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Box Quote

All models are wrong, but some are useful. (Box, 1976)

» Useful quote, but overused.

» Almost become an excuse, my model is wrong so it might
be useful.

... the scientist must be alert to what is importantly wrong.
It is inappropriate to worry about mice when there are tigers
abroad. (Box, 1976)
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An Incorrect Model

» Write down our data ...

Y € R™¥

... this is WRONG!



Is this Separation a Historical Anachronism?

» A presumption: there is something special and separate
about indices over n and p.

» The subtle difference between features and data points.
» In practice both n and p could be uncountably large!
» Standard approach seems to assume that p is fixed.

» A historic anachronism from the days of collating
statistical information?



There is nothing special about p ...

» Rather ... let’s assume each data is indexed by the type of
data, as well as location, time, etc.

> S0 17,234 is price of a hamburger from McDonald’s in
Leicester square on 13th April 1984 at 13:34 and 1239201 is
the price of a chicken wrap from Pret a Manger in
Cambridge on 27th December 2001 at 14:34.

» Further y734 124 might be the brand of car my mother
currently drives.



Prediction

The answer to any prediction problem is a probability
distribution. (Peter McCullogh via Peter Diggle)

» We assume that we are interested in predicting something
about our variables (the likely cost of a burger given the
cost of a chicken wrap).



Factorizations

» Often researchers write down the resulting factorization
without a second thought:

p¥10) = | [ pyi.10)

i=1
» This means that all our information about different data is
stored in the parameters.

» If model is complex, and number of parameters is large,
then they will be badly determined when data is few.

» For me: interesting research problems are defined by
needing (more) complex models.



Data and Modelling

“The Unreasonable Effectiveness of ...

» ... Mathematics” (Wigner, 1960)
» ..Data” (Halevy et al., 2009)

This is a false dichotomy:.

Both are needed for challenging problems of the future.

» The relative importance of each is dependent on
application.

» Norvig also accepts this (see Nando’s question: http:
//www.youtube . com/watch?v=yvDCzhbjYWs&t=54m40s).

v

v

v

\4

Prediction requires model (mathematics) and data.

v

Having better models is particularly important when
there’s uncertainty.


http://www.youtube.com/watch?v=yvDCzhbjYWs&t=54m40s
http://www.youtube.com/watch?v=yvDCzhbjYWs&t=54m40s

Open Data

» Automatic data curation: from curated data to curation of
publicly available data.

» Open Data: http://www.openstreetmap.org/?lat=53.
38086&1on=-1.48545&zoom=17&layers=NM.
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Open Data

» Automatic data curation: from curated data to curation of
publicly available data.

» Open Data: http://www.openstreetmap.org/?lat=53.
38086&1lon=-1.48545&zoom=17&layers=M.

Follow John'’s Van on: @ @John’s Van

Find John’s Van on: | f
“ 10% discount for NHS Staff

» Social network data, music information (Spotify), exercise.


http://www.openstreetmap.org/?lat=53.38086&lon=-1.48545&zoom=17&layers=M
http://www.openstreetmap.org/?lat=53.38086&lon=-1.48545&zoom=17&layers=M
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Not Wrong ... Just Useless

» Here’s a model that’s not wrong ...

®

» Does that imply all models that are not wrong are useless?

... it’s just useless.

» What is the minimum we can say about our data to get
something useful?



Outline

Data Heterogenity
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Massive Missing Data

» If missing at random it can be marginalized.

» As data sets become very large (39 million in EMIS) data
becomes extremely sparse.
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» If missing at random it can be marginalized.

» As data sets become very large (39 million in EMIS) data
becomes extremely sparse.

» Imputation becomes impractical.



Imputation

» Expectation Maximization (EM) is gold standard
imputation algorithm.
» Exact EM optimizes the log likelihood.

» Approximate EM optimizes a lower bound on log
likelihood.

» e.g. variational approximations (VIBES, Infer.net).

» Convergence is guaranteed to a local maxima in log
likelihood.



