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What is Machine Learning?

data + model = prediction

» data: observations, could be actively or passively acquired
(meta-data).

» model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

» prediction: an action to be taken or a categorization or a
quality score.



What'’s Changed (Changing) for Medical Data?

» Try Googling for: “patient data ”...
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For more information go to: www.direct.gov.uk/motoring


http://www.direct.gov.uk/prod_consum_dg/groups/dg_digitalassets/@dg/@en/@motor/documents/digitalasset/dg_180212.pdf

A brief history of registration

The early days

Prior to the appearance of the first railways in Britain, there was a brief development and interest
in steam powered road going vehicles. In 1834, a Mr Hancock started a steam coach called the
“Era”, carrying up to 14 passengers from Paddington to Regents Park and the City at 6d a head.
And in the following year, a Mr Church built an omnibus capable of carrying 40 passengers for
the London and Birmingham Steam Carriage Company.

However, the success of the railway movement drove all such traffic off the roads.

A Parliamentary Commission of Enquiry in 1836 reported “strongly in favour of steam
carriages on roads”, but subsequent Acts of Parliament tended to have a discouraging and
restrictive effect. The Locomotive Act 1861 limited the weight of steam engines to 12 tons
and imposed a speed limit of 10 mph.

The Locomotive Act 1865 set a speed limit of 4 mph in the country and 2 mph in towns.
The 1865 Act also provided for the famous “man with a red flag”. Walking 60 yards ahead
of each vehicle, a man with a red flag or lantern enforced a walking pace, and warned horse
riders and horse drawn traffic of the approach of a self propelled machine.

The Locomotive Amendment Act 1878 made the red flag optional under local regulations, and
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What are the Issues?

v

Who owns our data?

v

Is it “finders keepers’?
» Does ownership proliferate?

v

What does data protection offer?
Who has the right to share our data?

» Can we withdraw this right?

v



Moral Panics: Perhaps Rightly
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NHS Care.data information scheme
‘mishandled’

By Chris Vallance
PM, BBC Radio 4

The chair of the panel set up o advise the NHS and ministers on
the governance of patient Information has told the BBC the
Care.data programme was mishandied.
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Cyclists look at a Ferrari parked illegally and blocking the bicycle lane off a main
road in Beijing, on April 7, 2011

Before it became China's capital in 1949, Beijing was a fairly provincial
little city of 2 million people.
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What'’s Changed (Changing) for Medical Data?

\4

Genotyping.

Epigenotyping.
Transcriptome: detailed characterization of phenotype.
» Stratification of patients.

\4

v

» Massive unstructured data sources.



Open Data

» Automatic data curation: from curated data to curation of
publicly available data.

» Open Data: http://www.openstreetmap.org/?lat=53.
38086&lon=-1.48545&zoom=17&layers=NM.
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publicly available data.
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Open Data

» Automatic data curation: from curated data to curation of
publicly available data.

» Open Data: http://www.openstreetmap.org/?lat=53.
38086&1lon=-1.48545&zoom=17&layers=M.

Follow John'’s Van on: @ @John’s Van

Find John’s Van on: | f
“ 10% discount for NHS Staff

» Social network data, music information (Spotify), exercise.


http://www.openstreetmap.org/?lat=53.38086&lon=-1.48545&zoom=17&layers=M
http://www.openstreetmap.org/?lat=53.38086&lon=-1.48545&zoom=17&layers=M




Why Africa?

» Short circuit the process.
» For UK—infrastructure paralysis.
» For Africa—potential for distributed architectures.
» User-centric models of data management.
» Store personal data on mobile phone within control of
individual.
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Diversity of Data



Not the Scale it’s the Diversity
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Emmulated Intelligence

» There is a common thread to the applications that are
‘falling over” in the face of deep learning.

» Massive data, massive compute ‘perceptual” tasks.

» We are merely building algorithms that emmulate human
intelligence.

» This gives a misleading impressing of achieving
intelligence.
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Massively Missing Data



Massive Missing Data

» If missing at random it can be marginalized.

» As data sets become very large (39 million in EMIS) data
becomes extremely sparse.

» Imputation becomes impractical.



Imputation

» Expectation Maximization (EM) is gold standard
imputation algorithm.
» Exact EM optimizes the log likelihood.

» Approximate EM optimizes a lower bound on log
likelihood.

» e.g. variational approximations (VIBES, Infer.net).

» Convergence is guaranteed to a local maxima in log
likelihood.



Expectation Maximization

Require: An initial guess for missing data



Expectation Maximization

Require: An initial guess for missing data
repeat



Expectation Maximization

Require: An initial guess for missing data
repeat

Update model parameters (M-step)



Expectation Maximization

Require: An initial guess for missing data
repeat
Update model parameters

Update guess of missing data (M-step)

(E-step)



Expectation Maximization

Require: An initial guess for missing data
repeat
Update model parameters
Update guess of missing data
until convergence

(M-step)
(E-step)



Imputation is Impractical

\4

In very sparse data imputation is impractical.

v

EMIS: 39 million patients, thousands of tests.

v

For most people, most tests are missing.

v

M-step becomes confused by poor imputation.



