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Separation of Model and Algorithm

» Machine Learning:
data + model = prediction

» Model encodes our beliefs about the regularities of the
universe.

» I'm using simple and complex in the sense of how easy to
understand.

> Neural network: complex model, simple algorithm
» Gaussian process: simple model, complex algorithm



Is the Model Complex?

» More details in this blog post:
http://inverseprobability.com/2015/02/28/
questions—-on-deep—gaussian—-processes/

» This talk: It's about the model.

» Talk later today at Large Scale Kernel Machines is about
part of the algorithm.


http://inverseprobability.com/2015/02/28/questions-on-deep-gaussian-processes/
http://inverseprobability.com/2015/02/28/questions-on-deep-gaussian-processes/

GaussianFace

(Lu and Tang, 2014)

» First system to surpass human performance on cropped
Learning Faces in Wild Data.
http://tinyurl.com/nkt%9a38

» Lots of feature engineering, followed by a Discriminative
GP-LVM.
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Latent Variable

» The core component in GaussianFace is dimensionality
reduction.

» Model data, y, with a vector value function that maps from
xtoy.
yi = f(x;) + €
» Treat the unknown latent dimension x as a nuiscance
parameter and place prior, p(x) over it to integrate it out.

» In GaussianFace the latent variable model uses a Gaussian
process to handle f.



Difficulty for Probabilistic Approaches

» Propagate a probability distribution through a non-linear

mapping.
» Normalisation of distribution becomes intractable.
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Figure : A three dimensional manifold formed by mapping from a
two dimensional space to a three dimensional space.



Difficulty for Probabilistic Approaches

v1 = fi(x)

— = %2/
X Y2 = fo(x)

n

Figure : A string in two dimensions, formed by mapping from one
dimension, x, line to a two dimensional space, [y1, y»] using
nonlinear functions fi(-) and f,(-).



Difficulty for Probabilistic Approaches
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Figure : A Gaussian distribution propagated through a non-linear
mapping. y; = f(x;) + €. e ~ N (0,0.22) and f(-) uses RBF basis, 100
centres between -4 and 4 and ¢ = 0.1. New distribution over y (right)
is multimodal and difficult to normalize.



Example: Latent Doodle Space

(Baxter and Anjyo, 2006)
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Example: Latent Doodle Space

(Baxter and Anjyo, 2006)

Generalization with much less Data than Dimensions

» Powerful uncertainly handling of GPs leads to surprising
properties.

» Non-linear models can be used where there are fewer data
points than dimensions without overfitting.
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Massive Missing Data

» If missing at random it can be marginalized.

» As data sets become very large (39 million in EMIS) data
becomes extremely sparse.

» Imputation becomes impractical.



Imputation

» Expectation Maximization (EM) is gold standard
imputation algorithm.
» Exact EM optimizes the log likelihood.

» Approximate EM optimizes a lower bound on log
likelihood.

» e.g. variational approximations (VIBES, Infer.net).

» Convergence is guaranteed to a local maxima in log
likelihood.



Expectation Maximization

Require: An initial guess for missing data



Expectation Maximization

Require: An initial guess for missing data
repeat



Expectation Maximization

Require: An initial guess for missing data
repeat

Update model parameters (M-step)



Expectation Maximization

Require: An initial guess for missing data
repeat
Update model parameters

Update guess of missing data (M-step)

(E-step)



Expectation Maximization

Require: An initial guess for missing data
repeat
Update model parameters
Update guess of missing data
until convergence

(M-step)
(E-step)



Imputation is Impractical

v

In very sparse data imputation is impractical.

v

EMIS: 39 million patients, thousands of tests.

v

For most people, most tests are missing.

v

M-step becomes confused by poor imputation.



Direct Marginalization is the Answer

» Perhaps we need joint distribution of two test outcomes,

P(]/lz ]/2)

» Obtained through marginalizing over all missing data,

P(yl/ yZ) = fp(]/lz yZI y3/ ey yp)dy3/ “e dyp

» Where y3, ..., Y, contains:

1. all tests not applied to this patient
2. all tests not yet invented!!



Magical Marginalization in Gaussians

Multi-variate Gaussians

» Given 10 dimensional multivariate Gaussian, y ~ N (0, C).
» Generate a single correlated sample 'y = [y1, 2. .. y10]-
» How do we find the marginal distribution of y1, y»?



Gaussian Marginalization Property
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Gaussian Marginalization Property
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Figure : A sample from a 10 dimensional correlated Gaussian
distribution.
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Gaussian Marginalization Property
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Figure : A sample from a 10 dimensional correlated Gaussian
distribution.



Gaussian Marginalization Property
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Figure : A sample from a 10 dimensional correlated Gaussian
distribution.



Avoid Imputation: Marginalize Directly

» Our approach: Avoid Imputation, Marginalize Directly.

v

Explored in context of Collaborative Filtering.
Similar challenges:

» many users (patients),
» many items (tests),
» sparse data

v

v

Implicitly marginalizes over all future tests too.

Work with Raquel Urtasun (Lawrence and Urtasun, 2009) and ongoing
work with Max Zwieflele and Nicol6 Fusi.



