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Abstract

This paper addresses the problem of separating and recognising speech in a monaural acoustic mixture with the presence of competing
speech sources. The proposed system treats sound source separation and speech recognition as tightly coupled processes. In the first stage
sound source separation is performed in the correlogram domain. For periodic sounds, the correlogram exhibits symmetric tree-like
structures whose stems are located on the delay that corresponds to multiple pitch periods. These pitch-related structures are exploited
in the study to group spectral components at each time frame. Local pitch estimates are then computed for each spectral group and are
used to form simultaneous pitch tracks for temporal integration. These processes segregate a spectral representation of the acoustic
mixture into several time–frequency regions such that the energy in each region is likely to have originated from a single periodic sound
source. The identified time–frequency regions, together with the spectral representation, are employed by a ‘speech fragment decoder’
which employs ‘missing data’ techniques with clean speech models to simultaneously search for the acoustic evidence that best matches
model sequences. The paper presents evaluations based on artificially mixed simultaneous speech utterances. A coherence-measuring
experiment is first reported which quantifies the consistency of the identified fragments with a single source. The system is then evaluated
in a speech recognition task and compared to a conventional fragment generation approach. Results show that the proposed system
produces more coherent fragments over different conditions, which results in significantly better recognition accuracy.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In realistic listening conditions, speech is often cor-
rupted by competing sound sources. The presence of acous-
tic interference can cause the quality or the intelligibility of
speech to degrade; the performance in automatic speech
recognition (ASR) often drops dramatically. Many systems
have been proposed to separate noise from speech using
cues from multiple sensors, e.g. blind source separation
by independent component analysis (Parra and Spence,
2000), but separating and recognising speech in single-
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channel signals, the problem considered in this article, still
remains a challenging problem. Human listeners, however,
are adept at recognising target speech in such noisy condi-
tions, making use of cues such as pitch continuity, spacial
location, and speaking rate (Cooke and Ellis, 2001). They
are able to effectively extract target audio streams from
monaural acoustic mixtures with little effort, e.g. listening
to speech/music mixtures on a mono radio program. It is
believed that there are processes in the auditory system that
segregate the acoustic evidence into perceptual streams
based on their characteristics, allowing listeners to selec-
tively attend to whatever stream is of interest at the time
(Bregman, 1990; Cooke and Ellis, 2001). This offers an
alternative to techniques which require the noise to be
effectively removed from the speech, e.g. spectral subtrac-
tion based methods (Lim et al., 1979), and allows the noise
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to be treated as streams that can be ignored while the target
speech is attended to.

This ability of listeners has motivated extensive research
into the perceptual segregation of sound sources and has
resulted in much theoretical and experimental work in
auditory scene analysis (ASA) (Bregman, 1990). Auditory
scene analysis addresses the problem of how the auditory
system segregates the mixture of sound reaching the ears
into packages of acoustic evidence in which each package
is likely to have been produced from a single source of
sound. The analysis process, described by Bregman
(1990), is interactively governed by ‘primitive’ bottom-up
grouping rules, which are innate constraints driven by the
incoming acoustic data and the physics of sound, and
‘schema-based’ top-down constraints, which employ the
knowledge of familiar patterns that have been learnt from
complex acoustic environments. Computational auditory
scene analysis (CASA) aims to develop computational
models of ASA. Many researchers have proposed auto-
matic sound separation systems based on the known prin-
ciples of human hearing and have achieved some success
(Brown and Cooke, 1994; Wang et al., 1999; Ellis, 1999).
A good review of CASA development is reported in
(Brown and Wang, 2005).
1.1. Correlogram-based CASA models

One important representation of auditory temporal
activity that combine both spectral and temporal informa-
tion is the autocorrelogram (ACG). The autocorrelogram,
or simply correlogram, is a three-dimensional volumetric
function, mapping a frequency channel of an auditory
periphery model, temporal autocorrelation delay (or lag),
and time to the amount of periodic energy in that channel
at that delay and time. Correlograms are normally sampled
Fig. 1. Three correlograms of a clean speech signal uttered by a female speaker
has been normalised and plotted as an image. A corresponding summary AC
across time to produce a series of two-dimensional graphs,
in which frequency and autocorrelation delay are displayed
on orthogonal axes. Fig. 1 shows three correlograms of a
clean speech signal uttered by a female speaker, taken at
time frames of 300 ms, 700 ms and 2100 ms. Each correlo-
gram has been normalised and plotted as an image for illus-
tration. The periodicity of sound is well represented in the
correlogram. If the original sound contains a signal that is
approximately periodic, such as voiced speech, then each
frequency channel excited by that signal will have a high sim-
ilarity to itself delayed by the period of repetition. The ACG
frequency channels also all respond to the fundamental fre-
quency (F0) and this can be emphasised by summing the
ACG over all frequency channels, producing a ‘summary
ACG’ (see the bottom panel in Fig. 1). The position of the
largest peak in the summary ACG corresponds to the pitch
of the periodic sound source. Primarily because it is well-sui-
ted to detecting signal periodicity, the correlogram is widely
considered as the preferred computational representation of
early sound processing in the auditory system.

The correlogram was first suggested as a model for pitch
perception by Licklider (1951) in his neural auto-coinci-
dence model, where the concept of subband periodicity
detection was discussed. The model was then reintroduced
by Slaney and Lyon (1990), among others (e.g. Meddis and
Hewitt, 1991), as a computational approach to pitch detec-
tion. Slaney and Lyon employed the correlogram com-
puted from the output of a cochlear model to model how
humans perceive pitch. The pitch was estimated based on
locating the peaks in the summary correlogram. The
ACG model has subsequently been extended as a popular
mechanism for segregating concurrent periodic sounds
and the primary methods have been based on inspection
of the summary correlogram. Assmann and Summerfield
(1990) reported a place–time model on a concurrent vowel
, taken at time frame 300, 700 and 2100 ms, respectively. Each correlogram
G is shown at the bottom of each correlogram.
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segregation task. The model estimated the pitch of each
vowel as corresponding to the autocorrelation delays with
the two largest peaks in the summary correlogram. Meddis
and Hewitt (1992) proposed a residual-driven approach.
They first selected the largest peak in the summary ACG,
the delay of which corresponds to the F0 of the stronger
sound source. Frequency channels that respond to this F0
were grouped and removed from the correlogram. The rest
of the channels were integrated together and the largest
peak in the residue corresponds to the F0 of a second
(and weaker) source. Recently, neural oscillator models
have been successful at providing accounts of the interac-
tion of cue combinations, such as common onset and prox-
imity (Brown and Cooke, 1994; Wang et al., 1999), in
which the summary correlogram model was also employed
as a front end.

One limitation of the methods which are based on the
summary correlogram is that when speech is corrupted
by competing sounds, locating peaks in the summary is
often difficult. The position of the largest peak in the sum-
mary would not always correspond to the pitch of the tar-
get speech and peaks indicating pitches of different sound
sources may be correlated. Another limitation is that these
models cannot account for the effect of harmonic compo-
nents of the weaker source being dominated by the stronger
source, where all correlogram channels will be assigned to
the stronger source (de Cheveigné, 1993). To address these
limitations, Coy and Barker (2005) proposed to keep the
four largest peaks in the summary ACG as pitch candidates
for each time frame and then employed a multi-pitch
tracker to form smooth pitch tracks from these candidates.
Frequency channels that respond to pitch values in the
same pitch track are grouped together. By keeping multiple
pitch candidates they show that better sound segregation
can be achieved. However, their system relies on a robust
multi-pitch tracker and keeping an arbitrary number of
pitch candidates is not effective when dealing with different
competing sources.

