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y = mx + c

point 1: x = 1, y = 3

3 = m + c

point 2: x = 3, y = 1

1 = 3m + c

point 3: x = 2, y = 2.5

2.5 = 2m + c









6 A PHILOSOPHICAL ESSAY ON PROBABILITIES.

height: "The day will come when, by study pursued

through several ages, the things now concealed will

appear with evidence; and posterity will be astonished

that truths so clear had escaped us.
' '

Clairaut then

undertook to submit to analysis the perturbations which

the comet had experienced by the action of the two

great planets, Jupiter and Saturn; after immense cal-

culations he fixed its next passage at the perihelion

toward the beginning of April, 1759, which was actually

verified by observation. The regularity which astronomy
shows us in the movements of the comets doubtless

exists also in all phenomena. -

The curve described by a simple molecule of air or

vapor is regulated in a manner just as certain as the

planetary orbits
;
the only difference between them is

that which comes from our ignorance.

Probability is relative, in part to this ignorance, in

part to our knowledge. We know that of three or a

greater number of events a single one ought to occur
;

but nothing induces us to believe that one of them will

occur rather than the others. In this state of indecision

it is impossible for us to announce their occurrence with

certainty. It is, however, probable that one of these

events, chosen at will, will not occur because we see

several cases equally possible which exclude its occur-

rence, while only a single one favors it.

The theory of chance consists in reducing all the

events of the same kind to a certain number of cases

equally possible, that is to say, to such as we may be

equally undecided about in regard to their existence,
and in determining the number of cases favorable to

the event whose probability is sought. The ratio of



y = mx + c + ε

point 1: x = 1, y = 3

3 = m + c + ε1

point 2: x = 3, y = 1

1 = 3m + c + ε2

point 3: x = 2, y = 2.5

2.5 = 2m + c + ε3



Underdetermined System

What about two unknowns and
one observation?

y1 = mx1 + c
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Underdetermined System

Can compute m given c.

m =
y1 − c
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Underdetermined System

Can compute m given c.

c = 1.75 =⇒ m = 1.25
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Underdetermined System

Can compute m given c.

c = −0.777 =⇒ m = 3.78
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Underdetermined System

Can compute m given c.

c = −4.01 =⇒ m = 7.01
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Underdetermined System

Can compute m given c.

c = −0.718 =⇒ m = 3.72

0
1
2
3
4
5

0 1 2 3
y

x



Underdetermined System

Can compute m given c.

c = 2.45 =⇒ m = 0.545
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Underdetermined System

Can compute m given c.

c = −0.657 =⇒ m = 3.66
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Underdetermined System

Can compute m given c.

c = −3.13 =⇒ m = 6.13
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Underdetermined System

Can compute m given c.

c = −1.47 =⇒ m = 4.47
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Underdetermined System

Can compute m given c.
Assume

c ∼ N (0, 4) ,

we find a distribution of solu-
tions.
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Gaussian Process

yi(xi) = f (xi) + εi

I Place a prior over the process as well as the noise.
I Leads to models that are not i.i.d.
I Contrast with classical model’s objective function:

n∑
i=1

(1 − yi(w>xi − b))+ + λw>w



Model and Algorithm

I I’m keen on the idea of a conceptual separation model and
algorithm.

I Model is how you encode the regularities of the universe.
I Algorithm is how you combine that model with data.

data + model→ prediction

I Of course often we are restricted in modeling choice due to
lack of algorithms.



Gaussian Processes: Extremely Short Overview
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Sampling a Function

Multi-variate Gaussians

I We will consider a Gaussian with a particular structure of
covariance matrix.

I Generate a single sample from this 25 dimensional
Gaussian distribution, f =

[
f1, f2 . . . f25

]
.

I We will plot these points against their index.



Gaussian Distribution Sample
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Figure: A sample from a 25 dimensional Gaussian distribution.
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Prediction of f2 from f1
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I The single contour of the Gaussian density represents the
joint distribution, p( f1, f2).

I We observe that f1 = −0.313.
I Conditional density: p( f2| f1 = −0.313).
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Prediction with Correlated Gaussians

I Prediction of f2 from f1 requires conditional density.
I Conditional density is also Gaussian.

p( f2| f1) = N

 f2|
k1,2

k1,1
f1, k2,2 −

k2
1,2

k1,1


where covariance of joint density is given by

K =

[
k1,1 k1,2
k2,1 k2,2

]



Prediction of f5 from f1
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Prediction with Correlated Gaussians

I Prediction of f∗ from f requires multivariate conditional
density.

I Multivariate conditional density is also Gaussian.

p(f∗|f) = N
(
f∗|K∗,fK−1

f,f f,K∗,∗ −K∗,fK−1
f,f Kf,∗

)

I Here covariance of joint density is given by

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]



Prediction with Correlated Gaussians

I Prediction of f∗ from f requires multivariate conditional
density.

I Multivariate conditional density is also Gaussian.

p(f∗|f) = N (f∗|µ,Σ)

µ = K∗,fK−1
f,f f

Σ = K∗,∗ −K∗,fK−1
f,f Kf,∗

I Here covariance of joint density is given by

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2


I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.
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Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x1 = −3.0, x1 = −3.0

k1,1 = 1.00 × exp
(
−

(−3.0−−3.0)2

2×2.002

)
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Covariance Functions
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Covariance Functions
Where did this covariance matrix come from?
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Covariance Functions
Where did this covariance matrix come from?
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Covariance Functions
Where did this covariance matrix come from?
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0 × exp
(
−

(1.4−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

0.089

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0 × exp
(
−

(1.4−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0 × exp
(
−

(1.4−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0 × exp
(
−

(1.4−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0 × exp
(
−

(1.4−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0 × exp
(
−

(1.4−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x3 = 1.4

k3,3 = 1.0 × exp
(
−

(1.4−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x3 = 1.4

k3,3 = 1.0 × exp
(
−

(1.4−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0 × exp
(
−

(2.0−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0 × exp
(
−

(2.0−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0 × exp
(
−

(2.0−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0 × exp
(
−

(2.0−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044 0.92

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0 × exp
(
−

(2.0−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0 × exp
(
−

(2.0−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0 × exp
(
−

(2.0−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92 0.96

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0 × exp
(
−

(2.0−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0 × exp
(
−

(2.0−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0 × exp
(
−

(2.0−2.0)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0 × exp
(
−

(2.0−2.0)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0 × exp
(
−

(2.0−2.0)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x1 = −3.0, x1 = −3.0

k1,1 = 4.00 × exp
(
−

(−3.0−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x1 = −3.0, x1 = −3.0

k1,1 = 4.00 × exp
(
−

(−3.0−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00 × exp
(
−

(1.20−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00

2.81

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00 × exp
(
−

(1.20−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00 × exp
(
−

(1.20−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x2 = 1.20

k2,2 = 4.00 × exp
(
−

(1.20−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x2 = 1.20

k2,2 = 4.00 × exp
(
−

(1.20−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00 × exp
(
−

(1.40−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

2.72

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00 × exp
(
−

(1.40−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00 × exp
(
−

(1.40−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00 × exp
(
−

(1.40−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00 × exp
(
−

(1.40−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00 × exp
(
−

(1.40−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00 × exp
(
−

(1.40−1.40)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00 × exp
(
−

(1.40−1.40)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00 × exp
(
−

(1.40−1.40)2

2×5.002

)



Gaussian Process Interpolation
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Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).



Gaussian Noise

I Gaussian noise model,

p
(
yi| fi

)
= N

(
yi| fi, σ2

)
where σ2 is the variance of the noise.

