
PMA1050/6853
Discrete Foundations

2004–5

Motivation

Computer systems are used

• in aircraft systems (navigation, stability, etc.)

• for air traffic control

• for the control of railway signals and junctions

• in medical systems

• in nuclear power stations

Conclusion

¶

µ

³

´

Software must work correctly as
soon as it is installed, especially in
safety–critical systems.

But in practice
º

¹

·

¸

Software rarely works correctly the
first time it is used; reliability is
only achieved after a long period of
service.

How can the software development process be im-
proved ?

• The specification should be written in a formal
mathematical language.

• Quality assurance can be improved by the use of
mathematical logic to verify that the system will
perform as the specification requires.

1. Formal specification

• Natural language (English, French, etc.) can be
ambiguous:

A number less than two is less than one.

Is any number a perfect square?

but mathematics is unambiguous.

• Natural language can hide logical flaws:

I can’t solve quadratic equations when I am
sober; so if I’m drunk I can.

but mathematical logic reveals these flaws.

2. Mathematical verification

• A computer program cannot be tested exhaus-
tively

• If we can write a formal specification in logic of
what the program should do, we may be able to
prove mathematically that our system performs
to the specification.

Example : A pair of traffic lights :
The north-south and east-west lights must never be

simultaneously green, and logic can be used to prove
that the specified program satisfies this and other con-
ditions.

But we still have to write the software in a language
that will not be mathematical logic.

We then test the software against the mathematical
logic.

Summary :

• Many systems are necessarily complex, and must
interact with ill–understood environments, but
their performance is critical for human safety.

We therefore need:

• The ability to model systems and their interac-
tions, such that the final system operates in the
required manner.

• A systematic and logical approach for enquiry
that will enable general statements about sys-
tems to be made and proved.

• A notation that is universal, compact and easily
understood for describing the behaviour of these
systems.

It is these considerations, driven by the need for
certainty in safety-critical systems, which make some
areas of computer science very formal and abstract,
much like pure mathematics; sometimes even more
so.

This course

• introduces the notation and ideas of Set The-
ory,

• studies Mathematical Proof,

1

• introduces Propositional Logic — the most
basic type of formal reasoning, and

• introduces the theory of Formal Languages
and Abstract Automata.

Course Contents

• Motivation

• Set Theory

• Functions

• Proof

• Propositional Logic

• Finite State Machines

• Languages and Grammars

Set Theory

Set theory provides an infrastructure that allows
both description and reasoning about systems and
their behaviour.

It is

• simple

• concise

• unambiguous

• accurate

Why do we need to know about sets ?

• A computer program may be thought of as a
function that maps one set of data (the input)
to another (the output).

• The use, understanding and construction of for-
mal specifications requires the use of sets.

• The concepts that underlie relational databases
involve set theory.

• Set theory is closely connected with proposi-
tional logic and Boolean algebra.

It is often necessary to write programs involving
data other than numbers or geometric figures, and to
prove statements about these entities.

• When considering the safety of a set of traffic
lights, it is necessary to prove statements about
the colours red, amber and green.

• A word in a word processor is represented by a
string of characters. The manipulation of words
therefore reduces to the manipulation of strings
of characters.

Sets, and strings, are data types of many program-
ming languages.

Definitions :

1. A set is a well-defined collection of objects.

2. The objects of the set are called its elements.

Notation for the specification of sets :

1. Specify a set by its members

A = {a, 2, red}.

2. Specify a set by the properties that define its
elements (comprehension)

B = {x : x is an integer, x > 0}.

The colon (sometimes | is used) is read as ‘such
that’.

When defining sets by listing their elements:

1. order is irrelevant. Thus

{a, 2, red} and {2, a, red}

are the same set.

2. there is no concept of multiple occurrence of el-
ements in a set. Thus

{2, a, red, 2, 2, a, 2} and {a, 2, red}

are the same set.

We write a ∈ A to denote that a is an element of
the set A.

The only meaningful question we can ask is about
set membership.

Some standard sets

Some commonly used sets are

1. B = {true, false} is the set of Boolean values.

2

2. N = {0, 1, 2, 3, . . . } is the set of natural numbers.

3. Z = {0,±1,±2,±3, . . . } is the set of integers.

4. R is the set of all real numbers.

The sets N,Z and R are infinite.

Sets specified by comprehension.

1.

{x : x is an integer greater than 2} = {x ∈ Z : x > 2}
= {3, 4, 5, . . . } .

2.
{
x ∈ Z : x2 ≤ 10

}
= {−3,−2,−1, 0, 1, 2, 3} .

3. {
x ∈ R : x2 ≤ 0

}
= {0} .

Subsets

If every element of set A is also an element of an-
other set B, then A is a subset of B, A ⊆ B. If A ⊆ B
and A 6= B, we say A is a proper subset of B, A ⊂ B,
(c.f. x < y and x ≤ y for numbers x, y).

Example If

A = {a, 2, red} and B = {a, 2, red, green}

then A ⊆ B. However, A 6= B because green ∈ B
but green 6∈ A, so we can also make the stronger
statement A ⊂ B.

Example If

A = {w, x, y, z} and B = {y, w, z, x}

then A ⊆ B and B ⊆ A because A and B have
exactly the same elements.