The summary ACG is not the only way to reveal pitch
information. The methods based on the summary ACG
discard the rich representation of the spectral content and
time structure of a sound in the original correlogram. Visu-
ally there are clear pitch-related ‘dendritic structures’ in the
correlogram. The ‘dendrites’ are tree-like structures whose
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Fig. 2. An overview of the speech fragment decoding system (after Barker et a
regions where each region is likely to have originated from a single source (coh
used to search for the most likely combination of fragment labelling and spee
stems are centred on the delay of multiple pitch periods
across frequency channels. Slaney and Lyon (1990) dis-
cussed this dendritic structure in their perceptual pitch
detector. They convolved the correlogram with an operator
to emphasise the structure before integrating all ACG
channels together. Summerfield et al. (1990) also proposed
a convolution-based strategy for the separation of concur-
rent synthesised vowels with F0 not harmonically related in
the correlogram. By locating the dendritic structure in the
correlogram they demonstrated that multiple fundamentals
can be recognised.
1.2. Linking CASA with speech recognition systems

The success of CASA has inspired research into develop-
ing a new generation of automatic speech recognition
systems for natural listening conditions where competing
sounds are often present. In these adverse conditions not
all the acoustic evidence from the target source will be
recovered. One successful approach to this problem is
‘missing data ASR’ (Cooke et al., 2001), which adapts
the conventional probabilistic formalism of ASR to deal
with the ‘missing data’. The missing data approach
assumes that some acoustic data in the mixture will remain
uncorrupted and can be identified as reliable evidence for
recognition. Cooke et al. (1997) demonstrated that recogni-
tion can indeed be based on a small amount (10% or less)
of the original time–frequency ‘pixels’ if they can be
correctly identified.

The limitation of the missing data approach is that accu-
rate identification of target acoustic evidence is a challeng-
ing problem and recognition performance is poor if the
‘missing data’ is not correctly identified. There is evidence
that listeners make use of both primitive and schema-based
constraints when perceiving speech signals (Bregman,
1990). Barker et al. (2005) proposed a speech fragment
decoding (SFD) technique which treats segregation and
recognition as coupled problems. Primitive grouping
processes exploit common characteristics to identify sound
evidence arising from a single source. Top-down search
utilises acoustic models of target speech to find the best
acoustic combinations which jointly explain the observa-
tion sequence without deciding the identity of different
sources. The SFD technique therefore provides a bridge
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that links auditory scene analysis models with conventional
speech recognition systems. An overview of the SFD
system is provided in Fig. 2.
1.3. Summary of the paper

In this article we are concerned with the use of primitive
CASA models to address the problem of separating and
recognising speech in monaural acoustic mixtures. Some
of this work was reported in (Ma et al., 2006). The
dendritic correlogram structure is exploited to separate a
spectrogram representation of the acoustic mixture into
spectro-temporal regions such that the acoustic evidence
in each region is likely to have originated from a single
source of sound. These regions are referred to as ‘coherent
fragments’ in this study. Some of these fragments will arise
from the target speech source while others may arise from
noise sources. These coherent fragments are passed to the
speech fragment decoder to identify the best subset of frag-
ments as well as the word sequence that best matches the
target speech models. We evaluate the system using a chal-
lenging simultaneous speech recognition task.1

The remainder of this article is organised as follows: in
the next section, the overall structure of our system is
briefly reviewed. Section 3 describes the techniques used
to integrate spectral components in each frame based on
the ACG. Section 4 presents methods which produce
coherent fragments. Section 5 introduces a confidence
map to soften the discrete decision of assigning a pixel to
a fragment. In Section 6 we evaluate the system and discuss
the experimental results. Section 7 concludes and presents
future research directions.
2. System overview

Fig. 3 shows the schematic diagram of our system. The
input to the system is a mixture of target speech and inter-
1 http://www.dcs.shef.ac.uk/~martin/SpeechSeparationChallenge.htm.
fering sounds, sampled at a rate of 25 kHz. In the first stage
of the system, cochlear frequency analysis is simulated by a
bank of 64 overlapping bandpass Gammatone filters, with
centre frequencies spaced uniformly on the equivalent rect-
angular bandwidth (ERB) scale (Glasberg and Moore,
1990) between 50 Hz and 8000 Hz. Gammatone filter mod-
elling is a physiologically motivated strategy to mimic the
structure of peripheral auditory processing stage (Cooke,
1991). The gains of the filters are chosen to reflect the trans-
fer function of the outer and middle ears. Having more fil-
ters (e.g. 128) can offer a higher frequency resolution but
bring more computational cost. The output of each filter
is then half-wave rectified.

The digital implementation of the Gammatone filter
employed here was based on the implementation of Cooke
(1991) using the impulse invariant transformation. The
sound is first multiplied by a complex exponential e�jxt

at the desired centre frequency x, then filtered with a base-
band Gammatone filter, and finally shifted back to the
centre frequency region. The cost of computing the
complex exponential e�jxt for each sound sample t is a
significant part of the overall computation. In our imple-
mentation, the exponential computation is transformed
into simple multiplication to reduce the cost by rearranging
e�jxt to

e�jxt ¼ e�jxe�jxðt�1Þ ð1Þ

The term e�jx can be pre-computed and e�jx(t�1) is the
result of the previous sample t � 1. Therefore only one
complex exponential calculation is needed for the first sam-
ple and for the rest of samples the exponentials can be com-
puted by simple multiplication. Experiments showed that
using this implementation the Gammatone computation
speed can be increased by a factor of 4.

Spectral features are then computed in order to employ
the ‘speech fragment decoder’ (Barker et al., 2005). The
instantaneous Hilbert envelope is computed at the output
of each Gammatone filter. This is smoothed by a first-order
low-pass filter with an 8 ms time constant, sampled at
10 ms intervals, and finally log-compressed to give an

http://www.dcs.shef.ac.uk/~martin/SpeechSeparationChallenge.htm


C
en

tr
e 

F
re

qu
en

cy
 (

H
z)

0.5 1 1.5 2
50

395

1246

3255

8000

Time (sec)

0.5 1 1.5 2 0.5 1 1.5 2

Fig. 4. (a) A ‘ratemap’ representation for the utterance ‘lay white with j 2 now’ (target, female) without added masker. (b) Ratemap for the same utterance
plus ‘lay green with e 7 soon’ (masker, male) with a TMR of 0 dB. (c) The ‘oracle’ segmentation: dark grey – the value in the mixture is close to that in the
target female speech; light grey – the mixture value is close to that in the male speech; white pixels – low energy regions.

878 N. Ma et al. / Speech Communication 49 (2007) 874–891
approximation to the auditory nerve firing rate – a ‘rate-
map’ (Brown and Cooke, 1994). Fig. 4 gives an example
of a ratemap representation,2 for (a) a female utterance
‘lay white with j 2 now’, and (b) the same utterance artifi-
cially mixed with a male utterance ‘lay green with e 7 soon’,
with a target-to-masker ratio (TMR) of 0 dB. Panel c
shows the ‘oracle’ segmentation, obtained by making use
of the pre-mix clean signals. Dark grey represents pixels
where the value in the mixture is closer to that in the target
female speech; light grey represents pixels where the mix-
ture value is closer to that in the male speech; white pixels
represent low energy regions. These representations are
called ‘missing data masks’.