I Equivalent to a covariance function of the form

k(xi, x j) = δi, jσ
2

where δi, j is the Kronecker delta function.
I Additive nature of Gaussians means we can simply add

this term to existing covariance matrices.



Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Fit to Olympic Marathon Data
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General Noise Models

Graph of a GP
I Relates input variables,

X, to vector, y, through f
given kernel parameters
θ.

I Plate notation indicates
independence of yi| fi.

I In general p
(
yi| fi

)
is

non-Gaussian.
I We approximate with

Gaussian
p
(
yi| fi

)
≈ N

(
mi| fi, β−1

i

)
.

yi

X

fi

θ

i = 1 . . . n

Figure: The Gaussian process
depicted graphically.
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Figure: Inclusion of a data point with Gaussian noise.
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Expectation Propagation

Local Moment Matching

I Easiest to consider a single previously unseen data point,
y∗, x∗.

I Before seeing data point, prediction of f∗ is a GP, q
(

f∗|y,X
)
.

I Update prediction using Bayes’ Rule,

p
(

f∗|y, y∗,X, x∗
)

=
p
(
y∗| f∗

)
p
(

f∗|y,X, x∗
)

p
(
y, y∗|X, x∗

) .

This posterior is not a Gaussian process if p
(
y∗| f∗

)
is

non-Gaussian.



Classification Noise Model

Probit Noise Model

0

0.5

1

-4 -2 0 2 4

p(
y i
|f

i)

fi

yi = −1 yi = 1

Figure: The probit model (classification). The plot shows p
(
yi| fi

)
for

different values of yi. For yi = 1 we have

p
(
yi| fi

)
= φ

(
fi
)

=
∫ fi
−∞
N (z|0, 1) dz.



Expectation Propagation II

Match Moments

I Idea behind EP — approximate with a Gaussian process at
this stage by matching moments.

I This is equivalent to minimizing the following KL
divergence where q

(
f∗|y, y∗,X, x∗

)
is constrained to be a GP.

q
(

f∗|y, y∗X, x∗
)

= argminq( f∗ |y,y∗X,x∗)KL
(
p
(

f∗|y, y∗X, x∗
)
||q

(
f∗|y, y∗,X, x∗

))
I This is equivalent to setting〈

f∗
〉

q( f∗|y,y∗,X,x∗) =
〈

f∗
〉

p( f∗|y,y∗,X,x∗)〈
f 2
∗

〉
q( f∗|y,y∗,X,x∗)

=
〈

f 2
∗

〉
p( f∗|y,y∗,X,x∗)



Expectation Propagation III

Equivalent Gaussian

I This is achieved by replacing p
(
y∗| f∗

)
with a Gaussian

distribution

p
(

f∗|y, y∗,X, x∗
)

=
p
(
y∗| f∗

)
p
(

f∗|y,X, x∗
)

p
(
y, y∗|X, x∗

)
becomes

q
(

f∗|y, y∗,X, x∗
)

=
N

(
m∗| f∗, β−1

m

)
p
(

f∗|y,X, x∗
)

p
(
y, y∗|X, x∗

) .
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Figure: An EP style update with a classification noise model.
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Ordinal Noise Model

Ordered Categories
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p(
y i
|f

i)

fi

yi = −1 yi = 1yi = 0

Figure: The ordered categorical noise model (ordinal regression). The
plot shows p

(
yi| fi

)
for different values of yi. Here we have assumed

three categories.



Laplace Approximation

I Equivalent Gaussian is found by making a local 2nd order
Taylor approximation at the mode.

I Laplace was the first to suggest this1, so it’s known as the
Laplace approximation.



Learning Covariance Parameters
Can we determine covariance parameters from the data?

N
(
y|0,K

)
=

1

(2π)
n
2 |K|

1
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(
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y>K−1y
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)

The parameters are inside the covariance
function (matrix).

ki, j = k(xi, x j;θ)



Learning Covariance Parameters
Can we determine covariance parameters from the data?

N
(
y|0,K

)
=

1

(2π)
n
2 |K|

1
2
exp

(
−

y>K−1y
2

)

The parameters are inside the covariance
function (matrix).

ki, j = k(xi, x j;θ)



Learning Covariance Parameters
Can we determine covariance parameters from the data?

logN
(
y|0,K

)
=−

1
2

log |K|−
y>K−1y

2
−

n
2

log 2π

The parameters are inside the covariance
function (matrix).

ki, j = k(xi, x j;θ)



Learning Covariance Parameters
Can we determine covariance parameters from the data?

E(θ) =
1
2

log |K| +
y>K−1y

2

The parameters are inside the covariance
function (matrix).

ki, j = k(xi, x j;θ)



Eigendecomposition of Covariance

A useful decomposition for understanding the objective
function.

K = RΛ2R>

λ1
λ2

Diagonal of Λ represents distance
along axes.
R gives a rotation of these axes.

where Λ is a diagonal matrix and R>R = I.

Useful representation since |K| =
∣∣∣Λ2

∣∣∣ = |Λ|2.
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Capacity control: log |K|

|RΛ| = λ1λ2

w1,1 w1,2

w2,1 w2,2

λ1
λ2

|Λ|
RΛ =



Data Fit: y>K−1y
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?
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Gene Expression Example

I Given given expression levels in the form of a time series
from Della Gatta et al. (2008).

I Want to detect if a gene is expressed or not, fit a GP to each
gene (Kalaitzis and Lawrence, 2011).



RESEARCH ARTICLE Open Access

A Simple Approach to Ranking Differentially
Expressed Gene Expression Time Courses through
Gaussian Process Regression
Alfredo A Kalaitzis* and Neil D Lawrence*

Abstract

Background: The analysis of gene expression from time series underpins many biological studies. Two basic forms
of analysis recur for data of this type: removing inactive (quiet) genes from the study and determining which
genes are differentially expressed. Often these analysis stages are applied disregarding the fact that the data is
drawn from a time series. In this paper we propose a simple model for accounting for the underlying temporal
nature of the data based on a Gaussian process.

Results: We review Gaussian process (GP) regression for estimating the continuous trajectories underlying in gene
expression time-series. We present a simple approach which can be used to filter quiet genes, or for the case of
time series in the form of expression ratios, quantify differential expression. We assess via ROC curves the rankings
produced by our regression framework and compare them to a recently proposed hierarchical Bayesian model for
the analysis of gene expression time-series (BATS). We compare on both simulated and experimental data showing
that the proposed approach considerably outperforms the current state of the art.

Conclusions: Gaussian processes offer an attractive trade-off between efficiency and usability for the analysis of
microarray time series. The Gaussian process framework offers a natural way of handling biological replicates and
missing values and provides confidence intervals along the estimated curves of gene expression. Therefore, we
believe Gaussian processes should be a standard tool in the analysis of gene expression time series.

