Latent Force Models: Bridging the Divide between Mechanistic and Data Modelling Paradigms

Neil D. Lawrence University of Sheffield

Max Planck Institute for Intelligent Systems, Stuttgart

21st July 2015

Machine Learning

Gaussian Processes

Motion Capture Example

ODE Model of Transcriptional Regulation

Discussion and Future Work

Machine Learning

Gaussian Processes

Motion Capture Example

ODE Model of Transcriptional Regulation

Discussion and Future Work

data

 data: observations, could be actively or passively acquired (meta-data).

data +

 data: observations, could be actively or passively acquired (meta-data).

data + model

- data: observations, could be actively or passively acquired (meta-data).
- model: assumptions, based on previous experience (other data! transfer learning etc), or beliefs about the regularities of the universe. Inductive bias.

data + model =

- data: observations, could be actively or passively acquired (meta-data).
- model: assumptions, based on previous experience (other data! transfer learning etc), or beliefs about the regularities of the universe. Inductive bias.

data + model = prediction

- data: observations, could be actively or passively acquired (meta-data).
- model: assumptions, based on previous experience (other data! transfer learning etc), or beliefs about the regularities of the universe. Inductive bias.
- prediction: an action to be taken or a categorization or a quality score.

- A data driven approach to Artificial Intelligence.
- Inspired by attempts to model the brain (the connectionists).
- A community that transcended traditional boundaries (psychology, statistical physics, signal processing)
- Led to an approach that dominates in the modern data-rich world.

Machine Learning as Optimization:

- Machine Learning as Optimization:
 - Formulate your learning Problem as an optimization problem.

- Machine Learning as Optimization:
 - Formulate your learning Problem as an optimization problem.
 - Typically intractable, so minimize a *relaxed* version of the cost function.

- Machine Learning as Optimization:
 - Formulate your learning Problem as an optimization problem.
 - Typically intractable, so minimize a *relaxed* version of the cost function.
 - Prove characteristics of the resulting solution.

- Machine Learning as Optimization:
 - Formulate your learning Problem as an optimization problem.
 - Typically intractable, so minimize a *relaxed* version of the cost function.
 - Prove characteristics of the resulting solution.
- Machine Learning as Probabilistic Modelling:

- Machine Learning as Optimization:
 - Formulate your learning Problem as an optimization problem.
 - Typically intractable, so minimize a *relaxed* version of the cost function.
 - Prove characteristics of the resulting solution.
- Machine Learning as Probabilistic Modelling:
 - Formulate your learning problem as a probabilistic model.

- Machine Learning as Optimization:
 - Formulate your learning Problem as an optimization problem.
 - Typically intractable, so minimize a *relaxed* version of the cost function.
 - Prove characteristics of the resulting solution.
- Machine Learning as Probabilistic Modelling:
 - Formulate your learning problem as a probabilistic model.
 - Relate variables through probability distributions.

- Machine Learning as Optimization:
 - Formulate your learning Problem as an optimization problem.
 - Typically intractable, so minimize a *relaxed* version of the cost function.
 - Prove characteristics of the resulting solution.
- Machine Learning as Probabilistic Modelling:
 - Formulate your learning problem as a probabilistic model.
 - Relate variables through probability distributions.
 - If *Bayesian*, treat parameters with probability distributions.

- Machine Learning as Optimization:
 - Formulate your learning Problem as an optimization problem.
 - Typically intractable, so minimize a *relaxed* version of the cost function.
 - Prove characteristics of the resulting solution.
- Machine Learning as Probabilistic Modelling:
 - Formulate your learning problem as a probabilistic model.
 - Relate variables through probability distributions.
 - If *Bayesian*, treat parameters with probability distributions.
 - Required integrals often intractable: use approximations (MCMC, variational etc).

Modelling assumptions are either included as:

- Modelling assumptions are either included as:
 - a regularizer (optimization) or

- Modelling assumptions are either included as:
 - a regularizer (optimization) or
 - in the probability distribution (probabilistic approach).

- Modelling assumptions are either included as:
 - a regularizer (optimization) or
 - in the probability distribution (probabilistic approach).
- Typical assumptions: sparsity, smoothness.

