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Machine Learning



What is Machine Learning?

data

» data: observations, could be actively or passively acquired
(meta-data).
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What is Machine Learning?

data + model

» data: observations, could be actively or passively acquired
(meta-data).

» model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.
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What is Machine Learning?

data + model =

» data: observations, could be actively or passively acquired
(meta-data).

» model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.
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What is Machine Learning?

data + model = prediction

» data: observations, could be actively or passively acquired
(meta-data).

» model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

» prediction: an action to be taken or a categorization or a
quality score.
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Historical Perspective

\4

A data driven approach to Artificial Intelligence.

v

Inspired by attempts to model the brain (the
connectionists).

» A community that transcended traditional boundaries
(psychology, statistical physics, signal processing)

v

Led to an approach that dominates in the modern
data-rich world.
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Two Dominant Approaches

» Machine Learning as Optimization:
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Two Dominant Approaches

» Machine Learning as Optimization:

» Formulate your learning Problem as an optimization
problem.
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Two Dominant Approaches

» Machine Learning as Optimization:
» Formulate your learning Problem as an optimization
problem.
» Typically intractable, so minimize a relaxed version of the
cost function.
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Two Dominant Approaches

» Machine Learning as Optimization:
» Formulate your learning Problem as an optimization
problem.
» Typically intractable, so minimize a relaxed version of the
cost function.
» Prove characteristics of the resulting solution.
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Two Dominant Approaches

» Machine Learning as Optimization:
» Formulate your learning Problem as an optimization
problem.
» Typically intractable, so minimize a relaxed version of the
cost function.
» Prove characteristics of the resulting solution.

» Machine Learning as Probabilistic Modelling;:
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Two Dominant Approaches

» Machine Learning as Optimization:
» Formulate your learning Problem as an optimization
problem.
» Typically intractable, so minimize a relaxed version of the
cost function.
» Prove characteristics of the resulting solution.
» Machine Learning as Probabilistic Modelling;:
» Formulate your learning problem as a probabilistic model.
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Two Dominant Approaches

» Machine Learning as Optimization:
» Formulate your learning Problem as an optimization
problem.
» Typically intractable, so minimize a relaxed version of the
cost function.
» Prove characteristics of the resulting solution.

» Machine Learning as Probabilistic Modelling;:

» Formulate your learning problem as a probabilistic model.
» Relate variables through probability distributions.
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Two Dominant Approaches

» Machine Learning as Optimization:
» Formulate your learning Problem as an optimization
problem.
» Typically intractable, so minimize a relaxed version of the
cost function.
» Prove characteristics of the resulting solution.

» Machine Learning as Probabilistic Modelling;:

» Formulate your learning problem as a probabilistic model.
» Relate variables through probability distributions.
» If Bayesian, treat parameters with probability distributions.
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Two Dominant Approaches

» Machine Learning as Optimization:
» Formulate your learning Problem as an optimization
problem.
» Typically intractable, so minimize a relaxed version of the
cost function.
» Prove characteristics of the resulting solution.

» Machine Learning as Probabilistic Modelling;:

» Formulate your learning problem as a probabilistic model.

» Relate variables through probability distributions.

» If Bayesian, treat parameters with probability distributions.

» Required integrals often intractable: use approximations
(MCMC, variational etc).
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Modelling Assumptions

» Modelling assumptions are either included as:
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Modelling Assumptions

» Modelling assumptions are either included as:
» aregularizer (optimization) or
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Modelling Assumptions

» Modelling assumptions are either included as:
» aregularizer (optimization) or
» in the probability distribution (probabilistic approach).
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Modelling Assumptions

» Modelling assumptions are either included as:
» aregularizer (optimization) or
» in the probability distribution (probabilistic approach).

» Typical assumptions: sparsity, smoothness.
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Styles of Machine Learning

Background: interpolation is easy, extrapolation is hard

» Urs Holzle keynote talk at NIPS 2005.

