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Deep Neural Network
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Deep Neural Network
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Mathematically

h; = ¢ (Wix)

hy = ¢ (Wahy)

h3 = ¢ (Wshy)
y=wh;



Overfitting

» Potential problem: if number of nodes in two adjacent
layers is big, corresponding W is also very big and there is
the potential to overfit.

» Proposed solution: “dropout”.
» Alternative solution: parameterize W with its SVD.

W =UAV'

or
W=UV"'

where if W € Rf1%k2 then U € RF1X7 and V € RF2X je. we
have a low rank matrix factorization for the weights.
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Mathematically

21 =V]x
hy = ¢ (Uiz1)
zy = V2Th1
hy = ¢ (Uyzy)
z3 = V;hz
h3 = ¢ (Usz3)

y=w,h3



A Cascade of Neural Networks

Z] = VlTx

25 =V, ¢ (Uiz1)
z3 = V; ¢ (Uyzp)
y=w,z3



Replace Each Neural Network with a Gaussian
Process

z1 = f(x)
z; = f(z1)
z3 = f(22)
y = f(z3)

This is equivalent to Gaussian prior over weights and
integrating out all parameters and taking width of each layer to
infinity.



Gaussian Processes: Extremely Short Overview
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Deep Gaussian Process Models



Mathematically

» Composite multivariate function

g(x) = f5(fa(f3(£2(f1(x)))))



Why Deep?

» Gaussian processes give priors over functions.
Elegant properties:

> e.g. Derivatives of process are also Gaussian distributed (if
they exist).

\4

v

For particular covariance functions they are “universal
approximators’, i.e. all functions can have support under
the prior.

v

Gaussian derivatives might ring alarm bells.

» E.g. a priori they don’t believe in function ‘jumps’.



Process Composition

» From a process perspective: process composition.

» A (new?) way of constructing more complex processes
based on simpler components.

Note: To retain Kolmogorov consistency introduce IBP priors over
latent variables in each layer (Zhenwen Dai).



Analysis of Deep GPs

» Duvenaud et al. (2014) Duvenaud et al show that the
derivative distribution of the process becomes more heavy
tailed as number of layers increase.



Difficulty for Probabilistic Approaches

» Propagate a probability distribution through a non-linear

mapping.
» Normalisation of distribution becomes intractable.
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Figure : A three dimensional manifold formed by mapping from a
two dimensional space to a three dimensional space.



Difficulty for Probabilistic Approaches

¥ = f1(2)
— S %2/
z Y2 = fa(z)
st
Figure : A string in two dimensions, formed by mapping from one

dimension, z, line to a two dimensional space, [y1, y2] using
nonlinear functions fi(-) and f,(-).



Difficulty for Probabilistic Approaches

y:iz))+e

p(z) p(y)

Figure : A Gaussian distribution propagated through a non-linear
mapping. y; = f(z;) + €. € ~ N(O, 0.22) and f(-) uses RBF basis, 100
centres between -4 and 4 and ¢ = 0.1. New distribution over y (right)
is multimodal and difficult to normalize.



Variational Compression

(Snelson and Ghahramani, 2006; Quifionero Candela and Rasmussen, 2005; Lawrence,
2007; Titsias, 2009)

» Complexity of standard GP:
» O(n?) in computation.
» O(n?) in storage.



Variational Compression

(Snelson and Ghahramani, 2006; Quifionero Candela and Rasmussen, 2005; Lawrence,
2007; Titsias, 2009)

» Complexity of standard GP:
» O(n®) in computation.
» O(n?) in storage.
» Via low rank representations of covariance:
» O(nm?) in computation.
» O(nm) in storage.
» Where m is user chosen number of inducing variables.
They give the rank of the resulting covariance.
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Variational Compression

» Inducing variables are a compression of the real
observations.

» They are like pseudo-data. They can be in space of f or a
space that is related through a linear operator (Alvarez
etal., 2010) — e.g. a gradient or convolution.

» There are inducing variables associated with each set of
hidden variables, z'.



Variational Compression II

» Importantly conditioning on inducing variables renders
the likelihood independent across the data.

» It turns out that this allows us to variationally handle
uncertainty on the kernel (including the inputs to the
kernel).

