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Box Quote

All models are wrong, but some are useful. (Box, 1976)

I Useful quote, but overused.
I Almost become an excuse, my model is wrong so it might

be useful.

... the scientist must be alert to what is importantly wrong.
It is inappropriate to worry about mice when there are tigers
abroad. (Box, 1976)
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An Incorrect Model

I Write down our data ...

Y ∈ <n×p

... this is WRONG!
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I A presumption: there is something special and separate
about indices over n and p.

I The subtle difference between features and data points.
I In practice both n and p could be uncountably large!
I Standard approach seems to assume that p is fixed.
I A historic anachronism from the days of collating

statistical information?



There is nothing special about p ...

I Rather ... let’s assume each data is indexed by the type of
data, as well as location, time, etc.

I So y17,234 is price of a hamburger from McDonald’s in
Leicester square on 13th April 1984 at 13:34 and y239,201 is
the price of a chicken wrap from Pret a Manger in
Cambridge on 27th December 2001 at 14:34.

I Further y734,124 might be the brand of car my mother
currently drives.



Prediction

The answer to any prediction problem is a probability
distribution. (Peter McCullogh via Peter Diggle)

I We assume that we are interested in predicting something
about our variables (the likely cost of a burger given the
cost of a chicken wrap).



Factorizations

I Often researchers write down the resulting factorization
without a second thought:

p(Y|θ) =

n∏
i=1

p(yi,:|θ)

I This means that all our information about different data is
stored in the parameters.

I If model is complex, and number of parameters is large,
then they will be badly determined when data is few.

I For me, by definition all interesting problems have complex
models.



Not Wrong ... Just Useless

I Here’s a model that’s not wrong ...

y

... it’s just useless.
I Does that imply all models that are not wrong are useless?
I What is the minimum we can say about our data to get

something useful?
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The TT Channel

I Objective: predict test data, y∗, given training data, y.
I Parametric models assume

p(y∗|y) =

∫
p(y∗|θ)p(θ|y)dθ

for some fixed dimensional vector parameters θ.
I This looks like a communication channel between training

and test data (TT Channel).
I Capacity of channel given by dimensionality of θ.



Massively Missing Data

I Michael Goldstein’s Maid (via Tony O’Hagan).
I Let me tell you something unusual about myself ...
I Large amounts of weak information can give a strong

picture.
I But we must deal with uncertainty when this info isn’t

present.
I In real life almost all data is missing almost always.



Kolmogorov Consistency

I Claim: To be ‘not wrong’ my model must be ‘Kolmogorov
Consistent’.

I Kolmogorov consistency says regardless of future
observations, my current marginal model of the data is
correct. If y∗ ∈ <n∗×1 then

p(y|n∗) =

∫
p(y,y∗)dy∗

But if the model is Kolmogorov consistent, p(y|n∗) = p(y).
I Here: y is past observations, y∗ is all possible future

observations (in either p or n).
I Models of this type allow us to deal with massive missing

data because y∗ can even be infinite dimensional.
I To these models missing data is equivalent to test data.
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Nonparametric TT Channel

I In a non parametric model:

p(y∗|y)

Cannot be written as∫
p(y∗|θ)p(θ|y)dθ

for fixed dimensional θ.



The TT Channel

I Objective: predict test data, y∗, given training data, y.
I Parametric models assume

p(y∗|y) =
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p(y∗|θ)p(θ|y)dθ

for some fixed dimensional vector parameters θ.
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Open Data

I Automatic data curation: from curated data to curation of
publicly available data.

I Open Data: http://www.openstreetmap.org/?lat=53.
38086&lon=-1.48545&zoom=17&layers=M.

I Social network data, music information (Spotify), exercise.
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Inducing Variable Approximations

I Date back to (Williams and Seeger, 2001; Smola and Bartlett, 2001; Csató and

Opper, 2002; Seeger et al., 2003; Snelson and Ghahramani, 2006). See
Quiñonero Candela and Rasmussen (2005) for a review.