The output of the auditory filterbank is also used to gen-
erate the correlograms. A running short-time autocorrela-
tion is computed on the output of each cochlear filter,
using a 30 ms Hann window. At a given time step t, the
autocorrelation A(i, t,s) for channel i with a time lag s is
given by

Aði; s; tÞ ¼
XK�1

k¼0

gði; t þ kÞwðkÞgði; t þ k � sÞwðk � sÞ ð2Þ

where g is the output of the Gammatone filterbank and w is
a local Hann window of width K time steps. Here K = 750
corresponding to a window width of 30 ms. The autocorre-
lation can be implemented using the efficient fast Fourier
transform (FFT), but has the disadvantage that longer
autocorrelation delays have attenuated correlation owing
to the narrowing of the effective window. We therefore
use a scaled form of Eq. (2) with a normalisation factor
to compensate for the effect:

Aði; s; tÞ ¼ 1

K � s

XK�1

k¼0

gði; t þ kÞwðkÞgði; t þ k � sÞwðk � sÞ

ð3Þ

The autocorrelation delay s is computed from 0 to L � 1
samples, where L = 375 corresponding a maximum delay
of 15 ms. This is appropriate for the current study, since
2 All examples used in this study are utterances from the GRID corpus
(Cooke et al., 2006). See Section 6 for detailed explanation.
the F0 of voiced speech in our test set does not fall below
66.7 Hz. We compute the correlograms with the same
frame shift as when computing the ratemap features
(10 ms), hence each one-dimensional (frequency) ratemap
frame has a corresponding two-dimensional (frequency
and autocorrelation delay) correlogram frame.

In the stage of spectral integration the dendritic struc-
ture is exploited in the correlogram domain to segregate
each frame of the mixture into spectral groups, such that
the partial spectra in each group is entirely due to a single
sound source in that frame. In the next stage local pitch
estimates are computed for each group and a multi-
pitch tracker links these pitch estimates to produce smooth
pitch tracks. Spectral groups are integrated temporally
based on these pitch tracks. The processes separate the
spectro-temporal representation of the acoustic mixture
into a set of coherent fragments, which are then employed
in the ‘speech fragment decoder’, together with clean
speech models, to perform automatic speech recognition.
3. Spectral integration based on the ACG

3.1. The dendritic ACG structure

For a periodic sound source all autocorrelation
channels respond to F0 (i.e. the energy reaches a peak
at the same frequency), forming vertical stems in the cor-
relogram centred on the delays corresponding to multiple
pitch periods. Meanwhile, because each filter channel also
actively responds to the harmonic component that is clos-
est to its centre frequency (CF), the filtered signal in each
channel tends to repeat itself at an interval of approxi-
mately 1/CF, giving a succession of peaks at approxi-
mately the frequency of the CF of each channel in the
correlogram. This produces symmetric tree-like structures
appearing at intervals of the pitch period in the correlo-
gram (dendritic structures). When only one harmonic
source is present, the stem of each dendritic structure
extends across the entire frequency range (see the left
panel in Fig. 5). The one with the shortest autocorrela-
tion delay is located at the position of the pitch period
of the sound source. When a competing sound source
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is also present, some ACG channels may be dominated
by the energy that has arisen from the competing source,
causing a gap in the stem of the dendritic structure cor-
responding to the target source’s pitch. If the competing
source is also periodic, channels dominated by its energy
may also form part of a dendritic structure on the delay
of its pitch period.

Fig. 5 compares two correlograms taken at the same
time frame of a female speech utterance in either a clean
condition (left panel) or when mixed with male speech at
a target-to-masker ratio of 0 dB (right panel). The sum-
mary ACGs are also shown correspondingly. The dendritic
structures which correspond to the F0 of sound sources are
marked using dashed lines. In the clean condition it is visu-
ally clear that the dendritic structure extends across the
entire frequency range except those ACG channels whose
centre frequency is much below the female speaker’s F0
(the bottom 5 channels). In the ACG on the right, the den-
dritic structures corresponding to the two competing
speech sources both fail to dominate the whole frequency
range. The one extending from 400 Hz to 1300 Hz on the
delay of 3.9 ms indicates that there exists a harmonic
source with an F0 of 256 Hz and the energy of the channels
within this range has originated from the female speaker
source. The rest of channels form part of another dendritic
structure on the delay of 9.0 ms which indicates a second
harmonic source with an F0 of 111 Hz (the male speaker).
This information can be used to separate the two sound
sources but is lost in the summary ACG.
3.2. Pre-grouping

ACG channels are pre-grouped before the dendritic
structures are extracted in the correlogram. Gammatone
filters have overlapping bandwidth and respond to the har-
monic with the highest energy. Therefore, ACG channels
which are dominated by the same harmonic share a very
similar pattern of periodicity (Shamma, 1985). Fig. 5 illus-
trates this phenomenon. For example, in the left panel
channels with a CF between 100 Hz and 395 Hz demon-
strate a very similar pattern of periodicity. This redun-
dancy can be exploited to effectively pre-group ACG
channels. We employ a cross-channel correlation metric
(Wang et al., 1999) where each ACG channel is correlated
with its adjacent channel as follows:

Cði; tÞ ¼ 1

L

XL�1

s¼0

bAði; s; tÞbAðiþ 1; s; tÞ ð4Þ

where L is the maximum autocorrelation delay andbAði; s; tÞ is the autocorrelation function of Eq. (3) after nor-
malisation to zero mean and unit variance. The normalisa-
tion ensures that the cross-channel correlation is sensitive
only to the pattern of periodicity of ACG channels, and
not to their energy. Channel i and i + 1 are grouped if
C(i, t) > h. We choose h = 0.95 to ensure that only ACG
channels with a highly similar pattern are grouped
together.

A ‘reduced ACG’ is obtained by summing pre-grouped
channels across frequency. Each set of grouped channels
is referred to as a ‘subband’ in the reduced ACG. The
pre-grouping significantly reduces computational cost as
the average number of ACG subbands is 39 compared to
64 ACG channels originally. Preliminary experiments also
show that the process can effectively reduce grouping errors
in the later stages.

3.3. Extracting the dendritic structure

The essential idea in this study is to make use of the
dendritic structure in the full correlogram for the separa-
tion of sound sources. The technique of extracting the
pitch-related structure used here is derived from work by
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Summerfield et al. (1990). For each subband in the reduced
ACG, a two-dimensional cosine operator is constructed,
which approximates the local shape of the dendritic struc-
ture around the subband. The operator consists of five
Gabor functions applied to adjacent reduced ACG sub-
bands, in which the middle Gabor function is aligned with
the subband it operates on (see Fig. 6c). The Gabor func-
tion is a sinusoid weighted by a Gaussian. If the sinusoid
is a cosine, the Gabor function is defined as

gaborcðx; T ; rÞ ¼ e�x2=2r2

cosð2px=T Þ ð5Þ

where T is the period of the sinusoid and r is the standard
deviation of the Gaussian. The frequency of each sinusoid
used by Summerfield et al. is the centre frequency of the
channel with which it is aligned, and the standard deviation
of the Gaussian is 1/CF. This works well with the synthes-
ised vowels in their study. However, speech signals are only
quasi-periodic and a filter channel responds to a frequency
component that is only an approximation to its CF. There-
fore the repeating frequency of the filtered signal in each
ACG channel is often off its CF depending on how close
the nearest harmonic is to the CF, and sometimes the shift
is significant. Therefore in our study we compute the actual
repeating period pi in each ACG subband i by locating the
first valley (vi) and the first and second peaks (p0i and p00i ) of
the autocorrelation function. The repeating period pi of
subband i is approximated as
pi ¼
2vi þ p0i þ p00i =2

3
ð6Þ

To further enhance the dendrite stem pi/2 is used as the
standard deviation in the Gabor function, a value roughly
half that used by Summerfield et al. These changes have
been very effective with realistic speech signals.