» It also allows standard scaling approaches: stochastic
variational inference Hensman et al. (2013), parallelization
Gal et al. (2014) and work by Zhenwen Dai on GPUs to be
applied: an engineering challenge?
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Structures for Extracting Information from Data
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Latent layer 3
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Damianou and Lawrence (2013)

Deep Gaussian Processes

Andreas C. Damianou

Neil D. Lawrence

Dept. of Computer Science & Sheffield Institute for Translational Neuroscience,
University of Sheffield, UK

Abstract

In this paper we introduce deep Gaussian process
(GP) models. Deep GPs are a deep belief net-
work based on Gaussian process mappings. The
data is modeled as the output of a multivariate
GP. The inputs to that Gaussian process are then
governed by another GP. A single layer model is
equivalent to a standard GP or the GP latent vari-
ahle madel (GP- VM) We nerform inference in

the question as to whether deep structures and the learning
of abstract structure can be undertaken in smaller data sets.
For smaller data sets, questions of generalization arise: to
demonstrate such structures are justified it is useful to have
an objective measure of the model’s applicability.

The traditional approach to deep learning is based around
binary latent variables and the restricted Boltzmann ma-
chine (RBM) [Hinton, 2010]. Deep hierarchies are con-
structed by stacking these models and various approxi-
mate inference technianes (snch as contrastive diversence)


http://jmlr.org/proceedings/papers/v31/damianou13a.pdf

Deep Models

Data space

Latent layer 2
Latent layer 1

atent layer 3

e

W AT AT
AR

Latent layer 4

)
1

—

VAl
S e

&

3
XN £ VO» p% &‘w«»ﬁ /“ N»
/ A A X

‘ XA /N XA S — A S ¥

0L, 0T e WK

o

)

Wy
O KA
WA

"y
AN SR
\ Q 4»’— X\ ﬁ’/\ A,

«\’ ¢ﬂ 6‘& 0 A.\“b..b./ X
AV

4@«\?»}% »0?0» 44@
77NN
Y

)

LSAANY
ey




Deep Models
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Deep Models
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Deep Gaussian Processes

Damianou and Lawrence (2013)

» Deep architectures allow abstraction of features (Bengio, 2009;
Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).

» We use variational approach to stack GP models.



Stacked GPs (video by David Duvenaud)



Duvenaud et al. (2014)
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Avoiding pathologies in very deep networks

David Duvenaud
University of Cambridge

Oren Rippel
MIT, Harvard University

Abstract

Choosing appropriate architectures and regular-
ization strategies for deep networks is crucial to
good predictive performance. To shed light on
this problem, we analyze the analogous prob-
lem of constructing useful priors on composi-
tions of functions. Specifically, we study the
deep Gaussian process, a type of infinitely-wide,
deep neural network. We show that in standard
architectures, the representational capacity of the
network tends to capture fewer degrees of free-
dom as the number of layers increases, retaining
only a single degree of freedom in the limit. We
propose an alternate network architecture which
does not suffer from this pathology. We also
examine deep covariance functions, obtained by
composing infinitely many feature transforms.
Lastly, we characterize the class of models ob-
tained by performing dropout on Gaussian pro-
cesses.

1 Introduction

Zoubin Ghahramani
University of Cambridge

Ryan P. Adams
Harvard University

a composition of vector-valued functions, one per layer.
Hence, understanding properties of such function composi-
tions helps us gain insight into deep networks. In this paper,
we examine a simple and flexible class of priors on com-
positions of functions, namely deep Gaussian processes
(Damianou and Lawrence, 2013). Deep GPs are simply
priors on compositions of vector-valued functions, where
each output of each layer is drawn independently from a
GP prior:

f00 () = fO (DD ).)) M)
£ % GP (0, kS (x,x')) @

These models correspond to a certain type of infinitely-
wide multi-layer perceptron (MLP), and as such make

for ive models of functions
that closely relate to neural networks.