Equality of sets

Generally, if

A ⊆ B and B ⊆ A, then A = B.

This follows because every element of A is an ele-
ment of B,

and every element of B is an element of A.

If at least one element of A does not belong to B,
then A is not contained in B, A 6⊆ B.

Example If

A = {1, 3, 4, 5, 8, 9} , B = {1, 2, 3, 5, 7} , C =
{1, 5}

then C ⊂ A, C ⊂ B and B 6⊆ A. 2

Example Let A be the set of all people who live
in a region and have a telephone, and let B be the
set of all these people who are listed in the telephone
directory. Then

1. If nobody is ex–directory, then A = B

2. If there is at least one person who is ex–directory,
then B ⊂ A

In either case, we can say B ⊆ A.

The Universal Set

The members of all sets under investigation usually
belong to a larger set called the universal or fixed set,
denoted by U .

• The set U in plane geometry consists of all points
in the plane

• The set U in studies of human population con-
sists of all the people in the world

• The set U is N when counting in discrete domains

• The set U is R when counting and measuring in
continuous domains

• The set U is Alphabet when dealing with sets of
characters

The Empty Set

For a given set U and property P , there may not
be any elements of U that satisfy property P .

S = {x : x is a positive integer, x2 = 3
}

has no elements.
The set with no elements is called the empty or

null set and is denoted by ∅.
Properties :

• The empty set is unique, because a set is defined
by saying what its elements are.

• The empty set ∅ is a subset (not, generally, an
element) of every set A: i.e. ∅ ⊆ A.

Examples

3

1. ∅ = {x : x 6= x}
2. ∅ = {n : n ∈ N and n > n}
3. ∅ = The set of rivers where water flows upstream

4. ∅ = The set of African countries that lie north
of the Mediterranean

5. ∅ = The set of European countries where rice is
the staple diet

The Power Set

Given a set A, we may be interested in some of its
subsets, and thus we need to consider a set of sets,
(you might say class of sets or a collection of sets.)

Example Let A = {1, 2, 3, 4} and let B be the set
of subsets of A that contain exactly three elements of
A.

B = {{1, 2, 3} , {1, 2, 4} , {1, 3, 4} , {2, 3, 4}}

Let C be the set of subsets of A that contain 2 and
two other elements of A

C = {{1, 2, 3} , {1, 2, 4} , {2, 3, 4}}
Thus C is a subset of B, since every element of C

is also an element of B.

For every set A, we maybe interested in the set of
all subsets of A. This is called the power set of A
and denoted by P (A).

Example Let A = {a, b, c}. Then
P (A) = {∅, {a} , {b} , {c} , {a, b} , {b, c} , {c, a} , {a, b, c}}
Notes :

• The empty set ∅ is a member of P (A).

• The set A is a member of P (A).

• The number of elements of P (A) is 23 = 8.

If the set A has n elements, (we say A has car-
dinality n), then the number of elements in P (A) is
2n.

Set operations

1. Union A∪B is the set of all elements that belong
to A or B :

A ∪B = {x : x ∈ A or x ∈ B}.

‘or’ is used in the sense of and/or (‘vel’ in Latin).

2. Intersection A∩B is the set of all elements that
belong to both A and B :

A ∩B = {x : x ∈ A and x ∈ B}.

3. Set difference A \ B is the set of all elements
that are in A but are not in B :

A \B = {x : x ∈ A and x /∈ B}.

4. Complement Ac is the set of all elements that
are in U but are not in A :

Ac = {x : x ∈ U and x /∈ A}.

Example
Define the sets A,B and U by

A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, U = {1, 2, 3, . . . }.

Then

A ∪B = {1, 2, 3, 4, 5, 6} , A ∩B = {3, 4},

A \B = {1, 2} , Ac = {5, 6, 7, 8, . . . } 2.

Note the distinction :

• ∈ denotes membership

• ⊆ denotes inclusion

Example
The following statements are true :
N ⊆ Z, N ⊂ Z, {1, 3, 7} ⊆ N, {1} ⊆ R, 1 ∈ R,
∅ ⊂ N, ∅ ⊂ {0}, −5 ∈ Z, ∅ ⊆ ∅
The following statements are false :
1 ⊂ R, {0} ⊂ ∅, {3, 4} ∈ N

Venn diagrams

• A Venn diagram is a pictorial representation of
sets by subsets of points in the plane.

• The universal set U is represented by the interior
of a rectangle, if necessary, and the other sets are
represented by disks lying within the rectangle.

• Many verbal statements can be translated into
equivalent statements about sets which can be
described by diagrams.

4

• Thus, in very simple cases only, Venn diagrams
may be used to determine the validity of an ar-
gument.

Example Consider the statements S1, S2 and S3

and the conclusion C:

1. S1 : My saucepans are the only things that I
have that are made of tin.

2. S2 : All your presents are useful.

3. S3 : None of my saucepans is of the slightest use.

4. C : The presents that you give me are not made
of tin.

The Venn diagram for S1 is

tin
objects

saucepans

The Venn diagram for S3 is

tin
objects

saucepans

useful things

The Venn diagram for S2 is

tin
objects

saucepans

your

presents

useful things

Thus the conclusion is true.

A B A B

A B A B

(a) (b)

(c) (d)

(a) The union of A and B. (b) The intersection of A and B.