Background
Gene expression profiles give a snapshot of mRNA con-
centration levels as encoded by the genes of an organ-
ism under given experimental conditions. Early studies
of this data often focused on a single point in time
which biologists assumed to be critical along the gene
regulation process after the perturbation. However, the
static nature of such experiments severely restricts the
inferences that can be made about the underlying dyna-
mical system.
With the decreasing cost of gene expression microar-

rays time series experiments have become commonplace
giving a far broader picture of the gene regulation pro-
cess. Such time series are often irregularly sampled and
may involve differing numbers of replicates at each time
point [1]. The experimental conditions under which

gene expression measurements are taken cannot be per-
fectly controlled leading the signals of interest to be cor-
rupted by noise, either of biological origin or arising
through the measurement process.
Primary analysis of gene expression profiles is often

dominated by methods targeted at static experiments, i.
e. gene expression measured on a single time-point, that
treat time as an additional experimental factor [1-6].
However, were possible, it would seem sensible to con-
sider methods that can account for the special nature of
time course data. Such methods can take advantage of
the particular statistical constraints that are imposed on
data that is naturally ordered [7-12].
The analysis of gene expression microarray time-series

has been a stepping stone to important problems in sys-
tems biology such as the genome-wide identification of
direct targets of transcription factors [13,14] and the full
reconstruction of gene regulatory networks [15,16]. A
more comprehensive review on the motivations and

* Correspondence: A.Kalaitzis@sheffield.ac.uk; N.Lawrence@dcs.shef.ac.uk
The Sheffield Institute for Translational Neuroscience, 385A Glossop Road,
Sheffield, S10 2HQ, UK
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© 2011 Kalaitzis and Lawrence; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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Basis Function Form

Radial basis functions commonly have the form

φk (xi) = exp
(
−
|xi − µk|

2

2`2

)
.

I Basis function
maps data into a
“feature space” in
which a linear
sum is a non linear
function.

0

0.5

1

-8 -6 -4 -2 0 2 4 6 8

φ
(x

)

x
Figure: A set of radial basis functions with width
` = 2 and location parameters µ = [−4 0 4]>.



Basis Function Representations

I Represent a function by a linear sum over a basis,

f (xi,:; w) =

m∑
k=1

wkφk(xi,:), (1)

I Here: m basis functions and φk(·) is kth basis function and

w = [w1, . . . ,wm]> .

I For standard linear model: φk(xi,:) = xi,k.



Random Functions

Functions derived
using:

f (x) =

m∑
k=1

wkφk(x),

where elements of w
are independently
sampled from a
Gaussian density,

wk ∼ N (0, α) .

-2
-1
0
1
2

-8 -6 -4 -2 0 2 4 6 8
f(

x)
x

Figure: Functions sampled using the basis set from
figure 9. Each line is a separate sample, generated
by a weighted sum of the basis set. The weights, w
are sampled from a Gaussian density with variance
α = 1.



Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.
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Covariance Functions

RBF Basis Functions

k (x, x′) = αφ(x)>φ(x′)

φk(x) = exp

−
∥∥∥x − µk

∥∥∥2
2

`2


µ =


−1
0
1
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k (x, x′) = αφ(x)>φ(x′)
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Selecting Number and Location of Basis

I Need to choose
1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.
I Consider uniform spacing over a region:

k
(
xi, x j

)
= αφk(xi)>φk(x j)
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Selecting Number and Location of Basis

I Need to choose
1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.
I Consider uniform spacing over a region:

k
(
xi, x j

)
= α

m∑
k=1

exp

−x2
i + x2

j − 2µk

(
xi + x j

)
+ 2µ2

k

2`2

 ,



Uniform Basis Functions

I Set each center location to

µk = a + ∆µ · (k − 1).

I Specify the basis functions in terms of their indices,

k
(
xi, x j

)
=α′∆µ

m∑
k=1

exp
(
−

x2
i + x2

j

2`2

−

2
(
a + ∆µ · (k − 1)

) (
xi + x j

)
+ 2

(
a + ∆µ · (k − 1)

)2

2`2

)
.

I Here we’ve scaled variance of process by ∆µ.
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Infinite Basis Functions

I Take
µ1 = a and µm = b so b = a + ∆µ · (m − 1)

I This implies
b − a = ∆µ(m − 1)

and therefore
m =

b − a
∆µ

+ 1

I Take limit as ∆µ→ 0 so m→∞

k(xi, x j) = α′
∫ b

a
exp

(
−

x2
i + x2

j

2`2 +
2
(
µ − 1

2

(
xi + x j

))2
−

1
2

(
xi + x j

)2

2`2

)
dµ,

where we have used a + k · ∆µ→ µ.
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Infinite Basis Functions
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Result

I Performing the integration leads to

k(xi,x j) = α′
√

π`2 exp

−
(
xi − x j

)2

4`2


×

1
2

erf


(
b − 1

2

(
xi + x j

))
`

 − erf


(
a − 1

2

(
xi + x j

))
`


 ,

I Now take limit as a→ −∞ and b→∞
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Infinite Feature Space

I An RBF model with infinite basis functions is a Gaussian
process.

I The covariance function is given by the exponentiated
quadratic covariance function.

k
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= α exp

−
(
xi − x j

)2

4`2
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Infinite Feature Space

I An RBF model with infinite basis functions is a Gaussian
process.

I The covariance function is given by the exponentiated
quadratic covariance function.

k
(
xi, x j

)
= α exp

−
(
xi − x j

)2

4`2

 .



Infinite Feature Space

I An RBF model with infinite basis functions is a Gaussian
process.

I The covariance function is the exponentiated quadratic.
I Note: The functional form for the covariance function and

basis functions are similar.
I this is a special case,
I in general they are very different

Similar results can obtained for multi-dimensional input
models Williams (1998); Neal (1996).



Covariance Functions

RBF Basis Functions

k (x, x′) = αφ(x)>φ(x′)

φk(x) = exp

−
∥∥∥x − µk

∥∥∥2
2

`2


µ =


−1
0
1





Covariance Functions

RBF Basis Functions

k (x, x′) = αφ(x)>φ(x′)

φk(x) = exp

−
∥∥∥x − µk

∥∥∥2
2

`2


µ =


−1
0
1
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Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2


I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)
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I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.



Covariance Functions

MLP Covariance Function

k (x, x′) = αasin
(

wx>x′ + b
√

wx>x + b + 1
√

wx′>x′ + b + 1

)

I Based on infinite neural
network model.

w = 40

b = 4



Covariance Functions

MLP Covariance Function

k (x, x′) = αasin
(

wx>x′ + b
√

wx>x + b + 1
√

wx′>x′ + b + 1

)

I Based on infinite neural
network model.

w = 40

b = 4



Constructing Covariance Functions

I Sum of two covariances is also a covariance function.

k(x, x′) = k1(x, x′) + k2(x, x′)



Constructing Covariance Functions

I Product of two covariances is also a covariance function.

k(x, x′) = k1(x, x′)k2(x, x′)



Multiply by Deterministic Function

I If f (x) is a Gaussian process.
I g(x) is a deterministic function.
I h(x) = f (x)g(x)
I Then

kh(x, x′) = g(x)k f (x, x′)g(x′)

where kh is covariance for h(·) and k f is covariance for f (·).
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w = 40
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Covariance Functions

MLP Covariance Function

k (x, x′) = αasin
(

wx>x′ + b
√

wx>x + b + 1
√

wx′>x′ + b + 1

)

I Based on infinite neural
network model.

w = 40

b = 4



Covariance Functions

Linear Covariance Function

k (x, x′) = αx>x′

I Bayesian linear
regression.

α = 1



Covariance Functions

Linear Covariance Function

k (x, x′) = αx>x′

I Bayesian linear
regression.

α = 1



Outline

Gaussian Processes

GP Non-Gaussian

GP Limitations

Kalman Filter

Dimensionality Reduction



Limitations of Gaussian Processes

I Inference is O(n3) due to matrix inverse (in practice use
Cholesky).

I Gaussian processes don’t deal well with discontinuities
(financial crises, phosphorylation, collisions, edges in
images).

I Widely used exponentiated quadratic covariance (RBF) can
be too smooth in practice (but there are many
alternatives!!).
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Dimensionality Reduction



Simple Markov Chain

I Assume 1-d latent state, a vector over time, x = [x1 . . . xT].
I Markov property,

xi =xi−1 + εi,

εi ∼N (0, α)

=⇒ xi ∼N (xi−1, α)

I Initial state,
x0 ∼ N (0, α0)

I If x0 ∼ N (0, α) we have a Markov chain for the latent
states.

