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Deep Neural Network

given x

h1 = φ (W1x)
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Mathematically

h1 = φ (W1x)

h2 = φ (W2h1)

h3 = φ (W3h2)

y = w>4 h3



Overfitting

I Potential problem: if number of nodes in two adjacent
layers is big, corresponding W is also very big and there is
the potential to overfit.

I Proposed solution: “dropout”.
I Alternative solution: parameterize W with its SVD.

W = UΛV>

or
W = UV>

where if W ∈ <k1×k2 then U ∈ <k1×q and V ∈ <k2×q, i.e. we
have a low rank matrix factorization for the weights.



Deep Neural Network
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Deep Neural Network

given x

z1 = V>1 x

h1 = g (U1z1)

z2 = V>2 h3
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Mathematically

z1 = V>1 x
h1 = φ (U1z1)

z2 = V>2 h1

h2 = φ (U2z2)

z3 = V>3 h2

h3 = φ (U3z3)

y = w>4 h3



A Cascade of Neural Networks

z1 = V>1 x
z2 = V>2 φ (U1z1)

z3 = V>3 φ (U2z2)

y = w>4 z3



Replace Each Neural Network with a Gaussian
Process

z1 = f (x)

z2 = f (z1)

z3 = f (z2)

y = f (z3)

This is equivalent to Gaussian prior over weights and
integrating out all parameters and taking width of each layer to
infinity.



Gaussian Processes: Extremely Short Overview
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Mathematically

I Composite multivariate function

g(x) = f5(f4(f3(f2(f1(x)))))



Why Deep?

I Gaussian processes give priors over functions.
I Elegant properties:

I e.g. Derivatives of process are also Gaussian distributed (if
they exist).

I For particular covariance functions they are ‘universal
approximators’, i.e. all functions can have support under
the prior.

I Gaussian derivatives might ring alarm bells.
I E.g. a priori they don’t believe in function ‘jumps’.



Process Composition

I From a process perspective: process composition.
I A (new?) way of constructing more complex processes

based on simpler components.

Note: To retain Kolmogorov consistency introduce IBP priors over
latent variables in each layer (Zhenwen Dai).



Analysis of Deep GPs

I Duvenaud et al. (2014) Duvenaud et al show that the
derivative distribution of the process becomes more heavy
tailed as number of layers increase.



Difficulty for Probabilistic Approaches

I Propagate a probability distribution through a non-linear
mapping.

I Normalisation of distribution becomes intractable.
z 2

z1

y j = f j(z)
−→

Figure : A three dimensional manifold formed by mapping from a
two dimensional space to a three dimensional space.



Difficulty for Probabilistic Approaches

y 2

y1

z

y1 = f1(z)
−→

y2 = f2(z)

Figure : A string in two dimensions, formed by mapping from one
dimension, z, line to a two dimensional space, [y1, y2] using
nonlinear functions f1(·) and f2(·).



Difficulty for Probabilistic Approaches

p(y)p(z)

y = f (z) + ε
−→

Figure : A Gaussian distribution propagated through a non-linear
mapping. yi = f (zi) + εi. ε ∼ N

(
0, 0.22

)
and f (·) uses RBF basis, 100

centres between -4 and 4 and ` = 0.1. New distribution over y (right)
is multimodal and difficult to normalize.



Variational Compression

(Snelson and Ghahramani, 2006; Quiñonero Candela and Rasmussen, 2005; Lawrence,

2007; Titsias, 2009)

I Complexity of standard GP:
I O(n3) in computation.
I O(n2) in storage.

I Via low rank representations of covariance:
I O(nm2) in computation.
I O(nm) in storage.

I Where m is user chosen number of inducing variables.
They give the rank of the resulting covariance.
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Variational Compression

I Inducing variables are a compression of the real
observations.

I They are like pseudo-data. They can be in space of f or a
space that is related through a linear operator (Álvarez
et al., 2010) — e.g. a gradient or convolution.

I There are inducing variables associated with each set of
hidden variables, zi.



Variational Compression II

I Importantly conditioning on inducing variables renders
the likelihood independent across the data.

I It turns out that this allows us to variationally handle
uncertainty on the kernel (including the inputs to the
kernel).