Styles of Machine Learning

Background: interpolation is easy, extrapolation is hard

- Urs Hölzle keynote talk at NIPS 2005.
 - Emphasis on massive data sets.
 - Let the data do the work—more data, less extrapolation.
- Alternative paradigm:
 - Very scarce data: computational biology, human motion.
 - How to generalize from scarce data?
 - Need to include more assumptions about the data (e.g. invariances).

data modeling

mechanistic modeling

data modeling

let the data "speak"

mechanistic modeling

data modeling

let the data "speak"

mechanistic modeling

impose physical laws

data modeling

let the data "speak" data driven mechanistic modeling

impose physical laws

data modeling

let the data "speak" data driven mechanistic modeling

impose physical laws knowledge driven

data modeling

let the data "speak" data driven adaptive models mechanistic modeling

impose physical laws knowledge driven

data modeling

let the data "speak" data driven adaptive models mechanistic modeling

impose physical laws knowledge driven differential equations

data modeling

let the data "speak" data driven adaptive models digit recognition mechanistic modeling

impose physical laws knowledge driven differential equations

data modeling

let the data "speak" data driven adaptive models digit recognition

mechanistic modeling

impose physical laws knowledge driven differential equations climate, weather models

data modeling let the data sepeak" data driven adaptive models

mechanistic modeling

impose physical laws knowledge driven differential equations climate, weather models

data modeling let the data is peak" data driven adaptive models *mechanistic modeling* impose physical laws knowledge driven differential equations clinette, weather models

Weakly Mechanistic vs Strongly Mechanistic

- Underlying data modeling techniques there are *weakly mechanistic* principles (e.g. smoothness).
- ► In physics the models are typically *strongly mechanistic*.
- In principle we expect a range of models which vary in the strength of their mechanistic assumptions.
- Latent Force Models are one part of this spectrum: add further mechanistic ideas to weakly mechanistic models.

Linear Dimensionality Reduction

- Find a lower dimensional plane embedded in a higher dimensional space.
- The plane is described by the matrix $\mathbf{W} \in \mathfrak{R}^{p \times q}$.

Linear relationship between the data, X, and a reduced dimensional representation, F.

 $\mathbf{X} = \mathbf{F}\mathbf{W} + \boldsymbol{\epsilon},$

 $\epsilon \sim \mathcal{N}\left(0,\Sigma
ight)$

Problem is we don't know what F should be!

Marionette Analogy

Marionette Analogy

- Define a *probability distribution* for **F**.
- ► Marginalize out **F** (integrate over).
- Optimize with respect to **W**.
- For Gaussian distribution, $\mathbf{F} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 - and $\Sigma = \sigma^2 \mathbf{I}$ we have probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998).
 - and Σ constrained to be diagonal, we have factor analysis.

Dimensionality Reduction: Temporal Data

Figure: PCA: Pure sampling from a Gaussian does not retain temporal effects.

Dimensionality Reduction: Temporal Data

Figure: Kalman filter (Rauch-Tung-Striebel smoother) is Markov-Gaussian (non smooth).

Dimensionality Reduction: Temporal Data

Figure: General Gaussian processes allow for priors over *smooth* functions.

Machine Learning

Gaussian Processes

Motion Capture Example

ODE Model of Transcriptional Regulation

Discussion and Future Work

Multi-variate Gaussians

- We will consider a Gaussian with a particular structure of covariance matrix.
- Generate a single sample from this 25 dimensional Gaussian distribution, $\mathbf{f} = [f_1, f_2 \dots f_{25}]$.
- We will plot these points against their index.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap *i*showing correlations between dimensions.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap *i*showing correlations between dimensions.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

0

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

index)

► Covariance matrix shows correlation between points *f_i* and *f_j* if *i* is near to *j*.

- ► Covariance matrix shows correlation between points *f_i* and *f_j* if *i* is near to *j*.
- Less correlation if *i* is distant from *j*.

- ► Covariance matrix shows correlation between points *f_i* and *f_j* if *i* is near to *j*.
- Less correlation if *i* is distant from *j*.
- Our ordering of points means that the *function appears smooth*.

- ► Covariance matrix shows correlation between points *f_i* and *f_j* if *i* is near to *j*.
- Less correlation if *i* is distant from *j*.
- Our ordering of points means that the *function appears smooth*.
- Let's focus on the joint distribution of two points from the 25.

