proof term is shown to
the right of ¥ (except for assumptions, whose marker is simply their labelling variable).
To allow for the [o—1I] inference, the exemplar marker of the preceding term must be diluted,
so that it can be matched to the pattern a®y. However, the term is only diluted to the
minimum extent required — the subterm wex is not diluted to w®z, for example, as this is
unnecessary to producing an overall term of the form a®y.

(43) (W/Z)/Y)/X:w X:z  [Y:y] Z:z

/E 5
(W/Z)/Y:wez e .; wez
W/Z:(wez)ey P ? (wez)ey
W:((wez)oy)ez ol :((w-z)-y)-z B ((wer)®2)®y
Wo-Y:[gly.(wez)ey)ez — (wez)®z

For purposes of presentation, stating exemplar markers in this way might lead to cluttered
proofs, so it may be preferable to state only such marker elements as are needed to demon-
strate that the next inference goes through. For example, (43) might be presented showing
only the marker for the proof term preceding the [o—I] step.

Observe that the configuration of assumptions that we observe for the sequent formulation
is absent under this natural deduction approach, so that the combination allowed by a proof
might most naturally be written as I' = A :a, where I is a set of assumptions. We may ask
what is the relation between such unconfigured sequents and their configured counterparts.
The answer is straightforward: each marker in the marker set ¥(a) for an unconfigured
sequent I' = A :a provides a ‘pattern’ for how we may configure the assumptions I'. The
procedure 7, defined in (44), is such that 7(I',m) returns a configuration, when I' is a
set of assumptions and m is a marker term defined on the labelling variables of I'. If an
unconfigured sequent I' = A :a is provable under the natural deduction formulation, then
for all meX(a), 7(I'ym) = A is a theorem of the sequent system.

(44) 7(T,v) = A:v, where (A:v)€eT
(I, aob) = (7(1'ya),7(1,b))°
11 A labelled sequent formulation

The labelled natural deduction formulation of the previous section is in turn suggestive of how
we might construct an alternative sequent formulation of the hybrid substructural approach.
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This is a set-based sequent system, i.e. where sequents are objects of the form I' = A such
that T' is a set of assumptions. The role of configurations in ensuring appropriate structure
sensitivity is eliminated, being replaced by label conditions.?!

The sequent rules are stated below. Linear use of resources follows from the way the rules
are stated, particularly the use of ¥ (indicating the union of two sets that are required to be
disjoint).?2 To ensure correct inferencing, we need only require that with each inference, the
conclusion’s proof term a is such that FV(a) # 0 and X(a) # 0.

(45) {A:v} = Ao (id) A=B:b {B:o}ul = A:a
AWl = A:alb/v]

[cut]

I'w{B:v} = A:a | A=C:c Tw{B:v}=A:a .
° — [—R] ; [—L]
I'= A=B:[]v.a TYAW{B—C:w} = A:al(w 5 c)/v]
I'e{B:v} = A:a | A= C:c Tw{B:v}=>A:a o
° . [—R] ; [—L]
I'= B=C:[(]v.a TWAW{C—B:w} = A:a[(cT w)/v]
I'=>A:a A= B:b I'g{B:v,C:w} => A:a
[oR] [oL]
TWA = AoB:{a,b)° Tw{BoC:z} = A:[z/vow].a

This labelled sequent approach may have computational advantages over the earlier sequent
formulation. To determine if some collection of types may be combined to give a certain result,
we do not need to try deriving all the possible configurations of those types. Furthermore,
the [<s] rule and the Associativity and Permutation structural rules are not required, thereby
avoiding much spurious effort that these rules allow in proof search. In practice, however,
whether theorem proving with this formulation is more efficient will depend on the cost
of performing Y(a) # (0 checks. The marker sets of even relatively small label terms may
contain large numbers of elements, and generating these elements may reintroduce much of
the rebracketting and permuting that we would hope to have lost by eliminating the structural
rules. However, it is my suspicion that for many marker systems (such as e.g. that above
based on operators {®,5,8,®}), all marker sets M will contain a non-empty subset of mazimal

21 A further possibility for formulating a labelled deduction version of hybrid substructural systems is in
terms of proof nets, originally proposed in relation to linear logic, and developed in relation to associative
Lambek calculus and LP by Roorda (1991). In a proof search context, it is useful to employ an algorithm
that yields objects termed proof structures, of which only a subset meet the inductive definition for proof nets.
Roorda provides a method by which the proof structures that are proof nets may be identified by conditions
on proof terms. It is promising that Roorda’s approach could be adapted to give a LDS proof net method for
hybrid substructural systems, using the enriched term labelling system and appropriate marker conditions.

22 Alternatively, the rules could have been stated in a way that would in general allow contraction and
weakening (implicitly), but with label conditions on the specific rules ensuring linear usage.
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elements — elements m, such that m B; e for all eeM — of which any one can serve as a
representative for M. It is possible that the task of verifying a non-empty marker set for some
label might be made more efficient by reformulating it in terms of computing single maximal
marker elements for terms and subterms. This topic requires further research.