I It also allows standard scaling approaches: stochastic
variational inference Hensman et al. (2013), parallelization
Gal et al. (2014) and work by Zhenwen Dai on GPUs to be
applied: an engineering challenge?
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Structures for Extracting Information from Data
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Deep Gaussian Processes
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Abstract

In this paper we introduce deep Gaussian process
(GP) models. Deep GPs are a deep belief net-
work based on Gaussian process mappings. The
data is modeled as the output of a multivariate
GP. The inputs to that Gaussian process are then
governed by another GP. A single layer model is
equivalent to a standard GP or the GP latent vari-
able model (GP-LVM). We perform inference in
the model by approximate variational marginal-
ization. This results in a strict lower bound on the
marginal likelihood of the model which we use
for model selection (number of layers and nodes
per layer). Deep belief networks are typically ap-
plied to relatively large data sets using stochas-
tic gradient descent for optimization. Our fully
Bayesian treatment allows for the application of
deep models even when data is scarce. Model se-
lection by our variational bound shows that a five
layer hierarchy is justified even when modelling
a digit data set containing only 150 examples.

1 Introduction

Probabilistic modelling with neural network architectures
constitute a well studied area of machine learning. The re-
cent advances in the domain of deep learning [Hinton and
Osindero, 2006, Bengio et al., 2012] have brought this kind
of models again in popularity. Empirically, deep models
seem to have structural advantages that can improve the
quality of learning in complicated data sets associated with
abstract information [Bengio, 2009]. Most deep algorithms
require a large amount of data to perform learning, how-
ever, we know that humans are able to perform inductive
reasoning (equivalent to concept generalization) with only
a few examples [Tenenbaum et al., 2006]. This provokes

Appearing in Proceedings of the 16th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2013, Scottsdale,
AZ, USA. Volume 31 of JMLR: W&CP 31. Copyright 2013 by
the authors.

the question as to whether deep structures and the learning
of abstract structure can be undertaken in smaller data sets.
For smaller data sets, questions of generalization arise: to
demonstrate such structures are justified it is useful to have
an objective measure of the model’s applicability.

The traditional approach to deep learning is based around
binary latent variables and the restricted Boltzmann ma-
chine (RBM) [Hinton, 2010]. Deep hierarchies are con-
structed by stacking these models and various approxi-
mate inference techniques (such as contrastive divergence)
are used for estimating model parameters. A significant
amount of work has then to be done with annealed impor-
tance sampling if even the likelihood1 of a data set under
the RBM model is to be estimated [Salakhutdinov and Mur-
ray, 2008]. When deeper hierarchies are considered, the es-
timate is only of a lower bound on the data likelihood. Fit-
ting such models to smaller data sets and using Bayesian
approaches to deal with the complexity seems completely
futile when faced with these intractabilities.

The emergence of the Boltzmann machine (BM) at the core
of one of the most interesting approaches to modern ma-
chine learning is very much a case of a the field going back
to the future: BMs rose to prominence in the early 1980s,
but the practical implications associated with their train-
ing led to their neglect until families of algorithms were
developed for the RBM model with its reintroduction as a
product of experts in the late nineties [Hinton, 1999].

The computational intractabilities of Boltzmann machines
led to other families of methods, in particular kernel meth-
ods such as the support vector machine (SVM), to be con-
sidered for the domain of data classification. Almost con-
temporaneously to the SVM, Gaussian process (GP) mod-
els [Rasmussen and Williams, 2006] were introduced as a
fully probabilistic substitute for the multilayer perceptron
(MLP), inspired by the observation [Neal, 1996] that, un-
der certain conditions, a GP is an MLP with infinite units in
the hidden layer. MLPs also relate to deep learning models:
deep learning algorithms have been used to pretrain autoen-
coders for dimensionality reduction [Hinton and Salakhut-

1We use emphasis to clarify we are referring to the model like-
lihood, not the marginal likelihood required in Bayesian model
selection.

http://jmlr.org/proceedings/papers/v31/damianou13a.pdf
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Deep Gaussian Processes

Damianou and Lawrence (2013)

I Deep architectures allow abstraction of features (Bengio, 2009;

Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).
I We use variational approach to stack GP models.



