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Box Quote

All models are wrong, but some are useful. (Box, 1976)

» Useful quote, but overused.

» Almost become an excuse, my model is wrong so it might
be useful.

... the scientist must be alert to what is importantly wrong.
It is inappropriate to worry about mice when there are tigers
abroad. (Box, 1976)
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An Incorrect Model

» Write down our data ...

Y € R™¥

... this is WRONG!



A presumption: there is something special and separate
about indices over n and p.

The subtle difference between features and data points.
In practice both n and p could be uncountably large!
Standard approach seems to assume that p is fixed.

A historic anachronism from the days of collating
statistical information?



There is nothing special about p ...

» Rather ... let’s assume each data is indexed by the type of
data, as well as location, time, etc.

> S0 17,234 is price of a hamburger from McDonald’s in
Leicester square on 13th April 1984 at 13:34 and 1239201 is
the price of a chicken wrap from Pret a Manger in
Cambridge on 27th December 2001 at 14:34.

» Further y734 124 might be the brand of car my mother
currently drives.



Prediction

The answer to any prediction problem is a probability
distribution. (Peter McCullogh via Peter Diggle)

» We assume that we are interested in predicting something
about our variables (the likely cost of a burger given the
cost of a chicken wrap).



Factorizations

» Often researchers write down the resulting factorization
without a second thought:

p(¥10) = | | p(y::16)
i=1

» This means that all our information about different data is
stored in the parameters.

» If model is complex, and number of parameters is large,
then they will be badly determined when data is few.

» For me, by definition all interesting problems have complex
models.
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Not Wrong ... Just Useless

» Here’s a model that’s not wrong ...

®

» Does that imply all models that are not wrong are useless?

... it’s just useless.

» What is the minimum we can say about our data to get
something useful?
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The TT Channel

v

Objective: predict test data, y*, given training data, y.

Parametric models assume

v

p(y'ly) = f p(y’10)p(6ly)do

for some fixed dimensional vector parameters 6.

v

This looks like a communication channel between training
and test data (TT Channel).

Capacity of channel given by dimensionality of 6.

v



Massively Missing Data

» Michael Goldstein’s Maid (via Tony O’Hagan).
» Let me tell you something unusual about myself ...

» Large amounts of weak information can give a strong
picture.

» But we must deal with uncertainty when this info isn’t
present.

> In real life almost all data is missing almost always.
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Kolmogorov Consistency

» Claim: To be ‘not wrong’ my model must be “‘Kolmogorov
Consistent’.

» Kolmogorov consistency says regardless of future
observations, my current marginal model of the data is
correct. If y* € R"*! then

p(yln’) = f p(y,y)dy”

But if the model is Kolmogorov consistent, p(y|n*) = p(y).

» Here: y is past observations, y* is all possible future
observations (in either p or n).

» Models of this type allow us to deal with massive missing
data because y* can even be infinite dimensional.

» To these models missing data is equivalent to test data.



Nonparametric TT Channel

» In a non parametric model:
p(y'ly)
Cannot be written as

f p(y10)p(Oly)d0

for fixed dimensional 6.



The TT Channel

v

Objective: predict test data, y*, given training data, y.

Parametric models assume

v

p(y'ly) = f p(y’10)p(6ly)do

for some fixed dimensional vector parameters 6.

v

This looks like a communication channel between training
and test data (TT Channel).

Capacity of channel given by dimensionality of 6.

v



Open Data

» Automatic data curation: from curated data to curation of
publicly available data.

» Open Data: http://www.openstreetmap.org/?lat=53.
38086&1on=-1.48545&zoom=17&layers=NM.
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Open Data

» Automatic data curation: from curated data to curation of
publicly available data.

» Open Data: http://www.openstreetmap.org/?lat=53.
38086&1lon=-1.48545&zoom=17&layers=M.

Follow John'’s Van on: @ @John’s Van

Find John’s Van on: | f
“ 10% discount for NHS Staff

» Social network data, music information (Spotify), exercise.
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Flexible Parametric Approximation



Inducing Variable Approximations

» Date back to (Williams and Seeger, 2001; Smola and Bartlett, 2001; Csat6 and
Opper, 2002; Seeger et al., 2003; Snelson and Ghahramani, 2006). See
Quifionero Candela and Rasmussen (2005) for a review.

» We follow variational perspective of (Titsias, 2009).

» This is an augmented variable method, followed by a
collapsed variational approximation (King and Lawrence, 2006;
Hensman et al., 2012).



Augmented Variable Model: Not Wrong but Useful?

Augment standard model with a set
of m new inducing variables, u.

p) = [ v, wdu &



Augmented Variable Model: Not Wrong but Useful?

Augment standard model with a set
of m new inducing variables, u.

p(y) = f pylu)p(u)du



Augmented Variable Model: Not Wrong but Useful?

Important: Ensure inducing
variables are also Kolmogorov
consistent (we have m"* other inducing
variables we are not yet using.)

pw) = [ plau)dw



Augmented Variable Model: Not Wrong but Useful?