(c) The set difference of A and B. (d) The complement of A.

The laws of set algebra

1. Idempotent Laws :

A ∪A = A A ∩A = A

2. Associative Laws :

(A ∪B) ∪ C = A ∪ (B ∪ C)
(A ∩B) ∩ C = A ∩ (B ∩ C)

3. Commutative Laws :

A ∪B = B ∪A A ∩B = B ∩A

4. Distributive Laws :

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

5. Identity Laws :

A ∪ ∅ = A A ∩ U = A
A ∪ U = U A ∩ ∅ = ∅

6. Complementary Laws :

(Ac)c = A A ∪Ac = U

A ∩Ac = ∅ U c = ∅ ∅c = U

7. De Morgan’s Laws :

(A ∪B)c = Ac ∩Bc (A ∩B)c = Ac ∪Bc

Example Prove

(A ∪B)c = Ac ∩Bc

Proof : Two stages

1. (A ∪B)c ⊆ Ac ∩Bc

2. Ac ∩Bc ⊆ (A ∪B)c

1. If x ∈ (A ∪B)c then x /∈ (A ∪B). Thus x /∈ A
and x /∈ B; i.e. x ∈ Ac and x ∈ Bc. Hence x ∈
Ac ∩Bc.

2. Try proving this yourselves.

Example Prove

(A ∪B)c = Ac ∩Bc

Proof : Two stages

1. (A ∪B)c ⊆ Ac ∩Bc

2. Ac ∩Bc ⊆ (A ∪B)c

5

1. If x ∈ (A ∪B)c then x /∈ (A ∪B). Thus x /∈ A
and x /∈ B; i.e. x ∈ Ac and x ∈ Bc. Hence x ∈
Ac ∩Bc.

2. If x ∈ Ac ∩ Bc, then x ∈ Ac and x ∈ Bc. Thus
x /∈ A and x /∈ B; i.e. x /∈ A∪B. Thus x ∈ (A ∪B)c.

The result follows from the combination of the two
stages. 2

Use the laws of set algebra to simplify set expres-
sions.

Example

A \ (A \B) = A ∩ (A ∩Bc)c

(A \B = A ∩Bc twice)
= A ∩ (Ac ∪ (Bc)c) (de Morgan)
= A ∩ (Ac ∪B) (complement)
= (A ∩Ac) ∪ (A ∩B) (distribution)
= ∅ ∪ (A ∩B) (complement)
= A ∩B (U and ∅) 2

Example Prove that (A ∩B) ⊆ A ⊆ (A ∪B).

1. Since every element in A ∩ B is in A and B, it
follows that if x ∈ (A ∩B), then x ∈ A.

2. Hence (A ∩B) ⊆ A.

3. Furthermore, if x ∈ A, then x ∈ (A ∪B), and so
A ⊆ (A ∪B).

4. The combination of these results yields
(A ∩B) ⊆ A ⊆ (A ∪B).

Functions

A function (or mapping) f is, loosely speaking, a
‘rule’ that assigns to each element x in a set A one
element y of another set B.

The set A is called the domain of the function f .
The set B is called the co–domain of the function

f .
Example
The rule which assigns to each real number x the

real number sin x is a function with domain R and
co-domain R. 2

Example
With a little more thought, we can say that sin is a

function with domain R and co-domain the set of all
real numbers between -1 and +1 (inclusive). 2

Example

A more complicated rule is to map a real num-
ber x to +x if x ≥ 0 and −x if x < 0. The ‘rule’
does not have to be a single formula. This is the
definition of the modulus function, with domain R
and co-domain R (or co-domain the non-negative real
numbers). 2

Example
A function does not have to be given by a simple

rule. The Sheffield telephone directory is a rule that
ascribes to each person exactly one telephone num-
ber. It defines a function whose domain is the set of
people listed therein, with co-domain the set of all
seven-digit sequences. 2

Example
Since nobody can have more than one birthday,

the mapping ‘birthday’ is a function with domain,
say, this lecture class and co-domain the days of the
year. 2

Notation :

1. f : A → B

denotes that the function f maps the set A into
the set B.

2. f : x 7→ y

denotes that the function f maps the element x
of A to the element y of B. We can also express
this by writing

y = f(x).

3. We say f(x) is the image of x under the function
f or the value of f at x.

Example
Let f be the function from R to R (i.e. f : R →

R) that maps every real number to its square. This
function may be written as

f(x) = x2 or f : x 7→ x2

Example
Let A = {1, 2, 3, 4} and B = {a, b, c, d, e}. We may

define a function f with domain A and co-domain B
by

f(1) = a, f(2) = c, f(3) = e, f(4) = a.

Note :

1. Every element of the domain must be mapped
to an element of the co-domain.

6

2. Some elements of the co-domain may not be the
images of any elements of the domain.

3. No element of the domain is mapped to more
than one element of the co-domain.

4. An element of the co-domain may be the image
of more than one element of the domain.

The subset of the co–domain that consists of all
those elements that are the mapping of elements in
the domain is called the range of f :

range(f) = {f(a) : a ∈ A}

The range is sometimes written f(A); generally, for
D ⊆ A we write

f(D) = {f(x) : x ∈ D}.