By characterizing these models, this paper shows
that representations based on repeated composition of
independently-initialized functions exhibit a pathology
where the representation becomes invariant to all but one
direction of variation. This corresponds to an eventual de-
bilitating decrease in the information capacity of networks
as a function of their number of layers. However, we will
demonstrate that a simple change in architecture — namely,
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a) One-hidden-layer MLP

Hidden Hidden
Outputs

b) Two-hidden layer MLP

Inputs

[ 4
¢) Two-layer GP: y = £(*) (£(1)(x))

Figure 1: GPs can be understood as one-hidden-layer MLP with infinitely many hidden units (a). There are two possible
interpretations of deep GPs: We can consider the deep GP to be a neural network with a finite number of hidden units, each
with a different non-parametric activation function (b). Alternatively, we can consider every second layer to be a random
linear combination of an infinite number of fixed parametric hidden units (c).

function applied element-wise. The output vector f(x) is
simply a weighted sum of these hidden unit activations:

fx)=Vg (b“) +W<‘)x) =vOO(x) @

where V(1) is another weight matrix.

There exists a correspondence between one-layer MLPs
and GPs (Neal, 1995). GPs can be viewed as a prior on
neural networks with infinitely many hidden units, and un-
known weights. More precisely, for any model of the form

1 &
_ T —

Fx) = gzaThix) = lea,m(x), ®)
i=

with fixed features [h1(x), ..., hi(x)] T = h(x) and i.i.d.

«’s with zero mean and finite variance o2, the central limit

theorem implies that as the number of features K grows,

any two function values f(x), f(x’) have a joint distri-

bution approaching A’(O. ‘;72 Z,K:l hl(x)lh(x’)). A joint

Gaussian distribution between any set of function values is

the definition of a Gaussian process.

The result is surprisingly general: it puts no constraints on

This architecture is shown in figure 1b. For example, if we
extend the model given by (4) to have two layers of feature
mappings, the resulting model is

56 = 0™ (B(x)) @

If the features h(x) are considered fixed with only the last
layer weights a unknown, this model corresponds to a GP
with a “deep kernel”:

k(x,x) = (A0 () WA M) @)

These models, examined in section 6, imply a fixed repre-
sentation as opposed to a prior over representations, which
is what we wish to analyze in this paper.

To construct a neural network with fixed nonlinearities cor-
responding to a deep GP, one must introduce a second layer
in between each infinitely-wide set of fixed basis functions,
as in figure lc. The Dy outputs £()(x) in between each
layer are weighted sums (with unknown weights) of the
fixed hidden units of the layer below, and the next layer’s
hidden units depend only on these D, outputs.
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Figure 2: One-dimensional draws from a deep GP prior.
After a few layers, the functions begin to be either nearly
flat, or highly varying, everywhere. This is a consequence
of the distribution on derivatives becoming heavy-tailed.

3 Characterizing deep Gaussian processes

In this section, we develop several theoretical results that
explore the behavior of deep GPs as a function of their
depth. This will allow us in section 4 to formally identify a
pathology that emerges in very deep networks.

Specifically, we will show that the size of the derivative of a
one-dimensional deep GP becomes log-normal distributed
as the network becomes deeper. We’ll also show that the
Jacobian of a multivariate deep GP is a product of indepen-
dent Gaussian matrices with independent entries.

3.1 One-dimensional asymptotics

In this section, we derive the limiting distribution of the
derivative of an arbitrarily deep, one-dimensional GP with

the expected magnitude of the derivative remains constant
regardless of the depth.

The log of the magnitude of the derivatives has moments

Miog = E {m‘%} =2log (1) —log2 -7
: 2 -
Viog =V {log af)ﬁ} :%‘F%*’)’ — ylogd

+2log (%) [”{+log2 —log (%)] an

where v & 0.5772 is Euler’s constant. Since the second
moment is finite, by the central limit theorem, the limit-
ing distribution of the size of the gradient approaches log-
normal as L grows:

.
g 2022

o |27 )
-yl

P20 N (Limiog, LPvig) - (12)

o f:L)
— g0

Even if the expected magnitude of the derivative re-
mains constant, the variance of the log-normal distribution
grows without bound as the depth increases. Because the
log-normal distribution is heavy-tailed and its domain is
bounded below by zero, the derivative will become very
small almost everywhere, with rare but very large jumps.
Figure 2 shows this behavior in a draw from a 1D deep GP
prior, at varying depths. This figure also shows that once
the derivative in one region of the input space becomes very
large or very small, it is likely to remain that way in subse-
quent layers.

