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Separation of Model and Algorithm

I Machine Learning:

data +model = prediction

I Model encodes our beliefs about the regularities of the
universe.

I I’m using simple and complex in the sense of how easy to
understand.

I Neural network: complex model, simple algorithm
I Gaussian process: simple model, complex algorithm



Is the Model Complex?

I More details in this blog post:
http://inverseprobability.com/2015/02/28/
questions-on-deep-gaussian-processes/

I This talk: It’s about the model.
I Talk later today at Large Scale Kernel Machines is about

part of the algorithm.

http://inverseprobability.com/2015/02/28/questions-on-deep-gaussian-processes/
http://inverseprobability.com/2015/02/28/questions-on-deep-gaussian-processes/


GaussianFace

(Lu and Tang, 2014)

I First system to surpass human performance on cropped
Learning Faces in Wild Data.
http://tinyurl.com/nkt9a38

I Lots of feature engineering, followed by a Discriminative
GP-LVM.
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High dimensional LBP (95.17%) [Chen et al. 2013] 
Fisher Vector Faces (93.03%) [Simonyan et al. 2013]
TL Joint Bayesian (96.33%) [Cao et al. 2013]
Human, cropped (97.53%) [Kumar et al. 2009]
DeepFace-ensemble (97.35%) [Taigman et al. 2014]
ConvNet-RBM (92.52%) [Sun et al. 2013]
GaussianFace-FE + GaussianFace-BC (98.52%)
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Figure 4: The ROC curve on LFW. Our method achieves the best
performance, beating human-level performance.

papers comparing human and computer-based face verifica-
tion performance (Tang and Wang 2004; O’Toole et al. 2007;
Phillips and O’Toole 2014). It has been shown that the
best current face verification algorithms perform better than
humans in the good and moderate conditions. So, it is really
not that difficult to beat human performance in some specific
scenarios.

As pointed out by (O’Toole et al. 2012; Sinha et al.
2005), humans and computer-based algorithms have dif-
ferent strategies in face verification. Indeed, by contrast to
performance with unfamiliar faces, human face verification
abilities for familiar faces are relatively robust to changes
in viewing parameters such as illumination and pose. For
example, Bruce (Bruce 1982) found human recognition
memory for unfamiliar faces dropped substantially when
there were changes in viewing parameters. Besides, humans
can take advantages of non-face configurable information
from the combination of the face and body (e.g., neck,
shoulders). It has also been examined in (Kumar et al. 2009),
where the human performance drops from 99.20% (tested
using the original LFW images) to 97.53% (tested using the
cropped LFW images). Hence, the experiments comparing
human and computer performance may not show human
face verification skill at their best, because humans were
asked to match the cropped faces of people previously unfa-
miliar to them. To the contrary, those experiments can fully
show the performance of computer-based face verification
algorithms. First, the algorithms can exploit information
from enough training images with variations in all viewing
parameters to improve face verification performance, which
is similar to information humans acquire in developing face
verification skills and in becoming familiar with individuals.
Second, the algorithms might exploit useful, but subtle,
image-based detailed information that give them a slight, but
consistent, advantage over humans.

Therefore, surpassing the human-level performance may
only be symbolically significant. In reality, a lot of chal-
lenges still lay ahead. To compete successfully with humans,
more factors such as the robustness to familiar faces and
the usage of non-face information, need to be considered in
developing future face verification algorithms.

Figure 5: The two rows present examples of matched and
mismatched pairs respectively from LFW that were incorrectly
classified by the GaussianFace model.

Conclusion and Future Work
This paper presents a principled Multi-Task Learning ap-
proach based on Discriminative Gaussian Process Latent
Variable Model, named GaussianFace, for face verification
by including a computationally more efficient equivalent
form of KFDA and the multi-task learning constraint to
the DGPLVM model. We use Gaussian Processes approx-
imation and anchor graphs to speed up the inference and
prediction of our model. Based on the GaussianFace model,
we propose two different approaches for face verification.
Extensive experiments on challenging datasets validate the
efficacy of our model. The GaussianFace model finally
surpassed human-level face verification accuracy, thanks to
exploiting additional data from multiple source-domains to
improve the generalization performance of face verification
in the target-domain and adapting automatically to complex
face variations.

Although several techniques such as the Laplace approx-
imation and anchor graph are introduced to speed up the
process of inference and prediction in our GaussianFace
model, it still takes a long time to train our model for
the high performance. In addition, large memory is also
necessary. Therefore, for specific application, one needs
to balance the three dimensions: memory, running time,
and performance. Generally speaking, higher performance
requires more memory and more running time. In the future,
the issue of running time can be further addressed by the
distributed parallel algorithm or the GPU implementation
of large matrix inversion. To address the issue of memory,
some online algorithms for training need to be developed.
Another more intuitive method is to seek a more efficient
sparse representation for the large covariance matrix.