► The single contour of the Gaussian density represents the joint distribution, p(f₁, f₂).

- ► The single contour of the Gaussian density represents the joint distribution, p(f₁, f₂).
- We observe that $f_1 = -0.313$.

- ► The single contour of the Gaussian density represents the joint distribution, p(f₁, f₂).
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2|f_1 = -0.313)$.

- ► The single contour of the Gaussian density represents the joint distribution, p(f₁, f₂).
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2|f_1 = -0.313)$.

Prediction with Correlated Gaussians

- ▶ Prediction of *f*₂ from *f*₁ requires *conditional density*.
- Conditional density is *also* Gaussian.

$$p(f_2|f_1) = \mathcal{N}\left(f_2|\frac{k_{1,2}}{k_{1,1}}f_1, k_{2,2} - \frac{k_{1,2}^2}{k_{1,1}}\right)$$

where covariance of joint density is given by

$$\mathbf{K} = \begin{bmatrix} k_{1,1} & k_{1,2} \\ k_{2,1} & k_{2,2} \end{bmatrix}$$

The single contour of the Gaussian density represents the joint distribution, p(f₁, f₅).

- The single contour of the Gaussian density represents the joint distribution, p(f₁, f₅).
- We observe that $f_1 = -0.313$.

- The single contour of the Gaussian density represents the joint distribution, p(f₁, f₅).
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5|f_1 = -0.313)$.

- The single contour of the Gaussian density represents the joint distribution, p(f₁, f₅).
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5|f_1 = -0.313)$.

Prediction with Correlated Gaussians

- Prediction of f* from f requires multivariate *conditional density*.
- Multivariate conditional density is *also* Gaussian.

$$p(\mathbf{f}_*|\mathbf{f}) = \mathcal{N}\left(\mathbf{f}_*|\mathbf{K}_{*,t}\mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1}\mathbf{f},\mathbf{K}_{*,*} - \mathbf{K}_{*,t}\mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1}\mathbf{K}_{\mathbf{f},*}\right)$$

Here covariance of joint density is given by

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{\mathbf{f},\mathbf{f}} & \mathbf{K}_{*,\mathbf{f}} \\ \mathbf{K}_{\mathbf{f},*} & \mathbf{K}_{*,*} \end{bmatrix}$$

Prediction with Correlated Gaussians

- Prediction of f* from f requires multivariate *conditional density*.
- Multivariate conditional density is *also* Gaussian.

$$p(\mathbf{f}_*|\mathbf{f}) = \mathcal{N}(\mathbf{f}_*|\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$\boldsymbol{\mu} = \mathbf{K}_{*,f} \mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1} \mathbf{f}$$
$$\boldsymbol{\Sigma} = \mathbf{K}_{*,*} - \mathbf{K}_{*,f} \mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1} \mathbf{K}_{\mathbf{f},*}$$
$$\blacktriangleright \text{ Here covariance of joint density is given by}$$

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{\mathbf{f},\mathbf{f}} & \mathbf{K}_{*,\mathbf{f}} \\ \mathbf{K}_{\mathbf{f},*} & \mathbf{K}_{*,*} \end{bmatrix}$$

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(t,t') = \alpha \exp\left(-\frac{\|t-t'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function *t*.
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(t, t') = \alpha \exp\left(-\frac{\|t - t'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function *t*.
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.

Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance function

$$k(t,t') = \alpha \exp\left(-\frac{|t-t'|}{2\ell^2}\right)$$

- In one dimension arises from a stochastic differential equation.
 Brownian motion in a parabolic tube.
- ► In higher dimension a Fourier filter of the form $\frac{1}{\pi(1+x^2)}$.

Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance function

$$k(t,t') = \alpha \exp\left(-\frac{|t-t'|}{2\ell^2}\right)$$

- In one dimension arises from a stochastic differential equation.
 Brownian motion in a parabolic tube.
- ► In higher dimension a Fourier filter of the form $\frac{1}{\pi(1+x^2)}$.
Mechanical Analogy

Back to Mechanistic Models!