Expectation Maximization

Require: An initial guess for missing data
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Expectation Maximization

Require: An initial guess for missing data
repeat
Update model parameters

Update guess of missing data (M-step)

(E-step)



Expectation Maximization

Require: An initial guess for missing data
repeat
Update model parameters
Update guess of missing data
until convergence

(M-step)
(E-step)



Imputation is Impractical

\4

In very sparse data imputation is impractical.

v

EMIS: 39 million patients, thousands of tests.

v

For most people, most tests are missing.

v

M-step becomes confused by poor imputation.



Direct Marginalization is the Answer

» Perhaps we need joint distribution of two test outcomes,

P(ylx ]/2)

» Obtained through marginalizing over all missing data,

P(]/ll ]/2) = fp(]/lz yZI ]/3, ey yp)dy3/ .. dyp

» Where y3, ..., Yy, contains:

1. all tests not applied to this patient
2. all tests not yet invented!!



Magical Marginalization in Gaussians

Multi-variate Gaussians

» Given 10 dimensional multivariate Gaussian, y ~ N (0, C).
» Generate a single correlated sample 'y = [y1,y2 ... y10]-.

» How do we find the marginal distribution of y1, y»?



Gaussian Marginalization Property
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Gaussian Marginalization Property
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Gaussian Marginalization Property
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Avoid Imputation: Marginalize Directly

» Our approach: Avoid Imputation, Marginalize Directly.

v

Explored in context of Collaborative Filtering.
Similar challenges:

» many users (patients),
» many items (tests),
» sparse data

v

v

Implicitly marginalizes over all future tests too.

Work with Raquel Urtasun (Lawrence and Urtasun, 2009) and ongoing
work with Max Zwieflele and Nicol6 Fusi.



Methods that Interrelate Covariates

» Need Class of models that interrelates data.
» Common assumption: high dimensional data lies on low
dimensional manifold.

» Want to retain the marginalization property of Gaussians
but deal with non-Gaussian data!



Linear Dimensionality Reduction

Linear Latent Variable Model

» Represent data, Y, with a lower dimensional set of latent
variables X.

» Assume a linear relationship of the form
Yi. = Wxi,: + €.,

where

€.~ N(O, OZI).



Linear Latent Variable Model 11

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

|
G

=

p(YIW) = [ | N (yi.l0, WWT + 571)
i=1



Linear Latent Variable Model 11

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p(YW) = [[ N (1:10,C), C=WWT +%
i=1

logp (YIW) = —g log |C| - %tr (C'lYTY) + const.

If U, are first g principal eigenvectors of 1YY and the
corresponding eigenvalues are A,

W=UJLR", L=(A,- GZI)%

where R is an arbitrary rotation matrix.



Gaussian Processes: Extremely Short Overview
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Dealing with Non Gaussian Data

» Marginalization property of Gaussians very attractive.
» How to incorporate non-Gaussian data?

» Data which isn’t missing at random.

» Binary data.

» Ordinal categorical data.

» Poisson counts.

» Outliers.



Project Back into Gaussian

» Combine non-Gaussian likelihood with
Gaussian prior.
» Either:
» Project back to Gaussian posterior that

is nearest in KL sense.
» Expectation propagation.

» Or:

» Fit a locally valid Gaussian
approximation.
» Laplace Approximation.

Ongoing work with Ricardo Andrade Pacheco (EP) and Alan Saul
(Laplace) also James Hensman.



Gaussian Noise
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Figure : Inclusion of a data point with Gaussian noise.




Gaussian Noise

2 - p (X, x.,y)

p(y. = 0.6lf.)
1L i
0 | | |

3 2 - 0 1 2 3 4

Figure : Inclusion of a data point with Gaussian noise.



Gaussian Noise
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Figure : Inclusion of a data point with Gaussian noise.



Classification Noise Model

Probit Noise Model
L bi= 1 yi=1
=
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Figure : The probit model (classification). The plot shows p (yilf;) for
different values of y;. For y; = 1 we have

pilf) = o (f) = [* N (0,1)dz.