Example
For the sets in the previous example

4

3

BfA

1

2

e

c

a

b

d

domain(f) = {1, 2, 3, 4}
codomain(f) = {a, b, c, d, e}
range(f) = {a, c, e} 2

One–to–one, onto and invertible
functions

Definitions :

1. A function f : A → B is one–to–one or injective,
written as 1–1, if distinct elements in the domain
A have distinct images. This is equivalent to the
requirement that f is one–to–one if f(a) = f(a′)
implies that a = a′.

2. A function f : A → B is onto or surjective if
each element of B is the image of an element in
A. Thus f : A → B is onto if the image of f is
the entire co–domain, that is, f(A) = B.

3. A function f : A → B is invertible or bijective if
the inverse relation is a function from B to A.

1

a

b

c

2

3

4

r

s

t

u

v

w

x

y

z

e f g h

A B C D E

-2 -1 1 2

1

2

3

4

-2 -1 1 2

1

2

3

4

Example
Consider the functions e : A → B, f : B → C,

g : C → D and h : D → E.
e and f are both 1–1, but g and h are not 1–1.
f and g are both onto, but e and h are not onto.
h is neither 1–1 nor onto.

A function f is invertible if and only if it is both
1–1 and onto.

1. If f : A → B is both 1–1 and onto, then f is a
one–to–one correspondence between A and B.

2. In this case, each element of A maps to a distinct
element of B, and vice–versa.

From the previous example, only f is invertible.

Example
Consider a telephone directory.

• Let A be the set of residents who are listed in
the local telephone directory and let B be the
set of all the telephone numbers in the area that
is covered. If some residents are ex–directory,
then the mapping from A to B is 1–1 but not
onto.

• Let A be set of employees of a company and let
B be the set of their telephone extensions. As-
suming that all the employees are listed and that
every person has his/her own extension, then the
mapping from A to B is invertible.2

e : R→ R; e(x) = x2 is neither 1–1 nor onto.
f : R→ R; f(x) = 2x is 1–1 and not onto.

g(x) = x3 − 2x2 − 5x + 6 is onto but not 1–1.
h(x) = x3 is 1–1 and onto.
Note: increasing functions are 1–1

7

-3 -2 -1 1 2 3 4

-30

-20

-10

10

20

-2 -1 1 2

-8

-6

-4

-2

2

4

6

8

Example
Show that the function f : R\{0} → R\{1}, given

by f(x) = (x + 1)/x, is 1–1 and onto.
A function is 1–1 if distinct elements in the domain

have distinct images. Thus if it is assumed that the
images of two elements x1 and x2 in the domain of f
are equal,

f(x1) = f(x2),

implies that x1 = x2, then the function f is 1–1. But

x1 + 1
x1

=
x2 + 1

x2

implies (on multiplying through by x1x2 that

x2(x1 + 1) = x1(x2 + 1),

whence x1 = x2.

To check that f is onto, it is necessary to show that
the equation

y =
x + 1

x

has a solution x ∈ R for every y ∈ R \ {1}. The
equation is equivalent to, successively,

y = 1 +
1
x

, y − 1 =
1
x

,
1

y − 1
= x.

It follows that f is onto: for every value of y in R\{1},
there is a unique solution x.

Since f is 1–1 and onto, it is also invertible. In
fact, the inverse function is

y 7→ 1
y − 1

.

Products
of Sets

Given two sets A and B, their Cartesian product
A×B is the set

A×B = {(a, b) : a ∈ A, b ∈ B},
the set of all ordered pairs of elements: the first

from A, the second from B.

2 Examples

• R×R, usually written R2, is the set of all ordered
pairs (x, y) of real numbers; it can be thought of
as the set of all points in the plane.

• If A = {1, 2} and B = {a, b, c}, then

A×B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}.

• A× ∅ = ∅, ∅ ×A = ∅.
Note that we are talking about ordered pairs, like

pairs of ‘coordinates’ of points in the plane, so gen-
erally A×B 6= B×A. In the second example above,

B ×A = {(a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2)}.

Products of more than two sets are handled in a
similar way:

A×B × C = {(a, b, c) : a ∈ A, b ∈ B, c ∈ C}.

Examples

• R × R × R, usually written R3, is the set of all
ordered triples (x, y, z) of real numbers; it can be
thought of as the set of all points 3-dimensional
space.

• If A = {1, 2} and B = {a, b, c}, then

A×B ×A = {(1, a, 1), (1, b, 1), (1, c, 1), (2, a, 1),
(2, b, 1), (2, c, 1), (1, a, 2), (1, b, 2),
(1, c, 2), (2, a, 2), (2, b, 2), (2, c, 2)}.

Relations

A relation on a set is something which may or
may not be true of an ordered pair of elements of the
set.

Examples

• the relation ≤ on the set R of all real numbers:
for example 1 ≤ 2 is true; 2 ≤ 1 is not.

• the relation of equality on the set of characters
A = {x, y, z}: x = x, y = y and z = z are true;
x = y is not.

• the relation y = x2 on the set R; let us call this
relation R, so that we write xRy to mean y = x2;
then 1R1, 2R4 and (−3)R9 are true, but 2R2
and 6R3 are not.