Stacked GPs (video by David Duvenaud)



Duvenaud et al. (2014)

Avoiding pathologies in very deep networks

David Duvenaud Oren Rippel Ryan P. Adams Zoubin Ghahramani
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Abstract

Choosing appropriate architectures and regular-
ization strategies for deep networks is crucial to
good predictive performance. To shed light on
this problem, we analyze the analogous prob-
lem of constructing useful priors on composi-
tions of functions. Specifically, we study the
deep Gaussian process, a type of infinitely-wide,
deep neural network. We show that in standard
architectures, the representational capacity of the
network tends to capture fewer degrees of free-
dom as the number of layers increases, retaining
only a single degree of freedom in the limit. We
propose an alternate network architecture which
does not suffer from this pathology. We also
examine deep covariance functions, obtained by
composing infinitely many feature transforms.
Lastly, we characterize the class of models ob-
tained by performing dropout on Gaussian pro-
cesses.

1 Introduction

Much recent work on deep networks has focused on weight
initialization (Martens, 2010), regularization (Lee et al.,
2007) and network architecture (Gens and Domingos,
2013). However, the interactions between these different
design decisions can be complex and difficult to charac-
terize. We propose to approach the design of deep archi-
tectures by examining the problem of assigning priors to
nested compositions of functions. Well-defined priors al-
low us to explicitly examine the assumptions being made
about functions we may wish to learn. If we can identify
classes of priors that give our models desirable properties,
these in turn may suggest regularization, initialization, and
architecture choices that also provide such properties.

Fundamentally, a multilayer neural network implements

Appearing in Proceedings of the 17th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2014, Reykjavik,
Iceland. JMLR: W&CP volume 33. Copyright 2014 by the au-
thors.

a composition of vector-valued functions, one per layer.
Hence, understanding properties of such function composi-
tions helps us gain insight into deep networks. In this paper,
we examine a simple and flexible class of priors on com-
positions of functions, namely deep Gaussian processes
(Damianou and Lawrence, 2013). Deep GPs are simply
priors on compositions of vector-valued functions, where
each output of each layer is drawn independently from a
GP prior:

f (1:L)(x) = f (L)(f (L−1)(. . . f (2)(f (1)(x)) . . . )) (1)

f
(`)
d

ind∼ GP
(
0, k`d(x,x

′)
)

(2)

These models correspond to a certain type of infinitely-
wide multi-layer perceptron (MLP), and as such make
canonical candidates for generative models of functions
that closely relate to neural networks.

By characterizing these models, this paper shows
that representations based on repeated composition of
independently-initialized functions exhibit a pathology
where the representation becomes invariant to all but one
direction of variation. This corresponds to an eventual de-
bilitating decrease in the information capacity of networks
as a function of their number of layers. However, we will
demonstrate that a simple change in architecture — namely,
connecting the input to each layer — fixes this problem.

We also present two related analyses: first, we examine
the properties of a arbitrarily deep fixed feature transforms
(“deep kernels”). Second, we characterise the prior ob-
tained by performing dropout on GPs, showing equiva-
lences to existing models.

2 Relating deep neural nets and deep
Gaussian processes

2.1 Single-layer models

In the typical definition of an MLP, the hidden units of the
first layer are defined as:

h(1)(x) = σ
(
b(1) +W(1)x

)
(3)

where h are the hidden unit activations, b is a bias vector,
W is a weight matrix and σ is a one-dimensional nonlinear
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Avoiding pathologies in very deep networks

Inputs
Hidden

Outputs Inputs
Hidden Hidden

Outputs Inputs
Hidden

f (1)(x)

Hidden
f (1:2)(x)

a) One-hidden-layer MLP b) Two-hidden layer MLP c) Two-layer GP: y = f (2)
(
f (1)(x)

)

Figure 1: GPs can be understood as one-hidden-layer MLP with infinitely many hidden units (a). There are two possible
interpretations of deep GPs: We can consider the deep GP to be a neural network with a finite number of hidden units, each
with a different non-parametric activation function (b). Alternatively, we can consider every second layer to be a random
linear combination of an infinite number of fixed parametric hidden units (c).

function applied element-wise. The output vector f(x) is
simply a weighted sum of these hidden unit activations:

f(x) = V(1)σ
(
b(1) +W(1)x

)
= V(1)h(1)(x) (4)

where V(1) is another weight matrix.

