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What is Machine Learning?

data + model = prediction

» data: observations, could be actively or passively acquired
(meta-data).

» model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

» prediction: an action to be taken or a categorization or a
quality score.



Nonparametrics for Very Large Data Sets

Modern data availability
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Nonparametrics for Very Large Data Sets

Proxy for index of deprivation?
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Nonparametrics for Very Large Data Sets

Actually index of deprivation is a proxy for this ...
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Hensman et al. (2013)

Gaussian Processes for Big Data

James Hensman* Nicolo Fusi® Neil D. Lawrence®
Dept. Computer Science Dept. Computer Science Dept. Computer Science
The University of Sheffield The University of Sheffield The University of Sheffield
Sheffield, UK Sheffield, UK Sheffield, UK
Abstract Even to accommodate these data sets, various approx-

imate techniques are required. One approach is to par-
tition the data set into separate groups [e.g. Snelson
and Ghahramani, 2007, Urtasun and Darrell, 2008].
An alternative is to build a low rank approximation
to the covariance matrix based around ‘inducing vari-
ables” [see e.g. Csaté and Opper, 2002, Seeger et al.,
2003, Quinionero Candela and Rasmussen, 2005, Tit-

We introduce stochastic variational inference
for Gaussian process models. This enables
the application of Gaussian process (GP)
models to data sets containing millions of
data points. We show how GPs can be vari-


http://auai.org/uai2013/prints/papers/244.pdf

Hensman et al. (2013)
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Figure 5: Variability of apartment price (logarithmi-

land-registry-monthly-price-paid-data/, which cally!) throughout England and Wales.

covers England and Wales, and filtered for apart-

ments. This resulted in a data set with 75.000 entries. . 2 ~n 0 o e
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What'’s Changed (Changing) for Medical Data?

» Try Googling for: “patient data ”...
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Driver and Vehicle
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Licensing Agency

A brief history
of Registration

For more information go to: www.direct.gov.uk/motoring


http://www.direct.gov.uk/prod_consum_dg/groups/dg_digitalassets/@dg/@en/@motor/documents/digitalasset/dg_180212.pdf

A brief history of registration

The early days

Prior to the appearance of the first railways in Britain, there was a brief development and interest
in steam powered road going vehicles. In 1834, a Mr Hancock started a steam coach called the
“Era”, carrying up to 14 passengers from Paddington to Regents Park and the City at 6d a head.
And in the following year, a Mr Church built an omnibus capable of carrying 40 passengers for
the London and Birmingham Steam Carriage Company.

However, the success of the railway movement drove all such traffic off the roads.

A Parliamentary Commission of Enquiry in 1836 reported “strongly in favour of steam
carriages on roads”, but subsequent Acts of Parliament tended to have a discouraging and
restrictive effect. The Locomotive Act 1861 limited the weight of steam engines to 12 tons
and imposed a speed limit of 10 mph.

The Locomotive Act 1865 set a speed limit of 4 mph in the country and 2 mph in towns.
The 1865 Act also provided for the famous “man with a red flag”. Walking 60 yards ahead
of each vehicle, a man with a red flag or lantern enforced a walking pace, and warned horse
riders and horse drawn traffic of the approach of a self propelled machine.

The Locomotive Amendment Act 1878 made the red flag optional under local regulations, and


http://www.direct.gov.uk/prod_consum_dg/groups/dg_digitalassets/@dg/@en/@motor/documents/digitalasset/dg_180212.pdf
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What are the Issues?

v

Who owns our data?

v

Is it “finders keepers’?
» Does ownership proliferate?

v

What does data protection offer?
Who has the right to share our data?

» Can we withdraw this right?

v



Moral Panics: Perhaps Rightly
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little city of 2 million people.
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What'’s Changed (Changing) for Medical Data?

\4

Genotyping.

Epigenotyping.
Transcriptome: detailed characterization of phenotype.
» Stratification of patients.

\4

v

» Massive unstructured data sources.



Open Data

» Automatic data curation: from curated data to curation of
publicly available data.

» Open Data: http://www.openstreetmap.org/?lat=53.
38086&lon=-1.48545&zoom=17&layers=NM.
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Open Data

» Automatic data curation: from curated data to curation of
publicly available data.

» Open Data: http://www.openstreetmap.org/?lat=53.
38086&1lon=-1.48545&zoom=17&layers=M.

Follow John'’s Van on: @ @John’s Van

Find John’s Van on: | f
“ 10% discount for NHS Staff

» Social network data, music information (Spotify), exercise.
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UK Government Stipulation on Data Availability
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Massive Missing Data

» If missing at random it can be marginalized.

» As data sets become very large (39 million in EMIS) data
becomes extremely sparse.

» Imputation becomes impractical.
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» If missing at random it can be marginalized.

» As data sets become very large (39 million in EMIS) data
becomes extremely sparse.

» Imputation becomes impractical.



Imputation

» Expectation Maximization (EM) is gold standard
imputation algorithm.
» Exact EM optimizes the log likelihood.

» Approximate EM optimizes a lower bound on log
likelihood.

» e.g. variational approximations (VIBES, Infer.net).