» Emphasis on massive data sets.
> Let the data do the work—more data, less extrapolation.
» Alternative paradigm:
» Very scarce data: computational biology, human motion.
» How to generalize from scarce data?
» Need to include more assumptions about the data (e.g.
invariances).



General Approach

Broadly Speaking: Two approaches to modeling

data modeling mechanistic modeling
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General Approach

Broadly Speaking: Two approaches to modeling

data modeling
R

let the dataQ%peak

& riven
ad@ 1ve models

Q«@?glt recognition

mechanistic modeling
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&
impose phygal laws
know]gg%e driven
diffe%‘ﬁtial equations
cli‘ga@?e, weather models



Weakly Mechanistic vs Strongly Mechanistic

» Underlying data modeling techniques there are weakly
mechanistic principles (e.g. smoothness).

» In physics the models are typically strongly mechanistic.

» In principle we expect a range of models which vary in the
strength of their mechanistic assumptions.

» Latent Force Models are one part of this spectrum: add
further mechanistic ideas to weakly mechanistic models.



Linear Dimensionality Reduction

» Find a lower dimensional plane embedded in a higher
dimensional space.
» The plane is described by the matrix W € R,

f

f

X
X2 3 X1



Dimensionality Reduction

» Linear relationship between the data, X, and a reduced
dimensional representation, F.

X=FW +e¢,

e~N(0,X)
» Problem is we don’t know what F should be!



Marionette Analogy

observed

J 7



Marionette Analogy

F unobserved

observed




F is a Latent Variable

\4

Define a probability distribution for F.

v

Marginalize out F (integrate over).

v

Optimize with respect to W.
For Gaussian distribution, F ~ N (0, 1)
» and ~ = ¢’I we have probabilistic PCA (Tipping and Bishop,

1999; Roweis, 1998).
» and X constrained to be diagonal, we have factor analysis.

\4



Dimensionality Reduction: Temporal Data

N W

f®

a1
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-3 \ |

0 1 2

Figure: PCA: Pure sampling from a Gaussian does not retain
temporal effects.



Dimensionality Reduction: Temporal Data

f®

Figure: Kalman filter (Rauch-Tung-Striebel smoother) is
Markov-Gaussian (non smooth).



Dimensionality Reduction: Temporal Data

f®

Figure: General Gaussian processes allow for priors over smooth
functions.



Outline

Gaussian Processes



Y

Sampling a Function

Multi-variate Gaussians

» We will consider a Gaussian with a particular structure of
covariance matrix.

» Generate a single sample from this 25 dimensional
Gaussian distribution, f = [f1, f2. .. f25].

» We will plot these points against their index.
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Figure: A sample from a 25 dimensional Gaussian distribution.
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Figure: A sample from a 25 dimensional Gaussian distribution.
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Covariance Function

The covariance matrix

» Covariance matrix shows correlation between points f; and
fjifiis near to j.
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Covariance Function

The covariance matrix

» Covariance matrix shows correlation between points f; and
fjifiis near to j.

» Less correlation if i is distant from j.
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Covariance Function

The covariance matrix

» Covariance matrix shows correlation between points f; and
fjifiis near to j.
» Less correlation if i is distant from j.

» Our ordering of points means that the function appears
smooth.

4 S Jan/tex/talke/anintrro chort tew


../../../gp/tex/talks/gpintro_short.tex

Covariance Function

The covariance matrix

» Covariance matrix shows correlation between points f; and
fjifiis near to j.
» Less correlation if i is distant from j.

» Our ordering of points means that the function appears
smooth.

» Let’s focus on the joint distribution of two points from the
25.
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Prediction of f, from f;
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f2).
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f2).