There exists a correspondence between one-layer MLPs
and GPs (Neal, 1995). GPs can be viewed as a prior on
neural networks with infinitely many hidden units, and un-
known weights. More precisely, for any model of the form

f(x) =
1

K
αTh(x) =

1

K

K∑

i=1

αihi(x), (5)

with fixed features [h1(x), . . . , hK(x)] T = h(x) and i.i.d.
α’s with zero mean and finite variance σ2, the central limit
theorem implies that as the number of features K grows,
any two function values f(x), f(x′) have a joint distri-
bution approaching N

(
0, σ

2

K

∑K
i=1 hi(x)hi(x

′)
)

. A joint
Gaussian distribution between any set of function values is
the definition of a Gaussian process.

The result is surprisingly general: it puts no constraints on
the features (other than having uniformly bounded activa-
tion), nor does it require that the feature weights α be Gaus-
sian distributed.

We can also work backwards to derive a one-layer MLP
from any GP. Mercer’s theorem implies that any positive-
definite kernel function corresponds to an inner product of
features: k(x,x′) = h(x)Th(x′). Thus in the one-hidden-
layer case, the correspondence between MLPs and GPs is
simple: the features h(x) of the kernel correspond to the
hidden units of the MLP.

2.2 Multiple hidden layers

In an MLP, the `th layer units are given by the recurrence

h(`)(x) = σ
(
b(`) +W(`)h(`−1)(x)

)
. (6)

This architecture is shown in figure 1b. For example, if we
extend the model given by (4) to have two layers of feature
mappings, the resulting model is

f(x) =
1

K
αTh(2)

(
h(1)(x)

)
. (7)

If the features h(x) are considered fixed with only the last
layer weights α unknown, this model corresponds to a GP
with a “deep kernel”:

k(x,x′) =
(
h(2)(h(1)(x))

)
Th(2)(h(1)(x′)) (8)

These models, examined in section 6, imply a fixed repre-
sentation as opposed to a prior over representations, which
is what we wish to analyze in this paper.

To construct a neural network with fixed nonlinearities cor-
responding to a deep GP, one must introduce a second layer
in between each infinitely-wide set of fixed basis functions,
as in figure 1c. The D` outputs f (`)(x) in between each
layer are weighted sums (with unknown weights) of the
fixed hidden units of the layer below, and the next layer’s
hidden units depend only on these D` outputs.

This alternating-layer architecture has an interpretation as
a series of linear information bottlenecks. We can simply
substitute (4) into (6) to get

h(`)(x) = σ
(
b(`) +W(`)V(`−1)h(`−1)(x)

)
. (9)

Thus, ignoring the intermediate outputs f (`)(x), a deep GP
is an infinitely-wide, deep MLP with each pair of layers
connected by random, rank-D` matrices W(`)V(`−1).

A more direct way to construct a network architecture cor-
responding to a deep GP is to integrate out all V(`), and
view deep GPs as a neural network with a finite number of
nonparametric, GP-distributed basis functions at each layer,
in which f (1:`)(x) represent the output of the hidden nodes
at the `th layer. This second view lets us compare deep GP
models to standard neural net architectures more directly.
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Figure 2: One-dimensional draws from a deep GP prior.
After a few layers, the functions begin to be either nearly
flat, or highly varying, everywhere. This is a consequence
of the distribution on derivatives becoming heavy-tailed.

3 Characterizing deep Gaussian processes

In this section, we develop several theoretical results that
explore the behavior of deep GPs as a function of their
depth. This will allow us in section 4 to formally identify a
pathology that emerges in very deep networks.

Specifically, we will show that the size of the derivative of a
one-dimensional deep GP becomes log-normal distributed
as the network becomes deeper. We’ll also show that the
Jacobian of a multivariate deep GP is a product of indepen-
dent Gaussian matrices with independent entries.

