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What is Machine Learning?

data

+ model = prediction

I data: observations, could be actively or passively acquired
(meta-data).

I model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

I prediction: an action to be taken or a categorization or a
quality score.
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Historical Perspective

I A data driven approach to Artificial Intelligence.
I Inspired by attempts to model the brain (the

connectionists).
I A community that transcended traditional boundaries

(psychology, statistical physics, signal processing)
I Led to an approach that dominates in the modern

data-rich world.
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Two Dominant Approaches

I Machine Learning as Optimization:

I Formulate your learning Problem as an optimization
problem.

I Typically intractable, so minimize a relaxed version of the
cost function.

I Prove characteristics of the resulting solution.
I Machine Learning as Probabilistic Modelling:

I Formulate your learning problem as a probabilistic model.
I Relate variables through probability distributions.
I If Bayesian, treat parameters with probability distributions.
I Required integrals often intractable: use approximations

(MCMC, variational etc).
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Modelling Assumptions

I Modelling assumptions are either included as:

I a regularizer (optimization) or
I in the probability distribution (probabilistic approach).

I Typical assumptions: sparsity, smoothness.
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Styles of Machine Learning
Background: interpolation is easy, extrapolation is hard

I Urs Hölzle keynote talk at NIPS 2005.
I Emphasis on massive data sets.
I Let the data do the work—more data, less extrapolation.

I Alternative paradigm:
I Very scarce data: computational biology, human motion.
I How to generalize from scarce data?
I Need to include more assumptions about the data (e.g.

invariances).



General Approach
Broadly Speaking: Two approaches to modeling

data modeling mechanistic modeling

let the data “speak” impose physical laws
data driven knowledge driven

adaptive models differential equations
digit recognition climate, weather models
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Figure: Main modeling activity.
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Weakly Mechanistic vs Strongly Mechanistic

I Underlying data modeling techniques there are weakly
mechanistic principles (e.g. smoothness).

I In physics the models are typically strongly mechanistic.
I In principle we expect a range of models which vary in the

strength of their mechanistic assumptions.
I Latent Force Models are one part of this spectrum: add

further mechanistic ideas to weakly mechanistic models.



Linear Dimensionality Reduction

I Find a lower dimensional plane embedded in a higher
dimensional space.

I The plane is described by the matrix W ∈ <p×q.
f 2

f1

X = FW
−→

x1x2
x3

Figure: Mapping a two dimensional plane to a higher dimensional
space in a linear way. Data are generated by corrupting points on the
plane with noise.



Dimensionality Reduction

I Linear relationship between the data, X, and a reduced
dimensional representation, F.

X = FW + ε,

ε ∼ N (0,Σ)

I Problem is we don’t know what F should be!



Marionette Analogy

X observed

F unobserved
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F is a Latent Variable

I Define a probability distribution for F.
I Marginalize out F (integrate over).
I Optimize with respect to W.
I For Gaussian distribution, F ∼ N (0, I)

I and Σ = σ2I we have probabilistic PCA (Tipping and Bishop,
1999; Roweis, 1998).

I and Σ constrained to be diagonal, we have factor analysis.



Dimensionality Reduction: Temporal Data
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t
Figure: PCA: Pure sampling from a Gaussian does not retain
temporal effects.



Dimensionality Reduction: Temporal Data
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Figure: Kalman filter (Rauch-Tung-Striebel smoother) is
Markov-Gaussian (non smooth).



Dimensionality Reduction: Temporal Data

-1.5
-1

-0.5
0

0.5
1

1.5

0 1 2 3

f(
t)

t
Figure: General Gaussian processes allow for priors over smooth
functions.
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Sampling a Function

Multi-variate Gaussians

I We will consider a Gaussian with a particular structure of
covariance matrix.

I Generate a single sample from this 25 dimensional
Gaussian distribution, f =

[
f1, f2 . . . f25

]
.

I We will plot these points against their index.