» We observe that
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J i

Prediction of f, from f;

f

» The single contour of the Gaussian density represents the

joint distribution, p(fi, f2).
» We observe that

» Conditional density: p(f>| f] = —-0.313).
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Prediction of f, from f;

f

» The single contour of the Gaussian density represents the

joint distribution, p(fi, f2).
» We observe that

» Conditional density: p(f>| f] = —-0.313).
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Prediction with Correlated Gaussians

» Prediction of f, from f; requires conditional density.

» Conditional density is also Gaussian.

1,2

kZ
p(falfi) = [le f1, kll)

where covariance of joint density is given by

kip ki
K=
[k2,1 kz,z]
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, fs).
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, fs).

» We observe that
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Prediction of f5 from f;
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, fs).

» We observe that
» Conditional density: p(fs| f] = —-0.313).
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Prediction of f5 from f;
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, fs).
» We observe that
» Conditional density: p(fs| f] = —-0.313).
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Prediction with Correlated Gaussians

» Prediction of f. from f requires multivariate conditional
density.

» Multivariate conditional density is also Gaussian.

P(EIE) = N (EIK KL, K. — KoK 1K

» Here covariance of joint density is given by

[ Kee Kig
K B |:Kf,>(- K*,*
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Prediction with Correlated Gaussians

» Prediction of f. from f requires multivariate conditional
density.

» Multivariate conditional density is also Gaussian.
PEID) = N (Eln, D)
p =K K i f
3 =K., - KK K,

» Here covariance of joint density is given by

[ Kee Ko
K B |:Kf,>(- K*,*
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Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

) It — /|13
k(t,t') =aexp BTy

» Covariance matrix is
built using the inputs to
the function ¢.

» For the example above it
was based on Euclidean
distance.

» The covariance function
is also know as a kernel.
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Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared

Exponential, Gaussian)

k(t,t) = aexp[

» Covariance matrix is
built using the inputs to
the function t.

» For the example above it

was based on Euclidean
distance.

» The covariance function
is also know as a kernel.
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Covariance Functions

Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function

k(t,t) =aexp (_|f2—€2t l)

» In one dimension arises
from a stochastic
differential equation.
Brownian motion in a
parabolic tube.

» In higher dimension a

Fourier filter of the form
1
n(1+x2)"
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Covariance Functions

Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function

k(tt)=aexp (_|t2—{2t I)

» In one dimension arises

from a stochastic 1% B
differential equation. 1
Brownian motion in a 0.5
parabolic tube. O.g I
» In higher dimension a -1
Fourier filter of the form 1_'2 i ‘ | | |
1

n(1+x2)° -1 NRK n N8 1
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Mechanical Analogy

Back to Mechanistic Models!

» These models rely on the latent variables to provide the
dynamic information.

» We now introduce a further dynamical system with a
mechanistic inspiration.

» Physical Interpretation:

» the latent functions, fi(t) are g forces.

» We observe the displacement of p springs to the forces.,

» Interpret system as the force balance equation, XD = FS + €.
» Forces act, e.g. through levers — a matrix of sensitivities,

S € R,

Diagonal matrix of spring constants, D € RP*?.

Original System: W = SD™1.

v

v
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Extend Model

v

Add a damper and give the system mass.

FS = XM + XC + XD +e.

v

Now have a second order mechanical system.

v

It will exhibit inertia and resonance.

v

There are many systems that can also be represented by
differential equations.

» When being forced by latent function(s), { f,-(t)}?:l, we call
this a latent force model.
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Mass Spring Damper Analogy

pulleys

/spring
mass

/
NE! | damper »

observations

latent input

Figure: Mass spring damper analogy, an unobserved force drives
multiple oscillators.
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Figure: Mass spring damper analogy, an unobserved force drives
multiple oscillators.
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pulleys

/spring
mass

'—’ ~ _damper>

x1()

xp(t)

observations

f®

latent input

Figure: Mass spring damper analogy, an unobserved force drives
multiple oscillators.
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Figure: Mass spring damper analogy, an unobserved force drives
multiple oscillators.
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Mass Spring Damper Analogy
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Figure: Mass spring damper analogy, an unobserved force drives
multiple oscillators.
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Gaussian Process priors and Latent Force Models

Driven Harmonic Oscillator

» For Gaussian process we can compute the covariance
matrices for the output displacements.