3.1 One-dimensional asymptotics

In this section, we derive the limiting distribution of the
derivative of an arbitrarily deep, one-dimensional GP with
a squared-exp kernel:

kSE(x, x
′) = σ2 exp

(−(x− x′)2
2w2

)
. (10)

The hyperparameter σ2 controls the variance of functions
drawn from the prior, and the hyperparameter w controls
the smoothness. The derivative of a GP with a squared-exp
kernel is pointwise distributed as N

(
0, σ

2
/w2
)
. Intuitively,

a GP is likely to have large derivatives if it has high variance
and small lengthscales.

By the chain rule, the derivative of a one-dimensional deep
GP is simply a product of its (independent) derivatives. The
distribution of the absolute value of this derivative is a prod-
uct of half-normals, each with mean

√
2σ2
/πw2.

If we choose kernel parameters so that σ2
/w2 = π/2, then

the expected magnitude of the derivative remains constant
regardless of the depth.

The log of the magnitude of the derivatives has moments

mlog = E
[
log

∣∣∣∣
∂f(x)

∂x

∣∣∣∣
]
= 2 log

( σ
w

)
− log 2− γ

vlog = V
[
log

∣∣∣∣
∂f(x)

∂x

∣∣∣∣
]
=
π2

4
+

log2 2

2
− γ2 − γ log 4

+ 2 log
( σ
w

) [
γ + log 2− log

( σ
w

)]
(11)

where γ u 0.5772 is Euler’s constant. Since the second
moment is finite, by the central limit theorem, the limit-
ing distribution of the size of the gradient approaches log-
normal as L grows:

log

∣∣∣∣
∂f (1:L)(x)

∂x

∣∣∣∣ =
L∑

`=1

log

∣∣∣∣
∂f (`)(x)

∂x

∣∣∣∣

=⇒ log

∣∣∣∣
∂f (1:L)(x)

∂x

∣∣∣∣
L→∞∼ N

(
Lmlog, L

2vlog
)

(12)

Even if the expected magnitude of the derivative re-
mains constant, the variance of the log-normal distribution
grows without bound as the depth increases. Because the
log-normal distribution is heavy-tailed and its domain is
bounded below by zero, the derivative will become very
small almost everywhere, with rare but very large jumps.

Figure 2 shows this behavior in a draw from a 1D deep GP
prior, at varying depths. This figure also shows that once
the derivative in one region of the input space becomes very
large or very small, it is likely to remain that way in subse-
quent layers.

3.2 Distribution of the Jacobian

We now derive the distribution on Jacobians of multivariate
functions drawn from a deep GP prior.

Lemma 3.1. The partial derivatives of a function mapping
RD → R drawn from a GP prior with a product kernel are
independently Gaussian distributed.

Proof. Because differentiation is a linear operator, the
derivatives of a function drawn from a GP prior are also
jointly Gaussian distributed. The covariance between par-
tial derivatives w.r.t. input dimensions d1 and d2 of vector
x are given by Solak et al. (2003):

cov

(
∂f(x)

∂xd1
,
∂f(x)

∂xd2

)
=
∂2k(x,x′)
∂xd1∂x

′
d2

∣∣∣∣
x=x′

(13)

If our kernel is a product over individual dimensions
k(x,x′) =

∏D
d kd(xd, x

′
d), as in the case of the squared-

exp kernel, then the off-diagonal entries are zero, implying
that all elements are independent.
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In the case of the multivariate squared-exp kernel, the co-
variance between derivatives has the form:

f(x) ∼ GP

(
0, σ2

D∏

d=1

exp

(
−1

2

(xd − x′d)2
w2
d

))

=⇒ cov

(
∂f(x)

∂xd1
,
∂f(x)

∂xd2

)
=

{
σ2

w2
d1

if d1 = d2

0 if d1 6= d2
(14)

Lemma 3.2. The Jacobian of a set ofD functions RD → R
drawn independently from a GP prior with a product kernel
is a D ×D matrix of independent Gaussian R.V.’s

Proof. The Jacobian of the vector-valued function f(x) is
a matrix J with elements Jij =

∂fi(x)
∂xj

. Because we’ve as-
sumed that the GPs on each output dimension fd(x) are in-
dependent (2), it follows that each row of J is independent.
Lemma 3.1 shows that the elements of each row are inde-
pendent Gaussian. Thus all entries in the Jacobian of a GP-
distributed transform are independent Gaussian R.V.’s.