../../../gp/tex/talks/gpdistfunc.tex 17

../../../gp/tex/talks/gpdistfunc.tex


Gaussian Distribution Sample
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(b) colormap showing correlations
between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.
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Covariance Function

The covariance matrix

I Covariance matrix shows correlation between points fi and
f j if i is near to j.

I Less correlation if i is distant from j.
I Our ordering of points means that the function appears

smooth.
I Let’s focus on the joint distribution of two points from the

25.
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Prediction of f2 from f1

-1

0

1

-1 0 1

f 1

f2

1 0.96587

0.96587 1

I The single contour of the Gaussian density represents the
joint distribution, p( f1, f2).

I We observe that f1 = −0.313.
I Conditional density: p( f2| f1 = −0.313).
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Prediction with Correlated Gaussians

I Prediction of f2 from f1 requires conditional density.
I Conditional density is also Gaussian.

p( f2| f1) = N

 f2|
k1,2

k1,1
f1, k2,2 −

k2
1,2

k1,1


where covariance of joint density is given by

K =

[
k1,1 k1,2
k2,1 k2,2

]
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Prediction of f5 from f1
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I The single contour of the Gaussian density represents the
joint distribution, p( f1, f5).

I We observe that f1 = −0.313.
I Conditional density: p( f5| f1 = −0.313).
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Prediction with Correlated Gaussians

I Prediction of f∗ from f requires multivariate conditional
density.

I Multivariate conditional density is also Gaussian.

p(f∗|f) = N
(
f∗|K∗,fK−1

f,f f,K∗,∗ −K∗,fK−1
f,f Kf,∗

)

I Here covariance of joint density is given by

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]
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Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (t, t′) = α exp

−‖t − t′‖22
2`2


I Covariance matrix is

built using the inputs to
the function t.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.
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Covariance Functions
Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function

k (t, t′) = α exp
(
−
|t − t′|

2`2

)
I In one dimension arises

from a stochastic
differential equation.
Brownian motion in a
parabolic tube.

I In higher dimension a
Fourier filter of the form

1
π(1+x2) .
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Mechanical Analogy

Back to Mechanistic Models!

I These models rely on the latent variables to provide the
dynamic information.

I We now introduce a further dynamical system with a
mechanistic inspiration.

I Physical Interpretation:
I the latent functions, fi(t) are q forces.
I We observe the displacement of p springs to the forces.,
I Interpret system as the force balance equation, XD = FS + ε.
I Forces act, e.g. through levers — a matrix of sensitivities,

S ∈ <q×p.
I Diagonal matrix of spring constants, D ∈ <p×p.
I Original System: W = SD−1.
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Extend Model

I Add a damper and give the system mass.

FS = ẌM + ẊC + XD + ε.

I Now have a second order mechanical system.
I It will exhibit inertia and resonance.
I There are many systems that can also be represented by

differential equations.
I When being forced by latent function(s),

{
fi(t)

}q
i=1, we call

this a latent force model.
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Marionette
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m1

m2
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Mass Spring Damper Analogy

d1

c1 m1
s1 f (t)

x1(t)

s1
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c2 m2
s2 f (t)

x2(t)

s2

f (t)

mass

spring

damper

observations

latent input

pulleys

Figure: Mass spring damper analogy, an unobserved force drives
multiple oscillators.
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Gaussian Process priors and Latent Force Models
Driven Harmonic Oscillator

I For Gaussian process we can compute the covariance
matrices for the output displacements.

I For one displacement the model is

mkẍk(t) + ckẋk(t) + dkxk(t) = bk +

q∑
i=0

sik fi(t), (1)

where, mk is the kth diagonal element from M and
similarly for ck and dk. sik is the i, kth element of S.