3.2 Distribution of the Jacobian

‘We now derive the distribution on Jacobians of multivariate
functions drawn from a deep GP prior.
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In the case of the multivariate squared-exp kernel, the co-
variance between derivatives has the form:

D X e
f(x) ~GP <0,¢r2 Hexp (—%%))

d=1
= ifd, = d.
= cov (Lf(x)AOf(x)) T (14)
Oxq, * Oq, 0 ifdi #do

Lemma 3.2. The Jacobian of a set of D functions R” — R
drawn independently from a GP prior with a product kernel
is a D x D matrix of independent Gaussian R.V.'s

Proof. The Jacobian of the vector-valued function f(x) is
amatrix J with elements J;; = “JT(),()- Because we’ve as-
sumed that the GPs on each output dimension f;(x) are in-
dependent (2), it follows that each row of .J is independent.
Lemma 3.1 shows that the elements of each row are inde-
pendent Gaussian. Thus all entries in the Jacobian of a GP-
distributed transform are independent Gaussian R.V.’s. [

Theorem 3.3. The Jacobian of a deep GP with a product
kernel is a product of independent Gaussian matrices, with
each entry in each matrix being drawn independently.

Proof. When composing L different functions, we’ll de-
note the immediate Jacobian of the function mapping from
layer £— 1 to layer ¢ as .J*(x), and the Jacobian of the entire
composition of L functions by J'*¥(x). By the multivari-
ate chain rule, the Jacobian of a composition of functions is
simply the product of the immediate Jacobian matrices of
each function. Thus the Jacobian of the composed (deep)
function (&) (F=D (L. £@) (R (£ (x)))...)) is

JEJED B

(15)
By lemma 3.2, each Jf; % N, so the complete Jacobian
is a product of independent Gaussian matrices, with each
entry of each matrix drawn independently.

Figure 3: Representing a 1-D manifold. Colors show the
output of the computed representation as a function of the
input space. The representation (blue & green) is invari-
ant in directions orthogonal to the data manifold (white),
making it robust to noise in those directions, and reducing
the number of parameters needed to represent a datapoint.
The also changes in di tangent to the
manifold, preserving information for later layers.

2 layers 6 layers
5 1
2 o o8
2 o4 08
Eu‘ 04
% o2 02
S
) 0
FRE T T s s

Singular value index Singular value

Figure 4: The normalized singular value spectrum of the
Jacobian of a deep GP. As the net gets deeper, the largest
singular value dominates. This implies that with high prob-
ability, there is only one effective degree of freedom in the
representation being computed.

the priors we are examining are stationary, the distribution
of the Jacobian is identical everywhere.  Figure 4 shows
the singular value spectrum for 5-dimensional deep GPs of
different depths. As the net gets deeper, the largest singular
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2t (x)

T

P (x)) P10 (x))

Figure 5: Visualization of draws from a deep GP. A 2-
dimensional Gaussian distribution (top left) is warped by
successive functions drawn from a GP prior. As the num-
ber of layers increases, the density concentrates along one-
dimensional filaments.

To what extent are these pathologies present in nets being
used today? In simulations, we found that for deep func-
tions with a fixed latent dimension D, the singular value
spectrum remained relatively flat for hundreds of layers as
long as D > 100. Thus, these pathologies are unlikely to
severely affect relatively shallow, wide networks.

5 Fixing the pathology

Following a suggestion from Neal (1995), we can fix the
pathologies exhibited in fieures 5 and 6 by simply mak-

Identity Map: y = x 1 Layer: y = f()(x

2 Layers: y = f(1:2)(. 10 Layers: y = f(110)(;

Figure 6: Feature mapping of a deep GP. Colors correspond
to the location y = f(x) that each point is mapped to after
being warped by a deep GP. The number of directions in
which the color changes rapidly corresponds to the number
of large singular values in the Jacobian. Just as the den-
sities in figure 5 became locally one-dimensional, there is
usually only one direction that one can move x in locally
to change y. This means that f is unlikely to be a suitable
representation for decision tasks that depend on more than
one aspect of x.

x £ (x) £3)(x) £ (x) £ (x)

a) The standard MLP connectivity architecture.
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Avoiding
One layer 2-Layer Composition
1
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Figure 8: Draws from a 1D deep GP prior with each layer
connected to the input. Even after many layers, the func-
tions remain smooth in some regions, while varying rapidly
in other regions. Compare to standard-connectivity deep
GP draws shown in figure 2.