» Convergence is guaranteed to a local maxima in log
likelihood.



Expectation Maximization

Require: An initial guess for missing data



Expectation Maximization

Require: An initial guess for missing data
repeat



Expectation Maximization

Require: An initial guess for missing data
repeat

Update model parameters (M-step)



Expectation Maximization

Require: An initial guess for missing data
repeat
Update model parameters

Update guess of missing data (M-step)

(E-step)



Expectation Maximization

Require: An initial guess for missing data
repeat
Update model parameters
Update guess of missing data
until convergence

(M-step)
(E-step)



Imputation is Impractical

\4

In very sparse data imputation is impractical.

v

EMIS: 39 million patients, thousands of tests.

v

For most people, most tests are missing.

v

M-step becomes confused by poor imputation.



Direct Marginalization is the Answer

» Perhaps we need joint distribution of two test outcomes,

P(ylx ]/2)

» Obtained through marginalizing over all missing data,

P(]/ll ]/2) = fp(]/lz yZI ]/3, ey yp)dy3/ .. dyp

» Where y3, ..., Yy, contains:

1. all tests not applied to this patient
2. all tests not yet invented!!



Magical Marginalization in Gaussians

Multi-variate Gaussians

» Given 10 dimensional multivariate Gaussian, y ~ N (0, C).
» Generate a single correlated sample 'y = [y1,y2 ... y10]-.

» How do we find the marginal distribution of y1, y»?



Gaussian Marginalization Property
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Figure : A sample from a 10 dimensional correlated Gaussian
distribution.
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Gaussian Marginalization Property

(a) A 10 dimensional sample
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distribution.



Gaussian Marginalization Property

(a) A 10 dimensional sample
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Figure : A sample from a 10 dimensional correlated Gaussian

distribution.



Gaussian Marginalization Property

(a) A 10 dimensional sample

1 0.96793
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(b) correlation between y; and .

Figure : A sample from a 10 dimensional correlated Gaussian

distribution.



Avoid Imputation: Marginalize Directly

» Our approach: Avoid Imputation, Marginalize Directly.

v

Explored in context of Collaborative Filtering.
Similar challenges:

» many users (patients),
» many items (tests),
» sparse data

v

v

Implicitly marginalizes over all future tests too.

Work with Raquel Urtasun (Lawrence and Urtasun, 2009) and recent
submission with Nicol6 Fusi.



Methods that Interrelate Covariates

» Need Class of models that interrelates data.
» Common assumption: high dimensional data lies on low
dimensional manifold.

» Want to retain the marginalization property of Gaussians
but deal with non-Gaussian data!



Linear Dimensionality Reduction

Linear Latent Variable Model

» Represent data, Y, with a lower dimensional set of latent
variables X.

» Assume a linear relationship of the form
Yi. = Wxi,: + €.,

where

€.~ N(O, OZI).



Linear Latent Variable Model 11

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

|
G

=

p(YIW) = [ | N (yi.l0, WWT + 571)
i=1



Linear Latent Variable Model 11

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p(YW) = [[ N (1:10,C), C=WWT +%
i=1

logp (YIW) = —g log |C| - %tr (C'lYTY) + const.

If U, are first g principal eigenvectors of 1YY and the
corresponding eigenvalues are A,

W=UJLR", L=(A,- GZI)%

where R is an arbitrary rotation matrix.



Gaussian Processes: Extremely Short Overview




Gaussian Processes: Extremely Short Overview




Gaussian Processes: Extremely Short Overview
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Dealing with Non Gaussian Data

» Marginalization property of Gaussians very attractive.
» How to incorporate non-Gaussian data?

» Data which isn’t missing at random.

» Binary data.

» Ordinal categorical data.

» Poisson counts.

» Outliers.



Project Back into Gaussian

» Combine non-Gaussian likelihood with
Gaussian prior.
» Either:
» Project back to Gaussian posterior that

is nearest in KL sense.
» Expectation propagation.

» Or:

» Fit a locally valid Gaussian
approximation.
» Laplace Approximation.

Ongoing work with Ricardo Andrade Pacheco (EP) and Alan Saul
(Laplace) also James Hensman.



Gaussian Noise
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Figure : Inclusion of a data point with Gaussian noise.




Gaussian Noise
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Figure : Inclusion of a data point with Gaussian noise.



Gaussian Noise
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Figure : Inclusion of a data point with Gaussian noise.



Classification Noise Model

Probit Noise Model
L bi= 1 yi=1
=
2 05 - s
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Figure : The probit model (classification). The plot shows p (yilf;) for
different values of y;. For y; = 1 we have

pilf) = o (f) = [* N (0,1)dz.



Classification
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Figure : An EP style update with a classification noise model.




Classification
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Figure : An EP style update with a classification noise model.



Classification
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Figure : An EP style update with a classification noise model.



Classification
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Figure : An EP style update with a classification noise model.



Ordinal Noise Model

Ordered Categories
L Vi= -1 hi=1
g
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Figure : The ordered categorical noise model (ordinal regression).

The plot shows p (yilf;) for different values of y;. Here we have
assumed three categories.