I Markov chain it is specified by an initial distribution
(Gaussian) and a transition distribution (Gaussian).



Gauss Markov Chain
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Gauss Markov Chain
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Gauss Markov Chain
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Gauss Markov Chain
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Gauss Markov Chain
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Gauss Markov Chain
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Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x7 = −0.0881, ε8 = −0.842

x8 = −0.0881 − 0.842 = −0.93



Gauss Markov Chain
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Multivariate Gaussian Properties: Reminder

If
z ∼ N (µ,C)

and
x = Wz + b

then
x ∼ N

(
Wµ + b,WCW>

)



Multivariate Gaussian Properties: Reminder

Simplified: If
z ∼ N

(
0, σ2I

)
and

x = Wz

then
x ∼ N

(
0, σ2WW>

)



Matrix Representation of Latent Variables

x1

x2

x3

x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0
1 1 0 0 0
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1 1 1 1 1

×=

x1 = ε1
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Matrix Representation of Latent Variables

x1

x2
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x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

×=

x5 = ε1 + ε2 + ε3 + ε4 + ε5



Matrix Representation of Latent Variables

x εL1 ×=



Multivariate Process

I Since x is linearly related to ε we know x is a Gaussian
process.

I Trick: we only need to compute the mean and covariance
of x to determine that Gaussian.



Latent Process Mean

x = L1ε



Latent Process Mean

〈x〉 = 〈L1ε〉



Latent Process Mean

〈x〉 = L1 〈ε〉



Latent Process Mean

〈x〉 = L1 〈ε〉

ε ∼ N (0, αI)



Latent Process Mean

〈x〉 = L10



Latent Process Mean

〈x〉 = 0



Latent Process Covariance

xx> = L1εε
>L>1

x> = ε>L>



Latent Process Covariance

〈
xx>

〉
=

〈
L1εε

>L>1
〉



Latent Process Covariance
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Latent Process Covariance
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Latent Process Covariance

〈
xx>

〉
= αL1L>1



Latent Process
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Latent Process

x = L1ε
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Latent Process

x = L1ε

ε ∼ N (0, αI)

=⇒



Latent Process

x = L1ε

ε ∼ N (0, αI)

=⇒

x ∼ N
(
0, αL1L>1

)



Covariance for Latent Process II

I Make the variance dependent on time interval.
I Assume variance grows linearly with time.
I Justification: sum of two Gaussian distributed random

variables is distributed as Gaussian with sum of variances.
I If variable’s movement is additive over time (as described)

variance scales linearly with time.



Covariance for Latent Process II

I Given
ε ∼ N (0, αI) =⇒ ε ∼ N

(
0, αL1L>1

)
.

Then
ε ∼ N (0,∆tαI) =⇒ ε ∼ N

(
0,∆tαL1L>1

)
.

where ∆t is the time interval between observations.



Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(
0, α∆tL1L>1

)

K = α∆tL1L>1

ki, j = α∆tl>:,il:, j

where l:,k is a vector from the kth row of L1: the first k elements
are one, the next T − k are zero.

ki, j = α∆t min(i, j)

define ∆ti = ti so

ki, j = αmin(ti, t j) = k(ti, t j)
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Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(
0, α∆tL1L>1

)
K = α∆tL1L>1

ki, j = α∆tl>:,il:, j

where l:,k is a vector from the kth row of L1: the first k elements
are one, the next T − k are zero.

ki, j = α∆t min(i, j)

define ∆ti = ti so

ki, j = αmin(ti, t j) = k(ti, t j)



Covariance Functions
Where did this covariance matrix come from?

Markov Process

k (t, t′) = αmin(t, t′)

I Covariance matrix is
built using the inputs to
the function t.



Covariance Functions
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k (t, t′) = αmin(t, t′)

I Covariance matrix is
built using the inputs to
the function t.

-3
-2
-1
0
1
2
3

0 0.5 1 1.5 2



Covariance Functions
Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

I Precision matrix is
sparse: only neighbours
in matrix are non-zero.

I This reflects conditional
independencies in data.

I In this case Markov
structure.



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2


I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2


I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic

Visualization of inverse covariance (precision).

I Precision matrix is not
sparse.

I Each point is dependent
on all the others.

I In this case
non-Markovian.



Covariance Functions
Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

I Precision matrix is
sparse: only neighbours
in matrix are non-zero.

I This reflects conditional
independencies in data.

I In this case Markov
structure.



Simple Kalman Filter I

I We have state vector X =
[
x1 . . . xq

]
∈ RT×q and if each state

evolves independently we have

p(X) =

q∏
i=1

p(x:,i)

p(x:,i) = N
(
x:,i|0,K

)
.

I We want to obtain outputs through:

yi,: = Wxi,:



Stacking and Kronecker Products I

I Represent with a ‘stacked’ system:

p(x) = N (x|0, I ⊗K)

where the stacking is placing each column of X one on top
of another as

x =


x:,1
x:,2
...

x:,q





Kronecker Product

aK bK
cK dK

Ka b

c d
⊗ =



Kronecker Product

⊗ =



Stacking and Kronecker Products I

I Represent with a ‘stacked’ system:

p(x) = N (x|0, I ⊗K)

where the stacking is placing each column of X one on top
of another as

x =


x:,1
x:,2
...

x:,q





Column Stacking

⊗ =



For this stacking the marginal distribution over time is given by
the block diagonals.



For this stacking the marginal distribution over time is given by
the block diagonals.



For this stacking the marginal distribution over time is given by
the block diagonals.



For this stacking the marginal distribution over time is given by
the block diagonals.



For this stacking the marginal distribution over time is given by
the block diagonals.



Two Ways of Stacking

Can also stack each row of X to form column vector:

x =


x1,:
x2,:
...

xT,:


p(x) = N (x|0,K ⊗ I)



Row Stacking

⊗ =



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



Observed Process

The observations are related to the latent points by a linear
mapping matrix,

yi,: = Wxi,: + εi,:

ε ∼ N
(
0, σ2I

)



Mapping from Latent Process to Observed

Wx1,:

Wx2,:

Wx3,:

x1,:

x2,:

x3,:

W 0 0

0 W 0

0 0 W

× =



Output Covariance

This leads to a covariance of the form

(I ⊗W)(K ⊗ I)(I ⊗W>) + Iσ2

Using (A ⊗ B)(C ⊗D) = AC ⊗ BD This leads to

K ⊗WW> + Iσ2

or
y ∼ N

(
0,WW>

⊗K + Iσ2
)
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Kronecker Structure GPs

I This Kronecker structure leads to several published
models.

(K(x, x′)) j, j′ = k(x, x′)kT( j, j′),

where k has x and kT has i as inputs.
I Can think of multiple output covariance functions as

covariances with augmented input.
I Alongside x we also input the j associated with the output

of interest.



Separable Covariance Functions

I Taking B = WW> we have a matrix expression across
outputs.

K(x, x′) = k(x, x′)B,

where B is a p × p symmetric and positive semi-definite
matrix.

I B is called the coregionalization matrix.
I We call this class of covariance functions separable due to

their product structure.



Sum of Separable Covariance Functions

I In the same spirit a more general class of kernels is given
by

K(x, x′) =

q∑
j=1

k j(x, x′)B j.

I This can also be written as

K(X,X) =

q∑
j=1

B j ⊗ k j(X,X),

I This is like several Kalman filter-type models added
together, but each one with a different set of latent
functions.

I We call this class of kernels sum of separable kernels (SoS
kernels).