I Model the latent forces as q independent, GPs with
exponentiated quadratic covariances

k fi fl(t, t
′) = exp

− (t − t′)2

2`2
i

 δil.
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Covariance for ODE Model

I Exponentiated Quadratic Covariance function for f (t)

x j(t) =
1

m jω j

q∑
i=1

s ji exp(−α jt)
∫ t

0
fi(τ) exp(α jτ) sin(ω j(t − τ))dτ

I Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).
Damping ratios:
ζ1 ζ2 ζ3
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Covariance for ODE Model

I Analogy

x =
∑

i

e>i fi fi ∼ N (0,Σi)→ x ∼ N

0,
∑

i

e>i Σiei
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I Joint distribution
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Joint Sampling of x (t) and f (t)

I lfmSample
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Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (underdamped), green: x2 (t) (overdamped), and blue: x3 (t)
(critically damped).
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Covariance for ODE

I Exponentiated Quadratic Covariance function for f (t)

x j(t) =
1

m jω j

q∑
i=1

s ji exp(−α jt)
∫ t

0
fi(τ) exp(α jτ) sin(ω j(t−τ))dτ

I Joint distribution
for x1 (t), x2 (t),
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009,
2013)

I Motion capture data: used for animating human motion.

I Multivariate time series of angles representing joint
positions.

I Objective: generalize from training data to realistic
motions.

I Use 2nd Order Latent Force Model with
mass/spring/damper (resistor inductor capacitor) at each
joint.
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Prediction of Test Motion

I Model left arm only.
I 3 balancing motions (18, 19, 20) from subject 49.
I 18 and 19 are similar, 20 contains more dramatic

movements.
I Train on 18 and 19 and testing on 20
I Data was down-sampled by 32 (from 120 fps).
I Reconstruct motion of left arm for 20 given other

movements.
I Compare with GP that predicts left arm angles given other

body angles.
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Mocap Results

Table: Root mean squared (RMS) angle error for prediction of the left
arm’s configuration in the motion capture data. Prediction with the
latent force model outperforms the prediction with regression for all
apart from the radius’s angle.

Latent Force Regression
Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14

Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09
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Mocap Results II
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Figure: Predictions from LFM (solid line, grey error bars) and direct
regression (crosses with stick error bars).../../../lfm/tex/talks/mocapExample.tex 39
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Motion Capture Experiments

I Data set is from the CMU motion capture data base1.
I Two different types of movements: golf-swing and

walking.
I Train on a subset of motions for each movement and test

on a different subset.
I This assesses the model’s ability to extrapolate.
I For testing: condition on three angles associated to the root

nodes and first five and last five frames of the motion.
I Golf-swing use leave one out cross validation on four

motions.
I For the walking train on 4 motions and validate on 8

motions.
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Motion Capture Results

Table: RMSE and R2 (explained variance) for golf swing and walking

Movement Method RMSE R2 (%)

Golf swing

IND GP 21.55 ± 2.35 30.99 ± 9.67
MTGP 21.19 ± 2.18 45.59 ± 7.86
SLFM 21.52 ± 1.93 49.32 ± 3.03
LFM 18.09 ± 1.30 72.25 ± 3.08

Walking

IND GP 8.03 ± 2.55 30.55 ± 10.64
MTGP 7.75 ± 2.05 37.77 ± 4.53
SLFM 7.81 ± 2.00 36.84 ± 4.26
LFM 7.23 ± 2.18 48.15 ± 5.66
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Example: Transcriptional Regulation

I First Order Differential Equation

dx j (t)
dt

= b j + s j f (t) − d jx j (t)

I Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.

I x j(t) – concentration of gene j’s mRNA
I f (t) – concentration of active transcription factor
I Model parameters: baseline b j, sensitivity s j and decay d j

I Application: identifying co-regulated genes (targets)
I Problem: how do we fit the model when f (t) is not

observed?

../../../gpsim/tex/talks/ode1ExampleShort.tex 43

../../../gpsim/tex/talks/ode1ExampleShort.tex


Example: Transcriptional Regulation

I First Order Differential Equation

dx j (t)
dt

= b j + s j f (t) − d jx j (t)

I Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.

I x j(t) – concentration of gene j’s mRNA
I f (t) – concentration of active transcription factor
I Model parameters: baseline b j, sensitivity s j and decay d j

I Application: identifying co-regulated genes (targets)
I Problem: how do we fit the model when f (t) is not

observed?