8

A relation R on a set A defines a subset of A×A,
namely

{(x, y) ∈ A×A : xRy}.
In a formal development of set theory, relations are

defined to be subsets of A×A.
Example
If R is a relation on R defined by a function f :

R→ R,
xRy if and only if y = f(x),

then the associated subset of R× R is

{(x, y) : y = f(x)}.

This set is called the graph of f

When is a relation R on a set A defined by a func-
tion f : A → A using

xRy if and only if y = f(x)?

A necessary and sufficient condition is:

for every x ∈ A there is one and only one y ∈ A
with xRy.

Properties of relations

A relation R on a set A is said to be:

• reflexive if xRx for every x ∈ A;

• symmetric if xRy implies yRx for every x, y ∈
A;

• transitive if xRy and yRz imply xRz for every
x, y, z ∈ A.

Examples

• Let A be the plane and say pRq if the distance
between the points p and q is less than 1. Then R
is reflexive and symmetric, but not transitive.

• Let A = R and say xRy if and only if x − y is
an integer. Then R is reflexive, symmetric and
transitive.

• Let A = R and R be ≤. Then R is reflexive and
transitive, but not symmetric.

Equivalence Relations

A relation R on a set A is an equivalence relation
if it is reflexive, symmetric and transitive.

Example

• Let A = R and say xRy if and only if x− y is an
integer.

• Let A = Z and say xRy if x− y is even.

Theorem (The only theorem about equivalence
relations!)

If R is an equivalence relation on a set A, then
A splits as a union of disjoint subsets (equivalence
classes) so that for x, y ∈ A, we have xRy if and
only if x and y belong to the same equivalence class.

An example will make this clear.
Example
Let A = Z and say xRy if x− y is even.
Then

A = E ∪O

where E denotes the set of all even integers and O
denotes the set of all odd integers. These sets are
disjoint (E ∩O = ∅), and xRy if and only if x and y
are either both even or both odd.

Application
We shall be using the language of equivalence re-

lations to describe a situation when a machine can
be in different but indistinguishable states. The rela-
tion of indistinguishability is an equivalence relation.
Lumping indistinguishable states together into equiv-
alence classes will show us how to construct a simpler
machine, with one state corresponding to each equiv-
alence class in the original, which does the same job.
(Don’t worry if this paragraph doesn’t make sense yet
— it will later.)

Mathematical enquiry
by guesswork

Example
Consider a circle with n points in general position

on its circumference, joined by straight lines:

2 points

2 regions

4 points

8 regions

3 points

4 regions

number of points number of regions
2 2
3 4
4 8
5 16

9

We can guess that the next term will be 31, but
this is just a guess, not a proof. Others might make
other guesses.

Proving the first few cases of a theorem, even the
first million cases, does not prove the theorem.

Proof

Types of Proof :

• Direct proof

• Proof by exhaustion

• Proof by contradiction

• Proof by induction

1. Direct proof

This method of proof proceeds by straightforward
manipulation of equations and formulae to arrive at
the desired result.

Example
Theorem : Let a, b, c be real numbers. If a.c = b.c,

prove that a = b.
Proof : Let a.c = b.c.
Multiply both sides of the equation by 1

c :

a.c.
1
c

= b.c.
1
c

and thus a.1 = b.1, or a = b.

What happens if c = 0 ?

The proof fails because 1
0 is not a finite number.

So we rephrase the statement as

Let a, b, c be real numbers. If a.c = b.c and c 6= 0,
then a = b. 2

2. Proof by exhaustion

This method of proof examines every possibility
and establishes the truth of the statement in each
case.

It can only be used when there is a finite number
of situations to consider.

Example
Theorem : There do not exist integers a and b that

satisfy a2 = 5b + 2.
Proof : It must be shown that a2−2 is not divisible

by 5.
Every integer a can be written in the form

a = 5c + r, 0 ≤ r < 5.

Then

a2−2 = 25c2 +10cr+ r2−2 = 5
(
5c2 + 2cr

)
+ r2−2.

The first term on the right hand side is divisible by
5, so it suffices to check that the second term, r2− 2,
is not divisible by 5, and we only need to do this for
r = 0, 1, 2, 3, 4:

02−2 = −2, 12−2 = −1, 22−2 = 2, 32−2 =
7, 42 − 2 = 14.

3. Proof by contradiction

This method of proof assumes that the converse of
the desired result is true, and proceeds by showing
that a logical inconsistency necessarily follows.

Example
Theorem : If a is a positive integer and a2 is even,

then a is even.
Proof : Assume the contrary, that is, a is odd.

Thus a can be written in the form a = 2r + 1 where
r is any integer. Hence

a2 = 4r2 + 4r + 1 = 4
(
r2 + r

)
+ 1

We are told that a2 is even but this equation shows
that this cannot be the case. It follows that the as-
sumption that a is odd is incorrect, and a must there-
fore be even.

Example
Theorem : The equation ax + b = c, a 6= 0, has

exactly one solution.
Proof : Clearly the equation has one solution. As-

sume that it has another solution, and let the two
solutions be x1 and x2. Thus

ax1 + b = c
ax2 + b = c

Subtract

a (x1 − x2) = 0

and since a 6= 0, it follows that x1 = x2.
Thus the assumption that the equation has two dis-

tinct solutions leads to the conclusion that the two
solutions are the same, that is, the equation has ex-
actly one solution. 2

4. Proof by induction

This method of proof is useful for the establishment
of the truth of propositions that involve an infinite list

10

of cases, with an easy connection between each case
and either the preceding one, or at least some earlier
cases.