12 Linguistic applications

The central aim of this paper is to introduce a general framework for hybrid substructural
categorial logics, rather than to put forward any one hybrid system. No claim of particular
merit is made for the specific hybrid system that has been used for illustration. In the
remainder of the paper, I will seek to give an idea of how a hybrid substructural approach
might look in action, by presenting some possible linguistic accounts which depend on use of
a hybrid framework.

12.1 Extraction: simple case

As noted earlier, linear implicationals allow for a possible treatment for extraction, including
the problematic non-peripheral extraction case. A “sentence missing NP” may be derived
as a constituent of type so—np (or equivalently np—os). The following proof, for example, is
suitable for deriving the relative clause which Mary gave to Bill. Lexical string substitution
proceeds as in (47a), where Q gives a single order for the lexical atoms (indicated to the
right of Q—, with quotation marks indicating an atom string). Lexical semantic substitution
proceeds as in (47b), and simplifies under ~ (i.e. by deleting distinctions of directionality
and level) to the result shown.

(46) (which) (mary) (gave) (to) (bill)
rel/(so—np) : v np:w ((np\s)/pp)/np:z  [np:u] pp/np:y np:z
E JE
(np\s)/pp:zou PP:y ez
np\s:(zeu)e (yez)
\E >
scwe((zou)e(yez)) ol — (wez)®(yez))Ru
so—np:[glu.we ((zeu) e (yez))
JE

rel:ve ([Bluwe((zou)e(ye 2)))
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(47) a. Lexical string substitution:
which s ([glu.mary < ((gave s u)'s (to's bill)))
Q— “which mary gave to bill”

b. Lexical semantic substitution:
which’ ‘e ([glu.mary’ ((gave' s u) e (to’ ¢ bill')))

~ which’ (Au.gave’ u (to’ bill') mary’)

12.2 Wrapping

We noted earlier that the possibility of assigning complex string terms to lexical items could
allow for lexical encoding of partial derivations.?> Consider a possible type ((np\s)/prt)/np
for the particle verb calls (as in e.g. John calls Mary up), which explicitly subcategorises for
a particle (prt). The derivation (48) might be used to combine the verb with its particle,
but without the object NP.

(48) (calls) (up)
((np\s)/prt)/np:z  [np:y] “ prt:z
(np\s)/prt:zy
/E
np\s:(zey)ez — (zey)ez P (z®z)Qy

o—1

(np\s)o—np:[gly. (zey)e =

Lexical string substitution gives the string term: [gly. (calls's y)s up. We could then treat
the verb+particle calls up as a single discontinuous lexical functor with the lexical entry (49),
whose string term is the complex term just derived, effectively giving a lexical encoding of the
derivation (48). Note that in (49), however, the verb4particle complex has been assigned
an atomic semantic term, illustrating that the approach allows for a mismatching status of
string and semantic assignments.

(49) < (np\s)o—np, [glv.(calls’e v)'e up, calls-up’ >

Using the lexical entry (49) (plus obvious other lexical entries) John calls Mary up can be
derived using the proof (50). Lexical substitution proceeds as in (51).

2®This characteristic invites comparisons to some other formalisms, in particular lezicalised tree adjoin-
ing grammar (LTAG) (see Joshi et al, 1991, for discussion of this formalism), where the basic lexical and
derivational units are partial phrase structure trees, each of which is ‘anchored’ to one or more words.
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(50) (mary) (calls-up) (john)

np:z (np\s)o—np:y np:z

o—E
np\s1y % 2

s:ze(ygz)

(51) a. Lexical string substitution:

—

mary e (([glv. (calls’s v)'s up)g john)
L mary e ((callss john)'s up) Q “mary calls john up”

b. Lexical semantic substitution:
mary’ s (calls-up’ g john’) ~ calls-up’ john’ mary’

The use of a complex lexical string term in this example has allowed us to simulate the
non-concatenative string operation known as wrap, used most notably in work in Montague
Grammar (e.g. Bach, 1981). A wrapping functor is one whose string is ‘wrapped around’
that of its argument under combination.

12.3 Quantification

Moortgat (1991), developing earlier proposals in Moorgat (1990), proposes a generalised
quantifier type constructor ¢, which (informally) is such that a type ¢(X,Y,Z) is one that
binds a position typed X within an expression typed Y, yielding a result typed Z. For example,
a sententially scoped NP quantifier might have type ¢(np,s,s), i.e. so that a NP position is
bound within a sentence to give sentence result.??