- These models rely on the latent variables to provide the dynamic information.
- We now introduce a further dynamical system with a *mechanistic* inspiration.
- Physical Interpretation:
 - the latent functions, $f_i(t)$ are q forces.
 - We observe the displacement of *p* springs to the forces.,
 - Interpret system as the force balance equation, $XD = FS + \epsilon$.
 - Forces act, e.g. through levers a matrix of sensitivities,
 S ∈ ℜ^{q×p}.
 - Diagonal matrix of spring constants, $\mathbf{D} \in \mathfrak{R}^{p \times p}$.
 - Original System: $W = SD^{-1}$.

• Add a damper and give the system mass.

$$\mathbf{FS} = \ddot{\mathbf{X}}\mathbf{M} + \dot{\mathbf{X}}\mathbf{C} + \mathbf{X}\mathbf{D} + \boldsymbol{\epsilon}.$$

- Now have a second order mechanical system.
- It will exhibit inertia and resonance.
- There are many systems that can also be represented by differential equations.
 - ► When being forced by latent function(s), {f_i(t)}^q_{i=1}, we call this a *latent force model*.

Marionette

Gaussian Process priors and Latent Force Models

Driven Harmonic Oscillator

- For Gaussian process we can compute the covariance matrices for the output displacements.
- For one displacement the model is

$$m_k \ddot{x}_k(t) + c_k \dot{x}_k(t) + d_k x_k(t) = b_k + \sum_{i=0}^q s_{ik} f_i(t), \qquad (1)$$

where, m_k is the *k*th diagonal element from **M** and similarly for c_k and d_k . s_{ik} is the *i*, *k*th element of **S**.

 Model the latent forces as *q* independent, GPs with exponentiated quadratic covariances

$$k_{f_if_l}(t,t') = \exp\left(-\frac{(t-t')^2}{2\ell_i^2}\right)\delta_{il}.$$

Covariance for ODE Model

• Exponentiated Quadratic Covariance function for f(t)

$$x_j(t) = \frac{1}{m_j \omega_j} \sum_{i=1}^q s_{ji} \exp(-\alpha_j t) \int_0^t f_i(\tau) \exp(\alpha_j \tau) \sin(\omega_j (t-\tau)) d\tau$$

► Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$ and f(t). Damping ratios: $\boxed{\zeta_1 \quad \zeta_2 \quad \zeta_3}$ $0.125 \quad 2 \quad 1$

Covariance for ODE Model

Analogy

$$x = \sum_{i} \mathbf{e}_{i}^{\top} \mathbf{f}_{i} \quad \mathbf{f}_{i} \sim \mathcal{N}(\mathbf{0}, \Sigma_{i}) \rightarrow x \sim \mathcal{N}\left(0, \sum_{i} \mathbf{e}_{i}^{\top} \Sigma_{i} \mathbf{e}_{i}\right)$$

► Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$ and f(t). Damping ratios: $\boxed{\zeta_1 \quad \zeta_2 \quad \zeta_3}$ $0.125 \quad 2 \quad 1$

Covariance for ODE Model

• Exponentiated Quadratic Covariance function for f(t)

$$x_j(t) = \frac{1}{m_j \omega_j} \sum_{i=1}^q s_{ji} \exp(-\alpha_j t) \int_0^t f_i(\tau) \exp(\alpha_j \tau) \sin(\omega_j (t-\tau)) d\tau$$

► Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$ and f(t). Damping ratios: $\boxed{\zeta_1 \quad \zeta_2 \quad \zeta_3}$ $0.125 \quad 2 \quad 1$

IfmSample

Figure: Joint samples from the ODE covariance, *black*: f(t), *red*: $x_1(t)$ (underdamped), *green*: $x_2(t)$ (overdamped), and *blue*: $x_3(t)$ (critically damped).

IfmSample

Figure: Joint samples from the ODE covariance, *black*: f(t), *red*: $x_1(t)$ (underdamped), *green*: $x_2(t)$ (overdamped), and *blue*: $x_3(t)$ (critically damped).

IfmSample

Figure: Joint samples from the ODE covariance, *black*: f(t), *red*: $x_1(t)$ (underdamped), *green*: $x_2(t)$ (overdamped), and *blue*: $x_3(t)$ (critically damped).