Example

1. The sum of the first n positive integers is n(n+1)
2 .

2. If n ≥ 14, then n can be written in the form

n = 3a + 8b

for some non-negative integers a and b.

3. Any string of n characters can be decomposed
into two strictly smaller strings of characters,
preserving the order of the characters, in n − 1
ways. 2

The principle of mathematical
induction.

Let P (n) be a proposition involving the positive
integer n.

If we know

1. P (1) is true;

2. for every n ≥ 1, P (n) implies P (n + 1);

then P (n) is true for all n ≥ 1.

The number 1 here can be replaced throughout by
0, or by any integer.

The steps involved in induction are :

1. The induction base: prove the statement for
n = 1 (or whatever your starting value is)

2. The induction step: assuming the result for
some arbitrary n ≥ 1, (the induction hypoth-
esis) deduce the same result but with n + 1 in
place of n.

3. Conclusion ‘By mathematical induction, the
result holds for all n ≥ 1’.

Example
Theorem : The sum of the first n positive integers

is
∑n

i=1 i = n(n+1)
2 .

Proof : Note the shorthand notation. We write

1 + 2 + 3 + · · ·+ n as
∑n

i=1 i.

Induction base. Clearly, the sum of the first pos-
itive integer is 1, and

∑1
i=1 i = 1(1+1)

2 = 1

and thus the theorem is true for n = 1.

Induction step. We now assume that the theo-
rem is true for a given arbitrary value of n, and show
that it is true for n + 1. Thus we assume:

Induction hypothesis:
∑n

i=1 i = n(n+1)
2 .

Then
n+1∑

i=1

i =
n∑

i=1

i + (n + 1)

=
n(n + 1)

2
+ (n + 1) (by Induction Hypothesis)

=
n(n + 1) + 2(n + 1)

2

=
(n + 1)(n + 2)

2

=
(n + 1)((n + 1) + 1)

2
.

We have
n+1∑

i=1

i =
(n + 1)((n + 1) + 1)

2
,

which is the original formula with (n + 1) in place of
n.

This completes the induction step.
Conclusion: By mathematical induction, the re-

sult holds for all n ≥ 1.

Example
Theorem : 5n − 4n − 1 is divisible by 16 for all

integers n ≥ 1.
Proof : Define

S(n) = 5n − 4n− 1

Induction base. For n = 1 we have S(1) = 0
which is trivially divisible by 16.

Induction step. We now assume that the theo-
rem is true for a given arbitrary value of n, and show
that it is true for n + 1. Thus we assume:

Induction hypothesis: S(n) is divisible by 16,
and we try to show that S(n+1) is divisible by 16.

Now

S(n + 1) = 5n+1 − 4(n + 1)− 1
= 5× 5n − 4n− 5
= 5× 5n − 5× 4n + 4× 4n− 5
= 5(5n − 4n− 1) + 16n

= 5S(n) + 16n.

11

By the Induction Hypothesis, S(n) is divisible by
16; therefore S(n+1) is divisible by 16. The induction
step is proved.

Conclusion: By mathematical induction, the re-
sult holds for all n ≥ 1.

Example
Theorem : If n ≥ 14, then n can be written in the

form
n = 3a + 8b,

where a, b ≥ 0, and n, a, b are all integers.
Proof : Notice that our starting point here is n =

14
Induction base. For n = 14 we have 14 = 6+8 so

n can be written in the form n = 3a + 8b by making
a = 2 and b = 1.

Induction step. We now assume that the theo-
rem is true for a given arbitrary value of n ≥ 14, and
show that it is true for n + 1. Thus we assume:

Induction hypothesis: n ≥ 14 and n can be
written in the form n = 3a + 8b, where a, b ≥ 0.

We must show that there are integers a′, b′ ≥ 0 such
that n + 1 = 3a′ + 8b′. By the induction hypothesis,

n + 1 = 3a + 8b + 1 = 3(a + 3) + 8(b− 1),

so the desired result for n+1 follows, with a′ = a+3
and b′ = b− 1, provided that b ≥ 1 (so that b′ ≥ 0).

We need to consider separately the case b = 0. In
this case, n ≥ 15, since we know that for n = 14 we
have b = 1. Then 3a = n ≥ 15, so a = 5 + c for some
integer c ≥ 0. Hence

n + 1 = 3a + 1 = 3(5 + c) + 1 = 3c + 8.2,

and the desired result for n+1 holds, with a′ = c and
b′ = 2. This completes the induction step.

Conclusion: By mathematical induction, the re-
sult holds for all n ≥ 14.

It is interesting to note that the only numbers less
than 14 that can be written in the form 3a + 8b are
3, 6, 8, 9, 11 and 12.

Recursive definitions and procedures

Recursion is a powerful method for the solution of
many problems. It breaks down a large problem into
several smaller identical problems.

Example

1. Consider a problem P1, whose solution could
be calculated if the answer to a problem P2 is
known, where P2 is a smaller instance of P1.

2. The solution to P2 requires the answer to a prob-
lem P3, which is a smaller instance of P2.

3. If the solution to P3 is known because it is small
enough to be solved, then P2 could be solved, and
then the original problem P1 could be solved.