Classification
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Figure : An EP style update with a classification noise model.




Classification
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Figure : An EP style update with a classification noise model.



Classification
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Figure : An EP style update with a classification noise model.
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Figure : An EP style update with a classification noise model.



Ordinal Noise Model

Ordered Categories
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Figure : The ordered categorical noise model (ordinal regression).

The plot shows p (yilf;) for different values of y;. Here we have
assumed three categories.



Other Challenges

» Spatial Data (workshops in November 2013 and January
2014with Peter Diggle, work with Ricardo Andrade
Pacheco and John Quinn’s group).



Survival Data

» Survival Data (work with Alan Saul and Aki Vehtari’s
group and HeRC).



Other Data

» Image Data (work with Teo de Campos, Fariba Yousefi,
Zhenwen Dai, GaussianFace)

» Text Data (long time planned collaboration with Trevor
Cohn)



Outline

Variational Compression



Inducing Variable Approximations

» Date back to (Williams and Seeger, 2001; Smola and Bartlett, 2001; Csat6 and
Opper, 2002; Seeger et al., 2003; Snelson and Ghahramani, 2006). See
Quifionero Candela and Rasmussen (2005) for a review.

» We follow variational perspective of (Titsias, 2009).

» This is an augmented variable method, followed by a
collapsed variational approximation (King and Lawrence, 2006;
Hensman et al., 2012).



Augmented Variable Model: Not Wrong but Useful?

Augment standard model with a set
of m new inducing variables, u.

p) = [ v, wdu &



Augmented Variable Model: Not Wrong but Useful?

Augment standard model with a set
of m new inducing variables, u.

p(y) = f pylu)p(u)du



Augmented Variable Model: Not Wrong but Useful?

Important: Ensure inducing
variables are also Kolmogorov
consistent (we have m"* other inducing
variables we are not yet using.)

pw) = [ plau)dw



Augmented Variable Model: Not Wrong but Useful?

Assume that relationship is through N
f (represents ‘fundamentals’—push \u)
Kolmogorov consistency up to here). /

p(y) = f p(ylf)p(flu)p(u)dfdu



Augmented Variable Model: Not Wrong but Useful?

Convenient to assume factorization
(doesn’t invalidate model—think delta

function as worst case). e

p(y) = f H p(yil f)p(flu)p(u)dfdu
i=1

I
—
N




Augmented Variable Model: Not Wrong but Useful?

(=)
NG

Focus on integral over f.

p(y) = f f ﬁp(yilﬁ)P(flu)dfP(u)du
i=1

I
—
N



Augmented Variable Model: Not Wrong but Useful?

Focus on integral over f.

pyi) = [ ][t
i=1




Leads to Other Approximations ...

» Let’s be explicity about storing approximate posterior of u,
q(u).

» Now we have

p(y'ly) = f p(y*[u)q(uly)u

» Inducing variables look a lot like regular parameters.

» But: their dimensionality does not need to be set at design
time.

» They can be modified arbitrarily at run time without
effecting the model likelihood.

» They only effect the quality of compression and the lower
bound.



In GPs for Big Data

» Exploit the resulting factorization ...

p(y'ly) = f p(y W (uly)u



In GPs for Big Data

» Exploit the resulting factorization ...

Py = [ pyiwgayu
» The distribution now factorizes:

py) = [ [y
i=1

» This factorization can be exploited for stochastic
variational inference (Hoffman et al., 2012).