References
Ahonen, T.; Hadid, A.; and Pietikainen, M. 2006. Face
description with local binary patterns: Application to face
recognition. TPAMI.
Ben-Hur, A.; Horn, D.; Siegelmann, H. T.; and Vapnik, V.
2002. Support vector clustering. JMLR.
Berg, T., and Belhumeur, P. N. 2012. Tom-vs-pete classifiers
and identity-preserving alignment for face verification. In
BMVC.

http://tinyurl.com/nkt9a38
http://arxiv.org/abs/1404.3840


Latent Variable

I The core component in GaussianFace is dimensionality
reduction.

I Model data, y, with a vector value function that maps from
x to y.

yi = f(xi) + ε

I Treat the unknown latent dimension x as a nuiscance
parameter and place prior, p(x) over it to integrate it out.

I In GaussianFace the latent variable model uses a Gaussian
process to handle f.



Difficulty for Probabilistic Approaches

I Propagate a probability distribution through a non-linear
mapping.

I Normalisation of distribution becomes intractable.
x 2

x1

y j = f j(x)
−→

Figure : A three dimensional manifold formed by mapping from a
two dimensional space to a three dimensional space.



Difficulty for Probabilistic Approaches

y 2

y1

x

y1 = f1(x)
−→

y2 = f2(x)

Figure : A string in two dimensions, formed by mapping from one
dimension, x, line to a two dimensional space, [y1, y2] using
nonlinear functions f1(·) and f2(·).



Difficulty for Probabilistic Approaches

p(y)p(x)

y = f (x) + ε
−→

Figure : A Gaussian distribution propagated through a non-linear
mapping. yi = f (xi) + εi. ε ∼ N

(
0, 0.22

)
and f (·) uses RBF basis, 100

centres between -4 and 4 and ` = 0.1. New distribution over y (right)
is multimodal and difficult to normalize.



Example: Latent Doodle Space

(Baxter and Anjyo, 2006)

http://vimeo.com/3235882

http://vimeo.com/3235882


Example: Latent Doodle Space

(Baxter and Anjyo, 2006)

Generalization with much less Data than Dimensions

I Powerful uncertainly handling of GPs leads to surprising
properties.

I Non-linear models can be used where there are fewer data
points than dimensions without overfitting.



Spiral of Progression

http://www.mlpm.eu/


Massive Missing Data

I If missing at random it can be marginalized.
I As data sets become very large (39 million in EMIS) data

becomes extremely sparse.
I Imputation becomes impractical.



Imputation

I Expectation Maximization (EM) is gold standard
imputation algorithm.

I Exact EM optimizes the log likelihood.
I Approximate EM optimizes a lower bound on log

likelihood.
I e.g. variational approximations (VIBES, Infer.net).

I Convergence is guaranteed to a local maxima in log
likelihood.



Expectation Maximization

Require: An initial guess for missing data

repeat
Update model parameters
Update guess of missing data

until convergence

(M-step)
(E-step)
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Imputation is Impractical

I In very sparse data imputation is impractical.
I EMIS: 39 million patients, thousands of tests.
I For most people, most tests are missing.
I M-step becomes confused by poor imputation.



Direct Marginalization is the Answer

I Perhaps we need joint distribution of two test outcomes,

p(y1, y2)

I Obtained through marginalizing over all missing data,

p(y1, y2) =
∫

p(y1, y2, y3, . . . , yp)dy3, . . .dyp

I Where y3, . . . , yp contains:
1. all tests not applied to this patient
2. all tests not yet invented!!



Magical Marginalization in Gaussians

Multi-variate Gaussians

I Given 10 dimensional multivariate Gaussian, y ∼ N (0,C).
I Generate a single correlated sample y =

[
y1, y2 . . . y10

]
.

I How do we find the marginal distribution of y1, y2?



Gaussian Marginalization Property
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Figure : A sample from a 10 dimensional correlated Gaussian
distribution.



Gaussian Marginalization Property

-2

-1

0

1

2

0 2 4 6 8 10

y i

i

(a) A 10 dimensional sample
j

i
-4
-3
-2
-1
0
1
2
3
4

(b) colormap showing covariance be-
tween dimensions.

Figure : A sample from a 10 dimensional correlated Gaussian
distribution.



Gaussian Marginalization Property

-2

-1

0

1

2

0 2 4 6 8 10

y i

i

(a) A 10 dimensional sample
-4
-3
-2
-1
0
1
2
3
4

(b) colormap showing covariance be-
tween dimensions.

