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In this document we discuss in depth some details of the computational
model which could not be discussed in the main paper due to space limita-
tions. We also present more results in terms of TFA profiles and lists of active
transcription factors.

1 Dependence of the model on the choice of p-
value in the ChIP data

In the paper we chose to discretize the ChIP data by considering as positive
only bindings corresponding to a p-value smaller than 10~3. This, as far as we
are aware, is the standard procedure followed by the authors of all other papers
applying regression-based methods to the problem of integrating microarray
and ChIP data, so it was an obvious choice in order to compare our results with
other methods.

The p-value cut-off was originally suggested in [1] as providing a low level of
false positives (estimated at 5%) and an acceptable level of false negatives (the
authors estimated that approximately a third of all bindings went undetected).
It must be borne in mind, though, that binding is only a necessary condition
for regulation [4]. Therefore, the fraction of false positives in the regulatory
relationships can be expected to be much higher.

To test the robustness of our model upon changes in the cut-off p-value,
we ran our model on the cell-cycle data set with three different connectivity
matrices: one was obtained by using the customary cut-off at p = 1073, another
was obtained by taking p = 2 x 10™* and a third by taking p = 5 x 10~%. The
data sets obtained were very different: the most stringent p-value led to a smaller
network with 1309 genes and 88 transcription factors, while at the other end
p = 5 x 1072 led to a large network with 3130 genes and 112 transcription



p-value | possible links | significant links

2x10™% 2111 486

1x1073 3656 716

5x1073 7200 1007
Table 1:

Possible regulations and significant regulations for three different choices of cut-off in
the p-value for ChIP data

factors. All the results can be obtained by using the MATLAB code available
for download at http://umber.sbs.man.ac.uk/resources/puma.

We then constructed effective connectivity matrices by retaining only regu-
latory relations that were predicted to be significant (at 95% significance level)
by our model. The results of the analysis are summarised in Table 1.

Not surprisingly, the fraction of significant regulations (out of the possi-
ble total) is higher the more stringent the cut-off chosen. However, while this
fraction is very similar in the two most stringent cases (23.0% and 19.6% re-
spectively), it is smaller for p = 5 x 10~3 (approximately 14.0%). This suggests
that the number of false positives at p = 5 x 10~ might be too large, forcing
the model to explain behaviours that are inconsistent and resulting in fewer
confident predictions.

Comparing the results between the different experiments, we see that the
two more stringent p-values give similar results, with approximately 70% of
effective regulatory relations shared between the two predictions. This is some-
what surprising if we consider how different the two networks are. The run
using p = 5 x 1073 gave less consistent results, with only approximately 46%
of effective regulatory relations predicted both at p = 1072 and p = 5 x 1073.
These relations were almost all present also in the run using the most strin-
gent p-value. These results changed only slightly if we altered the significance
threshold for the effective connectivity matrix.

This analysis indicates that, consistently with the suggestions of [1], p =
10~3 provides a good choice of a cut-off to discretize ChIP data, as it seems
to capture a large enough number of regulatory relationships while at the same
time keeping the number of false positives at a reasonable level.

2 Global analysis of regulatory networks

We then considered the global aspects of the inferred regulations in both the cell
cycle case and metabolic cycle case. To assess the significance of a relationship
we considered the ratio between the changes across time of the gene-specific
TFA and the associated standard deviation, considering ratios greater than 2 to
be significant at 95% confidence level. The results of this analysis are summed
up in Table 2.