Marginalization in Bipartite Undirected Graph

latent variables
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Marginalization in Bipartite Undirected Graph

additional layer
of latent variables

latent variables




Marginalization in Bipartite Undirected Graph

additional layer
of latent variables

latent variables

For massive missing data, how many additional latent variables?



Methods that Interrelate Covariates

» Need Class of models that interrelates data, but allows for
variable p.

» Common assumption: high dimensional data lies on low
dimensional manifold.

» Want to retain the marginalization property of Gaussians
but deal with non-Gaussian data!



Gaussian Processes: Extremely Short Overview
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Gaussian Processes and Kernels

» The kernel, K acts as the covariance of the Gaussian.

» Predictions in Gaussian processes consist of the posterior
mean function and covariance.

» For non degenerate covariance matrix, K, the model is non
parametric.



Gaussian Process Summer School

http://gpss.cc
14th-17th September 2015
Sheffield, UK


http://gpss.cc

What's the Algorithm?

» For some algorithmic details:

1. Attend a Gaussian process summer school
(http://gpss.cc)

2. Come to my talk at the Large Scale Kernel Machines
Workshop (11:15 am, Pasteur Room)

» We make our software available on GitHub:
https://github.com/SheffieldML/GPy


http://gpss.cc
https://github.com/SheffieldML/GPy

Original Motivation for Deep

» Assuming low dimensional embedding is one way of
handling high dimensional data.

» Another is to assume conditional independencies (sparse
graph structure).

» This inspires a layered hierarchy:.



Hierarchical GP-LVM

(Lawrence and Moore, 2007)
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Hierarchical GP-LVM

(Lawrence and Moore, 2007)
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Hierarchical GP-LVM

(Lawrence and Moore, 2007)
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Structure Learning

» Then we used MAP inference for learning.

» Prevents learning of structures.

» Our ‘modern” approaches use variational approximations.

» Allows for learning of structure of model (number of latent
variables in each layer).

» Allows for learning the right depth of model (number of
layers).



Mathematically

» Composite multivariate function

g(x) = f5(fa(f3(£2(f1(x)))))



Why Deep?

» Gaussian processes give priors over functions.
Elegant properties:

> e.g. Derivatives of process are also Gaussian distributed (if
they exist).

\4

v

For particular covariance functions they are “universal
approximators’, i.e. all functions can have support under
the prior.

v

Gaussian derivatives might ring alarm bells.

» E.g. a priori they don’t believe in function ‘jumps’.



Process Composition

» From a process perspective: process composition.

» A (new?) way of constructing more complex processes
based on simpler components.

Note: To retain Kolmogorov consistency introduce IBP priors over
latent variables in each layer (Zhenwen Dai).



Analysis of Deep GPs

» Duvenaud et al. (2014) Duvenaud et al show that the
derivative distribution of the process becomes more heavy
tailed as number of layers increase.

» Gal and Ghahramani (2015) Gal and Ghahramani show
that Drop Out is a variational approximation to a deep
Gaussian process.
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Samples and Results



Structures for Extracting Information from Data

Latent layer 4

Latent layer 3
Latent layer 2
Latent layer 1

Data space
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Damianou and Lawrence (2013)

Deep Gaussian Processes

Andreas C. Damianou

Neil D. Lawrence

Dept. of Computer Science & Sheffield Institute for Translational Neuroscience,
University of Sheffield, UK

Abstract

In this paper we introduce deep Gaussian process
(GP) models. Deep GPs are a deep belief net-
work based on Gaussian process mappings. The
data is modeled as the output of a multivariate
GP. The inputs to that Gaussian process are then
governed by another GP. A single layer model is
equivalent to a standard GP or the GP latent vari-
ahle madel (GP- VM) We nerform inference in

the question as to whether deep structures and the learning
of abstract structure can be undertaken in smaller data sets.
For smaller data sets, questions of generalization arise: to
demonstrate such structures are justified it is useful to have
an objective measure of the model’s applicability.

The traditional approach to deep learning is based around
binary latent variables and the restricted Boltzmann ma-
chine (RBM) [Hinton, 2010]. Deep hierarchies are con-
structed by stacking these models and various approxi-
mate inference technianes (snch as contrastive diversence)


http://jmlr.org/proceedings/papers/v31/damianou13a.pdf

Deep Models
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Deep Models

Latent layer 4

Latent layer 3

Latent layer 2

Latent layer 1

Data space



Deep Models

@ Abstract features

More com-
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Deep Gaussian Processes

Damianou and Lawrence (2013)

» Deep architectures allow abstraction of features (Bengio, 2009;
Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).

» We use variational approach to stack GP models.



Motion Capture

» ‘High five’ data.

» Model learns structure between two interacting subjects.



Deep hierarchies — motion capture
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Digits Data Set

» Are deep hierarchies justified for small data sets?
» We can lower bound the evidence for different depths.

» For 150 6s, Os and 1s from MNIST we found at least 5
layers are required.



Deep hierarchies — MNIST
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Deep Health
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