Moortgat (1991) discusses the quantor type constructor in relation to binary connectives
known as ‘extraction’ (1) and ‘infixation’ (]), first proposed in Moortgat (1988). Informally,
XTY is a function from Y to X, corresponding to an ‘X missing a Y at some position’. Likewise
informally, X]Y is a function from Y to X, which yields an X by infizing into the string of
the argument Y. Moortgat points out that a quantor type ¢(X,Y,Z) would be definable as
Z1(Y1X) if infixation and extraction could be linked so that infixation was to the position
of the ‘missing X’ of Y|X. However, no such linkage is possible within the Moortgat (1991)
formalism. Morrill & Solias (1993) and Hepple (1993/draft) propose formalisms in which
versions of | and | can be defined which do allow such linkage of infixation and extraction,
so that Moortgat’s suggestion for quantification can be implemented.

For the present approach, we can recreate the insights of these proposals, but without
needing to use distinguished extraction and infixation connectives. Instead, a quantifier may

24Such an account can be contrasted with the Lambek framework account of Emms (1990), which does not
require any additional type forming operators, relying instead on the use of type polymorphism.
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be treated as so—(so—np), receiving the word order position of the missing NP in so—np due
to the complex lexical string term assigned. This lexical string term is that which would arise
under the ‘type-raising’ transformation: np = so—(so—np). Given (52) and other obvious
lexical entries, John gave someone money can be derived under the proof (53), with lexical
substitution as in (54). For examples with more than one quantifier, alternative quantifier
scopings are derivable.

52 < so—(so—n Slu. uls someone, someone’ >
( P) @ ® )

(53) (someone) (john) (gave) (money)

so—(so—np):q¢ np:z ((np\s)/np)/np:y [np:v] np:z
JE

(np\s)/np:yev

JE
np\s:(yev)ez

\E
s:ze((yev)ez)

o—1
so—np:[glv.ze ((yev)e z)

s:qg ([gloz e ((yev)ez))

o—E

(54) a. Lexical string subsitution:
([Blu. ug someone) g ([glv.John s ((gave s v)'e money))

L Jjohne ((gave's someone)’s money)
»g “ljohn gave someone money”

b. Lexical semantic subsitution:
someone’ i ([g]v.john' ¢ ((gave' ‘s v) e money’))
< someone’ (Av.gave’ v money’ john’)

There is a sense in which this view of quantifiers seems very natural. Quantifiers behave dis-
tributionally very much like simple NPs, and so might be expected to have a basic string term
compatible with a simple np type. Semantically, however, quantifiers are of a higher type,
and so the string component must be raised for compatibility in constructing a well-formed
lexical assignment. The specific transformation np = so—(so—np) achieves this compatibility
without imposing additional word order constraints.

12.4 Extraction: pied piping

Morrill (1991) employs Moortgat’s quantor operator in an account of pied piping. For pied
piping of (e.g.) PPs, a relative pronoun is assigned type: ¢(np, pp, rel/(spp))
This type allows the relative pronoun to infix to a NP position within a PP, giving a functor
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rel/(sTpp), i.e. which prefixes to a ‘sentence missing PP’ to give a relative clause. Hence, for
example, to whom may be type rel/(spp), and so to whom John spoke is a relative clause.
The lexical semantics of whom ‘canonicalises’ the meaning, so that to whom John spoke is
equivalent to whom John spoke to. In both Morrill & Solias (1993) and Hepple (1993 /draft),
this account is reconstructed using versions of T and | in place of ¢, as for quantification
above.

Morrill’s proposal can similarly be reconstructed under the present approach. Lexical entries
for non-pied piping and PP pied piping whom are given in (55a,b), respectively. Assuming
obvious additional lexical entries, to whom John spoke can be derived using the proof (56),
with lexical substitution as in (57).

(55) a. <rel/(so—np), whom, whom’>
b. < (rel/(so—pp))o—(ppo—np), [glu.ug whom, AgAp.whom'(Ar.p(qr))>

(56) (whom) (to) (john) spoke
(rel/(so—pp))o—(ppo—np):q¢ pp/np:v  [np:w] np:z (np\s)/pp:y [pp:7]
/E /E
Pp:vew ol np\s:ye z
ppo—np: [glw.ve w s:ze (yez)
o—E o—1
rel/(so—pp) 1 ¢ 7 ([glw.v e w) so—np:[glz.ze(y e z)

JE
rel: (¢5 ([glwveow)) g ([8lz.z9 (yo2))

(57) a. Lexical string subsitution:
([5lu.u whom) 5 ([5lw-tos w))'s ([5)2-john s (spoke’s 2))
L (to's whom) s ([g]z.john e (spoke's 2))
—  “to whom john spoke”

b. Lexical semantic subsitution:
(AgAp-whom'(Ar.p(gr))) 5 ([F]uw-tos w)) 3 ([5]z-john s (spoke s =)

L2 whom! (Ar.spoke’ (to’r) john’)

12.5 Dependency systems within a hybrid framework

Although the non-associative Lambek calculus is the weakest of the substructural logics as this
landscape is typically conceived, there are possibilities for introducing further dimensions of
resource structure and structure sensitivity. Moortgat & Morrill (1991) make a linguistically
motivated proposal to allow binary trees that are biased or headed, where for each mother
node, one daughter is distinguished as being the head or primary element, and the other
as the non-head, dependent or secondary element. Such biases allow construction of trees
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which encode dependency structure. For the sequent approach, there might be right and
left headed brackets (.,.)9 and (.,.)” for building configurations, such that T is the primary
subconfiguration in both (A,I')Y and (I',A)”, and corresponding groups of syntactic operators

such as e.g. { <, i, i} and { >, 37 2, }. From a semantic perspective, there would be
similarly biased algebraic operators <« >, giving objects such as e.g. j<(s>m).