Direct Marginalization is the Answer

» Perhaps we need joint distribution of two test outcomes,

P(ylx ]/2)

» Obtained through marginalizing over all missing data,

P(]/ll ]/2) = fp(]/lz yZI ]/3, ey yp)dy3/ .. dyp

» Where y3, ..., Yy, contains:

1. all tests not applied to this patient
2. all tests not yet invented!!



Magical Marginalization in Gaussians

Multi-variate Gaussians

» Given 10 dimensional multivariate Gaussian, y ~ N (0, C).
» Generate a single correlated sample 'y = [y1,y2 ... y10]-.

» How do we find the marginal distribution of y1, y»?



Gaussian Marginalization Property
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Gaussian Marginalization Property
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Gaussian Marginalization Property
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Gaussian Marginalization Property
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Gaussian Marginalization Property
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Avoid Imputation: Marginalize Directly

» Our approach: Avoid Imputation, Marginalize Directly.

v

Explored in context of Collaborative Filtering.
Similar challenges:

» many users (patients),
» many items (tests),
» sparse data

v

\4

Implicitly marginalizes over all future tests too.

Work with Raquel Urtasun (Lawrence and Urtasun, 2009) and ongoing
work with Max Zwieflele and Nicol6 Fusi.



Marginalization in Bipartite Undirected Graph

latent variables
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Marginalization in Bipartite Undirected Graph

latent variables



Marginalization in Bipartite Undirected Graph

additional layer
of latent variables

latent variables




Marginalization in Bipartite Undirected Graph

additional layer
of latent variables

latent variables

For massive missing data, how many additional latent variables?



Methods that Interrelate Covariates

» Need Class of models that interrelates data, but allows for
variable p.

» Common assumption: high dimensional data lies on low
dimensional manifold.

» Want to retain the marginalization property of Gaussians
but deal with non-Gaussian data!



Example: Prediction of Malaria Incidence in Uganda

» Work with John Quinn and Martin Mubaganzi (Makerere
University, Uganda)

» See http://air.ug/research.html.



Malaria Prediction in Uganda

(Andrade-Pacheco et al., 2014; Mubangizi et al., 2014)



Malaria Prediction in Uganda

Nagongera / Tororo (Multiple output model)

Sentinel - all patients




Malaria Prediction in Uganda

sparse regression

multiple output

incidence

incidence
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GP School at Makerere
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Deep Models
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Deep Models

Latent layer 4

Latent layer 3

Latent layer 2

Latent layer 1

Data space



Deep Models

@ Abstract features

More com-
bination

Combination

e of low level

features
a Low level
features

° Data space



Deep Gaussian Processes

&)

Damianou and Lawrence (2013)

» Deep architectures allow abstraction of features (Bengio, 2009;
Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).

» We use variational approach to stack GP models.



Stacked PCA
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Data space



Stacked PCA

I

° Data space



Stacked PCA

[ ]
\
\
—
T

Latent layer 4
Latent layer 3
Latent layer 2
Latent layer 1

Data space



Stacked PCA

° Data space



Stacked PCA

L]
—

\
/
/

Latent layer 4
Latent layer 3
Latent layer 2
Latent layer 1

Data space



Stacked PCA
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What Can Academics Do that Google Can’t?

» Google’s resources give them access to volumes of data (or
Facebook, or Microsoft, or Amazon).

» Is there anything for Universities to contribute?

» Assimilation of multiple views of the patient: each perhaps
from a different patient.

» This may be done by small companies (with support of
Universities).

» A Facebook app for your personalised health.

» These methodologies are part of that picture.
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The Patient Experience: Bedside Manner

» A good bedside manner is a key part of the patient
experience.

» How can information be delivered to patients?

» Public health significantly changed: tailored health advice.



Bedside Manner

Steen: Doctor and His Patient, Image from Wikimedia
Commones.


http://news.bbc.co.uk/1/hi/health/8340560.stm
http://commons.wikimedia.org/wiki/File:Steen_Doctor_and_His_Patient.jpg?uselang=en-gb
http://commons.wikimedia.org/wiki/File:Steen_Doctor_and_His_Patient.jpg?uselang=en-gb
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How to Handle this?

» A potential answer.

» Give the patients control of their own data.
» Make patients the gatekeeper of what can be cross-linked.



Summary

» Intention is to deploy probabilistic machine learning for
assimilating a wide range of data types in personalized
health:

» Social networking, text (clinical notes), survival times,
medical imaging, phenotype, genotype, mobile phone
records, music tastes, Tesco club card

» Requires population scale models with millions of features.

» May be necessary for early detection of dementia or other
diseases with high noise to signal.

» Major issues in privacy and interfacing with the patient.

» But: the revolution is coming. We need to steer it.
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