Geostatistics

I Use of GPs in Geostatistics is called kriging.
I These multi-output GPs pioneered in geostatistics:

prediction over vector-valued output data is known as
cokriging.

I The model in geostatistics is known as the linear model of
coregionalization (LMC, Journel and Huijbregts (1978);
Goovaerts (1997)).

I Most machine learning multitask models can be placed in
the context of the LMC model.



Weighted sum of Latent Functions

I In the linear model of coregionalization (LMC) outputs are
expressed as linear combinations of independent random
functions.

I In the LMC, each component f j is expressed as a linear sum

f j(x) =

q∑
j=1

w j, ju j(x).

where the latent functions are independent and have
covariance functions k j(x, x′).

I The processes { f j(x)}qj=1 are independent for q , j′.



Kalman Filter Special Case

I The Kalman filter is an example of the LMC where
ui(x)→ xi(t).

I I.e. we’ve moved form time input to a more general input
space.

I In matrix notation:
1. Kalman filter

F = WX

2. LMC
F = WU

where the rows of these matrices F, X, U each contain q
samples from their corresponding functions at a different
time (Kalman filter) or spatial location (LMC).



Intrinsic Coregionalization Model

I If one covariance used for latent functions (like in Kalman
filter).

I This is called the intrinsic coregionalization model (ICM,
Goovaerts (1997)).

I The kernel matrix corresponding to a dataset X takes the
form

K(X,X) = B ⊗ k(X,X).



Autokrigeability

I If outputs are noise-free, maximum likelihood is
equivalent to independent fits of B and k(x, x′) (Helterbrand
and Cressie, 1994).

I In geostatistics this is known as autokrigeability
(Wackernagel, 2003).

I In multitask learning its the cancellation of intertask
transfer (Bonilla et al., 2008).
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K(X,X) = ww> ⊗ k(X,X).

w =

[
1
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[
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LMC in Machine Learning and Statistics

I Used in machine learning for GPs for multivariate
regression and in statistics for computer emulation of
expensive multivariate computer codes.

I Imposes the correlation of the outputs explicitly through
the set of coregionalization matrices.

I Setting B = Ip assumes outputs are conditionally
independent given the parameters θ. (Minka and Picard,
1997; Lawrence and Platt, 2004; Yu et al., 2005).

I More recent approaches for multiple output modeling are
different versions of the linear model of coregionalization.



Semiparametric Latent Factor Model

I Coregionalization matrices are rank 1 Teh et al. (2005).
rewrite equation (??) as

K(X,X) =

q∑
j=1

w:, jw>:, j ⊗ k j(X,X).

I Like the Kalman filter, but each latent function has a
different covariance.

I Authors suggest using an exponentiated quadratic
characteristic length-scale for each input dimension.
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Gaussian processes for Multi-task, Multi-output and
Multi-class

I Bonilla et al. (2008) suggest ICM for multitask learning.
I Use a PPCA form for B: similar to our Kalman filter

example.
I Refer to the autokrigeability effect as the cancellation of

inter-task transfer.
I Also discuss the similarities between the multi-task GP

and the ICM, and its relationship to the SLFM and the
LMC.



Multitask Classification

I Mostly restricted to the case where the outputs are
conditionally independent given the hyperparameters φ
(Minka and Picard, 1997; Williams and Barber, 1998; Lawrence
and Platt, 2004; Seeger and Jordan, 2004; Yu et al., 2005;
Rasmussen and Williams, 2006).

I Intrinsic coregionalization model has been used in the
multiclass scenario. Skolidis and Sanguinetti (2011) use the
intrinsic coregionalization model for classification, by
introducing a probit noise model as the likelihood.

I Posterior distribution is no longer analytically tractable:
approximate inference is required.



Computer Emulation

I A statistical model used as a surrogate for a
computationally expensive computer model.

I Higdon et al. (2008) use the linear model of
coregionalization to model images representing the
evolution of the implosion of steel cylinders.

I In Conti and O’Hagan (2009) use the ICM to model a
vegetation model: called the Sheffield Dynamic Global
Vegetation Model (Woodward et al., 1998).



Bochner’s Theorem

Given a positive finite Borel measure µ on the real line R, the
Fourier transform Q of µ is the continuous function

Q(t) =

∫
R

e−itxdµ(x).

Q is continuous since for a fixed x, the function e−itx is
continuous and periodic. The function Q is a positive definite
function, i.e. the kernel k(x, x′) = Q(x′ − x) is positive definite.

Bochner’s theorem says the converse is true, i.e. every positive
definite function Q is the Fourier transform of a positive finite
Borel measure. A proof can be sketched as follows.



Covariance Functions
Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function

k (x, x′) = α exp
(
−
|x − x′|

2`2

)
I In one dimension arises

from a stochastic
differential equation.
Brownian motion in a
parabolic tube.

I In higher dimension a
Fourier filter of the form

1
π(1+x2) .
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Matern 3/2 Covariance Function
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I Matern 3/2 is a once
differentiable
covariance.

I Matern family
constructed with
Student-t filters in
Fourier space.
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Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2


I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.
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Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

I 3648 Dimensions
I 64 rows by 57

columns

I Space contains more
than just this digit.

I Even if we sample
every nanosecond
from now until the
end of the universe,
you won’t see the
original six!
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MATLAB Demo

demDigitsManifold([1 2], ’all’)
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Low Dimensional Manifolds

Pure Rotation is too Simple

I In practice the data may undergo several distortions.
I e.g. digits undergo ‘thinning’, translation and rotation.

I For data with ‘structure’:
I we expect fewer distortions than dimensions;
I we therefore expect the data to live on a lower dimensional

manifold.

I Conclusion: deal with high dimensional data by looking
for lower dimensional non-linear embedding.



Existing Methods

Spectral Approaches

I Classical Multidimensional Scaling (MDS) (Mardia et al., 1979).
I Uses eigenvectors of similarity matrix.

I Isomap (Tenenbaum et al., 2000) is MDS with a particular
proximity measure.

I Kernel PCA (Schölkopf et al., 1998)

I Provides a representation and a mapping — dimensional
expansion.

I Mapping is implied throught he use of a kernel function as a
similarity matrix.

I Locally Linear Embedding (Roweis and Saul, 2000).

I Looks to preserve locally linear relationships in a low
dimensional space.



Existing Methods II

Iterative Methods

I Multidimensional Scaling (MDS)
I Iterative optimisation of a stress function (Kruskal, 1964).
I Sammon Mappings (Sammon, 1969).

I Strictly speaking not a mapping — similar to iterative MDS.

I NeuroScale (Lowe and Tipping, 1997)

I Augmentation of iterative MDS methods with a mapping.



Existing Methods III

Probabilistic Approaches

I Probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998)

I A linear method.

I Density Networks (MacKay, 1995)

I Use importance sampling and a multi-layer perceptron.

I Generative Topographic Mapping (GTM) (Bishop et al., 1998)

I Uses a grid based sample and an RBF network.
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Existing Methods III

Probabilistic Approaches

I Probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998)

I A linear method.

I Density Networks (MacKay, 1995)

I Use importance sampling and a multi-layer perceptron.

I Generative Topographic Mapping (GTM) (Bishop et al., 1998)

I Uses a grid based sample and an RBF network.

Difficulty for Probabilistic Approaches

I Propagate a probability distribution through a non-linear
mapping.



The New Model

A Probabilistic Non-linear PCA

I PCA has a probabilistic interpretation (Tipping and Bishop, 1999;

Roweis, 1998).
I It is difficult to ‘non-linearise’.