IfmSample

Figure: Joint samples from the ODE covariance, *black*: f(t), *red*: $x_1(t)$ (underdamped), *green*: $x_2(t)$ (overdamped), and *blue*: $x_3(t)$ (critically damped).

Covariance for ODE

• Exponentiated Quadratic Covariance function for f(t)

$$x_j(t) = \frac{1}{m_j \omega_j} \sum_{i=1}^q s_{ji} \exp(-\alpha_j t) \int_0^t f_i(\tau) \exp(\alpha_j \tau) \sin(\omega_j (t-\tau)) d\tau$$

- ► Joint distribution for x₁(t), x₂(t), x₃(t) and f(t).

Machine Learning

Gaussian Processes

Motion Capture Example

ODE Model of Transcriptional Regulation

Discussion and Future Work

Mauricio Alvarez and David Luengo (Álvarez et al., 2009, 2013)

Motion capture data: used for animating human motion.

Mauricio Alvarez and David Luengo (Álvarez et al., 2009, 2013)

- Motion capture data: used for animating human motion.
- Multivariate time series of angles representing joint positions.

Mauricio Alvarez and David Luengo (Álvarez et al., 2009, 2013)

- Motion capture data: used for animating human motion.
- Multivariate time series of angles representing joint positions.
- Objective: generalize from training data to realistic motions.

Mauricio Alvarez and David Luengo (Álvarez et al., 2009, 2013)

- Motion capture data: used for animating human motion.
- Multivariate time series of angles representing joint positions.
- Objective: generalize from training data to realistic motions.
- Use 2nd Order Latent Force Model with mass/spring/damper (resistor inductor capacitor) at each joint.

Prediction of Test Motion

- Model left arm only.
- ▶ 3 balancing motions (18, 19, 20) from subject 49.
- 18 and 19 are similar, 20 contains more dramatic movements.
- Train on 18 and 19 and testing on 20
- Data was down-sampled by 32 (from 120 fps).
- Reconstruct motion of left arm for 20 given other movements.
- Compare with GP that predicts left arm angles given other body angles.

Table: Root mean squared (RMS) angle error for prediction of the left arm's configuration in the motion capture data. Prediction with the latent force model outperforms the prediction with regression for all apart from the radius's angle.

	Latent Force	Regression
Angle	Error	Error
Radius	4.11	4.02
Wrist	6.55	6.65
Hand X rotation	1.82	3.21
Hand Z rotation	2.76	6.14
Thumb X rotation	1.77	3.10
Thumb Z rotation	2.73	6.09

Mocap Results II

Figure: Predictions from LFM (solid line, grey error bars) and direct

Motion Capture Experiments

- Data set is from the CMU motion capture data base¹.
- Two different types of movements: golf-swing and walking.
- Train on a subset of motions for each movement and test on a different subset.
- This assesses the model's ability to extrapolate.
- For testing: condition on three angles associated to the root nodes and first five and last five frames of the motion.
- Golf-swing use leave one out cross validation on four motions.
- For the walking train on 4 motions and validate on 8 motions.

Table: RMSE and R² (explained variance) for golf swing and walking

Movement	Method	RMSE	R ² (%)
Golf swing	IND GP	21.55 ± 2.35	30.99 ± 9.67
	MTGP	21.19 ± 2.18	45.59 ± 7.86
	SLFM	21.52 ± 1.93	49.32 ± 3.03
	LFM	18.09 ± 1.30	72.25 ± 3.08
Walking	IND GP	8.03 ± 2.55	30.55 ± 10.64
	MTGP	7.75 ± 2.05	37.77 ± 4.53
	SLFM	7.81 ± 2.00	36.84 ± 4.26
	LFM	7.23 ± 2.18	48.15 ± 5.66

Machine Learning

Gaussian Processes

Motion Capture Example

ODE Model of Transcriptional Regulation

Discussion and Future Work

$$\frac{\mathrm{d}x_{j}\left(t\right)}{\mathrm{d}t} = b_{j} + s_{j}f\left(t\right) - d_{j}x_{j}\left(t\right)$$

First Order Differential Equation

$$\frac{\mathrm{d}x_{j}\left(t\right)}{\mathrm{d}t} = b_{j} + s_{j}f\left(t\right) - d_{j}x_{j}\left(t\right)$$

 Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.

$$\frac{\mathrm{d}x_{j}\left(t\right)}{\mathrm{d}t} = b_{j} + s_{j}f\left(t\right) - d_{j}x_{j}\left(t\right)$$

- Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- $x_j(t)$ concentration of gene *j*'s mRNA

$$\frac{\mathrm{d}x_{j}\left(t\right)}{\mathrm{d}t} = b_{j} + s_{j}f\left(t\right) - d_{j}x_{j}\left(t\right)$$

- Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- $x_j(t)$ concentration of gene j's mRNA
- f(t) concentration of active transcription factor

$$\frac{\mathrm{d}x_{j}\left(t\right)}{\mathrm{d}t} = b_{j} + s_{j}f\left(t\right) - d_{j}x_{j}\left(t\right)$$

- Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- ► x_j(t) concentration of gene j's mRNA
- f(t) concentration of active transcription factor
- ► Model parameters: baseline *b_j*, sensitivity *s_j* and decay *d_j*

$$\frac{\mathrm{d}x_{j}\left(t\right)}{\mathrm{d}t} = b_{j} + s_{j}f\left(t\right) - d_{j}x_{j}\left(t\right)$$

- Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- ► x_j(t) concentration of gene j's mRNA
- f(t) concentration of active transcription factor
- ▶ Model parameters: baseline *b_j*, sensitivity *s_j* and decay *d_j*
- Application: identifying co-regulated genes (targets)

$$\frac{\mathrm{d}x_{j}\left(t\right)}{\mathrm{d}t} = b_{j} + s_{j}f\left(t\right) - d_{j}x_{j}\left(t\right)$$

- Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- $x_j(t)$ concentration of gene *j*'s mRNA
- f(t) concentration of active transcription factor
- ▶ Model parameters: baseline *b_j*, sensitivity *s_j* and decay *d_j*
- Application: identifying co-regulated genes (targets)
- Problem: how do we fit the model when f(t) is not observed?
Covariance for Transcription Model

RBF covariance function for f(t)

$$x_i(t) = \frac{b_i}{d_i} + s_i \exp\left(-d_i t\right) \int_0^t f(u) \exp\left(d_i u\right) \mathrm{d}u.$$

- ► Joint distribution for $x_1(t)$, $x_2(t)$, $x_1(t)$, $x_3(t)$, and f(t).
- ► Here:

d_1	<i>s</i> ₁	<i>d</i> ₂	<i>s</i> ₂	d3	<i>s</i> 3	
5	5	1	1	0.5	0.5	x_3

$$\begin{array}{c|cccc} f(t) \\ x_1(t) \\ x_2(t) \\ x_3(t) \\ \hline f(t) \\ x_1(t) \\ x_2(t) \\ x_3(t) \\ \hline \end{array}$$

../../gpsim/tex/talks/ode1covariance.tex

Covariance for Transcription Model

RBF covariance function for f(t)

$$x = b/d + \sum_{i} \mathbf{e}_{i}^{\top} \mathbf{f} \quad \mathbf{f} \sim \mathcal{N}(\mathbf{0}, \Sigma_{i}) \rightarrow x \sim \mathcal{N}\left(b/d, \sum_{i} \mathbf{e}_{i}^{\top} \Sigma_{i} \mathbf{e}_{i}\right)$$

- ▶ Joint distribution for x₁ (t), x₂ (t), x₃ (t), and f (t).
- Here: $x_2(x)$

../../gpsim/tex/talks/ode1covariance.tex

Covariance for Transcription Model

RBF covariance function for f(t)

$$x_i(t) = \frac{b_i}{d_i} + s_i \exp\left(-d_i t\right) \int_0^t f(u) \exp\left(d_i u\right) \mathrm{d}u.$$

- ► Joint distribution for $x_1(t)$, $x_2(t)$, $x_1(t)$, $x_3(t)$, and f(t).
- ► Here:

d_1	<i>s</i> ₁	<i>d</i> ₂	<i>s</i> ₂	d3	<i>s</i> 3	
5	5	1	1	0.5	0.5	x_3

$$\begin{array}{c|cccc} f(t) \\ x_1(t) \\ x_2(t) \\ x_3(t) \\ \hline f(t) \\ x_1(t) \\ x_2(t) \\ x_3(t) \\ \hline \end{array}$$