Note : Do not confuse ‘iteration’, which requires
loops, with recursion.

• Many programming languages allow recursive
procedures: procedures which call themselves.

• Recursively defined sequences occur frequently
in practice.

A sequence of numbers is defined recursively if

• Requirement B (Base values)

a finite set of values is specified.

• Requirement R (Remaining values)

the remaining values of the sequence are defined
by a recursive function f whose domain includes
previous values of the sequence.

Example
Define the sequence FACT by
(B) FACT (0) = 1

(R) FACT (n) = n× FACT (n− 1) for n ≥ 1.
This function defines the factorial of n, the product

of all the natural numbers from 1 to n. Thus

1. n = 0 : FACT (0) = 1.

2. n = 1 : FACT (1) = 1× FACT (0) = 1.

3. n = 2 : FACT (2) = 2× FACT (1) = 2.

4. n = 3 : FACT (3) = 3× FACT (2) = 6.

5. n = 4 : FACT (4) = 4× FACT (3) = 24.

The following recursive procedure implements the
factorial function.

type nonneg = 0 . . . maxint;
function Fact (n : nonneg) : nonneg;
Precondition : n must be greater than or equal

to 0.
Postcondition : Returns the factorial of n; n is

unchanged.
begin

if n = 0
then Fact := 1
else Fact := n ∗ Fact(n− 1)

end {Fact}

12

Example
The Fibonacci sequence is defined by
(B) FIB(0) = FIB(1) = 1

(R) FIB(n) = FIB(n− 1) + FIB(n− 2) for n ≥ 2.

1. n = 0 : FIB(0) = 1.

2. n = 1 : FIB(1) = 1.

3. n = 2 : FIB(2) = FIB(1) + FIB(0) = 2.

4. n = 3 : FIB(3) = FIB(2) + FIB(1) = 3.

5. n = 4 : FIB(4) = FIB(3) + FIB(2) = 5.

6. n = 5 : FIB(5) = FIB(4) + FIB(3) = 8.

The result is 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . 2

The following recursive procedure implements the
Fibonacci function.

type nonneg = 0 . . . maxint;
function Fib (n : nonneg) : nonneg;
Precondition : n must be greater than or equal

to 0.
Postcondition : Returns the n-th Fibonacci num-

ber; n is unchanged.
begin

if n ≤ 1
then Fib := 1
else Fib := Fib(n− 1) + Fib(n− 2)

end {Fib}

Example A binary search for a word in a dictio-
nary.

Search (dictionary, word)
if dictionary is one page in size

then scan the page for the word
else begin

Open dictionary near the middle
Determine the half of the dictionary in

which the word is located
if word is in the first half

then Search (first half of dictionary,
word)

else Search (second half of dictio-
nary, word)

end

Notes :

• The procedure calls itself, that is, the procedure
Search calls Search, and thus it is recursive.

• Each call to Search is made with a dictionary
whose size is one–half of that used in the pre-
vious call. Thus the procedure solves the search
problem by solving another problem that is iden-
tical in nature but smaller in size.

• There is one search problem, the base case, that
is handled differently to all the others. When
dictionary contains a single page, it is scanned
directly and the recursion stops.

• The manner in which the size of the problem
diminishes guarantees that the base case will al-
ways be reached.

Example Writing a string of characters backwards
procedure WriteBackward (S : string; n : inte-

ger);
{The procedure writes the first n characters of S

backwards.}
begin

if n > 0
then begin

Write (S[n]); {write the last character}
WriteBackward (S, n − 1)

{write the rest of the string backward}
end

else {no action : n = 0, the base case}
end {WriteBackward}

Example
A recursive function that calculates the number of

digits in a natural number n is :

digits(n) = 1 if n < 10
digits(n) = 1 + digits(n div 10) otherwise

The number of digits in 470 is

digits(470) = 1 + digits(47)
= 1 + (1 + digits(4))
= 1 + (1 + 1)
= 3

Induction and recursion

Inductive proofs and recursive defini-
tions/procedures are closely related :

13

1. Base values

• In proof by induction, the proposition is
proved first for a specific value of n.

• In definition by recursion, a finite number
of values of the sequence are given.

2. Remaining values

• In proof by induction, we assume that the
proposition is true for the value n, and
prove that it is true for n + 1.

• In (a simple) definition by recursion, the
(n+1)th element of the sequence is defined
in terms of the nth.

Typically, induction is required to prove state-
ments about recursive programs.

Example
Consider the sum Sn of the first n positive num-

bers.

• Induction is used to prove that Sn = n(n+1)
2 and

S1 is assumed to be known. This generates the
sequence

S = {S1, S2, S3, S4, . . . } .

• A recursive definition of the sequence S is

Sn = Sn−1 + n.

with base, where the recursion stops, S1 = 1.
This recursive definition may be used to prove,
by induction, that the sequence so defined is
Sn = n(n+1)

2 .

The principle of mathematical
induction (general).

Let P (n) be a proposition involving the positive
integer n.

If we know

1. P (1) is true;

2. if n > 1, and P (k) holds for all 1 ≤ k < n, then
P (n);

then P (n) is true for all n ≥ 1.

The number 1 here can be replaced throughout by
0, or by any integer.