Nonparametrics for Very Large Data Sets

Modern data availability
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Nonparametrics for Very Large Data Sets

Proxy for index of deprivation?
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Nonparametrics for Very Large Data Sets

Actually index of deprivation is a proxy for this ...
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Hensman et al. (2013)

Gaussian Processes for Big Data

James Hensman* Nicolo Fusi® Neil D. Lawrence®
Dept. Computer Science Dept. Computer Science Dept. Computer Science
The University of Sheffield The University of Sheffield The University of Sheffield
Sheffield, UK Sheffield, UK Sheffield, UK
Abstract Even to accommodate these data sets, various approx-

imate techniques are required. One approach is to par-
tition the data set into separate groups [e.g. Snelson
and Ghahramani, 2007, Urtasun and Darrell, 2008].
An alternative is to build a low rank approximation
to the covariance matrix based around ‘inducing vari-
ables” [see e.g. Csaté and Opper, 2002, Seeger et al.,
2003, Quinionero Candela and Rasmussen, 2005, Tit-

We introduce stochastic variational inference
for Gaussian process models. This enables
the application of Gaussian process (GP)
models to data sets containing millions of
data points. We show how GPs can be vari-


http://auai.org/uai2013/prints/papers/244.pdf

Hensman et al. (2013)
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Figure 4: Convergence of the SVIGP algorithm on the
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Figure 5: Variability of apartment price (logarithmi-

land-registry-monthly-price-paid-data/, which cally!) throughout England and Wales.

covers England and Wales, and filtered for apart-

ments. This resulted in a data set with 75.000 entries. . 2 ~n 0 o e


http://auai.org/uai2013/prints/papers/244.pdf

Prior and Likelihood Choice

» Choose a Gaussian process prior for f.

» This is not always correct, have a need for more flexible
priors ... see Deep GPs (Damianou and Lawrence, 2013).

» Choose a factorized Gaussian likelihood for yl|f.

» Gaussian assumption can also be relaxed (Hensman et al.,
2014).
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Process Composition



Mathematically

» Composite multivariate function

g(x) = f5(f4(f3(£2(f1(x)))))



Why Deep?

» Gaussian processes give priors over functions.
Elegant properties:

» e.g. Derivatives of process are also Gaussian distributed (if
they exist).

\4

v

For particular covariance functions they are “universal
approximators’, i.e. all functions can have support under
the prior.

v

Gaussian derivatives might ring alarm bells.

» E.g. a priori they don’t believe in function ‘jumps’.



Process Composition

» From a process perspective: process composition.

» A (new?) way of constructing more complex processes
based on simpler components.

Note: To retain Kolmogorov consistency introduce IBP priors over
latent variables in each layer (Zhenwen Dai).



Analysis of Deep GPs

» Duvenaud et al. (2014) Duvenaud et al show that the
derivative distribution of the process becomes more heavy
tailed as number of layers increase.



Structures for Extracting Information from Data

Latent layer 4

Latent layer 3
Latent layer 2
Latent layer 1

Data space

A

A
=

{



Damianou and Lawrence (2013)

Deep Gaussian Processes

Andreas C. Damianou

Neil D. Lawrence

Dept. of Computer Science & Sheffield Institute for Translational Neuroscience,
University of Sheffield, UK

Abstract

In this paper we introduce deep Gaussian process
(GP) models. Deep GPs are a deep belief net-
work based on Gaussian process mappings. The
data is modeled as the output of a multivariate
GP. The inputs to that Gaussian process are then
governed by another GP. A single layer model is
equivalent to a standard GP or the GP latent vari-
ahle madel (GP- VM) We nerform inference in

the question as to whether deep structures and the learning
of abstract structure can be undertaken in smaller data sets.
For smaller data sets, questions of generalization arise: to
demonstrate such structures are justified it is useful to have
an objective measure of the model’s applicability.

The traditional approach to deep learning is based around
binary latent variables and the restricted Boltzmann ma-
chine (RBM) [Hinton, 2010]. Deep hierarchies are con-
structed by stacking these models and various approxi-
mate inference technianes (snch as contrastive diversence)


http://jmlr.org/proceedings/papers/v31/damianou13a.pdf

Motion Capture

» ‘High five’ data.

» Model learns structure between two interacting subjects.



Deep hierarchies — motion capture

Y(l)

Deep Gaussian processes 38



Digits Data Set

» Are deep hierarchies justified for small data sets?
» We can lower bound the evidence for different depths.

» For 150 6s, Os and 1s from MNIST we found at least 5
layers are required.