Assume that relationship is through N
f (represents ‘fundamentals’—push \u)
Kolmogorov consistency up to here). /

p(y) = f p(ylf)p(flu)p(u)dfdu



Augmented Variable Model: Not Wrong but Useful?

Convenient to assume factorization
(doesn’t invalidate model—think delta

function as worst case). e

p(y) = f H p(yil f)p(flu)p(u)dfdu
i=1

I
—
N




Augmented Variable Model: Not Wrong but Useful?

(=)
NG

Focus on integral over f.

p(y) = f f ﬁp(yilﬁ)P(flu)dfP(u)du
i=1

I
—
N



Augmented Variable Model: Not Wrong but Useful?

Focus on integral over f.

pyi) = [ ][t
i=1
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Variational Bound on p(y|u)

log p(ylu) :logfp(ylf)p(flu)df
fp(f
= f q(f) log %df + KL (q(f) | p(fly, u))

(Titsias, 2009)

» Example, set g(f) = p(flu),

log p(ylu) > logfp(flu) log p(ylf)df.

p(ylu) > exp f p(flu) log p(ylf)df.



Optimal Compression in Inducing Variables

» Maximizing lower bound minimizes the KL divergence
(information gain):

p(flu)
p(ly,u)

KL (p(iw) | p(Ely, ) = f p(flw) log

» This is minimized when the information stored about y is
stored already in u.

» The bound seeks an optimal compression from the
information gain perspective.

» If u = f bound is exact (f d-separates y from u).



Choice of Inducing Variables

» Optimizing the bound directly not always practical.

» Free to choose whatever heuristics for the inducing
variables.

» Can quantify which heuristics perform better through
checking lower bound.
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Factorizing Likelihoods

» If the likelihood, p(ylf), factorizes

p(yln) > [ Jexp f p(filw) log p(yilf)df.
i=1

» Then the bound factorizes.



Factorizing Likelihoods

» If the likelihood, p(ylf), factorizes

p(yl) > | | exp (log p(yil )Yy si)
i=1

» Then the bound factorizes.



Factorizing Likelihoods

» If the likelihood, p(ylf), factorizes

p(ylu) = Hexp (log p(yil i) 1wy

i=1

» Then the bound factorizes.

» Now need a choice of distributions for f and y|f ...



Potential Implications

» Distributed Models

» Can we distribute inducing variables across different
machines (in different continents!?).

» Approximate the model appropriately according to where
we are and what we are predicting.

» Resource Allocation

» Be able to improve the resolution of the predictive model at
run time.

» Allocate resources heuristically.

» Retain the principled probabilistic framework for the
global model.



Prior and Likelihood Choice

» Choose a Gaussian process prior for f.

» This is not always correct, have a need for more flexible
priors ... see Deep GPs (Damianou and Lawrence, 2013).

» Choose a factorized Gaussian likelihood for yl|f.

» Gaussian assumption can also be relaxed (Hensman et al.,
2014).
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Reducing GP Complexity

(Lawrence, 2007; Titsias, 2009)

» Complexity of standard GP:
» O(n®) in computation.
» O(n?) in storage.
» Via low rank representations of covariance:
» O(nm?) in computation.
» O(nm) in storage.
» Where m is user chosen number of inducing variables. They
give the rank of the resulting covariance.

» Inducing variables live either in space of f or a space that is
related through a linear operator (Alvarez etal., 2010) —
could be gradient or convolution.



Gaussian p(vyilf;)

For Gaussian likelihoods:
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Gaussian p(vyilf;)

For Gaussian likelihoods:

Qog PNy = 5 0827051 (3 = (FP—55 () — ()

Implying:
p(yilu) > exp (logci) N (il (i}, 0*)



Gaussian Process Over f and u

Define:
i = varygin) () = (f7), 1y ~ bt
We can write:
Ci = exp (—ﬂ)
202
If joint distribution of p(f, u) is Gaussian then:

_ . T -11,..
qdii = ki,z - ki,uKu,ukl,u

¢; is not a function of u but is a function of Xy,.



Lower Bound on Likelihood

Substitute variational bound into marginal likelihood:

py) = [ [ f N (y1¢6),0%1) p(w)du
i=1

Note that:
Epi) = K¢ oKt

is linearly dependent on u.



Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:

p(u) = N (ul0,Ky,u)

n
f pylwp(wdu > [ e f N (1K uKghw, 02) N (ul0, Ky ) du
i=1
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Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:
p(u) = N (ul0, Ky4)

f p(ylu)p(u)du > H N (yIO, o1 + Kf’uK;,]uKu,f)
i=1

Maximize log of the bound to find covariance function
parameters,

» If the bound is normalized, the c¢; terms are removed.

» This results in the projected process approximation
(Rasmussen and Williams, 2006) O DTC (Quifionero Candela and
Rasmussen, 2005). Proposed by (Smola and Bartlett, 2001; Seeger et al.,
2003; Csat6 and Opper, 2002; Csat6, 2002).



Leads to Other Approximations ...