Moortgat & Morrill illustrate there proposals by addressing the use of metrical trees for
handling stress phenomena within metrical phonology. In this context, they discuss how dif-
ferent equivalence axioms over the objects of the algebra will serve to maintain or undermine
certain possible distinctions. For example, let the most prominent element of an object be
that reached by recursing down through the object always following primary branches, and
the least prominent element be that reached by following secondary branches, e.g. z is most
prominent in (z>y)> z and least prominent in (z <y)<z. The equivalence axiom (58a) pre-
serve only most prominence, i.e. if @ and o’ are equivalent under (58a), then a and o’ must
have the same most prominent element, but may not have the same least prominent element.
The axiom in (58b), however, preserves both most and least prominence. Thus, the selection
of equivalence axioms over the objects of the algebra is significant to the distinctions that
are represented.

(58) a. (zpy)pz = ap>(y<z)
b. (zpy)pz = zp(yvz)

Within a hybrid substructural framework, the possibity exists of having a range of coex-
isting dependendency levels which differ (speaking in terms of the interpretive algebra, for
the moment) in the equivalence axioms that apply and hence the distinctions that are rep-
resented. Fach dependency level might be related to other dependency levels, as well as to
non-dependency levels, where bias is not represented. In the case where one dependency level
is related to another, we can expect that relations between operators should preserve bias.
For example, given a level with (semantic) operators {5, &} and a ‘less informative’ level
{[’;, 2}, we expect that 2<;2 and 5<; %, but not 2<;% or 5<;%. When a dependency
level is related to a non-dependency level, however, bias will not be preserved, e.g. we might
have ® <;p and ® <; &.

In follows subsections, I will address the use of various interrelated dependency systems
within a hybrid substructural approach. The notion of head that will concern me is syntac-
tic / grammatical, c.f. syntactic grammars where heads are distinguished, e.g. dependency
grammars. Note that in dependency grammar, a sentence such as e.g. John loves Mary madly
receives a flat structure with loves as head:

v Y4 v v

john loves mary madly
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In the present approach, the use of binary operators requires that a hierarchical structure be
imposed, e.g. as in: (john < ((loves > mary) > madly))

For immediate purposes, it is useful to employ a notion of ‘head’ more akin to that used
in dependency grammar. This notion may be characterised recursively, i.e. the atomic
element reached by recursing down through a structure following only primary branches
(c.f. ‘most prominent element’ above). This notion will be referred to simply as ‘head’ (or
sometimes ‘recursive head’), and contrasted with the notion ‘immediate head’ which is & in
any expression h>x or x <h. We may refer to subexpression z as ‘a projection of A’ if h
is the (recursive) head of . The dependents of a head are those substructures which are
‘immediate dependents’ of its projections, i.e. d is a dependent of an atomic A in s, just in
case s = t[grd] or s = t[d < g], where h is head of g.

12.6 Lexical subcategorisation and grammatical relations

Within the categorial framework known as Montague Grammar, it has been suggested that
grammatical relations (GRs), i.e. notions such as subject and direct object, might be defined
in terms of subcategorisation and combination (see especially Dowty, 1982). For example, a
subject is defined to be that complement which combines with an intransitive verb (or VP)
to give a sentence, whilst a direct object is defined as that complement which combines with
a transitive verb type to give an intransitive verb. This view of GRs is problematic for use
with systems such as associative Lambek calculus for various reasons.?> One problem is due
to the flexibility of derivation under the associative Lambek calculus, which is such that for
a constituent of type s/np or np\s, the sought argument NP does not need to be the subject
of the constituent’s main verb.

One possible solution to this problem is that lexical subcategorisation might be specified
in terms of the non-associative connectives ¢, §, i.e. since then the np argument of any con-
stituent sgnp or np§s must be the maximal verb’s subject. Selecting this level for specifying
lexical subcategorisation would not lead to a general loss of flexibility in a hybrid framework,
since any non-associative implication may be freely rewritten as a corresponding associative
implication (e.g. XgY = X/Y).26

For various reasons, it seems likely that ‘lexical subcategorisation’ should also encode de-
pendency information. (We shall see some possible uses for this information shortly.) Let us

2% A considerable problem for using argument order to encode grammatical hierarchy involves appropriately
handling word order when indirect objects and other more oblique complements are taken into consideration.
This problem is addressed in Montague Grammar by use of ‘wrapping’ string operations. 1 will ignore this
problem here. See Hepple (1990) for discussion.