» For one displacement the model is

q
myXi(t) + cpXi () + dixi(t) = by + Z sikfi(t), 1)
pary

where, my is the kth diagonal element from M and
similarly for ¢, and d. sj is the 7, kth element of S.

» Model the latent forces as q independent, GPs with
exponentiated quadratic covariances

, t—t)>
k(1) = exp (_%) 0il-
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Covariance for ODE Model

» Exponentiated Quadratic Covariance function for f (t)

9

t
xj(t) = ﬁ ; 8ji exp(—ajt)j; fi(7) exp(a;t) sin(w;(t — 7))dt

\‘ "

os

o4

2

8

"

‘ B

f(t) ¥, ¥,(0 Y40

()

» Joint distribution
for x1 (t), x2 (1),
x3(t) and f (¢).
Damping ratios:
IEEEES
10125 | 2 | 1 |

Y,

¥,

JAU)
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Covariance for ODE Model

» Analogy
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» Joint distribution
for x1 (t), x2 (1),
x3(t) and f (¢).
Damping ratios:
IEEENES
| 0.125 | 2 | 1 |

O\

¥,

¥,

bAU

A\ .

) ¥,0 ¥,0 ¥,

) ) M FfFm/tex/talke/0de?2CavAari ance tex 29


../../../lfm/tex/talks/ode2Covariance.tex

Covariance for ODE Model

» Exponentiated Quadratic Covariance function for f (t)
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x3(t) and f (¢).
Damping ratios:
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Joint Sampling of x () and f (¢)

» 1fmSample

Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 () (underdamped), green: x, (t) (overdamped), and blue: x3 (t)
(critically damped).
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Joint Sampling of x () and f (¢)

» 1fmSample

50 55 60 65 70

Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 () (underdamped), green: x, (t) (overdamped), and blue: x3 (t)
(critically damped).
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Joint Sampling of x () and f (¢)

» 1fmSample

25 L L L
50 55 60 65 70

Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 () (underdamped), green: x, (t) (overdamped), and blue: x3 (t)
(critically damped).
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Joint Sampling of x () and f (¢)

» 1fmSample

25 L L L
50 55 60 65 70

Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 () (underdamped), green: x, (t) (overdamped), and blue: x3 (t)
(critically damped).
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Covariance for ODE

» Exponentiated Quadratic Covariance function for f (t)
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for x1 (t), x2 (¢),
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Outline

Motion Capture Example



Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009,
2013)

» Motion capture data: used for animating human motion.
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009,
2013)

» Motion capture data: used for animating human motion.

» Multivariate time series of angles representing joint
positions.
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009,
2013)

» Motion capture data: used for animating human motion.
» Multivariate time series of angles representing joint
positions.

» Objective: generalize from training data to realistic
motions.
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009,
2013)

» Motion capture data: used for animating human motion.

» Multivariate time series of angles representing joint
positions.

» Objective: generalize from training data to realistic
motions.

» Use 2nd Order Latent Force Model with
mass/spring/damper (resistor inductor capacitor) at each
joint.
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Prediction of Test Motion

» Model left arm only.
» 3 balancing motions (18, 19, 20) from subject 49.

» 18 and 19 are similar, 20 contains more dramatic
movements.

» Train on 18 and 19 and testing on 20
» Data was down-sampled by 32 (from 120 fps).

» Reconstruct motion of left arm for 20 given other
movements.

» Compare with GP that predicts left arm angles given other
body angles.

) MM FfFm/tex/talke/mocanFeamnle tex 27


../../../lfm/tex/talks/mocapExample.tex

Mocap Results

Table: Root mean squared (RMS) angle error for prediction of the left
arm’s configuration in the motion capture data. Prediction with the
latent force model outperforms the prediction with regression for all
apart from the radius’s angle.