I We follow variational perspective of (Titsias, 2009).
I This is an augmented variable method, followed by a

collapsed variational approximation (King and Lawrence, 2006;

Hensman et al., 2012).



Augmented Variable Model: Not Wrong but Useful?

Augment standard model with a set
of m new inducing variables, u.

p(y) =

∫
p(y,u)du

y
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Augmented Variable Model: Not Wrong but Useful?

Important: Ensure inducing
variables are also Kolmogorov
consistent (we have m∗ other inducing
variables we are not yet using.)

p(u) =

∫
p(u,u∗)du∗ y

u u∗



Augmented Variable Model: Not Wrong but Useful?

Assume that relationship is through
f (represents ‘fundamentals’—push
Kolmogorov consistency up to here).

p(y) =

∫
p(y|f)p(f|u)p(u)dfdu

y

f

u
u∗



Augmented Variable Model: Not Wrong but Useful?

Convenient to assume factorization
(doesn’t invalidate model—think delta
function as worst case).

p(y) =

∫ n∏
i=1

p(yi| fi)p(f|u)p(u)dfdu

yi

fi

u
u∗

i = 1 . . . n



Augmented Variable Model: Not Wrong but Useful?

Focus on integral over f.

p(y) =

∫ ∫ n∏
i=1

p(yi| fi)p(f|u)dfp(u)du

yi

fi

u
u∗

i = 1 . . . n
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Focus on integral over f.

p(y|u) =

∫ n∏
i=1
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yi

fi

u∗
u
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Variational Bound on p(y|u)

log p(y|u) = log
∫

p(y|f)p(f|u)df

=

∫
q(f) log

p(y|f)p(f|u)
q(f)

df + KL
(
q(f) ‖ p(f|y,u)

)

(Titsias, 2009)

I Example, set q(f) = p(f|u),

log p(y|u) ≥ log
∫

p(f|u) log p(y|f)df.

p(y|u) ≥ exp
∫

p(f|u) log p(y|f)df.
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Optimal Compression in Inducing Variables

I Maximizing lower bound minimizes the KL divergence
(information gain):

KL
(
p(f|u) ‖ p(f|y,u)

)
=

∫
p(f|u) log

p(f|u)
p(f|y,u)

du

I This is minimized when the information stored about y is
stored already in u.

I The bound seeks an optimal compression from the
information gain perspective.

I If u = f bound is exact (f d-separates y from u).



Choice of Inducing Variables

I Optimizing the bound directly not always practical.
I Free to choose whatever heuristics for the inducing

variables.
I Can quantify which heuristics perform better through

checking lower bound.



Factorizing Likelihoods

I If the likelihood, p(y|f), factorizes

p(y|u) ≥ exp
∫

p(f|u) log
n∏

i=1

p(yi| fi)df.

I Then the bound factorizes.
I Now need a choice of distributions for f and y|f ...
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Factorizing Likelihoods

I If the likelihood, p(y|f), factorizes
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Potential Implications

I Distributed Models
I Can we distribute inducing variables across different

machines (in different continents!?).
I Approximate the model appropriately according to where

we are and what we are predicting.
I Resource Allocation

I Be able to improve the resolution of the predictive model at
run time.

I Allocate resources heuristically.

I Retain the principled probabilistic framework for the
global model.



Prior and Likelihood Choice

I Choose a Gaussian process prior for f.
I This is not always correct, have a need for more flexible

priors ... see Deep GPs (Damianou and Lawrence, 2013).
I Choose a factorized Gaussian likelihood for y|f.

I Gaussian assumption can also be relaxed (Hensman et al.,
2014).



Gaussian Processes: Extremely Short Overview
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Reducing GP Complexity

(Lawrence, 2007; Titsias, 2009)

I Complexity of standard GP:
I O(n3) in computation.
I O(n2) in storage.