../../../gpsim/tex/talks/ode1ExampleShort.tex 43

../../../gpsim/tex/talks/ode1ExampleShort.tex


Example: Transcriptional Regulation

I First Order Differential Equation

dx j (t)
dt

= b j + s j f (t) − d jx j (t)

I Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.

I x j(t) – concentration of gene j’s mRNA

I f (t) – concentration of active transcription factor
I Model parameters: baseline b j, sensitivity s j and decay d j

I Application: identifying co-regulated genes (targets)
I Problem: how do we fit the model when f (t) is not

observed?

../../../gpsim/tex/talks/ode1ExampleShort.tex 43

../../../gpsim/tex/talks/ode1ExampleShort.tex


Example: Transcriptional Regulation

I First Order Differential Equation

dx j (t)
dt

= b j + s j f (t) − d jx j (t)

I Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.

I x j(t) – concentration of gene j’s mRNA
I f (t) – concentration of active transcription factor

I Model parameters: baseline b j, sensitivity s j and decay d j

I Application: identifying co-regulated genes (targets)
I Problem: how do we fit the model when f (t) is not

observed?

../../../gpsim/tex/talks/ode1ExampleShort.tex 43

../../../gpsim/tex/talks/ode1ExampleShort.tex


Example: Transcriptional Regulation

I First Order Differential Equation

dx j (t)
dt

= b j + s j f (t) − d jx j (t)

I Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.

I x j(t) – concentration of gene j’s mRNA
I f (t) – concentration of active transcription factor
I Model parameters: baseline b j, sensitivity s j and decay d j

I Application: identifying co-regulated genes (targets)
I Problem: how do we fit the model when f (t) is not

observed?

../../../gpsim/tex/talks/ode1ExampleShort.tex 43

../../../gpsim/tex/talks/ode1ExampleShort.tex


Example: Transcriptional Regulation

I First Order Differential Equation

dx j (t)
dt

= b j + s j f (t) − d jx j (t)

I Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.

I x j(t) – concentration of gene j’s mRNA
I f (t) – concentration of active transcription factor
I Model parameters: baseline b j, sensitivity s j and decay d j

I Application: identifying co-regulated genes (targets)

I Problem: how do we fit the model when f (t) is not
observed?

../../../gpsim/tex/talks/ode1ExampleShort.tex 43

../../../gpsim/tex/talks/ode1ExampleShort.tex


Example: Transcriptional Regulation

I First Order Differential Equation

dx j (t)
dt

= b j + s j f (t) − d jx j (t)

I Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.

I x j(t) – concentration of gene j’s mRNA
I f (t) – concentration of active transcription factor
I Model parameters: baseline b j, sensitivity s j and decay d j

I Application: identifying co-regulated genes (targets)
I Problem: how do we fit the model when f (t) is not

observed?

../../../gpsim/tex/talks/ode1ExampleShort.tex 43

../../../gpsim/tex/talks/ode1ExampleShort.tex


Covariance for Transcription Model

RBF covariance function for f (t)

xi (t) =
bi

di
+ si exp (−dit)

∫ t

0
f (u) exp (diu) du.

I Joint distribution
for x1 (t), x2 (t),
x3 (t), and f (t).

I Here:
d1 s1 d2 s2 d3 s3

5 5 1 1 0.5 0.5

f (t) x1(t) x2(t) x3(t)

f (t)

x1(t)

x2(t)

x3(t)
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for x1 (t), x2 (t),
x3 (t), and f (t).