» Let’s be explicity about storing approximate posterior of u,
q(u).

» Now we have

p(y'ly) = f p(y*[u)q(uly)u

» Inducing variables look a lot like regular parameters.

» But: their dimensionality does not need to be set at design
time.

» They can be modified arbitrarily at run time without
effecting the model likelihood.

» They only effect the quality of compression and the lower
bound.



In GPs for Big Data

» Exploit the resulting factorization ...

p(y'ly) = f p(y W (uly)u



In GPs for Big Data

» Exploit the resulting factorization ...

Py = [ pyiwgayu
» The distribution now factorizes:

py) = [ [y
i=1

» This factorization can be exploited for stochastic
variational inference (Hoffman et al., 2012).



Nonparametrics for Very Large Data Sets

Modern data availability
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Nonparametrics for Very Large Data Sets
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Nonparametrics for Very Large Data Sets

Actually index of deprivation is a proxy for this ...
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Hensman et al. (2013)

Gaussian Processes for Big Data

James Hensman* Nicolo Fusi® Neil D. Lawrence®
Dept. Computer Science Dept. Computer Science Dept. Computer Science
The University of Sheffield The University of Sheffield The University of Sheffield
Sheffield, UK Sheffield, UK Sheffield, UK
Abstract Even to accommodate these data sets, various approx-

imate techniques are required. One approach is to par-
tition the data set into separate groups [e.g. Snelson
and Ghahramani, 2007, Urtasun and Darrell, 2008].
An alternative is to build a low rank approximation
to the covariance matrix based around ‘inducing vari-
ables” [see e.g. Csaté and Opper, 2002, Seeger et al.,
2003, Quinionero Candela and Rasmussen, 2005, Tit-

We introduce stochastic variational inference
for Gaussian process models. This enables
the application of Gaussian process (GP)
models to data sets containing millions of
data points. We show how GPs can be vari-


http://auai.org/uai2013/prints/papers/244.pdf

Hensman et al. (2013)
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Figure 4: Convergence of the SVIGP algorithm on the

two dimensional toy data
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Figure 5: Variability of apartment price (logarithmi-

land-registry-monthly-price-paid-data/, which cally!) throughout England and Wales.

covers England and Wales, and filtered for apart-

ments. This resulted in a data set with 75.000 entries. . 2 ~n 0 o e


http://auai.org/uai2013/prints/papers/244.pdf

Structures for Extracting Information from Data

Latent layer 4

Latent layer 3
Latent layer 2
Latent layer 1

Data space
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Damianou and Lawrence (2013)

Deep Gaussian Processes

Andreas C. Damianou

Neil D. Lawrence

Dept. of Computer Science & Sheffield Institute for Translational Neuroscience,
University of Sheffield, UK

Abstract

In this paper we introduce deep Gaussian process
(GP) models. Deep GPs are a deep belief net-
work based on Gaussian process mappings. The
data is modeled as the output of a multivariate
GP. The inputs to that Gaussian process are then
governed by another GP. A single layer model is
equivalent to a standard GP or the GP latent vari-
ahle madel (GP- VM) We nerform inference in

the question as to whether deep structures and the learning
of abstract structure can be undertaken in smaller data sets.
For smaller data sets, questions of generalization arise: to
demonstrate such structures are justified it is useful to have
an objective measure of the model’s applicability.

The traditional approach to deep learning is based around
binary latent variables and the restricted Boltzmann ma-
chine (RBM) [Hinton, 2010]. Deep hierarchies are con-
structed by stacking these models and various approxi-
mate inference technianes (snch as contrastive diversence)


http://jmlr.org/proceedings/papers/v31/damianou13a.pdf

Motion Capture

» ‘High five’ data.

» Model learns structure between two interacting subjects.



Deep hierarchies — motion capture

Y(l)

Deep Gaussian processes 38



Digits Data Set

» Are deep hierarchies justified for small data sets?
» We can lower bound the evidence for different depths.

» For 150 6s, Os and 1s from MNIST we found at least 5
layers are required.



Deep hierarchies — MNIST
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Practical Nonparametric Modelling

» Dealing with modern data requires non parametrics
» Non parametrics by their nature have implications on
storage and computation.

» Variational approximations provide an optimal
compression of the non parametric model to parametric.

» The quality of the approximation can be varied at run time
according to particular modelling needs.



Important Concepts

v

Kolmogorov consistency.
The bandwidth of the TT channel.

Models which are complex enough (non parametrics).

\4

v

v

But have parametric approximations that can be adapted
at runtime.



Deep Health
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Deep Health: Power Ranger Model of Research

T I

Thanks to Alan Saul for creating the image.



Summary

» Deep models allow abstract representation of data sets at
higher levels.

» Deep GPs allow structure learning.
» Current limitation is on data set size.

» Addressing this through work by James Hensman on
Stochastic Variational Inference for GPs (Hensman et al., 2013).

» Intention is to deploy these models for assimilating a wide
range of data types in personalized health (text, survival
times, images, genotype, phenotype).

» Requires population scale models with millions of features.
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