3 Layers 6 Layers

Figure 9: Left: Densities defined by a draw from a deep
GP, with each layer connected to the input x. As depth
increases, the density becomes more complex without con-
centrating along filaments.

Identity map: y 2 Connected layers

10 Connected layers 20 Connected layers

Figure 11: Feature mapping of a deep GP with each layer
connected to the input x. Just as the densities in figure 9
remained locally two-dimensional even after many trans-
formations, in this mapping there are often two directions
that one can move locally in x to in order to change the
values of f(x). This means that the prior puts mass on rep-
resentations which sometimes depend on all aspects of the
input. Compare to figure 6.

6 Deep kernels

Bengio et al. (2006) showed that kernel machines have
limited generalization ability when they use a local kernel
such as the squared-exp. However, many interesting non-
local kernels can be constructed which allow non-trivial ex-
trapolation. For example, periodic kernels can be viewed
e Teeree s

Larnal e whiak tha Eoct Tacrae mmmeme
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ping h(x) has a simple closed form:
kri1 (x,X) = ksp (h(x),h(x')) =

)
= exp (~3/Inx) - b))

2
( 1
=oxp| -3

= exp (% [k (x,%) = 2k (x,x') + A»,_(x’,x’)})

(22)

[0 () 28" (x) + i) (<))

Thus, we can express k1 exactly in terms of k.

Infinitely deep kernels What happens when we repeat
this composition of feature maps many times, starting with
the squared-exp kernel? In the infinite limit, this recursion
converges to k(x,x’) = 1 for all pairs of inputs, which
corresponds to a prior on constant functions f(x) = ¢.

A non-degenerate construction As before, we can over-
come this degeneracy by connecting the inputs x to each
layer. To do so, we simply augment the feature vector
hy, (x) with x at each layer:
)
2

wir=on (4]0 [
)~ ) @3)

=exp ( - %[k‘L(x‘x) — 2k (x,X)

For the SE kernel, this repeated mapping satisfies

1
1+

o (36, X') — log (koo (x,X)) = 1+ 5

x=xI; 9
The solution to this recurrence has no closed form, but
has a similar shape to the Ornstein-Uhlenbeck covariance
2'|) with lighter tails. Samples

e Sy

1 - — = 1llayer
308 — — —2layers
8’ 0.6 — — — 3layers
:_>’ 0.4 o layers
3 O
S
0.2
0
4
Figure 12: Input-connected deep kernels. By connecting

the inputs x to each layer, the kernel can still depend on its
input even after arbitrarily many layers of computation.

-2 0 2 4

Figure 13: GP draws using deep input-connected kernels.

7 Dropout in Gaussian processes

Dropout is a method for regularizing neural networks (Hin-
ton ez al., 2012; Srivastava, 2013). Training with dropout
entails randomly and independently “dropping” (setting to
zero) some proportion p of features or inputs, in order to
improve the robustness of the resulting network by reduc-
ing co-dependence between neurons. To maintain similar
overall activation levels, weights are multiplied by 1/p at
test time. Alternatively, feature activations are multiplied



Motion Capture

» ‘High five’ data.

» Model learns structure between two interacting subjects.



Deep hierarchies — motion capture

Y(l)
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Digits Data Set

» Are deep hierarchies justified for small data sets?
» We can lower bound the evidence for different depths.

» For 150 6s, Os and 1s from MNIST we found at least 5
layers are required.



Deep hierarchies — MNIST
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What Can We Do that Google Can’t?

» Google’s resources give them access to volumes of data (or
Facebook, or Microsoft, or Amazon).

» Is there anything for Universities to contribute?

» Assimilation of multiple views of the patient: each perhaps
from a different patient.

» This may be done by small companies (with support of
Universities).

» A Facebook app for your personalised health.

» This methodologies are part of that picture.



Deep Health
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