I Here:
d1 s1 d2 s2 d3 s3

5 5 1 1 0.5 0.5

f (t) x1(t) x2(t) x3(t)

f (t)

x1(t)

x2(t)

x3(t)
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Cascaded Differential Equations

Model-based method for transcription factor
target identification with limited data
Antti Honkelaa,1, Charles Girardotb, E. Hilary Gustafsonb, Ya-Hsin Liub, Eileen E. M. Furlongb,
Neil D. Lawrencec,1, and Magnus Rattrayc,1

aDepartment of Information and Computer Science, Aalto University School of Science and Technology, Helsinki, Finland; bGenome Biology Unit,
European Molecular Biology Laboratory, Heidelberg, Germany; and cSchool of Computer Science, University of Manchester, Manchester, United Kingdom

Edited by David Baker, University of Washington, Seattle, WA, and approved March 3, 2010 (received for review December 10, 2009)

We present a computational method for identifying potential tar-
gets of a transcription factor (TF) using wild-type gene expression
time series data. For each putative target gene we fit a simple dif-
ferential equation model of transcriptional regulation, and the
model likelihood serves as a score to rank targets. The expression
profile of the TF is modeled as a sample from a Gaussian process
prior distribution that is integrated out using a nonparametric
Bayesian procedure. This results in a parsimonious model with re-
latively few parameters that can be applied to short time series da-
tasets without noticeable overfitting. We assess our method using
genome-wide chromatin immunoprecipitation (ChIP-chip) and loss-
of-function mutant expression data for two TFs, Twist, and Mef2,
controlling mesoderm development in Drosophila. Lists of top-
ranked genes identified by our method are significantly enriched
for genes close to bound regions identified in the ChIP-chip data
and for genes that are differentially expressed in loss-of-function
mutants. Targets of Twist display diverse expression profiles, and in
this case a model-based approach performs significantly better
than scoring based on correlation with TF expression. Our ap-
proach is found to be comparable or superior to ranking based on
mutant differential expression scores. Also, we show how integrat-
ing complementary wild-type spatial expression data can further
improve target ranking performance.

Bayesian inference ∣ Gaussian process inference ∣ gene regulation ∣
gene regulatory network ∣ systems biology

Transcription factors are key nodes in the gene regulatory net-
works that determine the function and fate of cells. An impor-

tant first step in uncovering a gene regulatory network is the
identification of target genes regulated by a specific transcription
factor (TF). A common approach to this problem is to experi-
mentally locate physical binding of TF proteins to the DNA
sequence in vivo using a genome-wide chromatin immunopreci-
pitation (ChIP) experiment (1, 2). However, recent studies sug-
gest that many observed binding events are neutral and do not
regulate transcription, while regulatory binding events often oc-
cur at enhancers that are not proximal to the target gene that they
control (3, 4). Therefore, the task of identifying transcriptional
targets requires the integration of ChIP binding predictions with
evidence from expression data to help associate binding events
with target gene regulation. If there is access to expression data
from a mutant in which the TF has been knocked out or overex-
pressed, then differential expression of genes between wild type
and mutant is indicative of a potential regulatory interaction (5,
6). Available spatial expression data for the TF and the putative
target can also provide support for a hypothesized regulatory link.

A problem with the above approach is that the creation of mu-
tant strains is challenging or impossible for many TFs of interest.
Even when available, mutants may provide very limited informa-
tion because of redundancy or due to the confounding of signal
from indirect regulatory feedback (7). For these reasons it is use-
ful to seek other sources of evidence to complement ChIP bind-
ing predictions. In this contribution we demonstrate how a
dynamical model of wild-type transcriptional regulation can be

used for genome-wide scoring of putative target genes. All that
is required to apply our method is wild-type time series data col-
lected over a period where TF activity is changing. Our approach
allows for complementary evidence from expression data to be
integrated with ChIP binding data for a specific TF without carry-
ing out TF perturbations.

To score putative targets we use the data likelihood under a
simple cascaded differential equation model of transcriptional
regulation. The regulation model we apply is “open” in the sense
that we do not explicitly model regulation of the TF itself. To deal
with this technical issue we use a recently developed nonpara-
metric probabilistic inference methodology to effectively deal
with open differential equation systems (8). We model the TF
concentration as a function drawn from a Gaussian process prior
distribution (9, 10). This functional prior can either be placed on
the TF mRNA, for TFs primarily under transcriptional regula-
tion, or the TF protein, for TFs activated posttranslationally.
In the application considered here the TFs are transcriptionally
regulated, and we take the former approach. We use Bayesian
marginalization (also known as Bayesian model averaging) to
integrate out these functional degrees of freedom. This greatly
reduces the number of parameters required to model the data,
making a likelihood-based approach feasible even for short
time series.