Dual Probabilistic PCA

I We present a new probabilistic interpretation of PCA
(Lawrence, 2005).

I This interpretation can be made non-linear.
I The result is non-linear probabilistic PCA.



Notation

q— dimension of latent/embedded space
p— dimension of data space
n— number of data points

centred data, Y =
[
y1,:, . . . ,yn,:

]> =
[
y:,1, . . . ,y:,p

]
∈ <

n×p

latent variables, X =
[
x1,:, . . . , xn,:

]> =
[
x:,1, . . . , x:,q

]
∈ <

n×q

mapping matrix, W ∈ <p×q

ai,: is a vector from the ith row of a given matrix A
a:, j is a vector from the jth row of a given matrix A



Reading Notation

X and Y are design matrices

I Covariance given by n−1Y>Y.
I Inner product matrix given by YY>.



Linear Dimensionality Reduction

Linear Latent Variable Model

I Represent data, Y, with a lower dimensional set of latent
variables X.

I Assume a linear relationship of the form

yi,: = Wxi,: + εi,:,

where
εi,: ∼ N

(
0, σ2I

)
.



Linear Latent Variable Model

Probabilistic PCA
I Define linear-Gaussian

relationship between
latent variables and
data.

I Standard Latent
variable approach:

I Define Gaussian prior
over latent space, X.

I Integrate out latent
variables.

Y

W X

σ2

p (Y|X,W) =

n∏
i=1

N

(
yi,:|Wxi,:, σ

2I
)
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Linear Latent Variable Model

Probabilistic PCA
I Define linear-Gaussian

relationship between
latent variables and
data.

I Standard Latent
variable approach:

I Define Gaussian prior
over latent space, X.

I Integrate out latent
variables.

Y

W X

σ2

p (Y|X,W) =
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i=1
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(
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p (X) =
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i=1

N

(
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(
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)
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Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)
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Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =
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, C = WW> + σ2I

log p (Y|W) = −
n
2

log |C| −
1
2

tr
(
C−1Y>Y

)
+ const.

If Uq are first q principal eigenvectors of n−1Y>Y and the
corresponding eigenvalues are Λq,

W = UqLR>, L =
(
Λq − σ

2I
) 1

2

where R is an arbitrary rotation matrix.
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Linear Latent Variable Model III

Dual Probabilistic PCA
I Define linear-Gaussian
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004,

2005)
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Linear Latent Variable Model IV

Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)

p (Y|X) =
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2
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If U′q are first q principal eigenvectors of p−1YY> and the
corresponding eigenvalues are Λq,

X = U′qLR>, L =
(
Λq − σ

2I
) 1

2

where R is an arbitrary rotation matrix.



Linear Latent Variable Model IV
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Linear Latent Variable Model IV
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Linear Latent Variable Model IV

PPCA Max. Likelihood Soln (Tipping and Bishop, 1999)
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Equivalence of Formulations

The Eigenvalue Problems are equivalent

I Solution for Probabilistic PCA (solves for the mapping)

Y>YUq = UqΛq W = UqLR>

I Solution for Dual Probabilistic PCA (solves for the latent
positions)

YY>U′q = U′qΛq X = U′qLR>

I Equivalence is from

Uq = Y>U′qΛ
−

1
2

q



Non-Linear Latent Variable Model

Dual Probabilistic PCA

I Define linear-Gaussian
relationship between
latent variables and
data.

I Novel Latent variable
approach:

I Define Gaussian prior
over parameteters, W.

I Integrate out
parameters.
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)



Non-Linear Latent Variable Model

Dual Probabilistic PCA

I Inspection of the
marginal likelihood
shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

I Inspection of the
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I The covariance matrix
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function.
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Gaussian Process
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K = XX> + σ2I

This is a product of Gaussian processes

with linear kernels.



Non-Linear Latent Variable Model

Dual Probabilistic PCA

I Inspection of the
marginal likelihood
shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

Y

W X

σ2

p (Y|X) =

p∏
j=1

N

(
y:, j|0,K

)
K =?

Replace linear kernel with non-linear

kernel for non-linear model.



Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

I The EQ covariance has the form ki, j = k
(
xi,:, x j,:

)
, where

k
(
xi,:, x j,:

)
= α exp

−
∥∥∥xi,: − x j,:

∥∥∥2
2

2`2

 .
I No longer possible to optimise wrt X via an eigenvalue

problem.
I Instead find gradients with respect to X, α, ` and σ2 and

optimise using conjugate gradients.



Applications

Style Based Inverse Kinematics

I Facilitating animation through modeling human motion
(Grochow et al., 2004)

Tracking

I Tracking using human motion models (Urtasun et al., 2005, 2006)

Assisted Animation

I Generalizing drawings for animation (Baxter and Anjyo, 2006)

Shape Models

I Inferring shape (e.g. pose from silhouette). (Ek et al., 2008b,a;
Priacuriu and Reid, 2011a,b)



Example: Latent Doodle Space

(Baxter and Anjyo, 2006)

http://vimeo.com/3235882

http://vimeo.com/3235882


Example: Latent Doodle Space

(Baxter and Anjyo, 2006)

Generalization with much less Data than Dimensions

I Powerful uncertainly handling of GPs leads to surprising
properties.

I Non-linear models can be used where there are fewer data
points than dimensions without overfitting.



Prior for Supervised Learning

(Urtasun and Darrell, 2007)

I We introduce a prior that is based on the Fisher criteria

p(X) ∝ exp

− 1
σ2

d

tr
(
S−1

w Sb

) ,

with Sb the between class matrix and Sw the within class
matrix
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mean of all the training points of all classes.



Prior for Supervised Learning

(Urtasun and Darrell, 2007)

I We introduce a prior that is based on the Fisher criteria

p(X) ∝ exp

− 1
σ2

d

tr
(
S−1

w Sb

) ,

with Sb the between class matrix and Sw the within class
matrix

Sw =

L∑
i=1

ni

n
(Mi −M0)(Mi −M0)>

Sb =

L∑
i=1

ni

n

 1
ni

ni∑
k=1

(x(i)
k −Mi)(x

(i)
k −Mi)>


where X(i) = [x(i)

1 , · · · , x
(i)
ni

] are the ni training points of class
i, Mi is the mean of the elements of class i, and M0 is the
mean of all the training points of all classes.

I As before the model is learned by maximizing p(Y|X)p(X).



Prior for Supervised Learning

(Urtasun and Darrell, 2007)

I We introduce a prior that is based on the Fisher criteria
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with Sb the between class matrix and Sw the within class
matrix
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Figure: 2D latent spaces learned by D-GPLVM on the oil dataset are
shown, with 100 training examples and different values of σd. Note
that as 1/σ2

d increases the model becomes more discriminative but has
worse generalization.



GaussianFace

(Lu and Tang, 2014)

I First system to surpass human performance on cropped
Learning Faces in Wild Data.
http://tinyurl.com/nkt9a38

I Lots of feature engineering, followed by a Discriminative
GP-LVM.
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High dimensional LBP (95.17%) [Chen et al. 2013] 
Fisher Vector Faces (93.03%) [Simonyan et al. 2013]
TL Joint Bayesian (96.33%) [Cao et al. 2013]
Human, cropped (97.53%) [Kumar et al. 2009]
DeepFace-ensemble (97.35%) [Taigman et al. 2014]
ConvNet-RBM (92.52%) [Sun et al. 2013]
GaussianFace-FE + GaussianFace-BC (98.52%)
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Figure 4: The ROC curve on LFW. Our method achieves the best
performance, beating human-level performance.

papers comparing human and computer-based face verifica-
tion performance (Tang and Wang 2004; O’Toole et al. 2007;
Phillips and O’Toole 2014). It has been shown that the
best current face verification algorithms perform better than
humans in the good and moderate conditions. So, it is really
not that difficult to beat human performance in some specific
scenarios.