Theorem 3.3. The Jacobian of a deep GP with a product
kernel is a product of independent Gaussian matrices, with
each entry in each matrix being drawn independently.

Proof. When composing L different functions, we’ll de-
note the immediate Jacobian of the function mapping from
layer `−1 to layer ` as J`(x), and the Jacobian of the entire
composition of L functions by J1:L(x). By the multivari-
ate chain rule, the Jacobian of a composition of functions is
simply the product of the immediate Jacobian matrices of
each function. Thus the Jacobian of the composed (deep)
function f (L)(f (L−1)(. . . f (3)(f (2)(f (1)(x))) . . . )) is

J1:L(x) = JLJ (L−1) . . . J3J2J1. (15)

By lemma 3.2, each J`i,j
ind∼ N , so the complete Jacobian

is a product of independent Gaussian matrices, with each
entry of each matrix drawn independently.

Theorem 3.3 allows us to analyze the representational prop-
erties of a deep Gaussian process by simply examining the
properties of products of independent Gaussian matrices, a
well-studied object.

4 Formalizing a pathology

Rifai et al. (2011b) argue that a good latent representa-
tion is invariant in directions orthogonal to the manifold on
which the data lie. Conversely, a good latent representation
must also change in directions tangent to the data manifold,
in order to preserve relevant information. Figure 3 visual-
izes this idea. We follow Rifai et al. (2011a) in characteriz-
ing the representational properties of a function by the sin-
gular value spectrum of the Jacobian. In their experiments,
the Jacobian was computed at the training points. Because

tangent

orthogonal

Figure 3: Representing a 1-D manifold. Colors show the
output of the computed representation as a function of the
input space. The representation (blue & green) is invari-
ant in directions orthogonal to the data manifold (white),
making it robust to noise in those directions, and reducing
the number of parameters needed to represent a datapoint.
The representation also changes in directions tangent to the
manifold, preserving information for later layers.
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Figure 4: The normalized singular value spectrum of the
Jacobian of a deep GP. As the net gets deeper, the largest
singular value dominates. This implies that with high prob-
ability, there is only one effective degree of freedom in the
representation being computed.

the priors we are examining are stationary, the distribution
of the Jacobian is identical everywhere. Figure 4 shows
the singular value spectrum for 5-dimensional deep GPs of
different depths. As the net gets deeper, the largest singular
value dominates, implying there is usually only one effec-
tive degree of freedom in representation being computed.

Figure 5 demonstrates a related pathology that arises when
composing functions to produce a deep density model. The
density in the observed space eventually becomes locally
concentrated onto one-dimensional manifolds, or filaments,
implying that such models are insuitable to model mani-
folds whose underlying dimensionality is greater than one.

To visualize this pathology in another way, figure 6 illus-
trates a colour-coding of the representation computed by a
deep GP, evaluated at each point in the input space. After
10 layers, we can see that locally, there is usually only one
direction that one can move in x-space in order to change
the value of the computed representation. This means that
such representations are likely to be unsuitable for decision
tasks that depend on more than one property of the input.
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p(x) p(f (1)(x))

p(f (1:4)(x)) p(f (1:6)(x))

Figure 5: Visualization of draws from a deep GP. A 2-
dimensional Gaussian distribution (top left) is warped by
successive functions drawn from a GP prior. As the num-
ber of layers increases, the density concentrates along one-
dimensional filaments.

To what extent are these pathologies present in nets being
used today? In simulations, we found that for deep func-
tions with a fixed latent dimension D, the singular value
spectrum remained relatively flat for hundreds of layers as
long as D > 100. Thus, these pathologies are unlikely to
severely affect relatively shallow, wide networks.