There are many existing approaches to inferring gene regula-
tory networks from time series expression data, including dy-
namic Bayesian networks, information theoretic approaches,
and differential equation approaches (reviewed in ref. 11). These
methods typically require many more data from a greater diver-
sity of experimental conditions than are available from the short
unperturbed wild-type time series that we consider. Indeed, most
real gene expression time course data are short relative to the
simulated data used to assess computational methods for network
inference (12). However, our goal is more limited in scope since
we are primarily interested in providing additional support for
hypothesized targets of a specific TF. Again, most approaches
to this problem are designed for data containing large numbers
of diverse conditions, as exemplified by the DREAM 2 (Dialogue
for Reverse Engineering Assessments and Methods 2) target
identification challenge 1 (13). Others have addressed this target
identification problem using time series data with a regulation
model (14, 15). However, these approaches either require a
known target set for training (14) or they require measured TF
protein data (15). In addition to these differences in the assumed
prior knowledge and available data, it is also difficult to validate
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Cascaded Differential Equations

(Honkela et al., 2010)

I Transcription factor protein also has governing mRNA.
I This mRNA can be measured.
I In signalling systems this measurement can be misleading

because it is activated (phosphorylated) transcription
factor that counts.

I In development phosphorylation plays less of a role.
I Build a simple cascaded differential equation to model this.

../../../sysbio/tex/talks/cascadeShort.tex 47

../../../sysbio/tex/talks/cascadeShort.tex


Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f (t) = σ exp (−δt)
∫ t

0
y(u) exp (δu) du

xi (t) =
bi

di
+ si exp (−dit)

∫ t

0
f (u) exp (diu) du.

I Joint distribution
for x1 (t), x2 (t), f (t)
and y (t).

I Here:
δ d1 s1 d2 s2

1 5 5 0.5 0.5

y(t) f (t) x1(t) x2(t)

y(t)

f (t)

x1(t)

x2(t)
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Twist Results

I Use mRNA of Twist as driving input.
I For each gene build a cascade model that forces Twist to be

the only TF.
I Compare fit of this model to a baseline (e.g. similar model

but sensitivity zero).
I Rank according to the likelihood above the baseline.
I Compare with correlation, knockouts and time series

network identification (TSNI) (Della Gatta et al., 2008).
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Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0002526.
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Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0003486.
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Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0011206.
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Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn00309055.

../../../sysbio/tex/talks/cascadeShort.tex 50

../../../sysbio/tex/talks/cascadeShort.tex


Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0031907.
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Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0035257.

../../../sysbio/tex/talks/cascadeShort.tex 50

../../../sysbio/tex/talks/cascadeShort.tex


Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0039286.
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Evaluation methods

I Evaluate the ranking methods by taking a number of
top-ranked targets and record the number of
“positives” (Zinzen et al., 2009):

I targets with ChIP-chip binding sites within 2 kb of gene
I (targets differentially expressed in TF knock-outs)

I Compare against
I Ranking by correlation of expression profiles
I Ranking by q-value of differential expression in knock-outs

I Optionally focus on genes with annotated expression in
tissues of interest
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Results
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Summary

I Cascade models allow genomewide analysis of potential
targets given only expression data.

I Once a set of potential candidate targets have been
identified, they can be modelled in a more complex
manner.

I We don’t have ground truth, but evidence indicates that
the approach can perform as well as knockouts.
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Discussion and Future Work

I Integration of probabilistic inference with mechanistic
models.

I Ongoing/other work:
I Non linear response and non linear differential equations.
I Scaling up to larger systems Álvarez et al. (2010a); Álvarez

and Lawrence (2009).
I Discontinuities through Switched Gaussian Processes

Álvarez et al. (2010b)
I Robotics applications.
I Applications to other types of system, e.g. spatial systems

Álvarez et al. (2011).
I Stochastic differential equations Álvarez et al. (2010a).
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