Latent Force | Regression

Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65
Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14
Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09

S S 1 fFm/tex/talke/mocanFwample tex
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Mocap Results II

11111111

(@) Inferred  Latent (b) Wrist (c) Hand X Rotation
Force

(d) Hand Z Rotation (e) Thumb X Rotation (f) Thumb Z Rotation

Figure: Predictions from LFM (solid line, grey error bars) and direct
- rearvession {crosses with.stick error bars).
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Motion Capture Experiments

» Data set is from the CMU motion capture data base!.

» Two different types of movements: golf-swing and
walking.

» Train on a subset of motions for each movement and test
on a different subset.

» This assesses the model’s ability to extrapolate.

» For testing: condition on three angles associated to the root
nodes and first five and last five frames of the motion.

» Golf-swing use leave one out cross validation on four
motions.

» For the walking train on 4 motions and validate on 8
motions.
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Motion Capture Results

Table: RMSE and R? (explained variance) for golf swing and walking

Movement | Method RMSE R? (%)
INDGP | 21.55+2.35 | 30.99 +9.67
Golf swing MTGP | 21.19+2.18 | 45.59 +7.86
SLEM | 21.52+1.93 | 49.32 +3.03
LEM 18.09 +1.30 | 72.25 + 3.08
IND GP | 8.03+255 | 30.55+ 10.64
Walking MTGP | 775205 | 37.77 +4.53
SLFM 781 +£2.00 | 36.84+4.26
LFM 7.23+218 | 48.15+5.66
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ODE Model of Transcriptional Regulation



Example: Transcriptional Regulation

» First Order Differential Equation

dx]- (t)

BT = bj + S]'f t - d]'X]' (3]

S/ Japeim/tev/talke/odelFwvampnleShort tew
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Example: Transcriptional Regulation

» First Order Differential Equation

dx]- (t)

—q " bhitsif O -dxg (0

» Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.
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Example: Transcriptional Regulation

» First Order Differential Equation

dx j (t)

T = bj + S]'f t - d]'X]' ()

» Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.

> xj(t) — concentration of gene j’s mRNA
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Example: Transcriptional Regulation

v

First Order Differential Equation

dx]- (t)

—q " bhitsif O -dxg (0

v

Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.

x(t) — concentration of gene j’s mRNA

v

v

f(#) — concentration of active transcription factor
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Example: Transcriptional Regulation

v

First Order Differential Equation

dx]- (t)

—q " bhitsif O -dxg (0

v

Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.

x(t) — concentration of gene j’s mRNA

v

v

f(#) — concentration of active transcription factor

v

Model parameters: baseline b;, sensitivity s; and decay d;
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Example: Transcriptional Regulation

v

First Order Differential Equation

dx]- (t)

—q " bhitsif O -dxg (0

v

Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.

x(t) — concentration of gene j’s mRNA

v

v

f(#) — concentration of active transcription factor

v

Model parameters: baseline b;, sensitivity s; and decay d;

\4

Application: identifying co-regulated genes (targets)
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Example: Transcriptional Regulation

v

First Order Differential Equation

dx]- (t)
T = bj + S]'f t - d]'X]' ()

» Can be used as a model of gene transcription: Barenco
et al., 2006; Gao et al., 2008.

> xj(t) — concentration of gene j’s mRNA

» f(t) — concentration of active transcription factor

» Model parameters: baseline bj, sensitivity s; and decay d;

» Application: identifying co-regulated genes (targets)

» Problem: how do we fit the model when f(t) is not
observed?
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Covariance for Transcription Model

RBF covariance function for f (f)

, t
x; (f) = % + siexp (—d,-t)j; f (u) exp (dju) du.

» Joint distribution
for x1 (t), 2 (), 10 g NN
x3(t), and f (t).