Other Challenges

» Spatial Data (workshops in November 2013 and January
2014with Peter Diggle, work with Ricardo Andrade
Pacheco and John Quinn’s group).



Survival Data

» Survival Data (work with Alan Saul and Aki Vehtari’s
group and HeRC).



Other Data

» Image Data (work with Teo de Campos, Fariba Yousefi,
Zhenwen Dai, GaussianFace)

» Text Data (long time planned collaboration with Trevor
Cohn)



Example: Prediction of Malaria Incidence in Uganda

» Work with John Quinn and Martin Mubaganzi (Makerere
University, Uganda)

» See http://cit. mak.ac.ug/cs/aigroup/.



Malaria Prediction in Uganda
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direction for further research.

11.1. HAVE WE THROWN THE BABY OUT WITH THE BATH WATER?

According to the hype of 1987, neural networks were meant to be intelligent
models which discovered features and patterns in data. Gaussian processes
in contrast are simply smoothing devices. How can Gaussian processes pos-
sibly replace neural networks? What is going on?

I think what the work of Williams and Rasmussen (1996) shows is that
many real-world data modelling problems are perfectly well solved by sensi-
ble smoothing methods. The most interesting problems, the task of feature
discovery for example, are not ones which Gaussian processes will solve. But
maybe multilayer perceptrons can’t solve them either. On the other hand,
it may be that the limit of an infinite number of hidden units, to which
(GGaussian processes correspond, was a bad limit to take; maybe we should
backtrack, or modify the prior on neural network parameters, so as to cre-
ate new models more interesting than Gaussian processes. Evidence that
this infinite limit has lost something compared with finite neural networks
comes from the observation that in a finite neural network with more than
one output, there are non—trivial correlations between the outputs (since
they share inputs from common hidden units); but in the limit of an infi-
nite number of hidden units, these correlations vanish. Radford Neal has
suggested the use of non—Gaussian priors in networks with multiple hid-
den layers. Or perhaps a completely fresh start is needed, approaching the
problem of machine learning from a paradigm different from the supervised
feedforward mapping.



Structure of Priors

MacKay: NIPS Tutorial 1997 “Have we thrown out the baby
with the bathwater?” (Published as MacKay, 1998) Also noted
by (Wilson et al., 2012)
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Challenges for Companies

» Trying to dominate the modern interconnected data
market (e.g. Amazon, Google, Facebook) — buying up
talent and competitors.

» or trying to exploit current “data silos’ (e.g. Tescos
clubcard, Experian) — monetising our data today (limited
shelf life?)

» or trying to understand their own systems (the internal
google search)

» or new companies with new ideas that will generate data.



Challenges for Companies

» How do they break the natural data monopoly?

» How do they access the necessary expertise?



Challenges in Science

Data sharing is more widely accepted but:

» Most analysis is simple statistical tests or explorative
modelling with PCA or clustering.

» Few scientists understand these methodologies, apply
them as black box.

» There is an understanding gap between the data & scientist
and the data scientist.



Challenges in Health

» Ensure the privacy of patients is respected.

» Leverage the wide range of data available for wider
societal benefit.



International Development

» Exploit new telecommunications infrastructure to develop
a leap-frog developed countries.

» Needs mechanisms for data sharing that retain the
individual’s control.

» Widespread education of local talent in code and model
development.



Common Strands

» Improving access to data whilst balancing against
individual’s right to privacy against societal needs to
advance.

» Advancing methodologies: development of methodologies
needed to characterize large interconnected complex data
sets.

» Analysis empowerment: giving scientists, clinicians,
students, commercial and academic partners ability to
analyze their own data with latest methodologies.



Open Data Science: A Magic Bullet?

» Make new methodologies available as widely and rapidly
as possible with as few conditions on their use as possible.

» Educate commercial, scientific and medical partners in use
of these methodologies.

» Act to achieve a balance between data sharing for societal
benefit and right of an individual to own their own data.



Achieving This

» Use BSD-like licenses on software.
» Educate our partners (summer schools, courses etc).

» Act to achieve a balance between data sharing for societal
benefit and rights of the individual.



Make Analysis Available
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Digital Identity and Data Ownership
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Not sure if this is really a blog post, its more of a ‘position paper’ or a proposal, but it's something that Id be very happy to have comment on, so
publishing it i the form of a blog seems most appropriate.

We are in the midst of the information revolution and it s being driven by our increasing ability to monitor, store, interconnect and analyse large
interacting sets of data. Industrial mechanisation required a combination of coal and heat engine. Informational mechanisation requires the
combination of data and data engines. By analogy with a heat engine, which takes high entropy heat energy, and converts it to low entropy,
actionable, kinetic energy, a data engine is powered by large unstructured data sources and converts them to actionable knowledge. This can be
achieved through a ion of modelling and ion of required skill sets falls across traditional

academic boundaries.
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Summary

v

The Challenges of Modern Big Data are Radically Different
statistics + computer science = data science

v

v

Need to change the way in which we do science.

v

Major methodological difficulties, computational
difficulties and accessibility difficulties.

v

Open Data Science provides and Answer.
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