Figure : A sample from a 10 dimensional correlated Gaussian
distribution.



Gaussian Marginalization Property

-2

-1

0

1

2

0 2 4 6 8 10

y i

i

(a) A 10 dimensional sample
-4
-3
-2
-1
0
1
2
3
4

(b) colormap showing covariance be-
tween dimensions.

Figure : A sample from a 10 dimensional correlated Gaussian
distribution.



Gaussian Marginalization Property

-2

-1

0

1

2

0 2 4 6 8 10

y i

i

(a) A 10 dimensional sample
-4
-3
-2
-1
0
1
2
3
4

(b) colormap showing covariance be-
tween dimensions.

Figure : A sample from a 10 dimensional correlated Gaussian
distribution.



Gaussian Marginalization Property

-2

-1

0

1

2

0 2 4 6 8 10

y i

i

(a) A 10 dimensional sample
-4
-3
-2
-1
0
1
2
3
4

(b) colormap showing covariance be-
tween dimensions.

Figure : A sample from a 10 dimensional correlated Gaussian
distribution.



Gaussian Marginalization Property

-2

-1

0

1

2

0 2 4 6 8 10

y i

i

(a) A 10 dimensional sample
-4
-3
-2
-1
0
1
2
3
4

(b) colormap showing covariance be-
tween dimensions.

Figure : A sample from a 10 dimensional correlated Gaussian
distribution.



Gaussian Marginalization Property
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Gaussian Marginalization Property
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Avoid Imputation: Marginalize Directly

I Our approach: Avoid Imputation, Marginalize Directly.
I Explored in context of Collaborative Filtering.
I Similar challenges:

I many users (patients),
I many items (tests),
I sparse data

I Implicitly marginalizes over all future tests too.

Work with Raquel Urtasun (Lawrence and Urtasun, 2009) and ongoing
work with Max Zwießele and Nicoló Fusi.



Marginalization in Bipartite Undirected Graph
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Marginalization in Bipartite Undirected Graph

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5 y6 y7 y8 y9

y10

latent variables

additional layer
of latent variables

For massive missing data, how many additional latent variables?



Methods that Interrelate Covariates

I Need Class of models that interrelates data, but allows for
variable p.

I Common assumption: high dimensional data lies on low
dimensional manifold.

I Want to retain the marginalization property of Gaussians
but deal with non-Gaussian data!



Gaussian Processes: Extremely Short Overview
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Gaussian Processes and Kernels

I The kernel, K acts as the covariance of the Gaussian.
I Predictions in Gaussian processes consist of the posterior

mean function and covariance.
I For non degenerate covariance matrix, K, the model is non

parametric.



Gaussian Process Summer School

http://gpss.cc
14th-17th September 2015

Sheffield, UK

http://gpss.cc


What’s the Algorithm?

I For some algorithmic details:
1. Attend a Gaussian process summer school

(http://gpss.cc)
2. Come to my talk at the Large Scale Kernel Machines

Workshop (11:15 am, Pasteur Room)

I We make our software available on GitHub:
https://github.com/SheffieldML/GPy

http://gpss.cc
https://github.com/SheffieldML/GPy


Original Motivation for Deep

I Assuming low dimensional embedding is one way of
handling high dimensional data.

I Another is to assume conditional independencies (sparse
graph structure).

I This inspires a layered hierarchy.



Hierarchical GP-LVM

(Lawrence and Moore, 2007)
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Hierarchical GP-LVM

(Lawrence and Moore, 2007)



Structure Learning

I Then we used MAP inference for learning.
I Prevents learning of structures.
I Our ‘modern’ approaches use variational approximations.
I Allows for learning of structure of model (number of latent

variables in each layer).
I Allows for learning the right depth of model (number of

layers).



Mathematically

I Composite multivariate function

g(x) = f5(f4(f3(f2(f1(x)))))



Why Deep?

I Gaussian processes give priors over functions.
I Elegant properties:

I e.g. Derivatives of process are also Gaussian distributed (if
they exist).

I For particular covariance functions they are ‘universal
approximators’, i.e. all functions can have support under
the prior.

I Gaussian derivatives might ring alarm bells.
I E.g. a priori they don’t believe in function ‘jumps’.



Process Composition

I From a process perspective: process composition.
I A (new?) way of constructing more complex processes

based on simpler components.

Note: To retain Kolmogorov consistency introduce IBP priors over
latent variables in each layer (Zhenwen Dai).



Analysis of Deep GPs

I Duvenaud et al. (2014) Duvenaud et al show that the
derivative distribution of the process becomes more heavy
tailed as number of layers increase.