» Here: x(t) \\ \

(A [51 [ d [ 5 [ 4 | s
(515 [T TT05]05] uxs(f)

fO  xa®)  x)  xs)
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Covariance for Transcription Model

RBF covariance function for f (f)

x=b/d+) e[f f~N(OL)—x~ N(b/d,z eiTZiei]

1

» Joint distribution
for x1 (), x2 (1), x1() \\ \
x3 (t), and f (t).

» Here: x(t) \\ \

(A [ [ [d]s]
(5 TS5 [T [TT05]05] u3(f)

fO  xa® ) xs)
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Covariance for Transcription Model

RBF covariance function for f (f)

, t
x; (f) = % + siexp (—d,-t)j; f (u) exp (dju) du.

» Joint distribution
for x1 (t), 2 (), 10 g NN
x3(t), and f (t).

» Here: x(t) \\ \

(A [51 [ d [ 5 [ 4 | s
(515 [T TT05]05] uxs(f)

fO  xa®)  x)  xs)

/S Janeim/texw/talke/odel covariance tew


../../../gpsim/tex/talks/ode1covariance.tex

ONOIOFON—O

15 20

10

15 20

10

o



ONOIOFON—O

15 20

10

15 20

10

o



ONOIOFON—O

20

15

10

15 20

10

o



ONOIOFON—O

20

15

10

15 20

10

o



ONOIOFON—O

20

15

10

15 20

10

o



ONOIOFON—O

20

15

10

15 20

10

o



ONOIOFON—O

20

15

10

15 20

10

o



ONOIOFON—O

20

15

10

15 20

10

o



ONOIOFON—O

20

15

10

15 20

10

o



ONOIOFON—O

20

15

10

15 20

10

o



ONOIOFON—O

5 20

1

10

15 20

10

o



20

15

20

10

N B o
ONOIOFNON— O




20

15

20

10

N B o
ONOIOFNON— O




20

15

20

10

N B o
ONOIOFNON— O




20

15

20

10

N B o
ONOIOFNON— O




20

15

20

10

N B o
ONOIOFNON— O




20

15

20

10

e}
ONOIOFNON— O



20

15

20

10

e}
ONOIOFNON— O



20

15

20

10

e}
ONOIOFNON— O



20

15

20

10

e}
ONOIOFNON— O



20

15

20

10

e}
ONOIOFNON— O



20

15

20

10

| | | |
VAN ©
oNVINOFNO AN — O



20

15

20

10

| | | |
VAN ©
oNVINOFNO AN — O



20

15

20

10

| | | |
VAN ©
oNVINOFNO AN — O



N
a7
¥,
(
N
m
%

ONOIOFNON— O

20

15

10

15 20

10

)



N
a7
¥,
(
N
m
%

ONOIOFNON— O

20

15

10

15 20

10

)



N
a7
¥,
(
N
m
%

ONOIOFNON— O

20

15

10

15 20

10

)



N
a7
¥,
(
N
m
%

ONOIOFNON— O

20

15

10

15 20

10

)



N
a7
¥,
(
N
m
%

ONOIOFNON— O

20

15

10

15 20

10

)



N
a7
¥,
(
N
m
%

ONOIOFNON— O

20

15

10

15 20

10

)



N
a7
¥,
(
N
m
%

ONOIOFNON— O

20

15

10

15 20

10

)



N
a7
¥,
(
N
m
%

ONOIOFNON— O

20

15

10

15 20

10

)



0

2

15

10

N
a7
N
(
N
m
2

ONOIOFNON— O



0

2

15

10

N
a7
N
(
N
m
2

ONOIOFNON— O



0

2

15

10

N
a7
N
(
N
m
2

XY
NI

ONOIOFNON— O




R NX

04

0
}! (X

ONOIOFNON— O

20

15

10

15 20

10



0

2

15

10

N
a7
N
(
N
m
2

00

0
}! (A X

ONOIOFNON— O




0

2

15

10

N
a7
N
(
N
m
2

00

¢
}! (A X

ONOIOFNON— O




0

2

15

10

N
a7
N
(
N
m
2

00

¢
}! (A X

ONOIOFNON— O




0

2

15

10

N
a7
N
(
N
m
2

00

¢
}! (A X

ONOIOFNON— O




0

2

15

10

N
a7
N
(
N
m
2

R
..o.sb,.’sn!