5 Fixing the pathology

Following a suggestion from Neal (1995), we can fix the
pathologies exhibited in figures 5 and 6 by simply mak-
ing each layer depend not only on the output of the pre-
vious layer, but also on the original input x. We refer to
these models as input-connected networks. Figure 7 shows
a graphical representation of the two connectivity architec-
tures. Similar connections between non-adjacent layers can
also be found the primate visual cortex (Maunsell and van
Essen, 1983). Formally, this functional dependence can be
written as

f (1:L)(x) = f (L)
(
f (1:L−1)(x),x

)
, ∀L (16)

Draws from the resulting prior are shown in figures 8, 9 and
11. The Jacobian of the composed, input-connected deep
function is defined by the recurrence

J1:L(x) = JL
[
J1:L−1

ID

]
. (17)

Identity Map: y = x 1 Layer: y = f (1)(x)

2 Layers: y = f (1:2)(x) 10 Layers: y = f (1:10)(x)

Figure 6: Feature mapping of a deep GP. Colors correspond
to the location y = f(x) that each point is mapped to after
being warped by a deep GP. The number of directions in
which the color changes rapidly corresponds to the number
of large singular values in the Jacobian. Just as the den-
sities in figure 5 became locally one-dimensional, there is
usually only one direction that one can move x in locally
to change y. This means that f is unlikely to be a suitable
representation for decision tasks that depend on more than
one aspect of x.

x f (1)(x) f (2)(x) f (3)(x) f (4)(x)

a) The standard MLP connectivity architecture.

x f (1)(x) f (2)(x) f (3)(x) f (4)(x)

b) Input-connected architecture.

Figure 7: Two different architectures for deep neural net-
works. The standard architecture connects each layer’s out-
puts to the next layer’s inputs. The input-connected archi-
tecture also connects the original input x to each layer.

Figure 10 shows that with this architecture, even 50-layer
deep GPs have well-behaved singular value spectra.
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Figure 8: Draws from a 1D deep GP prior with each layer
connected to the input. Even after many layers, the func-
tions remain smooth in some regions, while varying rapidly
in other regions. Compare to standard-connectivity deep
GP draws shown in figure 2.

3 Layers 6 Layers

Figure 9: Left: Densities defined by a draw from a deep
GP, with each layer connected to the input x. As depth
increases, the density becomes more complex without con-
centrating along filaments.
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Figure 10: The distribution of singular values drawn from
5-dimensional input-connected deep GP priors 25 and 50
layers deep. The singular values remain roughly the same
scale as one another.

Identity map: y = x 2 Connected layers

10 Connected layers 20 Connected layers

Figure 11: Feature mapping of a deep GP with each layer
connected to the input x. Just as the densities in figure 9
remained locally two-dimensional even after many trans-
formations, in this mapping there are often two directions
that one can move locally in x to in order to change the
values of f(x). This means that the prior puts mass on rep-
resentations which sometimes depend on all aspects of the
input. Compare to figure 6.

6 Deep kernels

Bengio et al. (2006) showed that kernel machines have
limited generalization ability when they use a local kernel
such as the squared-exp. However, many interesting non-
local kernels can be constructed which allow non-trivial ex-
trapolation. For example, periodic kernels can be viewed
as a 2-layer-deep kernel, in which the first layer maps
x → [sin(x), cos(x)], and the second layer maps through
basis functions corresponding to the SE kernel.

Can we construct other useful kernels by composing fixed
feature maps several times, creating deep kernels? Cho
(2012) constructed kernels of this form, repeatedly apply-
ing multiple layers of feature mappings. We can compose
the feature mapping of two kernels:

k1(x,x
′) = h1(x)

Th1(x
′) (18)

k2(x,x
′) = h2(x)

Th2(x
′) (19)

(k1 ◦ k2) (x,x′) = k2 (h1(x),h1(x
′)) (20)

= [h2 (h1(x))]
Th2 (h1(x

′)) (21)

Composing the squared-exp kernel with any implicit map-
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ping h(x) has a simple closed form:

kL+1 (x,x
′) = kSE (h(x),h(x′)) = (22)

= exp

(
−1

2
||h(x)− h(x′)||22

)

= exp

(
−1

2

[
h(x)Th(x)− 2h(x)Th(x′) + h(x′)Th(x′)

])

= exp

(
−1

2
[kL(x,x)− 2kL(x,x

′) + kL(x
′,x′)]

)

Thus, we can express kL+1 exactly in terms of kL.