I Via low rank representations of covariance:
I O(nm2) in computation.
I O(nm) in storage.

I Where m is user chosen number of inducing variables. They
give the rank of the resulting covariance.

I Inducing variables live either in space of f or a space that is
related through a linear operator (Álvarez et al., 2010) —
could be gradient or convolution.
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Gaussian p(yi| fi)

For Gaussian likelihoods:〈
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Gaussian p(yi| fi)

For Gaussian likelihoods:〈
log p(yi| fi)

〉
p( fi|u) = −

1
2

log 2πσ2
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1
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−

1
2σ2
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f 2
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−

〈
fi
〉2

)
Implying:

p(yi|u) ≥ exp
〈
log ci

〉
N

(
yi|

〈
fi
〉
, σ2

)



Gaussian Process Over f and u

Define:
qi,i = varp( fi|u)

(
fi
)

=
〈

f 2
i

〉
p( fi|u)

−
〈

fi
〉2

p( fi|u)

We can write:
ci = exp

(
−

qi,i

2σ2

)
If joint distribution of p(f,u) is Gaussian then:

qi,i = ki,i − k>i,uK−1
u,uki,u

ci is not a function of u but is a function of Xu.



Lower Bound on Likelihood

Substitute variational bound into marginal likelihood:

p(y) ≥
n∏

i=1

ci

∫
N

(
y| 〈f〉 , σ2I

)
p(u)du

Note that:
〈f〉p(f|u) = Kf,uK−1

u,uu

is linearly dependent on u.



Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:

p(u) = N
(
u|0,Ku,u

)
∫

p(y|u)p(u)du ≥
n∏

i=1

ci

∫
N

(
y|Kf,uK−1

u,uu, σ2
)
N

(
u|0,Ku,u

)
du



Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:

p(u) = N
(
u|0,Ku,u

)
∫

p(y|u)p(u)du ≥
n∏

i=1

ciN
(
y|0, σ2I + Kf,uK−1

u,uKu,f

)



Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:

p(u) = N
(
u|0,Ku,u

)
∫

p(y|u)p(u)du ≥
n∏

i=1

ciN
(
y|0, σ2I + Kf,uK−1

u,uKu,f

)
Maximize log of the bound to find covariance function
parameters,

L ≥
n∑

i=1

log ci + logN
(
y|0, σ2I + Kf,uK−1

u,uKu,f,

)



Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:

p(u) = N
(
u|0,Ku,u

)
∫

p(y|u)p(u)du ≥
n∏

i=1

ciN
(
y|0, σ2I + Kf,uK−1

u,uKu,f

)
Maximize log of the bound to find covariance function
parameters,

L ≥
n∑

i=1

log ci + logN
(
y|0, σ2I + Kf,uK−1

u,uKu,f,

)



Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:

p(u) = N
(
u|0,Ku,u

)
∫

p(y|u)p(u)du ≥
n∏

i=1

ciN
(
y|0, σ2I + Kf,uK−1

u,uKu,f

)
Maximize log of the bound to find covariance function
parameters,

L ≈ logN
(
y|0, σ2I + Kf,uK−1

u,uKu,f,

)
I If the bound is normalized, the ci terms are removed.

I This results in the projected process approximation
(Rasmussen and Williams, 2006) or DTC (Quiñonero Candela and

Rasmussen, 2005). Proposed by (Smola and Bartlett, 2001; Seeger et al.,

2003; Csató and Opper, 2002; Csató, 2002).
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Leads to Other Approximations ...

I Let’s be explicity about storing approximate posterior of u,
q(u).

I Now we have

p(y∗|y) =

∫
p(y∗|u)q(u|y)u

I Inducing variables look a lot like regular parameters.
I But: their dimensionality does not need to be set at design

time.
I They can be modified arbitrarily at run time without

effecting the model likelihood.
I They only effect the quality of compression and the lower

bound.