ONOIOFNON— O




0

2

15

10

N
a7
N
(
N
m
2

R
..o.sb,.’sn!

ONOIOFNON— O




0

2

15

10

N
a7
N
(
N
m
2

R
..o.sb,.’sn!

ONOIOFNON— O




0

2

15

10

N
a7
N
(
N
m
2

R
..o.sb,.’sn!

ONOIOFNON— O




0

2

15

10

N
a7
N
(
N
m
2

..o.sb,.’sn!

ONOIOFNON— O




0

2

15

10

N
a7
N
(
N
m
2

ONOIOFNON— O



0

2

15

10

N
a7
N
(
N
m
2

ONOIOFNON— O



0

2

15

10

N
a7
N
(
N
m
2

ONOIOFNON— O



0

2

15

10

N
a7
N
(
N
m
2

ONOIOFNON— O



0

2

15

10

N
a7
N
(
N
m
2

ONOIOFNON— O



0

2

15

10

N
a7
N
(
N
m
2

ONOIOFNON— O



Cascaded Differential Equations

Neil D. Lawrence®', and Magnus Rattray“'

RS

" We present a computational method for identifying potential tar-

gets of a transcription factor (TF) using wild-type gene expression
time series data. For each putative target gene we fit a simple dif-
ferential equation model of transcriptional regulation, and the

/ Jevebhin/tew/talke/caccadeShonrt tew

Model-based method for transcription factor
target identification with limited data

Antti Honkela*', Charles Girardot®, E. Hilary Gustafson®, Ya-Hsin Liu®, Eileen E. M. Furlong®,

*Department of Information and Computer Science, Aalto University School of Science and Technology, Helsinki, Finland; *Genome Biology U
European Molecular Biology Laboratory, Heidelberg, Germany; and “School of Computer Science, University of Manchester, Manchester, Units

Edited by David Baker, University of Washington, Seattle, WA, and approved March 3, 2010 (received for review December 10, 2009)

used for genome-wide scoring of putative target gen
is required to apply our method is wild-type time seri
lected over a period where TF activity is changing. Ou
allows for complementary evidence from expression
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Cascaded Differential Equations

(Honkela et al., 2010)

» Transcription factor protein also has governing mRNA.
» This mRNA can be measured.

» In signalling systems this measurement can be misleading
because it is activated (phosphorylated) transcription
factor that counts.

» In development phosphorylation plays less of a role.
» Build a simple cascaded differential equation to model this.
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Covariance for Translation/Transcription Model

RBF covariance function for y ()

f(t) = oexp (-ot) ft y(u) exp (6u) du
0

X (H) = % + 5;exp (—d,-t)j(; f (1) exp (d;u) du.

» Joint distribution y(®) \ \ \
for xq (t), x2 (), f (t)
and y (f). ) \ \

» Here: M
ClasTals] "

|1151510.5[0.251
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Twist Results

» Use mRNA of Twist as driving input.

» For each gene build a cascade model that forces Twist to be
the only TF.

» Compare fit of this model to a baseline (e.g. similar model
but sensitivity zero).

» Rank according to the likelihood above the baseline.

» Compare with correlation, knockouts and time series
network identification (TSNI) (Della Gatta et al., 2008).