The autocorrelation function A(i,s, t) for each subband
i, with support of its four adjacent subbands (two above
and two below), is convolved with its corresponding two-
dimensional cosine operator after zero-padding, producing
an initial enhanced autocorrelation function Ac(i,s, t):

Acði; s; tÞ ¼
X2

m¼�2

XL

n¼1

Aðiþ m; sþ n; tÞgaborcðn; piþm; piþm=2Þ

ð7Þ

where L is the maximum autocorrelation delay. The central
part of the convolution is saved for each subband.3 When
the operator is aligned with the stem of a dendrite, the con-
volution gives a large product, and the product is smaller if
misaligned. Unfortunately, ripples will occur as the cosine
operator will also align with peaks other than the stem.
Following Summerfield et al. (1990), these ripples are
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Fig. 7. A correlogram of a mixture of male and female speech. The F0 of the male speaker is half of that of the female speaker. Subbands dominated by
the energy from different speaker sources are indicated using different shades of grey. The dendritic structure with the shortest delay caused by the female
source is marked using a dashed vertical line. Summary of all ACG subbands and those dominated by energy from the female and the male speaker source
are shown respectively on the right.
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removed using a sine operator constructed by substituting
the cosine function in Eq. (5) for a sine function:

gaborsðx; T ; rÞ ¼ e�x2=2r2

sinð2px=T Þ ð8Þ

The original correlogram is convolved with the sine opera-
tors to generate a function As(i,s, t) in the same manner as
in Eq. (7). At each point the results of the two convolutions
are squared and summed, producing a final autocorrelation
function Ae(i,s, t) with the peak in each subband located on
the stem of the dendritic structure:

Aeði; s; tÞ ¼ Acði; s; tÞ2 þ Asði; s; tÞ2 ð9Þ
In the enhanced correlogram, Ae, the stems of dendritic
structures are greatly emphasised, as illustrated in
Fig. 6b. The correlogram is computed for a frame in which
a female speaker source is present simultaneously with a
male speaker source. The two black vertical lines in the
enhanced correlogram (one around 3.9 ms and the other
around 9.0 ms) are the stems of two dendritic structures
which correspond to the two speaker sources. To reduce
computational cost, regions with autocorrelation delays
less than 2.5 ms (corresponding to regions with F0 higher
than 400 Hz outside the speech F0 range) are not
computed.

The largest peak in each subband in the enhanced corre-
logram is selected and a histogram with a bin width equiv-
alent to 3 Hz is computed over these peak positions. The
two highest-counting bins indicate the locations of two
possible dendrites corresponding to two harmonic sources.
A bin is ignored if its count is less than an empirically
determined threshold (5 in this study), therefore in each
frame 2, 1 or 0 dendritic structures are found.4
4 This technique can be extended to handle more sources provided the
maximum number of simultaneous periodic sources at each frame is
known.
3.4. Spectral grouping

Once the dendritic structures are extracted from the cor-
relogram, the frequency bands can be divided into partial
spectra: the ACG subbands with their highest peak at the
same position in the enhanced ACG are grouped together.
Each group of subbands therefore form an extracted den-
dritic structure. The number of simultaneous spectral
groups depends on the number of dendrites identified. If
no such structures appear in the correlogram (e.g. for an
unvoiced speech frame), the system skips the frame and
no spectral group is generated.

After this grouping it is still possible that some ACG
subbands remain isolated. Although this is rare, it could
happen because a subband may respond to a different
dendrite from the one formed by its adjacent subbands.
Therefore the subband will not be emphasised in the
enhanced ACG. When only one spectral group is formed,
an isolated subband is assigned to the group only if it
matches the periodicity of the subband within a threshold
of 5% in the original ACG. When two spectral groups
are formed, an isolated subband is assigned to the group
which better matches its periodicity within the threshold
of 5%.

This spectral integration technique has the ability to
deal with the situation where the fundamentals of two com-
peting speakers are correlated. Fig. 7 shows a correlogram
computed for a frame in which a male speaker source with
a pitch period of 7.8 ms is present simultaneously with a
female speaker source with a pitch period approximately
half of that (3.9 ms). Since the subbands dominated by
the energy from the female source have peaks at an interval
of 3.9 ms in the ACG, all the subbands have peaks at the
delay of 7.8 ms, causing the largest peak in the summary
ACG to occur at that delay. When the summary ACG is
inspected, it is difficult to group subbands as they all
respond to the largest peak. However, the female speech
subbands will form a partial dendritic structure (marked
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using a dashed vertical line). The white gaps in its stem
clearly indicate that subbands within these gaps do not
belong to the female source as otherwise the dendrite
would extend across the entire frequency range. Those sub-
bands are actually dominated by the energy from the male
speaker source. By exploiting the dendritic structure, a
more reliable separation of sources with correlated funda-
mentals can be performed. Fig. 7 also shows the summary
of ACG subbands dominated by female and male speaker
sources, respectively. The position of the largest peak in
each summary clearly indicates the pitch period of each
source.

4. Coherent fragment generation

4.1. Generating harmonic fragments

After the spectral integration in the correlogram
domain, spectral groups that are likely to have been pro-
duced by the same source need to be linked together across
time to form coherent spectro-temporal fragments. In each
frame we refer to the source that dominates more fre-
quency channels as the ‘stronger’ source. If the stronger
source were constant from frame to frame, the problem
of temporal integration would be solved by simply combin-
ing the spectral groups associated with the greater number
of channels in each frame. However, due to the dynamic
aspects of speech, the dominating source will change as
the relative energy of the two sources changes over time.
Although a speaker’s pitch varies over a considerable
range, and pitches from simultaneous speakers may over-
lap in time, within a short period (e.g. 100 ms) the pitch
track produced by each speaker tends to be smooth and
continuous. We therefore use this cue to generate harmonic
fragments.

4.1.1. Multiple pitch tracking

The original ACG channels grouped in the spectral inte-
gration stage are summed and the largest peak in each sum-
mary is selected as its local pitch estimate. As shown in
Fig. 6e and f, it is easier to locate the largest peak after
spectral integration. The peak that corresponds to the pitch
period of each source is very clear in each summary, while
locating them in the summary of all ACG channels (panel
d) is a more challenging problem. For the stronger source
the largest peak is selected as its pitch estimate. For the
weaker source (if one exists) up to three peaks are selected
as its pitch candidates. Although this is rare, there are
situations where the position of the largest peak in the sum-
mary of the weaker source does not correspond to its pitch
period, due to lack of harmonic energy or errors made in
the spectral integration stage. In this case the second and
third largest peaks may be just slightly lower than the larg-
est peak and it is very likely that the position of one of
them represents the pitch period. Keeping three pitch esti-
mates for the weaker source has proved beneficial to reduc-
ing this type of error. The pitch estimates are then passed
to a multi-pitch tracker to form smooth pitch track seg-
ments. The problem is to find a frame-to-frame match for
each pitch estimate. Here we compare two different
methods.