In GPs for Big Data

I Exploit the resulting factorization ...

p(y∗|y) =

∫
p(y∗|u)q(u|y)u

I The distribution now factorizes:

p(y∗|y) =

∫ n∗∏
i=1

p(y∗i |u)q(u|y)u

I This factorization can be exploited for stochastic
variational inference (Hoffman et al., 2012).
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Nonparametrics for Very Large Data Sets

Modern data availability



Nonparametrics for Very Large Data Sets

Proxy for index of deprivation?



Nonparametrics for Very Large Data Sets

Actually index of deprivation is a proxy for this ...



Hensman et al. (2013)

Gaussian Processes for Big Data
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Abstract

We introduce stochastic variational inference
for Gaussian process models. This enables
the application of Gaussian process (GP)
models to data sets containing millions of
data points. We show how GPs can be vari-
ationally decomposed to depend on a set
of globally relevant inducing variables which
factorize the model in the necessary manner
to perform variational inference. Our ap-
proach is readily extended to models with
non-Gaussian likelihoods and latent variable
models based around Gaussian processes. We
demonstrate the approach on a simple toy
problem and two real world data sets.

1 Introduction

Gaussian processes [GPs, Rasmussen and Williams,
2006] are perhaps the dominant approach for inference
on functions. They underpin a range of algorithms
for regression, classification and unsupervised learn-
ing. Unfortunately, when applying a Gaussian process
to a data set of size n exact inference has complexity
O(n3) with storage demands of O(n2). This hinders
the application of these models for many domains. In
particular, large spatiotemporal data sets, video, large
social network data (e.g. from Facebook), population
scale medical data sets, models that correlate across
multiple outputs or tasks (for these models complex-
ity is O(n3p3) and storage is O(n2p2) where p is the
number of outputs or tasks). Collectively we can think
of these applications as belonging to the domain of ‘big
data’.

Traditionally in Gaussian process a large data set is
one that contains over a few thousand data points.

∗Also at Sheffield Institute for Translational Neuro-
science, SITraN

Even to accommodate these data sets, various approx-
imate techniques are required. One approach is to par-
tition the data set into separate groups [e.g. Snelson
and Ghahramani, 2007, Urtasun and Darrell, 2008].
An alternative is to build a low rank approximation
to the covariance matrix based around ‘inducing vari-
ables’ [see e.g. Csató and Opper, 2002, Seeger et al.,
2003, Quiñonero Candela and Rasmussen, 2005, Tit-
sias, 2009]. These approaches lead to a computational
complexity of O(nm2) and storage demands of O(nm)
where m is a user selected parameter governing the
number of inducing variables. However, even these
reduced storage are prohibitive for big data, where
n can be many millions or billions. For parametric
models, stochastic gradient descent is often applied to
resolve this storage issue, but in the GP domain, it
hasn’t been clear how this should be performed. In
this paper we show how recent advances in variational
inference [Hensman et al., 2012, Hoffman et al., 2012]
can be combined with the idea of inducing variables
to develop a practical algorithm for fitting GPs using
stochastic variational inference (SVI).

2 Sparse GPs Revisited

We start with a succinct rederivation of the variational
approach to inducing variables of Titsias [2009]. This
allows us to introduce notation and derive expressions
which allow for the formulation of a SVI algorithm.

Consider a data vector1 y, where each entry yi is a
noisy observation of the function f(xi), for all the
points X = {xi}ni=1. We consider the noise to be in-
dependent Gaussian with precision β. Introducing a
Gaussian process prior over f(·), let the vector f con-
tain values of the function at the points X. We shall
also introduce a set of inducing variables: let the vec-
tor u contain values of the function f at the points
Z = {zi}mi=1 which live in the same space as X. Us-

1Our derivation trivially extends to multiple indepen-
dent output dimensions, but we omit them here for clarity.

http://auai.org/uai2013/prints/papers/244.pdf
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Figure 4: Convergence of the SVIGP algorithm on the
two dimensional toy data

land-registry-monthly-price-paid-data/, which
covers England and Wales, and filtered for apart-
ments. This resulted in a data set with 75,000 entries,
which we cross referenced against a postcode database
to get lattitude and longitude, on which we regressed
the normalised logarithm of the apartment prices.