26Hepple (1990) provides connectives §, ¢ for specifying lexical subcategorisation (which are not the same as
the §, § we have considered in this paper), which are such that e.g. XgY = X/Y is derivable, but X/Y = XgY
is not. This asymmetry is achieved by the (unsatisfactory) method of providing the lexical subcategorisation
connectives with an incomplete logic, with only elimination rules.
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assume a level of non-associative dependency structure, having syntactic product operators
> and <. The associated implicationals might be used for specifying lexical subcategorisa-

tion. For example, a transitive verb might be: (npis)gnp. A VP-level adverbial might

have type: (npis)i(npis), where, crucially, the principal connective 2. serves to indicate
that, although the adverbial is a functor over the VP, it is the VP which is head of the
construction.?” On the other hand, an auxiliary would be (npis)g(npis), indicating its
head status.

In the hybrid framework, this level would be linked to various other levels, some biased,
some non-biased, and being subject to differing regimes of associativity and permutation.
For example, it seems reasonable that © <; > and ® <; <, i.e. so that bias may be dropped,
yielding the familiar non-associative level. Another related level (notated £ /%) might involve
maintaining bias, but adding a bias-preserving form of permutation, e.g.: zLy =yha

A possible use for this latter level is in characterising certain constituent notions without
reference to language specific ordering information. For example, we could refer to VP

. . . . > . <4 >
without directional information as s—-np (or equivalently np—]gs). (Note that sgnp = s<np

and npis = s@np.) We might take the view that a head which requires a VP complement
should not make reference to (language specific) directional information encoded by its VP
complement, merely the fact that its complement is a VP. This could be avoided by assigning

such the head a type of the form xX& (s%np).

In the remainder of the paper, I will address some possible uses for dependency systems
which are less rigidly structured than the level for encoding lexical subcategorisation. Of
course, to be linguistically useful, such levels must be ‘accessible’ from the level used in
encoding lexical subcategorisation (i.e. for a level with operators § /%, we expect § <; >
and 3 <; <).

12.7 Bounded head movement

Consider how we might handle bounded movement of heads, where the relevant sense of
‘bounded’ is that the head cannot move out of its own ‘domain’, i.e. the domain of head
+ complements/adjuncts that the head itself defines. Rephrasing this requirement, when
a head h is moved to the peripery of some domain D, h must itself be head of D (in the
‘recursive’ sense discussed above). I will notate the system to be discussed via 3/ %. Clearly,
the equivalences defined over the relevant system of algebraic objects must be such as to
preserve heads, i.e. if a = o', then @ and o' have the same head. Furthermore, to allow

271t should be clear that the head/non-head distinction is treated as a primitive, non-derived notion in the
Moortgat & Morrill approach. This view may be contrasted with approaches such as that of Barry & Pickering
(1990), where the notion of head is defined in terms of the notion of categorial functor. Problems arise for
such approaches regarding the status of adjuncts.
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abstraction over the head element, equivalence in the system must be such that if an atomic
z is head of some «, then there exists some (3 such that @ = 35 z. The equivalence axioms in
(59) are sufficient for this purpose. Bounded head movement may be handled by assigning

a displaced head having canonical type H a further type of the form (e.g.): A/(B & H).
(59) a. =
b. =z

Yy =yqz
(yoz) =(25y)e=

For example, consider the type combinations in (60) and the partial proof (61), which
could be extended to give a proof of either (60a,b). (61) shows some marker cases for the
proof term which are relevant to what are possible subsequent introduction steps. We can see
from the ‘maximal’ marker term z > (y > 2) that the functor labelled z is ‘head of the proof’,
whereas the functor labelled y is ‘head’ only of a subproof. The cases (i) and (ii) show that
(60a) could be derived by discharging either functor assumption. Cases (iii) and (iv) show
that to derive (60b), by a [31] inference, we may only discharge the assumption labelled x,
i.e. the head of the overall proof.

(60) a. {X & X, X} = X o—(X & X)
b, {XZX,X}=XZXZX)

(61) X< X:z XZX:y X:iz
—E

Xiysz i) B (yoz)oz
X:z2% (y5 2) S o (ye2) (H) N (x®z)*®y
(iii) b, (yp2)ge

(v) ~(b; a%y)

One linguistic application for this notion of bounded head movement is the treatment of
the Verb Second (V2) behaviour of languages such as Dutch and German, where systematic
differences are observed between the word order of main and subordinate clauses. Various
accounts of V2 in a range of different formalisms and frameworks have a common underlying
informal basis: main clause word order is derived (in some sense) from subordinate clause
word order by, firstly, fronting of the main clause finite verb, followed by optional movement
of some constituent to the left of the fronted verb. Note that this verb movement is bounded
— the finite verb may not come from any embedded clause, nor may any non-finite verb
dominated by the finite verb take the latter’s place in the fronting movement. A criticism
that may be levelled against most V2 treatments is that the mechanism provided to allow
fronting of the verb could as well allow unbounded movement (even if the boundedness
requirement may be encoded), whereas the boundedness of V2 verb movement appears a
very strong characteristic of the phenomenon cross-linguistically.
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For the present approach, V2 verb movement might be handled using a lexical rule such as
(62), generating an appropriate movement type for each finite verb.?® Note that s and s,, in
(62) are distinguished types for embedded and main clauses, respectively. The use of this
mechanism for handling V2 verb movement explains not only why the movement is bounded,
but also why it is only the ‘maximal’ verb in any cluster that may be fronted.