Deep hierarchies — MNIST
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Digits Data Set

» Are deep hierarchies justified for small data sets?
» We can lower bound the evidence for different depths.

» For 150 6s, Os and 1s from MNIST we found at least 5
layers are required.



Deep hierarchies — MNIST

Optimised
weights

R S

Outputs obtained
after sampling
from (certain nodes)
of layers 5,4,2,1

X Generic
P EEMANMNIN
1 encoding

’1‘4 A [A [A [A [A [&) [&)

X: [MAAIArArAMA

Local

:}Xl mmmmm@@ feature

N4 encoding

Deep Gaussian processes 37



What Can We Do that Internet Giants Can’t?

» Google’s resources give them access to volumes of data (or
Facebook, or Microsoft, or Amazon).

» Is there anything for Universities to contribute?

» Assimilation of multiple views of the patient: each perhaps
from a different patient.

» This may be done by small companies (with support of
Universities).

» A Facebook app for your personalised health.

» These methodologies are part of that picture.



Challenges for Companies

» Trying to dominate the modern interconnected data
market (e.g. Amazon, Google, Facebook) — buying up
talent and competitors.

» or trying to exploit current “data silos’ (e.g. Tescos
clubcard, Experian) — monetising our data today (limited
shelf life?)

» or trying to understand their own systems (the internal
google search)

» or new companies with new ideas that will generate data.



Challenges for Companies

» How do they break the natural data monopoly?

» How do they access the necessary expertise?



Challenges in Science

Data sharing is more widely accepted but:

» Most analysis is simple statistical tests or explorative
modelling with PCA or clustering.

» Few scientists understand these methodologies, apply
them as black box.

» There is an understanding gap between the data & scientist
and the data scientist.



Challenges in Health

» Ensure the privacy of patients is respected.

» Leverage the wide range of data available for wider
societal benefit.



International Development

» Exploit new telecommunications infrastructure to develop
a leap-frog developed countries.

» Needs mechanisms for data sharing that retain the
individual’s control.

» Widespread education of local talent in code and model
development.



Common Strands

» Improving access to data whilst balancing against
individual’s right to privacy against societal needs to
advance.

» Advancing methodologies: development of methodologies
needed to characterize large interconnected complex data
sets.

» Analysis empowerment: giving scientists, clinicians,
students, commercial and academic partners ability to
analyze their own data with latest methodologies.



Open Data Science: A Magic Bullet?

» Make new methodologies available as widely and rapidly
as possible with as few conditions on their use as possible.

» Educate commercial, scientific and medical partners in use
of these methodologies.

» Act to achieve a balance between data sharing for societal
benefit and right of an individual to own their own data.



Achieving This

» Use BSD-like licenses on software.
» Educate our partners (summer schools, courses etc).

» Act to achieve a balance between data sharing for societal
benefit and rights of the individual.



Make Analysis Available
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Not sure if this is really a blog post, its more of a ‘position paper’ or a proposal, but it's something that Id be very happy to have comment on, so
publishing it i the form of a blog seems most appropriate.

We are in the midst of the information revolution and it s being driven by our increasing ability to monitor, store, interconnect and analyse large
interacting sets of data. Industrial mechanisation required a combination of coal and heat engine. Informational mechanisation requires the
combination of data and data engines. By analogy with a heat engine, which takes high entropy heat energy, and converts it to low entropy,
actionable, kinetic energy, a data engine is powered by large unstructured data sources and converts them to actionable knowledge. This can be
achieved through a ion of modelling and ion of required skill sets falls across traditional

academic boundaries.
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Summary

» ‘Big Data’ and simple models only takes us so far.
» Key question: what do we do when ‘Big Data’ is small.

» Examples include computational biology and personalised
health.

» Our approach is process composition (e.g. (Damianou and
Lawrence, 2013)).

» Developing approximate inference algorithms that scale
for these models (e.g. (Hensman et al,, 2013)).

» Intention is to deploy these models for assimilating a wide
range of data types in personalized health (text, survival
times, images, genotype, phenotype).

» Requires population scale models with millions of features.
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