As pointed out by (O’Toole et al. 2012; Sinha et al.
2005), humans and computer-based algorithms have dif-
ferent strategies in face verification. Indeed, by contrast to
performance with unfamiliar faces, human face verification
abilities for familiar faces are relatively robust to changes
in viewing parameters such as illumination and pose. For
example, Bruce (Bruce 1982) found human recognition
memory for unfamiliar faces dropped substantially when
there were changes in viewing parameters. Besides, humans
can take advantages of non-face configurable information
from the combination of the face and body (e.g., neck,
shoulders). It has also been examined in (Kumar et al. 2009),
where the human performance drops from 99.20% (tested
using the original LFW images) to 97.53% (tested using the
cropped LFW images). Hence, the experiments comparing
human and computer performance may not show human
face verification skill at their best, because humans were
asked to match the cropped faces of people previously unfa-
miliar to them. To the contrary, those experiments can fully
show the performance of computer-based face verification
algorithms. First, the algorithms can exploit information
from enough training images with variations in all viewing
parameters to improve face verification performance, which
is similar to information humans acquire in developing face
verification skills and in becoming familiar with individuals.
Second, the algorithms might exploit useful, but subtle,
image-based detailed information that give them a slight, but
consistent, advantage over humans.

Therefore, surpassing the human-level performance may
only be symbolically significant. In reality, a lot of chal-
lenges still lay ahead. To compete successfully with humans,
more factors such as the robustness to familiar faces and
the usage of non-face information, need to be considered in
developing future face verification algorithms.

Figure 5: The two rows present examples of matched and
mismatched pairs respectively from LFW that were incorrectly
classified by the GaussianFace model.

Conclusion and Future Work
This paper presents a principled Multi-Task Learning ap-
proach based on Discriminative Gaussian Process Latent
Variable Model, named GaussianFace, for face verification
by including a computationally more efficient equivalent
form of KFDA and the multi-task learning constraint to
the DGPLVM model. We use Gaussian Processes approx-
imation and anchor graphs to speed up the inference and
prediction of our model. Based on the GaussianFace model,
we propose two different approaches for face verification.
Extensive experiments on challenging datasets validate the
efficacy of our model. The GaussianFace model finally
surpassed human-level face verification accuracy, thanks to
exploiting additional data from multiple source-domains to
improve the generalization performance of face verification
in the target-domain and adapting automatically to complex
face variations.

Although several techniques such as the Laplace approx-
imation and anchor graph are introduced to speed up the
process of inference and prediction in our GaussianFace
model, it still takes a long time to train our model for
the high performance. In addition, large memory is also
necessary. Therefore, for specific application, one needs
to balance the three dimensions: memory, running time,
and performance. Generally speaking, higher performance
requires more memory and more running time. In the future,
the issue of running time can be further addressed by the
distributed parallel algorithm or the GPU implementation
of large matrix inversion. To address the issue of memory,
some online algorithms for training need to be developed.
Another more intuitive method is to seek a more efficient
sparse representation for the large covariance matrix.

References
Ahonen, T.; Hadid, A.; and Pietikainen, M. 2006. Face
description with local binary patterns: Application to face
recognition. TPAMI.
Ben-Hur, A.; Horn, D.; Siegelmann, H. T.; and Vapnik, V.
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Berg, T., and Belhumeur, P. N. 2012. Tom-vs-pete classifiers
and identity-preserving alignment for face verification. In
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Continuous Character Control

(Levine et al., 2012)

I Graph diffusion prior for enforcing connectivity between
motions.

log p(X) = wc

∑
i, j

log Kd
ij

with the graph diffusion kernel Kd obtain from

Kd
ij = exp(βH) with H = −T−1/2LT−1/2

the graph Laplacian, and T is a diagonal matrix with
Tii =

∑
j w(xi, x j),

Li j =


∑

k w(xi, xk) if i = j
−w(xi, x j) otherwise.

and w(xi, x j) = ||xi − x j||
−p measures similarity.



Character Control: Results
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Other Topics

I Local distance preservation Details

I Dynamical models Details

I Hierarchical models Details

I Bayesian GP-LVM Details



Back Constraints I

Local Distance Preservation (Lawrence and Quiñonero Candela, 2006)

I Most dimensional reduction techniques preserve local
distances.

I The GP-LVM does not.
I GP-LVM maps smoothly from latent to data space.

I Points close in latent space are close in data space.
I This does not imply points close in data space are close in

latent space.

I Kernel PCA maps smoothly from data to latent space.
I Points close in data space are close in latent space.
I This does not imply points close in latent space are close in

data space.



Back Constraints II

Forward Mapping (demBackMapping in oxford toolbox)

I Mapping from 1-D latent space to 2-D data space.

y1 = x2
− 0.5, y2 = −x2 + 0.5
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Back Constraints II

Forward Mapping (demBackMapping in oxford toolbox)

I Mapping from 1-D latent space to 2-D data space.
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Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)

I Mapping from 2-D data space to 1-D latent.
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Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)

I Mapping from 2-D data space to 1-D latent.
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Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)

I Mapping from 2-D data space to 1-D latent.
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NEUROSCALE

Multi-Dimensional Scaling with a Mapping

I Lowe and Tipping (1997) made latent positions a function
of the data.

xi, j = f j
(
yi,:; v

)
I Function was either multi-layer perceptron or a radial

basis function network.
I Their motivation was different from ours:

I They wanted to add the advantages of a true mapping to
multi-dimensional scaling.



Back Constraints in the GP-LVM

Back Constraints

I We can use the same idea to force the GP-LVM to respect
local distances.(Lawrence and Quiñonero Candela, 2006)

I By constraining each xi to be a ‘smooth’ mapping from yi
local distances can be respected.

I This works because in the GP-LVM we maximise wrt
latent variables, we don’t integrate out.

I Can use any ‘smooth’ function:

1. Neural network.
2. RBF Network.
3. Kernel based mapping.



Optimising BC-GPLVM

Computing Gradients

I GP-LVM normally proceeds by optimising

L (X) = log p (Y|X)

with respect to X using dL
dX .

I The back constraints are of the form

xi, j = f j
(
yi,:; v

)
where v are parameters.

I We can compute dL
dv via chain rule and optimise parameters

of mapping.



Motion Capture Results

demStick1 and demStick3

Figure: The latent space for the motion capture data with (right) and
without (left) back constraints.



Motion Capture Results

demStick1 and demStick3
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Figure: The latent space for the motion capture data with (right) and
without (left) back constraints.



Stick Man Results

demStickResults
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Projection into data space from four points in the latent space. The
inclination of the runner changes becoming more upright.

Return



Adding Dynamics

MAP Solutions for Dynamics Models

I Data often has a temporal ordering.
I Markov-based dynamics are often used.
I For the GP-LVM

I Marginalising such dynamics is intractable.
I But: MAP solutions are trivial to implement.

I Many choices: Kalman filter, Markov chains etc..
I Wang et al. (2006) suggest using a Gaussian Process.



Gaussian Process Dynamics

GP-LVM with Dynamics

I Autoregressive Gaussian process mapping in latent space
between time points.

t
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Gaussian Process Dynamics

GP-LVM with Dynamics

I Autoregressive Gaussian process mapping in latent space
between time points.

t t + 1



Motion Capture Results

demStick1 and demStick2

Figure: The latent space for the motion capture data without
dynamics (left), with auto-regressive dynamics (right) based on an
exponentiated quadratic kernel.