I. Model-based multi-pitch tracker

Coy and Barker (2006) proposed a model-based pitch
tracker which models the pitch of each source as a hidden
Markov model (HMM) with one voiced state and one
unvoiced state. When in the voiced state the models output
observations that are dependent on the pitch of the
previous observation. Gender dependent models of pitch
dynamics are trained from clean speech by analysing the
pitch of the utterances in the Aurora 2 training set (Hirsch
and Pearce, 2000). In order to track two sources in a pitch
space which contains several candidates, two models are
run in parallel along with a noise model to account for
the observations not generated by the pitch models. The
Viterbi algorithm is employed to return the pitch track seg-
ments that both models are most likely to generate concur-
rently. In this study, the model-based tracker is employed
in a manner that does not make assumptions about the
genders of the speech sources that were made in (Ma
et al., 2006; Barker et al., 2006). In those papers the two
simultaneous speakers were always assumed to be different
genders and therefore two HMMs for different genders
were used. This manner of application is inappropriate as
the genders of concurrent speakers are not known. There-
fore in this study three different model combinations
(male/male, female/female and male/female) are compared
and the hypothesis with the highest overall score (obtained
using the Viterbi algorithm) is selected.

II. Rule-based multi-pitch tracker

McAulay and Quatieri (1986) proposed a simple ‘birth–
death’ process to track rapid movements in spectral peaks.
This method can be adapted to link pitch estimates over
time to produce smooth pitch track segments. A match is
attempted for a pitch estimate pt in frame t. If a pitch esti-
mate pt+1 in frame t + 1 is the closest match to pt within a
‘matching-interval’ D and has no better match to the
remaining unmatched pitch estimates in frame t, then it is
adjoined to the pitch track associated with pt. A new pitch
track is ‘born’ if no pitch track is associated with pt and
both pt and pt+1 are added into the new track. Analysis
of F0 trajectories using clean speech signals show that in
90% of the voiced frames the frame-to-frame (10 ms frame
shift) pitch changes do not exceed 5% of the pitch of the
preceding frame. Therefore, the matching-interval D used
here is 5% of the pitch estimate the track is trying to match.
This rule-based process is repeated until the last frame.

An example of the output of the rule-based multi-pitch
tracker is shown in Fig. 10. Panel c shows the pitch esti-
mates for a female(target)/male(masker) speech mixture.
Dots represent pitch estimates of the stronger source in
each frame and crosses represent those of the weaker
source. The smooth pitch track segments are displayed as
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circles in panel d, with ground-truth pitch tracks5 of the
pre-mix clean signals displayed as solid lines in the back-
ground. The concurrent pitch track segments produced
show a close match to the ground-truth pitch estimates.
The model-based tracker gives very similar output.
time

time

F0F0

time

time

Local pitch estimates Pitch track segments

Fig. 8. In anticlockwise sequence: Upper-left panel: regions with different
shades of grey represent different spectral groups in each frame. Lower-left
panel: dots are local pitch estimates for the spectral groups. Lower-right
panel: two pitch track segments are produced by linking the local pitch
estimates. Upper-right panel: two spectro-temporal fragments are formed
corresponding to the two pitch track segments.
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Fig. 9. Top panel: two intersecting pitch tracks. Middle panel: the
ambiguous pitch tracks can be represented as four pitch track segments.
Bottom panel: four corresponding spectro-temporal fragments can be
formed allowing a later decision on fragment combination (e.g. {AD,BC}
or {AC,BD}) during the recognition process.
4.1.2. Temporal integration
Spectral groups produced in the spectral integration

stage are combined across time if their pitch estimates are
linked together in the same pitch track segment, producing
spectro-temporal fragments. Each fragment corresponds to
one pitch track segment. This process is illustrated in
Fig. 8. The upper-left panel shows integrated spectral
groups for five frames. Regions with different shades of
grey represent different spectral groups in each frame. Pitch
estimates for each group in each frame are shown in the
lower-left panel. The lower-right panel shows two smooth
pitch track segments that are formed. The two correspond-
ing spectro-temporal fragments are shown in the upper-
right panel.

Fig. 10, panel e shows the fragments produced corre-
sponding to the pitch tracks (Fig. 10, panel d) in the exam-
ple of the female(target)/male(masker) speech mixture.
Each fragment is represented using a different shade of
grey. It demonstrates a close match between the generated
fragments and the ‘oracle’ segmentation (panel b).

This temporal integration step also has the potential to
deal with ambiguous pitch tracks caused by a similar pitch
range from different sound sources. Consider the situation
where two pitch tracks intersect, as illustrated at the top
panel in Fig. 9. The ambiguous pitch tracks will be repre-
sented as four pitch track segments by the system and
hence four corresponding spectro-temporal fragments can
be formed (the middle and bottom panel in Fig. 9). This
allows the decision on combining fragments (e.g. {AD, BC}
or {AC,BD}) to be deferred to the recognition stage.
4.2. Adding inharmonic fragments

Unvoiced speech lacks periodicity and thus does not
produce dendritic structures in the correlogram domain.
The proposed technique which exploits the periodicity
cue skips unvoiced regions and as a result spectro-temporal
pixels corresponding to these regions are missing (e.g. the
white region at about 1.1 s in Fig. 10e). The unvoiced
regions of the speech signal are important in distinguishing
words which differ only with respect to their unvoiced con-
sonants (e.g. /pi:/ and /ti:/). Therefore it is necessary to
include some mechanism that can form coherent fragments
for these unvoiced regions.

Hu (2006) gives a systematic study of unvoiced speech
segregation. In the current work, as the focus is on separa-
tion of periodic sounds, we employ a simple inharmonic
5 The pitch analysis is based on the autocorrelation method in the
‘Praat’ program (www.praat.org).
fragment generation technique reported in (Coy and Bar-
ker, 2005). Harmonic regions are first identified in the ‘rate-
map’ representation of the mixture using the techniques
described in Section 4.1. The ‘ratemap’ of the remaining
inharmonic regions is then treated as an image and pro-
cessed by the ‘watershed algorithm’ (Gonzales et al.,
2004). The watershed algorithm is a standard region-based
image segmentation approach. Imagine the process of fall-
ing rain flooding a bounded landscape. The landscape will
fill up with water starting at local minima, forming several
water domains. As the water level rises, water from differ-
ent domains meets along boundaries (watersheds). As a
result the landscape is divided into regions separated by
these watersheds. The technique can be applied to segre-
gate inharmonic sources under the assumption that inhar-
monic sources generally concentrate their energy in local
spectro-temporal regions, and that these concentrations
of energy form resolvable maxima in the spectro-temporal
domain. The inharmonic fragments produced using this

http://www.praat.org


Fig. 10. (a) A ‘ratemap’ representation of the mixture of ‘lay white with j 2 now’ (target, female) plus ‘lay green with e 7 soon’ (masker, male)
TMR = 0 dB. (b) The ‘oracle’ segmentation. Dark grey: pixels where the value in the mixture is close to that in the female speech; light grey: the mixture
value is close to that in the male speech; white: low energy regions. (c) Pitch estimates for each source segmentation. Dots represent the pitch of the
stronger source in each frame and crosses represent the weaker source at that frame. (d) Circles are pitch tracks produced by the multi-pitch tracking
algorithm; solid lines are the ground-truth pitch tracks. (e) Fragments after temporal integration based on the smooth pitch tracks. (f) Combining
inharmonic fragments.
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technique are pooled together with the harmonic fragment
as illustrated, for example, in Fig. 10f.