../../gpsim/tex/talks/ode1covariance.tex

Cascaded Differential Equations

Model-based method for transcription factor target identification with limited data

Antti Honkela^{a,1}, Charles Girardot^b, E. Hilary Gustafson^b, Ya-Hsin Liu^b, Eileen E. M. Furlong^b, Neil D. Lawrence^{c1}, and Magnus Rattray^{c,1}

^aDepartment of Information and Computer Science, Aalto University School of Science and Technology, Helsinki, Finland; ^bGenome Biology U European Molecular Biology Laboratory, Heidelberg, Germany; and 'School of Computer Science, University of Manchester, Manchester, Unite

Edited by David Baker, University of Washington, Seattle, WA, and approved March 3, 2010 (received for review December 10, 2009)

We present a computational method for identifying potential targets of a transcription factor (TF) using wild-type gene expression time series data. For each putative target gene we fit a simple differential equation model of transcriptional regulation, and the used for genome-wide scoring of putative target gen is required to apply our method is wild-type time serie lected over a period where TF activity is changing. Ou allows for complementary evidence from expression

Cascaded Differential Equations

(Honkela et al., 2010)

- Transcription factor protein also has governing mRNA.
- This mRNA can be measured.
- In signalling systems this measurement can be misleading because it is activated (phosphorylated) transcription factor that counts.
- In development phosphorylation plays less of a role.
- Build a simple cascaded differential equation to model this.

Covariance for Translation/Transcription Model

RBF covariance function for y(t)

$$f(t) = \sigma \exp(-\delta t) \int_0^t y(u) \exp(\delta u) du$$
$$x_i(t) = \frac{b_i}{d_i} + s_i \exp(-d_i t) \int_0^t f(u) \exp(d_i u) du.$$

• Joint distribution for $x_1(t)$, $x_2(t)$, f(t)and y(t).

../../svsbio/tex/talks/cascadeShort.tex

$$y(t)$$

$$f(t)$$

$$x_1(t)$$

$$x_2(t)$$

$$(t)$$

48

- Use mRNA of Twist as driving input.
- For each gene build a cascade model that forces Twist to be the only TF.
- Compare fit of this model to a baseline (*e.g.* similar model but sensitivity zero).
- Rank according to the likelihood above the baseline.
- Compare with correlation, knockouts and time series network identification (TSNI) (Della Gatta et al., 2008).

Figure: Model for flybase gene identity FBgn0002526.

Figure: Model for flybase gene identity FBgn0003486.

Figure: Model for flybase gene identity FBgn0011206.

Figure: Model for flybase gene identity FBgn00309055.

Figure: Model for flybase gene identity FBgn0031907.

Figure: Model for flybase gene identity FBgn0035257.

Figure: Model for flybase gene identity FBgn0039286.

- Evaluate the ranking methods by taking a number of top-ranked targets and record the number of "positives" (Zinzen et al., 2009):
 - targets with ChIP-chip binding sites within 2 kb of gene
 - (targets differentially expressed in TF knock-outs)
- Compare against
 - Ranking by correlation of expression profiles
 - Ranking by *q*-value of differential expression in knock-outs
- Optionally focus on genes with annotated expression in tissues of interest

Results

'***': p < 0.001, '**': p < 0.01, '*': p < 0.05

../../svsbio/tex/talks/cascadeShort.tex

- Cascade models allow genomewide analysis of potential targets given only expression data.
- Once a set of potential candidate targets have been identified, they can be modelled in a more complex manner.
- We don't have ground truth, but evidence indicates that the approach *can* perform as well as knockouts.

Machine Learning

Gaussian Processes

Motion Capture Example

ODE Model of Transcriptional Regulation

Discussion and Future Work

Discussion and Future Work

- Integration of probabilistic inference with mechanistic models.
- Ongoing/other work:
 - Non linear response and non linear differential equations.
 - Scaling up to larger systems Álvarez et al. (2010a); Álvarez and Lawrence (2009).
 - Discontinuities through Switched Gaussian Processes Álvarez et al. (2010b)
 - Robotics applications.
 - Applications to other types of system, *e.g.* spatial systems Álvarez et al. (2011).
 - Stochastic differential equations Álvarez et al. (2010a).