In the cell cycle data set (with connectivity obtained using a p-value of
10~3), the model inferred 716 significant regulatory relations. These were due



Data set No of genes | No of TFs | genes with multiple regulators
Cell cycle 522 47 23%
Metabolic cycle 2167 151 11%
Table 2:
Global properties of the networks of significant regulations for the two data sets
studied.

to 47 transcription factors acting on 522 genes. Out of the 47 transcription
factors, 27 are confirmed transcription factors active during the cell cycle [3].
These account for 466 regulatory relations. Of the 522 genes involved, 119 had
more than one significant regulator. A list of the transcription factors involved,
together with the number of genes they significantly regulate and a comparison
with the data from [3] is included in the attached spreadsheet CellCycleTF xls.
In the metabolic cycle data, our model detected 2410 significant regulations
involving 151 transcription factors and 2167 genes. Notice that in this data set
the fraction of significant regulations out of the total possible is much higher
than in the cell cycle at the same level of significance (approximately 42% versus
20%). This is probably due to the fact that, in the metabolic cycle data set,
we were able to use the noise information extracted at probe level using the
mmgMOS algorithm [2], resulting in a more principled treatment of the noise.
In the metabolic cycle, 236 genes appear to have multiple significant regulators,
five of which were regulated by three transcription factors and one by four. A
list of the transcription factors involved and the number of genes each of them
regulates is included in the attached spreadsheet MetabolCycleTF .xls.

3 Further TFAs

In the main paper there was only space to show the inferred TFAs only in very
few cases (ACE2 for the cell cycle data set, LEU3 and ACE2 for the metabolic
cycle data set). We show here more gene-specific TFAs and compare them with
non-specific profiles obtained from regression. Further examples can be obtained
by using the online MATLAB code.

Figure 2 shows the TFAs of four more transcription factors that are involved
in the cell cycle according to our results. The TFA obtained by regression
for these transcription factors is shown in the first column, while the other
columns show the gene-specific TFAs obtained with our model for the three most
significantly regulated targets of these transcription factors. Notice that some
gene-specific TFAs look quite different from the TFAs obtained by regression.
For example, the TFA obtained by regression for STE12 seem to be dominated
by white noise, while the gene specific TFA on the most significant targets shows
a very different behaviour, being stationary for the first part of the cycle and
peaking towards the end. The gene-specific TFAs of MBP1’s three main targets
again show different behaviours among them, and in turn different from the
regression picture.



Figure 1 shows the TFAs of four more transcription factors that significantly
regulate five or more genes in the metabolic cycle but do not have periodic ex-
pression according to [5]. These are ABF1, ARO80, FHL1 and SMP1. The
TFA obtained by regression for these transcription factors is shown in the first
column, while the other columns show the gene-specific TFAs obtained with our
model for the three most significantly regulated targets of these transcription
factors. These results indicate that, even if the expression levels of these tran-
scription factors is not periodic, their gene-specific activities are to be considered
periodic for many genes. We would suggest that the appropriate criterion to
determine whether a transcription factor is involved in a periodic cellular pro-
cess is whether its activities, rather than its expression level, display periodic
behaviour.
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Figure 1: TFAs and gene-specific TFAs for some transcription factors active in
the yeast metabolic cycle which have non periodic expression levels. (a) TFA
of ABF1 obtained by regression. (b-d) TFA of ABF1 for its three main targets,
YOR309C, RFA2 and YPL0O12W respectively. (e) TFA of ARO80 obtained by
regression. (f-h) TFA of AROS8O0 for its three main targets, YNL124W, ARH1
and ARO10 respectively. (i) TFA of FHL1 obtained by regression. (j-1) TFA
of FHL1 for its three main targets, RPLIA, RPL14B and RPL9B respectively.
(m) TFA of SMP1 obtained by regression. (n-p) TFA of SMP1 for its three
main targets, SLT2, GRX5 and HKRI1 respectively.
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Figure 2: TFAs and gene-specific TFAs for some transcription factors active in
the yeast cell cycle. (a) TFA of NDD1 obtained by regression. (b-d) TFA of
NDDI1 for its three main targets, PHO3, YDR033W and NCE102 respectively.
(e) TFA of SWI5 obtained by regression. (f-h) TFA of SWI5 for its three main
targets, PIR1, PIR3 and ASH1 respectively. (i) TFA of STE12 obtained by
regression. (j-1) TFA of STE12 for its three main targets, FUS1, KAR4 and
SST2 respectively. (m) TFA of MBP1 obtained by regression. (n-p) TFA of
MBP1 for its three main targets, MRP8, AGA1 and YMR215W respectively.