5. Fragment-driven speech recognition

Given the set of source fragments produced by the
processes described in Section 4, speech recognition can
be performed using the speech fragment decoding (SFD)
technique. In brief, the technique works by considering
all possible fragment labellings and all possible word
sequences. Each fragment may be variously labelled as
either being a fragment of the target (foreground) or of
the masker (background). A hypothesised set of fragment
labels defines a unique target/masker segmentation that
can be represented by a ‘missing data mask’, mtf – a spec-
tro-temporal map of binary values indicating which spec-
tro-temporal elements are considered to be dominated by
the target, and which are considered to be masked by the
competing sources. Given such a mask, the decoder can
use missing data techniques (Cooke et al., 2001) to evaluate
the likelihood of each hypothesised word sequence. A
Viterbi-like algorithm is then used to find the most likely
combination of labelling and word-sequence. A full
account of SFD theory is provided in (Barker et al.,
2005), and for a detailed description of the application of
the technique to simultaneous speech, see Coy and Barker
(2007).

One weakness of the SFD technique, in the form
described above, is that it produces ‘hard’ segmentations,
i.e. segmentation in which each spectro-temporal element
is marked categorically as either foreground or back-
ground. If the early processing has incorrectly grouped
elements of the foreground and background into a single
fragment, then there will be incorrect assignments in the
missing data mask that cannot be recovered in later pro-
cessing. These problems can be mitigated by using missing
data techniques that use ‘soft masks’ containing a value
between 0 and 1 to express a degree of belief that the
element is either foreground or background (Barker
et al., 2000). Such masks can be used in the SFD frame-
work by introducing a spectro-temporal map to express
the confidence that the spectro-temporal element belongs
to the fragment to which it has been assigned. This confi-
dence map, ctf, uses value in the range 0.5 (low confidence)
to 1.0 (high confidence). Given a confidence map, ctf, each
hypothesised fragment labelling can be converted into a
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soft missing data mask, mtf, by setting mtf to be ctf for time–
frequency points that lie within foreground fragments, and
to be 1 � ctf for time–frequency points within missing frag-
ments. A fuller explanation of the soft SFD technique can
be found in (Coy and Barker, 2007).

In harmonic regions, the confidence map is based on a
measure of the similarity between a local periodicity com-
puted at each spectro-temporal point, and a global period-
icity computed across all the points within each frame in
the fragment as a whole. For each spectro-temporal point
the difference between its periodicity and the global period-
icity of the fragment measured at that time is computed in
Hertz, referred to as x. A sigmoid function is then
employed to derive a score between 0.5 and 1:

f ðxÞ ¼ 1

1þ expð�aðx� bÞÞ ð10Þ

where a is the sigmoid slope, and b is the sigmoid centre.
Appropriate values for these parameters were determined
via a series of tuning experiments using a small develop-
ment data set available in the GRID corpus (see Section
6). It was found that the values of these parameters are
not critical to the overall performance and a = 0.6 and
b = �10 were used in this study.

Confidence scores for the inharmonic fragments in our
study are all set to 1. These confidence scores were used
in our coherence evaluation experiment and also employed
(as ‘soft’ masks) along with generated fragments in the
SFD system.
6. Experiments and discussion

Experiments were performed in the context of the Inter-
speech 2006 ‘Speech Separation Challenge’ using simulta-
neous speech data constructed from the GRID corpus
(Cooke et al., 2006). The GRID corpus consists of utter-
ances spoken by 34 native English speakers, including 18
male speakers and 16 female speakers. The utterances are
short sentences of the form hcommand:4i hcolour:4i hprep-
osition:4i hletter:25i hnumber:10i hadverb:4i, as indicated
in Table 1, e.g. ‘place white at L 3 now’. The test set con-
sists of 600 pairs of end-pointed utterances which have
been artificially added at a range of target-to-masker ratios.
All the mixtures are single-channel signals. In the test set
there are 200 pairs in which target and masker are the same
speaker; 200 pairs of the same gender (but different speak-
ers); and 200 pairs of different genders. The ‘colour’ for the
Table 1
Structures of the sentences in the GRID corpus

Verb Colour Preposition Letter Digit Adverb

bin blue at a–z 1–9 again
lay green by (no ‘w’) and zero now
place red on please
set white with soon
target utterance is always ‘white’, while the ‘colour’ of the
masking utterance is never ‘white’.

Three sets of coherent fragments were evaluated and
compared on the same task: ‘Fragments-Coy’ are frag-
ments generated by the system reported in (Coy and
Barker, 2005); ‘Fragments-model’ and ‘Fragments-rule’
are coherent fragments generated by the proposed system
employing the model-based pitch tracker and the rule-
based pitch tracker, respectively.

6.1. Experiment I: Coherence measuring

The fragments are ultimately employed by the speech
fragment decoding ASR system and can be evaluated in
terms of the recognition performance achieved. However,
in addition to ASR performance, a natural criterion for
evaluating the quality of fragments is to measure how clo-
sely they correspond to the ‘oracle’ segmentation, obtained
with the access to the pre-mix clean signals (see Fig. 10b for
an example). To do this we derive the ‘coherence’ of a frag-
ment as follows. If each pixel in a fragment is associated
with a weight, the coherence of the fragment is

100�maxð
P

w1;
P

w2ÞP
w1 þ

P
w2

ð11Þ

where w1 are a set of weights for pixels in the fragment
overlapping one source and w2 are a set of weights for
those which overlap the other source. The fragments were
compared with the ‘oracle’ segmentation to identify the
pixels overlapping each source. When the decision of each
pixel being present or missing in the fragment is discrete (1
or 0), these weights are all simply ‘1’. In this study we use
the confidence scores described in Section 5 as the weights.
This choice of weight has the desirable effect that incorrect
pixel assignments in regions of low confidence cause less
reduction in coherence than incorrect assignments in re-
gions of high confidence. Note that regardless of the confi-
dence score, some spectro-temporal pixels may be more
important for speech recognition than others. For instance,
pixels with high energy representing vowel regions may be
of greater value than low energy pixels. It is less critical that
the latter pixels are correctly assigned, and ideally, the
coherence score should reflect this. In the current measure-
ment, in the absence of a detailed model of spectro-tempo-
ral pixel importance, we make the simple assumption that
each pixel has equal importance.