/) Jevebhin/texw/talke/caccadeShonrt tew
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Results for Twi using the Cascade model

Inferred twi protein Driving Input

1
0.8
delta 0.0768465
sigma 1
0.6
D 0.0760771
04 S0.0956793
B 0.000847107
0.2
-1 0
2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1

Figure: Model for flybase gene identity FBgn0002526.
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Results for Twi using the Cascade model

x10~° Inferred twi protein Driving Input

1
0.8
delta 517.034
sigma 1
0.6
D 542.062
04 S 266101
B 3.81368e-06
0.2
-1 0
2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1

Figure: Model for flybase gene identity FBgn0003486.
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Results for Twi using the Cascade model

Inferred twi protein Driving Input

-1 -1
2 4 6 8 10 12 2 4 6 8 10 12
FBgn0011206
4 1
0.8
delta 0.0543985
sigma 1
0.6
D 0.0502381
04 S0.0823117
B 0.000447727
0.2
-1 0
2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1

Figure: Model for flybase gene identity FBgn0011206.
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Results for Twi using the Cascade model

Inferred twi protein Driving Input

1
0.8
delta 3.17042e-05
sigma 1
0.6
D 0.000118374
04 S 0.0531884
B 7.20183e-08
0.2
-1 0
2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1

Figure: Model for flybase gene identity FBgn00309055.
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Results for Twi using the Cascade model

Inferred twi protein Driving Input

-2 -1
2 4 6 8 10 12 2 4 6 8 10 12
FBgn0031907
4 1
0.8
delta 0.000381468
sigma 1
0.6
D 0.000540422
04 S 0.0520367
B 3.83826e-06
0.2
-1 0
2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1

Figure: Model for flybase gene identity FBgn0031907.
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Results for Twi using the Cascade model

Figure: Model for flybase gene identity FBgn0035257.

Inferred twi protein

FBgn0035257

/  Javehin/tex/+talke/caccadeShort tewx

Driving Input

delta 0.0200954
sigma 1

D 0.0211176
$0.0661116
B 0.000204487

0.2 0.4 0.6 0.8 1
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Results for Twi using the Cascade model

Inferred twi protein Driving Input
0.3 4

0.25

0.05

-0.05 -1

0.8
delta 11.5089
sigma 1

0.6
D 119.017

04 S1380.22
B 0.00532375

0.2

-1 0
2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1

Figure: Model for flybase gene identity FBgn0039286.
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Evaluation methods

» Evaluate the ranking methods by taking a number of
top-ranked targets and record the number of
“positives” (Zinzen et al., 2009):

» targets with ChIP-chip binding sites within 2 kb of gene
> (targets differentially expressed in TF knock-outs)

» Compare against
» Ranking by correlation of expression profiles
» Ranking by g-value of differential expression in knock-outs
» Optionally focus on genes with annotated expression in
tissues of interest

-/ Jevebhin/texw/talke/caccadeChort tew
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Results

Global ChIP: twi Focused ChIP: twi
100 100

Relative enrichment (%)

I Single-target GP

20 100 250 20 100 250 [ Multiple—target GP
Top N to consider Top N to consider ] Knock-outs
I Correlation
Global ChIP: mef2 Focused ChIP: mef2 — . — . Filtered

— — — Random

Relative enrichment (%)

20 100 250 20 100 250
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Summary

» Cascade models allow genomewide analysis of potential
targets given only expression data.

» Once a set of potential candidate targets have been
identified, they can be modelled in a more complex
manner.

» We don’t have ground truth, but evidence indicates that
the approach can perform as well as knockouts.
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Discussion and Future Work

» Integration of probabilistic inference with mechanistic
models.

» Ongoing/other work:

>

>

Non linear response and non linear differential equations.
Scaling up to larger systems Alvarez et al. (2010a); Alvarez
and Lawrence (2009).

Discontinuities through Switched Gaussian Processes
Alvarez et al. (2010b)

Robotics applications.

Applications to other types of system, e.g. spatial systems
Alvarez et al. (2011).

Stochastic differential equations Alvarez et al. (2010a).
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