Motion Capture Results

demStick1 and demStick2

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

−4 −2 0 2 4

−5

−4

−3

−2

−1

0

1

2

3

4

Figure: The latent space for the motion capture data without
dynamics (left), with auto-regressive dynamics (right) based on an
exponentiated quadratic kernel.



Regressive Dynamics

Inner Groove Distortion
I Autoregressive

unimodal dynamics,
p (xt|xt−1) .

I Forces spiral
visualisation.

I Poorer model due to
inner groove distortion.



Regressive Dynamics

Direct use of Time Variable

I Instead of auto-regressive dynamics, consider regressive
dynamics.

I Take t as an input, use a prior p (X|t).
I User a Gaussian process prior for p (X|t) .
I Also allows us to consider variable sample rate data.



Motion Capture Results

demStick1, demStick2 and demStick5

Figure: The latent space for the motion capture data without
dynamics (left), with auto-regressive dynamics (middle) and with
regressive dynamics (right) based on an exponentiated quadratic
kernel.
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Hierarchical GP-LVM

(Lawrence and Moore, 2007)

Stacking Gaussian Processes

I Regressive dynamics provides a simple hierarchy.
I The input space of the GP is governed by another GP.

I By stacking GPs we can consider more complex
hierarchies.

I Ideally we should marginalise latent spaces
I In practice we seek MAP solutions.



Two Correlated Subjects

(Lawrence and Moore, 2007)

Figure: Hierarchical model of a ’high five’.



Within Subject Hierarchy

(Lawrence and Moore, 2007)

Decomposition of Body

Figure: Decomposition of a subject.



Single Subject Run/Walk

(Lawrence and Moore, 2007)

Figure: Hierarchical model of a walk and a run.
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Selecting Data Dimensionality

I GP-LVM Provides probabilistic non-linear dimensionality
reduction.

I How to select the dimensionality?
I Need to estimate marginal likelihood.
I In standard GP-LVM it increases with increasing q.



Integrate Mapping Function and Latent Variables

Bayesian GP-LVM
I Start with a standard

GP-LVM.

I Apply standard latent
variable approach:

I Define Gaussian prior
over latent space, X.

I Integrate out latent
variables.

I Unfortunately
integration is
intractable.

Y

X

σ2

p (Y|X) =

p∏
j=1

N

(
y:, j|0,K

)
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Integrate Mapping Function and Latent Variables

Bayesian GP-LVM
I Start with a standard

GP-LVM.
I Apply standard latent

variable approach:
I Define Gaussian prior

over latent space, X.
I Integrate out latent

variables.
I Unfortunately

integration is
intractable.

Y

X

σ2

p (Y|X) =

p∏
j=1

N

(
y:, j|0,K

)

p (X) =

q∏
j=1

N

(
x:, j|0, α−2

i I
)

p (Y|α) =??



Standard Variational Approach Fails

I Standard variational bound has the form:

L =
〈
log p(y|X)

〉
q(X) + KL

(
q(X) ‖ p(X)

)

I Requires expectation of log p(y|X) under q(X).

log p(y|X) = −
1
2

y>
(
Kf,f + σ2I

)−1
y−

1
2

log
∣∣∣Kf,f + σ2I

∣∣∣−n
2

log 2π

I Extremely difficult to compute because Kf,f is dependent
on X and appears in the inverse.
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Variational Bayesian GP-LVM

I Consider collapsed variational bound,

p(y) ≥
n∏

i=1

ci

∫
N

(
y| 〈f〉 , σ2I

)
p(u)du

I Apply variational lower bound to the inner integral.
I Which is analytically tractable for Gaussian q(X) and some

covariance functions.
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Required Expectations

I Need expectations under q(X) of:

log ci =
1

2σ2

[
ki,i − k>i,uK−1

u,uki,u

]
and

logN
(
y| 〈f〉p(f|u,Y) , σ

2I
)

= −
1
2

log 2πσ2
−

1
2σ2

(
yi −Kf,uK−1

u,uu
)2

I This requires the expectations〈
Kf,u

〉
q(X)

and 〈
Kf,uK−1

u,uKu,f

〉
q(X)

which can be computed analytically for some covariance
functions.



Priors for Latent Space

Titsias and Lawrence (2010)

I Variational marginalization of X allows us to learn
parameters of p(X).

I Standard GP-LVM where X learnt by MAP, this is not
possible (see e.g. Wang et al., 2008).

I First example: learn the dimensionality of latent space.



Graphical Representations of GP-LVM
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Graphical Representations of GP-LVM
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Graphical Representations of GP-LVM
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Non-linear f (x)

I In linear case equivalence because f (x) = w>x

p(wi) ∼ N (0, αi)

I In non linear case, need to scale columns of X in prior for
f (x).

I This implies scaling columns of X in covariance function

k(xi,:, x j,:) = exp
(
−

1
2

(x:,i − x:, j)>A(x:,i − x:, j)
)

A is diagonal with elements α2
i . Now keep prior spherical

p (X) =

q∏
j=1

N

(
x:, j|0, I

)
I Covariance functions of this type are known as ARD (see e.g.

Neal, 1996; MacKay, 2003; Rasmussen and Williams, 2006).



Automatic dimensionality detection 

• Achieved by employing an Automatic Relevance Determination 
(ARD) covariance function for the prior on the GP mapping 
 

•                                 with  
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Gaussian Process Dynamical Systems

(Damianou et al., 2011)

y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6

t

latent
space

time

data
space



Gaussian Process over Latent Space

I Assume a GP prior for p(X).
I Input to the process is time, p(X|t).



Interpolation of HD Video


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}



Modeling Multiple ‘Views’

I Single space to model correlations between two different data
sources, e.g., images & text, image & pose.

I Shared latent spaces: (Shon et al., 2006; Navaratnam et al., 2007; Ek et al.,
2008b)

Y(1)

X

Y(2)

I Effective when the ‘views’ are correlated.

I But not all information is shared between both ‘views’.

I PCA applied to concatenated data vs CCA applied to data.



Shared-Private Factorization

I In real scenarios, the ‘views’ are neither fully independent, nor
fully correlated.

I Shared models
I either allow information relevant to a single view to be

mixed in the shared signal,
I or are unable to model such private information.

I Solution: Model shared and private information (Virtanen et al.,
2011; Ek et al., 2008a; Leen and Fyfe, 2006; Klami and Kaski, 2007, 2008; Tucker,
1958)

Z(1)

Y(1)

X

Y(2)

Z(2)

I Probabilistic CCA is case when dimensionality of Z matches Y(i)

(cf Inter Battery Factor Analysis (Tucker, 1958)).



Manifold Relevance Determination

Damianou et al. (2012)
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space



Shared GP-LVM

y(1)
1 y(1)

2 y(1)
3 y(1)

4 y(2)
1 y(2)

2 y(2)
3 y(2)

4

x1 x2 x3 x4 x5 x6
Latent
space

Data
space

Separate ARD parameters for mappings to Y(1) and Y(2).



Example: Yale faces 

29 

 
 
 
 
 
 
 
 

 
 
 

• Dataset Y: 3 persons under all illumination conditions 

• Dataset Z: As above for 3 different persons 

• Align datapoints xn and zn only based on the lighting direction 

Deep Gaussian processes 



Results 

30 

• Latent space X initialised with 
14 dimensions 
 
 

• Weights define a segmentation 
of X 
 

• Video / demo… 

Deep Gaussian processes 

[Damianou et al. ‘12] 



Potential applications..? 

31 Deep Gaussian processes 



Manifold Relevance Determination


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}
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