A histogram with a bin width of 10% coherence (hence 5
bins from coherence 50–100%) is computed over the set of
fragment coherence values. Both the harmonic and inhar-
monic fragments are included in the experiment. The frag-
ments are different in size. As smaller fragments are less
likely to overlap different sources, their coherence is inher-
ently higher. For example, at one extreme, a single-pixel
fragment must always have a coherence of 100%. Although
we can get higher coherence scores by generating more
small fragments, this would be at the expense of reducing
the degree of constraint that the primitive grouping
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processes are providing, i.e. a large number of small
fragments produces a much greater set of possible fore-
ground/background segmentation hypotheses. Further-
more, the increased hypothesis space leads to an increase
in decoding time. This increase can be quite dramatic, espe-
cially if fragments are over-segmented across the frequency
axis (see Barker et al., 2005). Therefore the aim here is to
produce large and highly coherent fragments. With these
considerations, in the coherence analysis, we reduce the
effect of the high coherence contributed by small frag-
ments, by weighting each fragment’s coherence value by
its size when computing the histogram, i.e., a fragment is
counted S times if its size is S pixels. The histograms for
the three sets of fragments in all mixture conditions at a
TMR of �9 dB are shown and compared in the top three
panels of Fig. 11. They have been normalised by dividing
the count in each bin by the total number of pixels.

The proposed system with either the model-based pitch
tracker or the rule-based pitch tracker produces fragments
with very similar quality in terms of coherence. When com-
pared with the fragments generated by Coy and Barker’s
system, proportionally more fragments with high coher-
ence are produced by the proposed system. This is proba-
bly because pitch estimates of each source are computed
after the sources are separated. The pitch estimates are thus
more reliable and multi-pitch tracking becomes a much less
challenging problem. In Coy and Barker’s system, how-
ever, pitch candidates are formed from the summary of
all ACG channels. The multi-pitch tracker possibly finds
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Fig. 11. Coherence measuring results for the three sets of fragments. To
(TMR = �9 dB). Each fragment’s contribution is weighted by its size when co
size of fragments in each corresponding histogram bin.
more incorrect tracks through the noisier pitch data. Fur-
thermore, unlike the proposed system where spectral inte-
gration is performed before temporal integration, in Coy
and Barker’s system spectral integration relies on the less
reliable pitch tracks. Therefore it is more likely to produce
fragments with low coherence. Within each system, the best
results were achieved in the ‘different gender’ condition,
presumably due to the larger difference in the average F0s
of the sources.

To examine the impact of fragment sizes on the
fragment coherence, we also measured the average size of
fragments for each coherence histogram bin, shown in
the bottom three panels of Fig. 11. Again the two sets of
fragments generated by the proposed system give a very
similar pattern. In the coherence bins higher than 80% their
average fragment size is larger than that of Coy and Bar-
ker’s system, although in the low coherence bins it is smal-
ler. This is, however, acceptable as there are proportionally
less fragments with low coherence in the proposed system.

6.2. Experiment II: Automatic speech recognition

The technique proposed here was also employing within
the speech fragment decoding system reported in (Coy and
Barker, 2007), and using the experimental set-up developed
in (Barker et al., 2006) for the Interspeech 2006 Speech
Separation Challenge. The task is to recognise the letter
and digit spoken by the target speaker who says ‘white’.
The recognition accuracy of these two keywords were
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averaged for each target utterance. The recogniser
employed a grammar representing all allowable target
utterances in which the colour spoken is ‘white’.

In the SFD system a 64-channel log-compressed ‘rate-
map’ representation was employed (see Section 2). The
128-dimensional feature vector consisted of 64-dimension
ratemap features plus their delta features. Each word was
modelled using a speaker dependent word-level HMM in
a simple left-to-right model topology, with seven diago-
nal-covariance Gaussian mixture components per state.
The number of HMM states for each word was decided
based on two states per phoneme. They were trained using
500 utterances from each of the 34 speakers. The SFD sys-
tem employs the ‘soft’ speech fragment decoding technique
(Coy and Barker, 2007).

The baseline system was a conventional ASR system
employing 39-dimensional MFCC features. A single set
of speaker independent HMMs with an identical model
topology employed 32 mixtures per state. They were
trained on standard 13 MFCC features along with their
deltas and accelerations.

Following Barker et al. (2006), in all experiments, it is
assumed that the target speaker is one of the speakers
encountered in the training set, but two different configura-
tions were employed: (i) ‘known speaker’ – the utterance is
decoded using the set of HMMs corresponding to the
target speaker, (ii) ‘unknown speaker’ – the utterance is
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Fig. 12. Recognition accuracy performance of the SFD system using ‘Fragm
fragments (both harmonic and inharmonic fragments) with soft masks, ‘Al
frags + soft masks’: harmonic fragments only with soft masks.
decoded using HMMs corresponding to each of the 34
speakers and the overall best scoring hypothesis is selected.

We first examine the effect of using soft masks and
inharmonic fragments on the recognition performance.
The SFD systems with soft masks and inharmonic frag-
ments are then compared to the baseline system and a
SFD system using ‘Fragments-Coy’ with an identical rec-
ognition setup.

6.2.1. Effects of soft masks and inharmonic fragments

As discussed in Section 5, an incorrect decision for a
spectro-temporal pixel being present in a fragment cannot
be recovered when using discrete masks. This also affects
the decoding process in automatic speech recognition as
the recogniser will try to match speech models with unreli-
able acoustic evidence. Therefore we compared the recogni-
tion performance using the same set of fragments with
discrete masks and soft masks. The soft masks described
in Section 5 were employed. The discrete masks were pro-
duced by simply replacing all the pixels in the soft masks
with ‘1’ if their values are greater than 0.5, and with ‘0’
otherwise. The effect of including inharmonic fragments
(Section 4.2) on the recognition performance was also
examined. Fig. 12 shows recognition results of the SFD
system using the set of ‘Fragments-rule’ in the ‘known
speaker’ configuration. ‘All frags + soft masks’ represents
that both harmonic and inharmonic fragments were used,
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combined with soft masks. ‘All frags + discrete masks’ rep-
resents results using all fragments but with discrete masks.
‘Harm frags + soft masks’ is the result with harmonic frag-
ments only using soft masks.

Results show that the soft masks had a considerable
effect on the recognition performance. With soft masks
the system significantly outperformed that with discrete
masks across all conditions. As shown in the coherence
measuring experiment many fragments have low coher-
ence. Some pixels are unreliable and by assigning a confi-
dence score to each pixel the speech fragment decoder is
able to weight the pixel’s contribution to the decision.
Fig. 12 also shows that in the ‘same talker’ condition the
SFD system using soft masks did not give any recognition
accuracy improvement. One possible reason is that in this
condition, as shown in Fig. 11, there are more fragments
with low coherence and even with soft masks the system
could not recover from the errors. Another reason could
be that more ‘important’ pixels were incorrectly assigned
in this condition.

Inharmonic fragments also have some impact on the
performance in this ‘letter + digit’ recognition task as
many letters are only distinguished by the presence/absence
of unvoiced consonants, e.g. letter ‘p’, ‘t’ and ‘e’.

6.2.2. Comparison of different fragment sets
All the recognition results in this section were obtained

with the ‘soft’ SFD system using both harmonic and inhar-
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Fig. 13. Keyword recognition results of the proposed system with the model-ba
and Barker, 2005), in both ‘known speaker’ and ‘unknown speaker’ configura
monic fragments. Fig. 13 shows keyword recognition
results of the system using the three sets of coherent frag-
ments discussed before: ‘Fragments-Coy’, ‘Fragments-
model’ and ‘Fragments-rule’, in both ‘known speaker’
and ‘unknown speaker’ configurations. The ‘unknown
speaker’ results are repeated in Table 2 (model-based pitch
tracker) and Table 3 (rule-based pitch tracker). Note
the ‘known-model’ and ‘unknown-model’ results are
essentially the same as those published in (Barker et al.,
2006), with minor differences owing to a correction made
in the application of the model-based tracker (see Section
4.1.1).