I Gal and Ghahramani (2015) Gal and Ghahramani show
that Drop Out is a variational approximation to a deep
Gaussian process.
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Structures for Extracting Information from Data
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Damianou and Lawrence (2013)

Deep Gaussian Processes

Andreas C. Damianou Neil D. Lawrence
Dept. of Computer Science & Sheffield Institute for Translational Neuroscience,

University of Sheffield, UK

Abstract

In this paper we introduce deep Gaussian process
(GP) models. Deep GPs are a deep belief net-
work based on Gaussian process mappings. The
data is modeled as the output of a multivariate
GP. The inputs to that Gaussian process are then
governed by another GP. A single layer model is
equivalent to a standard GP or the GP latent vari-
able model (GP-LVM). We perform inference in
the model by approximate variational marginal-
ization. This results in a strict lower bound on the
marginal likelihood of the model which we use
for model selection (number of layers and nodes
per layer). Deep belief networks are typically ap-
plied to relatively large data sets using stochas-
tic gradient descent for optimization. Our fully
Bayesian treatment allows for the application of
deep models even when data is scarce. Model se-
lection by our variational bound shows that a five
layer hierarchy is justified even when modelling
a digit data set containing only 150 examples.

1 Introduction

Probabilistic modelling with neural network architectures
constitute a well studied area of machine learning. The re-
cent advances in the domain of deep learning [Hinton and
Osindero, 2006, Bengio et al., 2012] have brought this kind
of models again in popularity. Empirically, deep models
seem to have structural advantages that can improve the
quality of learning in complicated data sets associated with
abstract information [Bengio, 2009]. Most deep algorithms
require a large amount of data to perform learning, how-
ever, we know that humans are able to perform inductive
reasoning (equivalent to concept generalization) with only
a few examples [Tenenbaum et al., 2006]. This provokes

Appearing in Proceedings of the 16th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2013, Scottsdale,
AZ, USA. Volume 31 of JMLR: W&CP 31. Copyright 2013 by
the authors.

the question as to whether deep structures and the learning
of abstract structure can be undertaken in smaller data sets.
For smaller data sets, questions of generalization arise: to
demonstrate such structures are justified it is useful to have
an objective measure of the model’s applicability.

The traditional approach to deep learning is based around
binary latent variables and the restricted Boltzmann ma-
chine (RBM) [Hinton, 2010]. Deep hierarchies are con-
structed by stacking these models and various approxi-
mate inference techniques (such as contrastive divergence)
are used for estimating model parameters. A significant
amount of work has then to be done with annealed impor-
tance sampling if even the likelihood1 of a data set under
the RBM model is to be estimated [Salakhutdinov and Mur-
ray, 2008]. When deeper hierarchies are considered, the es-
timate is only of a lower bound on the data likelihood. Fit-
ting such models to smaller data sets and using Bayesian
approaches to deal with the complexity seems completely
futile when faced with these intractabilities.

The emergence of the Boltzmann machine (BM) at the core
of one of the most interesting approaches to modern ma-
chine learning is very much a case of a the field going back
to the future: BMs rose to prominence in the early 1980s,
but the practical implications associated with their train-
ing led to their neglect until families of algorithms were
developed for the RBM model with its reintroduction as a
product of experts in the late nineties [Hinton, 1999].

The computational intractabilities of Boltzmann machines
led to other families of methods, in particular kernel meth-
ods such as the support vector machine (SVM), to be con-
sidered for the domain of data classification. Almost con-
temporaneously to the SVM, Gaussian process (GP) mod-
els [Rasmussen and Williams, 2006] were introduced as a
fully probabilistic substitute for the multilayer perceptron
(MLP), inspired by the observation [Neal, 1996] that, un-
der certain conditions, a GP is an MLP with infinite units in
the hidden layer. MLPs also relate to deep learning models:
deep learning algorithms have been used to pretrain autoen-
coders for dimensionality reduction [Hinton and Salakhut-

1We use emphasis to clarify we are referring to the model like-
lihood, not the marginal likelihood required in Bayesian model
selection.

http://jmlr.org/proceedings/papers/v31/damianou13a.pdf
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Deep Gaussian Processes

Damianou and Lawrence (2013)

I Deep architectures allow abstraction of features (Bengio, 2009;

Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).
I We use variational approach to stack GP models.



Motion Capture

I ‘High five’ data.
I Model learns structure between two interacting subjects.



Deep hierarchies – motion capture 
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Digits Data Set

I Are deep hierarchies justified for small data sets?
I We can lower bound the evidence for different depths.
I For 150 6s, 0s and 1s from MNIST we found at least 5

layers are required.



Deep hierarchies – MNIST 
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Deep Health
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