Randomly selecting 10,000 data as a test set, we build
a GP as described with a covariance function k(·, ·)
consisting of four parts: two squared exponential co-
variances, initialised with different length scales were
used to account for national and regional variations in
property prices, a constant (or ’bias’) term allowed for
non-zero mean data, and a noise variance accounted
for variation that could not be modelled using simply
latitude and longitude.

We selected 800 inducing input sites using a k-means
algorithm, and optimised the parameters of the co-
variance function alongside the variational parameters.
We performed some manual tuning of the learning
rates: empirically we found that the step length should
be much higher for the variational parameters of q(u)
than for the values of the covariance function parame-
ters. We used 0.01 and 1× 10−5. Also, we included a
momentum term for the covariance function parame-
ters (set to 0.9). We tried including momentum terms
for the variational parameters, but we found this hin-
dered performance. A large mini-batch size (1000) re-
duced the stochasticity of the gradient computations.
We judged that the algorithm had converged after 750
iterations, as the stochastic estimate of the marginal
lower bound on the marginal likelihood failed to in-
crease further.

For comparison to our model, we constructed a se-
ries of GPs on subsets of the training data. Splitting
the data into sets of 500, 800, 1000 and 1200, we fit-

Figure 5: Variability of apartment price (logarithmi-
cally!) throughout England and Wales.

ted a GP with the same covariance function as our
stochastic GP. Parameters of the covariance function
were optimised using type-II maximum likelihood for
each batch. Table 1 reports the mean squared error in
our model’s prediction of the held out prices, as well
as the same for the random sub-set approach (along
with two standard deviations of the inter-sub-set vari-
ability).

Table 1: Mean squared errors in predicting the log-
apartment prices across England and Wales by latti-
tude and longitude

Mean square Error

SVIGP 0.426
Random sub-set (N=500) 0.522 +/- 0.018
Random sub-set (N=800) 0.510 +/- 0.015
Random sub-set (N=1000) 0.503 +/- 0.011
Random sub-set (N=1200) 0.502 +/- 1.012

4.3 Airline Delays

The second large scale dataset we considered consists
of flight arrival and departure times for every commer-
cial flight in the USA from January 2008 to April 2008.
This dataset contains extensive information about al-
most 2 million flights, including the delay (in minutes)
in reaching the destination. The average delay of a
flight in the first 4 months of 2008 was of 30 minutes.
Of course, much better estimates can be given by ex-
ploiting the enourmous wealth of data available, but
rich models are often overlooked in these cases due

http://auai.org/uai2013/prints/papers/244.pdf
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Abstract

In this paper we introduce deep Gaussian process
(GP) models. Deep GPs are a deep belief net-
work based on Gaussian process mappings. The
data is modeled as the output of a multivariate
GP. The inputs to that Gaussian process are then
governed by another GP. A single layer model is
equivalent to a standard GP or the GP latent vari-
able model (GP-LVM). We perform inference in
the model by approximate variational marginal-
ization. This results in a strict lower bound on the
marginal likelihood of the model which we use
for model selection (number of layers and nodes
per layer). Deep belief networks are typically ap-
plied to relatively large data sets using stochas-
tic gradient descent for optimization. Our fully
Bayesian treatment allows for the application of
deep models even when data is scarce. Model se-
lection by our variational bound shows that a five
layer hierarchy is justified even when modelling
a digit data set containing only 150 examples.