Infinitely deep kernels What happens when we repeat
this composition of feature maps many times, starting with
the squared-exp kernel? In the infinite limit, this recursion
converges to k(x,x′) = 1 for all pairs of inputs, which
corresponds to a prior on constant functions f(x) = c.

A non-degenerate construction As before, we can over-
come this degeneracy by connecting the inputs x to each
layer. To do so, we simply augment the feature vector
hL(x) with x at each layer:

kL+1(x,x
′) = exp

(
−1

2

∣∣∣∣
∣∣∣∣
[
hL(x)

x

]
−
[
hL(x

′)
x′

]∣∣∣∣
∣∣∣∣
2

2

)

= exp
(
− 1

2

[
kL(x,x)− 2kL(x,x

′)

+ kL(x
′,x′)−||x− x′||22

])
(23)

For the SE kernel, this repeated mapping satisfies

k∞(x,x′)− log (k∞(x,x′)) = 1 +
1

2
||x− x′||22 (24)

The solution to this recurrence has no closed form, but
has a similar shape to the Ornstein-Uhlenbeck covariance
kOU(x, x

′) = exp(−|x− x′|) with lighter tails. Samples
from a GP prior with this kernel are not differentiable, and
are locally fractal.

6.1 When are deep kernels useful models?

Kernels correspond to fixed feature maps, and so kernel
learning is an example of implicit representation learning.
Such feature maps can capture rich structure (Duvenaud
et al., 2013), and can enable many types of generaliza-
tion, such as translation and rotation invariance in images
(Kondor, 2008). Salakhutdinov and Hinton (2008) used a
deep neural network to learn feature transforms for kernels,
which learn invariances in an unsupervised manner. The
relatively uninteresting properties of the kernels derived in
this section simply reflect the fact that an arbitrary deep
computation is not usually a useful representation, unless
combined with learning.
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Figure 12: Input-connected deep kernels. By connecting
the inputs x to each layer, the kernel can still depend on its
input even after arbitrarily many layers of computation.
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Figure 13: GP draws using deep input-connected kernels.

7 Dropout in Gaussian processes

Dropout is a method for regularizing neural networks (Hin-
ton et al., 2012; Srivastava, 2013). Training with dropout
entails randomly and independently “dropping” (setting to
zero) some proportion p of features or inputs, in order to
improve the robustness of the resulting network by reduc-
ing co-dependence between neurons. To maintain similar
overall activation levels, weights are multiplied by 1/p at
test time. Alternatively, feature activations are multiplied
by 1/p during training. At test time, the set of models de-
fined by all possible ways of dropping-out neurons is aver-
aged over, usually in an approximate way.

Baldi and Sadowski (2013) and Wang and Manning (2013)
analyzed dropout in terms of the effective prior induced
by this procedure in several models, such as linear and
logistic regression. In this section, we examine the pri-
ors on functions that result from performing dropout in the
one-hidden-layer neural network implicitly defined by a GP
(equation (4)).

7.1 Dropout on feature activations

First, we examine the prior that results from randomly
dropping features from h(x) with probability p. If these
features have a weight distribution with finite moments



Motion Capture

I ‘High five’ data.
I Model learns structure between two interacting subjects.
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Digits Data Set

I Are deep hierarchies justified for small data sets?
I We can lower bound the evidence for different depths.
I For 150 6s, 0s and 1s from MNIST we found at least 5

layers are required.
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What Can We Do that Google Can’t?

I Google’s resources give them access to volumes of data (or
Facebook, or Microsoft, or Amazon).

I Is there anything for Universities to contribute?
I Assimilation of multiple views of the patient: each perhaps

from a different patient.
I This may be done by small companies (with support of

Universities).
I A Facebook app for your personalised health.
I This methodologies are part of that picture.



Deep Health

I1I2

z1
1 z1

2 z1
3 z1

4 z1
5

y2 y3y5y4

z2
1 z2

2 z2
3 z2

4
y1y6

z3
1 z3

2 z3
3 z3

4

G E EG

latent representation
of disease stratification

survival
analysis

gene ex-
pression

clinical mea-
surements

and treatment

clinical
notes

social
net-

work,
music
data

X-raybiopsy

environment epigenotypegenotype



References I
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