(62) V o= s /(s & V) (V a finite verb)

12.8 Local and non-local dependency relations

It is a crucial characteristic of the dependency algebra discussed in the previous section that
for any object a, there is some (8 such that @ = 35z where z is atomic, and this is only

possible where z is the head of a. It follows, at the level of the proof system, that a [ﬁl]

(or [[>—*>I]) inference may only discharge the assumption which is ‘head of the proof’. Let us
turn our attention to possibilities for abstracting over ‘dependent’ elements. At the level of
the interpretive algebra, the crucial question is: for any «, what are the atomic z such that
there exists some 3 such that @ = 3z (or @ = 2z 38) (I will again notate the system to be
discussed via §/%).

Assume again the bias-preserving equivalence (63a), so that the linear order of heads
and dependents is not relevant to possibilities. Consider the systems arrived at by choice of
‘associativity axioms’ from the equivalences (63b,c).

(63) a. zgy =yge
b oi(yie) = (ei9)is
c. w5(ysz) =(22y)iz

Firstly, consider the system including only the axioms (63a,b). Note that various other
equivalences follow automatically, e.g. (z5y)5 2 = (25 2)5y. Note that (63b) preserves both
heads and dependents (in the sense defined earlier), i.e. on both sides of the equivalence, y is
head, and z and z its dependents. Thus, for any «, @’ such that @ = o’ under (63a,b), a and
o’ have the same head h, and h has the ‘same’ dependents in both (or strictly, there is a one-
to-one mapping between its dependents in the two cases, where the subexpressions so paired

28This treatment of V2 is closely related to that of Hepple (1990). That proprosal, however, relies on
a general polymodal treatment of locality constraints for ensuring that the verb movement is appropriately
bounded. Hepple (1990), following Jacobson (1987), gives a verb movement based ‘pseudo-wrapping’ treatment
of English word order, to avoid problems for adopting the Montague Grammar treatment of grammatical
relations (discussed earlier) within a concatenative CG framework. This view of English word order could also
be reconstructed within the above framework, without need to stipulate or otherwise enforce the boundedness
of verb movement.
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are equivalent). Furthermore, free restructuring under (63a,b) will allow any dependent of
the head of some a to ‘move up’ to topmost hierarchical position. For any a and atomic x,
there is some (3 such that a = 35z if and only if z is a dependent of the head of a.

This system would, for example, allow for a version of bounded movement of dependents.
For any constituent derived of the form BEC, the argument C must correspond to a direct
dependent of the constituent’s head, and so assigning an element with canonical type C a

movement type of the form (e.g.) A/(B 2 C) would allow it to move to the periphery of the
domain of its head but not beyond.

Equivalence under (63c) does preserve the head of any expression, but does not preserve
dependents. It does, however, preserve ‘least prominence’ in the sense defined earlier (i.e.
the least prominent element in an expression is the atom reached by recursing down always
following secondary branches). In a system with just (63a,c), a = g5z (for some ) if and
only if (atomic) z is the least prominent element of a. When all three equivalences are
included, much greater freedom results. In particular, for any o, a = g5z (for some ) for
any atomic z in a except its head.

One way that these observations might be summed up is as follows. The dependency
system with equivalences (63a,b) is the maximally free system which preserves dependent
status. With inclusion of (63c), this preservation is undermined so that any element in an
object a (except its head) may be treated as if it were a top-level dependent. The ‘division
of labour” between the two equivalences (63b,c) may be characterised as follows: (63b) allows
for ‘local’ restructuring of dependency relations (i.e. restructuring purely within the ‘domain’
of a single head), whereas (63c) allows an ‘embedded’ dependency to move up a level to be
treated as if it were a dependent of a dominating head, and so introduces a ‘non-local’ aspect
to dependency restructuring.