1 Introduction

Probabilistic modelling with neural network architectures
constitute a well studied area of machine learning. The re-
cent advances in the domain of deep learning [Hinton and
Osindero, 2006, Bengio et al., 2012] have brought this kind
of models again in popularity. Empirically, deep models
seem to have structural advantages that can improve the
quality of learning in complicated data sets associated with
abstract information [Bengio, 2009]. Most deep algorithms
require a large amount of data to perform learning, how-
ever, we know that humans are able to perform inductive
reasoning (equivalent to concept generalization) with only
a few examples [Tenenbaum et al., 2006]. This provokes

Appearing in Proceedings of the 16th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2013, Scottsdale,
AZ, USA. Volume 31 of JMLR: W&CP 31. Copyright 2013 by
the authors.

the question as to whether deep structures and the learning
of abstract structure can be undertaken in smaller data sets.
For smaller data sets, questions of generalization arise: to
demonstrate such structures are justified it is useful to have
an objective measure of the model’s applicability.

The traditional approach to deep learning is based around
binary latent variables and the restricted Boltzmann ma-
chine (RBM) [Hinton, 2010]. Deep hierarchies are con-
structed by stacking these models and various approxi-
mate inference techniques (such as contrastive divergence)
are used for estimating model parameters. A significant
amount of work has then to be done with annealed impor-
tance sampling if even the likelihood1 of a data set under
the RBM model is to be estimated [Salakhutdinov and Mur-
ray, 2008]. When deeper hierarchies are considered, the es-
timate is only of a lower bound on the data likelihood. Fit-
ting such models to smaller data sets and using Bayesian
approaches to deal with the complexity seems completely
futile when faced with these intractabilities.

The emergence of the Boltzmann machine (BM) at the core
of one of the most interesting approaches to modern ma-
chine learning is very much a case of a the field going back
to the future: BMs rose to prominence in the early 1980s,
but the practical implications associated with their train-
ing led to their neglect until families of algorithms were
developed for the RBM model with its reintroduction as a
product of experts in the late nineties [Hinton, 1999].

The computational intractabilities of Boltzmann machines
led to other families of methods, in particular kernel meth-
ods such as the support vector machine (SVM), to be con-
sidered for the domain of data classification. Almost con-
temporaneously to the SVM, Gaussian process (GP) mod-
els [Rasmussen and Williams, 2006] were introduced as a
fully probabilistic substitute for the multilayer perceptron
(MLP), inspired by the observation [Neal, 1996] that, un-
der certain conditions, a GP is an MLP with infinite units in
the hidden layer. MLPs also relate to deep learning models:
deep learning algorithms have been used to pretrain autoen-
coders for dimensionality reduction [Hinton and Salakhut-

1We use emphasis to clarify we are referring to the model like-
lihood, not the marginal likelihood required in Bayesian model
selection.
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Motion Capture

I ‘High five’ data.
I Model learns structure between two interacting subjects.



Deep hierarchies – motion capture 
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Digits Data Set

I Are deep hierarchies justified for small data sets?
I We can lower bound the evidence for different depths.
I For 150 6s, 0s and 1s from MNIST we found at least 5

layers are required.



Deep hierarchies – MNIST 
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Practical Nonparametric Modelling

I Dealing with modern data requires non parametrics
I Non parametrics by their nature have implications on

storage and computation.
I Variational approximations provide an optimal

compression of the non parametric model to parametric.
I The quality of the approximation can be varied at run time

according to particular modelling needs.



Important Concepts

I Kolmogorov consistency.
I The bandwidth of the TT channel.
I Models which are complex enough (non parametrics).
I But have parametric approximations that can be adapted

at runtime.
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Deep Health: Power Ranger Model of Research

Thanks to Alan Saul for creating the image.



Summary

I Deep models allow abstract representation of data sets at
higher levels.

I Deep GPs allow structure learning.
I Current limitation is on data set size.
I Addressing this through work by James Hensman on

Stochastic Variational Inference for GPs (Hensman et al., 2013).
I Intention is to deploy these models for assimilating a wide

range of data types in personalized health (text, survival
times, images, genotype, phenotype).

I Requires population scale models with millions of features.
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