Acknowledgements

Investigators Neil Lawrence and Magnus Rattray

Researchers Mauricio Álvarez, Pei Gao, Antti Honkela, David Luengo, Guido Sanguinetti, Michalis Titsias, and Jennifer Withers

Lawrence/Ratray Funding BBSRC award "Improved Processing of microarray data using probabilistic models", EPSRC award "Gaussian Processes for Systems Identification with applications in Systems Biology", University of Manchester, Computer Science Studentship, and Google Research Award: "Mechanistically Inspired Convolution Processes for Learning".

Other funding David Luengo's visit to Manchester was financed by the Comunidad de Madrid (project PRO-MULTIDIS-CM, S-0505/TIC/0233), and by the Spanish government (CICYT project TEC2006-13514-C02-01 and researh grant JC2008-00219).

Antti Honkela visits to Manchester funded by PASCAL I & II EU Networks of excellence.

References I

- M. A. Álvarez and N. D. Lawrence. Sparse convolved Gaussian processes for multi-output regression. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems, volume 21, pages 57–64, Cambridge, MA, 2009. MIT Press. [PDF].
- M. A. Álvarez, D. Luengo, and N. D. Lawrence. Latent force models. In D. van Dyk and M. Welling, editors, Proceedings of the Twelfth International Workshop on Artificial Intelligence and Statistics, volume 5, pages 9–16, Clearwater Beach, PL, 16-18 April 2009. JMLR W&CP 5. [PDF].
- M. A. Álvarez, D. Luengo, and N. D. Lawrence. Linear latent force models using Gaussian processes. Technical report, University of Sheffield, [PDF].
- M. A. Álvarez, D. Luengo, and N. D. Lawrence. Linear latent force models using Gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11):2693–2705, 2013. [PDF].
- M. A. Álvarez, D. Luengo, M. K. Titsias, and N. D. Lawrence. Efficient multioutput Gaussian processes through variational inducing kernels. In Y. W. Teh and D. M. Titterington, editors, *Proceedings of the Thirteenth International Workshop on Artificial Intelligence and Statistics*, volume 9, pages 25–32, Chia Laguna Resort, Sardinia, Italy, 13-16 May 2010a. JMLR W&CP 9. [PDF].
- M. A. Álvarez, J. Peters, B. Schölkopf, and N. D. Lawrence. Switched latent force models for movement segmentation. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems, volume 23, pages 55–63, Cambridge, MA, 2010b. MIT Press.
- M. Barenco, D. Tomescu, D. Brewer, R. Callard, J. Stark, and M. Hubank. Ranked prediction of p53 targets using hidden variable dynamic modeling. *Genome Biology*, 7(3):R25, 2006.
- G. Della Gatta, M. Bansal, A. Ambesi-Impiombato, D. Antonini, C. Missero, and D. di Bernardo. Direct targets of the trp63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. *Genome Research*, 18(6):939–948, Jun 2008. [URL]. [DOI].
- P. Gao, A. Honkela, M. Rattray, and N. D. Lawrence. Gaussian process modelling of latent chemical species: Applications to inferring transcription factor activities. *Bioinformatics*, 24:i70–i75, 2008. [PDF]. [DOI].
- A. Honkela, C. Girardot, E. H. Gustafson, Y.-H. Liu, E. E. M. Furlong, N. D. Lawrence, and M. Rattray. Model-based method for transcription factor target identification with limited data. *Proc. Natl. Acad. Sci. USA*, 107(17): 7793–7798, Apr 2010. [DOI].
- S. T. Roweis. EM algorithms for PCA and SPCA. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information Processing Systems, volume 10, pages 626–632, Cambridge, MA, 1998. MIT Press.
- M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical Society, B, 6(3):611–622, 1999. [PDF]. [DOI].
- R. P. Zinzen, C. Girardot, J. Gagneur, M. Braun, and E. E. M. Furlong. Combinatorial binding predicts spatio-temporal cis-regulatory activity. *Nature*, 462(7269):65–70, Nov 2009. [URL]. [DOI].