We may ask if the notion of locality that arises for the system (63a,b) is useful linguistically.
For example, consider bounded extraction, and in particular, bounded movement of adverbial
adjuncts. As is well known, extraction of such adjuncts from embedded clauses is in general
ungrammatical (taking a simple view of the data, which is sufficient for immediate purposes):

(64)

a. John [y, [yp opened the box] [,qy With a crowbar ]
b. How; did John [y, [yp open the box] ;]
c. *How; do you remember that John [y, [vp opened the box] ;]

(* under intended reading)

It is readily seen, however, that the (63a,b) system is too restrictive for treating this phe-
nomenon. An adverbial can move outside of the domain of its head, as in (65b), where the
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adverbial modifies the embedded VP, and hence is dependent on the embedded verb:

(65) a. John wants [y, [yp to leave] tomorrow]

b.  When; does John want [y, [yp to leave] ;]

Another possible application is locality constraints on reflexivisation. Some recent propos-
als have explained the locality requirement for core cases of reflexivisation in terms of ‘co-
argumentation’, i.e. reflexives and binder must be arguments of the same lexical predicate
(Pollard & Sag, 1992; Reinhart & Reuland, 1991). In the present approach, co-argumentation
might be reconstrued in terms of ‘co-dependents’. A problem arises with examples such as
John; spoke to himself;, where the reflexive is embedded within a PP, suggesting need of the
excluded ‘non-local’ equivalence (63c).

It appears then that the (63a,b) dependency system is too restrictive for most linguistic
purposes. A possible alternative is that we might seek a system with some restricted involve-
ment of the ‘non-local’ equivalence (63c), so that we could go beyond the limitations of the
(63a,b) system only in limited circumstance and extent. I will explore two alternatives for a
mixed local/non-local systems in the following subsections.

12.9 Distinguishing dependency relations

In the preceding subsections, I have treated the relationship between verb and complement
and between verb and adjunct as being underlyingly the same, expressed at the ‘lexical level’
in the interpretive algebra via the same operators > /<. However, various linguistic accounts
have made explanatory use of the differential status of head-complement and head-adjunct
relations. The possibility exists that we might use different operators to encode these different
dependencies, e.g. a system §/5/5 /4 where ¢ indicates a head-complement relation and
@ indicates a head-adjunct relation. Then, for example, the dependency structure of John
loves Mary madly might take the following form: (john g ((loves s mary) 5 madly))
Further distinctions could be similarly encoded. For example, use has been made of the
status of subjects as ‘external argument’, in contrast to the ‘internal’ status of the verb’s
other complements. This distinction could again be marked in the system of operators, so
that our example sentence’s structure might be: (john g ((loves s mary) 5 madly))

I shall not attempt to enumerate all such distinctions that might be encoded.

The non-associative level at which such relations are lexically specified might be related
to a range of other levels, subject to differing schemes of associativity and commutativity,
etc. At some of these levels, the distinctions between differing kinds of head-dependent
relations might be discarded, whilst at others, the distinctions might be maintained, and
play a role in determining the possible derivable constituents. For example, it is possible that
a non-commutative system where there was partial associativity conditioned by dependency
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distinctions might give rise to a level of ‘flexible dependency structure’ suitable for addressing
phenomena of non-constituent coordination.??

I will here consider a possible role for fine-grained dependency distinctions in relation to
island constraints. Extraction will be handled at a level of operators ¥/ (« ranging over
distinctions between dependencies), where the linkage of this level to the level of (distin-
guished) lexical relations preserves distinctions, i.e. so that ¥ <; § and °%q <; g for each
distinguished operator. The following equivalences are the same as those in (63), except that

operators now bear dependency distinctions (a, § ranging over distinctions).

(66) a. z2%y =y
b. xaq*(yi*z) :(x%*y)ﬁ;z
. TY(YL) =Ty

As should be clear from preceding discussion, admitting only (66a,b) would allow only (overly
restrictive) head-bounded movement of dependents, whereas including also (66¢) would freely
allow (dependent) extraction of any element except the (maximal) head.

However, a middle ground may be achieved if we allow restricted involvement of (66¢), which
gives rise to the ‘non-local’ aspect of dependency restructuring. For example, if a certain
case of (66¢) is not allowed, (e.g.) if 25 (yL 2) # (2% y) 4 2, this has the effect that ‘q-
dependents’ may not move up out of ‘p-domains’, so that ‘p-domains’ are islands to extraction
of ‘g-dependents’. For example, if we exclude equivalences z ¥ (y %* z) =(z%y) %* z for all
distinctions 3, the island status of adjuncts follows (recall that @ is the dependency distinction
for adjuncts). A restricted version of (66¢) might take the form:

(61) 2% (T2 =Ty where {a,8) € {..}

The set {...} in (67) might be used simply for stipulating observed possibilities. Alternatively,
however, we might seek to encode more general claims about island phenomena in terms of
requirements on the structure of the set, e.g. transitivity (viewing the set as an extensional
characterisation of a relation).

12.10 Counting dependency chains and locality in binding

Let us turn our attention to locality constraints on binding. As noted earlier, some ac-
counts have explained the locality requirement for core cases of reflexivisation in terms of
‘co-argumentation’, i.e. reflexive and binder must be arguments of the same lexical predicate

2°C f. the proposals of Barry & Pickering (1990, 1992/draft) concerning flexible dependency and the treat-
ment of coordination.
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(Pollard & Sag, 1992; Reinhart & Reuland, 1991). In the present approach, co-argumentation
might be handled in terms of ‘co-dependents’. As we have seen, a system with equivalence
axioms (68) only allows abstraction over immediate dependents of a constituent’s head.