The SFD systems clearly outperform the baseline across
all TMRs and across all mixture conditions. They are also
able to exploit knowledge of the target speaker identity.
The recognition accuracy is significantly higher when the
speaker identity is available. Prior knowledge of the
speaker identity only fails to confer an advantage in
the ‘same talker’ condition as one would expect. Recogni-
tion accuracy results using fragments generated by the pro-
posed system with different pitch trackers are quite similar.
This is consistent with the results in the coherence measur-
ing experiment that with different tracks the system
produced fragments with similar coherence. The results
are significantly better than those produced by Coy and
Barker’s system, especially at low TMRs. The biggest
performance gain was achieved in the ‘different gender’
condition. This occurs because in this condition the two
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Table 2
Keyword recognition correct percentage (%) for unknown speaker
configuration using the model-based pitch tracker

TMR (dB)

Condition �9 �6 �3 0 3 6

Overall 56.08 57.08 45.92 45.42 69.75 80.42
ST 46.61 44.57 34.62 35.07 55.43 74.43
SG 57.82 62.85 53.63 51.96 76.82 84.08
DG 65.00 65.75 51.50 51.00 79.25 83.75

Table 3
Keyword recognition correct percentage (%) for unknown speaker
configuration using the rule-based pitch tracker

TMR (dB)

Condition �9 �6 �3 0 3 6

Overall 57.58 57.17 45.17 44.75 69.00 80.67
ST 46.61 45.02 37.10 34.62 54.98 74.43
SG 61.73 63.13 49.16 53.07 77.65 83.52
DG 66.00 65.25 50.50 48.50 76.75 85.00
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sources are more likely to have correlated fundamentals,
which is difficult to solve purely based on the summary
correlogram as discussed in Section 1. The performance
improvement in the ‘same talker’ condition is much less
than in the other conditions. This is partially because the
target speech and the masker speech are spoken by the
same person. With very close F0s it is more likely that
the pitch-based fragment generation process will group
together acoustic evidence from different sources. At low
TMRs, same-speaker performance gains may also be
reduced because energetic masking is more effective in a
same-speaker utterance than in an utterance of different
speakers. Many target utterances will be so completely
masked at �9 dB that there will be little any system can
do to achieve more than chance performance. This effec-
tively reduces the size of the set of utterances on which
gains can realistically be made.

As well as examining the ASR performance, it is also
instructive to examine the recognition errors. An interest-
ing question is whether the decoder is making errors
because it is incorrectly transcribing the target (due to
energetic masking), or because it is reporting the masker
instead of the target (i.e. a failure to ‘attend’ to the correct
source). To examine this question the recognition output
was also scored against the correct transcription for the
Table 4
Keyword recognition correct percentage (%) of decoding the target and
the masking speech, respectively. TMR = 0 dB

Known speaker Unknown speaker

Condition Target Masking Sum Target Masking Sum

ST 34.62 47.06 81.68 34.62 47.06 81.68
SG 77.93 3.07 81.00 53.07 31.01 84.08
DG 82.75 1.25 84.00 48.50 35.25 83.75
masker utterance. Table 4 shows the recognition accuracy
results at a TMR of 0 dB when scoring against the target
speech (as presented in Fig. 13) and when scoring against
the masking speech. With the known speaker configura-
tion, the decoder correctly recognised most of the target
speech words, without getting confused by the masking
speech, in both the ‘same gender’ and ‘different gender’
cases. For the artificial ‘same talker’ condition, however,
the reduced performance seems to be explained entirely
by the decoder outputting words from the masking utter-
ance. When the simultaneous speech is spoken by the same
talker, knowing the identity of the target speaker does not
discriminate between fragments of the target and the
masker. In fact, at 0 dB there are neither level cues nor
speaker identity cues with which to identify the target.
For example, when the target speaker says ‘a’ and the
masker (the same speaker) says ‘b’ concurrently, the two
words equally match the known-target speech models
and whether ‘a’ or ‘b’ is output may be arbitrary.

In the unknown speaker configuration the decoder
exhibits a performance minimum in the range 0 dB to
�3 dB. At these TMR levels the decoder is unable to use
level difference cues to distinguish fragments of the target
and the masker. As the TMR falls below �3 dB the re-
introduction of a level difference between the sources more
than compensate for the increased energetic masking and
performance initially increases again – at least down to
�9 dB.

Although, as discussed earlier, source and target frag-
ments are particularly confusable in the same talker case,
the performance dip at 0 dB is also present in the same
gender, and even the different gender conditions. It appears
that the decoder requires level differences to reliably follow
the correct source, and is unable to use speaker differences
alone. This is surprising considering the large acoustic dif-
ferences that exist between the speaker dependent models.
Note however that at 0 dB, in the absence of level cues,
the only cue for distinguishing target and masker is that
the target is the person that says ‘white’. So in effect, the
system has to solve a speaker identification problem using
a single word in the presence of substantial energetic mask-
ing. If the word ‘white’ is not heavily masked it will only fit
well to one speaker and decoding paths through that
speaker model will be the best overall – hence, the target
will most often be correctly identified. However, in
utterances where the word ‘white’ is heavily masked, the
fragments masking the word ‘white’ will be labelled as
‘background’ and for each speaker there will be a similarly
scoring best path. This case is analogous to the word
‘white’ not being heard, so the cue to the target identity
is lost and all speakers become potential targets. In
this case, whether the target or the masker is reported
may rely on arbitrary factors. In particular, the winning
score will depend largely on whether it was the target or
the masker who produced an utterance most typical of
their average speech patterns, hence leading to the highest
likelihood.
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7. Conclusions and research directions

7.1. Summary of method

This paper has described a novel approach which
exploits the dendritic structure in the correlogram to iden-
tify coherent fragments for automatic speech recognition in
monaural acoustic mixtures. The use of the full correlo-
gram leads to a more reliable spectral separation and
multiple pitch tracking, therefore producing more coherent
fragments. The fragments are employed by a speech
fragment decoding system which employs missing data
techniques and clean speech models to simultaneously
search for the set of fragments and the best sequence of
words. The recognition accuracy is significantly higher
than that of conventional systems.

7.2. Directions for further research

The current system only exploits dendritic structures
in a single correlogram (one time frame) for spectral
integration. When the decision of assigning a spectral
component to a sound source is arbitrary in a frame, it
may become more obvious in the next few frames. The cor-
relation between correlograms across time will be
examined.

The data set used in this study is artificially mixed simul-
taneous speech, which therefore lacks some realistic factors
(e.g. reverberation, Lombard effect). However, experiments
(Cooke et al., submitted for publication) show that this
task is challenging even for human listeners. Having the
data set artificially made enables us to conduct control
experiments. In future we will investigate the robustness
of this system to reverberation.

Future work will also aim to develop a statistical model
of primitive sequential grouping that will weight segmenta-
tion hypotheses according to continuity of primitive prop-
erties across fragments through time. e.g. the system fails to
make use of the pitch continuity across fragments, which is
a useful cue for fragment grouping, specially in the different
gender condition.
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