(68) a. zgy =yqe

Then, for example, a subject antecedent version of the reflexive himself might have the lexical
type assignment (69) (where ‘VP’is an abbreviation for the complex type).>°

(69) < vpX (VP o np), Biu. u ) himself, Av.wov >

The reflexive is assigned a ‘raised’ type, and a likewise ‘raised’ string term such that the
word order position that will result for the reflexive word corresponds to that of the NP
argument of VPzgnp. The semantics of the reflexive effects co-binding of the NP argument
sought by VPD—*>11p with its next argument slot, i.e. with the subject position. Locality for
reflexivisation follows because the NP argument of VP>—*>11p must be a dependent of the head
of the phrase, i.e. the verb, and hence a co-dependent of the verb’s subject.

A problem arises with examples such as John; spoke to himself;, where the reflexive is
embedded within a PP, showing that simple ‘co-dependency’ is not sufficient. The embedded
location of the NP appears to require involvement of the ‘non-local’ dependency restructuring
equivalence: 5 (y52) = (z5y)5 2, but as we have seen, free involvement of this axiom would
undermine locality altogether. The Pollard & Sag (1991) approach allows the semantics of the
PP to be ‘identified’ (via unification) with that of the embedded NP in such ‘case-marking’
preposition cases, giving a result semantically precisely as if the NP were a direct argument
of the verb. One possible reconstrual of this solution is that the dependency relation between
preposition and head is in some way treated as ‘zero length’.

This observation is suggestive of an approach which exhibits sensitivity to the ‘length’
of chains of dependency (in terms of levels of embedding). A standard lexical dependency
has length 1, whereas the lexical dependency between a case-marking preposition and its NP
complement has length 0. Hence, the dependency chain between a verb taking a PP argument
and the NP therein is, in sum, 1. Dependency chains with length >1 will not be allowed
for reflexivisation. A system which allows full counting of the length of dependency chains,
however, would appear too strong.?! This might allow, for example, a version of reflevisation
(or extraction) where binder and anaphor had to be precisely four levels of embedding apart;

3% Adapting from the proposal of Szabolcsi (1987), where reflexives are functions over verbs, and have

‘duplicator’ semantics causing co-binding of two verb argument positions.
*1C.f. Chomsky, 19%*.
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not less, not more. A restricted version of ‘counting’ might instead distinguish only the cases
0,1 and >1.
Length of dependency must initially be recorded lexically. Assume we have operators /4

for 0 < n < 1. For example, a transitive verb might be (11p<]—1>s)<>—111p, whilst a case-marking

preposition might be pp@np. Assume next a level with operators '/ for 0 < n < 2
(where 2 is used to signify all values >1). The linkage between the two levels preserves both
bias and count. We require the equivalences in (70) (where n,m,r range over {0,1,2}),
which are schematic for a greater number of fully instantiated equivalences (21 in fact). The
bias-preserving permutation and local dependency restructuring equivalences (70a,b) do
not change any count values. The non-local restructuring equivalence (70c), however, may
give different values for operators on the two sides. Consider an object such as z (y > 4)
Here z is embedded to a depth of 2. Restructuring under (70c) yields the result (23 y) ¥ 2
where z appears as if it were a top-level dependent, but where its count records the fact
that originates from a deeper level of embedding. The count for the ‘promoted’ dependent
z is derived by adding together the counts for the previously chained dependencies. Note
that if this sum is greater than 1, the result is taken as 2 (representing all values >1) The
opposite direction of restructuring under (70c) is non-deterministic, e.g. (23 y)’% 2z may
restructure to any of 2 32 (y2), e 2 (y%s 2) or 22 (y’¥ z). However, all three alternatives
correctly maintain the mformatron that the depth of embedding of z is of an extent >1.

(70) a. 2Py =y
b. a2 (y¥z) =Ty T2
c. =Rz =@Ty vz r = MAX({m+n, 2})

Under this approach, a subject antecedent version of himself might have the lexical type

assignment (71). Here, the NP argument of VPI>—*>111p must be a dependent at depth 1, and
so may be either an argument of the verb or inside a PP argument of the verb.

D*l

(71) <vpH — (VP = np), Bu.u 5y himself, Av.wov >

This same mechanism may be used for handling certain aspects of ‘anti-locality’ conditions
on binding. For example, the lexical entry (72) for the personal pronoun him allows for
bound uses, with subject antecedent. This type requires that the bound argument position
be embedded to a depth >1 in the structure, so allowing (e.g.) Every boy; thinks Mary likes
him; but not *Every boy; likes him;.

<Ix2 D x

(72) < VP (vp =2

2 np), puu.u (&_*) him, Av.wvv >
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