Proof of general induction

Let Q(n) be a the proposition ‘P (k) for all k < n’.
Then we prove Q(n) for all n ≥ 2, by induction:

1. Q(2) is true, since P (1) is true;

2. if Q(n) holds, then P (k) holds for all k < n, so
P (n) holds, so P (k) holds for all k < n + 1, so
Q(n + 1) holds;

Conclusion Q(n) is true for all n ≥ 2, by ordinary
Mathematical Induction.

The steps involved in using general induction are :

1. The induction base: prove the statement for
n = 1 (or whatever your starting value is)

2. The induction step: assuming the result for
all numbers less than some arbitrary n > 1, (the
induction hypothesis) deduce the same result
for n.

3. Conclusion ‘By mathematical induction, the
result holds for all n ≥ 1’.

Example Consider the Fibonacci sequence (fn)
defined recursively by fn = fn−1 + fn−2 (n > 2)
and f1 = f2 = 1. Use induction to prove that for all
n ≥ 1,

fn < 2n (n ≥ 1).

Proof
Induction Base The induction base consists of

the two cases: n = 1 and n = 2. (Alternatively, you
may say that we prove the n = 1 case and then apply
general induction starting at n = 2.) We observe that

f1 = 1 < 21, f2 = 1 < 22,

so the proposition is true for n = 1 and n = 2.

Induction Step The Induction Hypothesis is
that

fk < 2k (1 ≤ k < n).

Assuming this we have, for n > 2,

fn = fn−1 + fn−2

< 2n−1 + 2n−2, by the Induction Hypothesis,

=
1
2
2n +

1
4
2n

=
3
4
2n

< 2n.

So the result for n follows.
Conclusion By mathematical induction, the re-

sult holds for all n ≥ 1.

14

Propositional Logic

Propositional calculus is

• a model for simple reasoning – its original pur-
pose

• hence vital for reasoning by computer, eg, theo-
rem provers, program verifiers

• the basis of digital circuit design (on/off corre-
sponding to true/false)

Propositional calculus is the study of logical rela-
tionships between objects called propositions which
can be either true or false.

Example
Consider the statement
if (a < b ∨ (a 6< b ∧ c = d)) . . .
Note :

1. ∨ denotes OR. A program would evaluate the
second expression only if the first expression is
FALSE

2. ∧ denotes AND. Evaluate the second expression
only if the first expression is TRUE

The expression simplifies to
if (a < b ∨ c = d) . . .

Properties of propositions :

• A proposition must assert a fact.

• Questions and commands are not propositions.

• Every proposition is either true or false.

Example

1. elephants are mammals

2. some birds can fly

3. France is in Asia

4. go away

5. are you happy ?

6. x is an even number

(1) , (2) and (3) are propositions,
(4) and (5) are not propositions.
(6) is a predicate, i.e. a proposition which depends

on a variable.

What are the limitations of propositional logic ?

Consider the expression
if (a < b ∧ a < c ∧ b < c) . . .
This is equivalent to
if (a < b ∧ b < c) . . .
but it cannot be deduced by propositional logic be-

cause it contains predicates that may be true or false,
depending on the values assigned to the arguments.

The above equivalence depends on a relation be-
tween the truth values of these predicates L(x, y) ≡
(x < y) for different values of the arguments.

Composite statements and logical connectives

Definitions

• Compound statements :

A compound statement is a statement that is
composed of two or more propositions.

• Logical connectives :

A logical connective combines two propositions
in a compound statement.

Example
Paris is in England and 2 + 3 = 5.
It rained in Sheffield on June 6, 1657 and 10 is

greater than 9. 2

The logical connectives that are used to combine
propositions include

and (conjunction) ∧
or (disjunction) ∨
implication ⇒
not (negation) ¬
equivalence ⇔

These logical connectives are defined by specifying
how the truth or falsity of the compound statement
depends on the truth or falsity of the two propositions
being combined. This is best done by a truth table.

1. Conjunction : Two statements can be combined
with the word and to form a compound statement of
the original statements.

If p and q are two statements, their conjunction is
p ∧ q.

p q p ∧ q
T T T
T F F
F T F
F F F

15

p ∧ q is true if and only if p is true and q is true.

2. Disjunction : Two statements can be combined
with the word or to form a compound statement of
the original statements. This is ‘or’ in the inclusive
sense: one or the other, or both. (Latin vel rather
than aut.)

If p and q are two statements, their disjunction is
p ∨ q.

p q p ∨ q
T T T
T F T
F T T
F F F

p ∨ q is false if and only if p is false and q is false.

3. Implication : If p and q are two statements,
their conditional implication is p ⇒ q.

p q p ⇒ q
T T T
T F F
F T T
F F T

p ⇒ q is true if and only if p and q are both true,
or p is false, independent of the truth or falsity of q.

Thus a false proposition ‘implies’ anything because
the conditional implication is defined to be true if p
is false. Also any true statement ‘implies’ any other,
whether or not their meanings are related.

We are not concerned with the inner meanings of
propositions, just with their truth or falsity. This
‘implication’ in a technical sense, rather than in the
ordinary sense of ‘inference’.

Consider the statements :

• If it rains, I carry my umbrella.

If it is not raining, I may or may not be carrying
my umbrella.

• If the power indicator light is lit, then the unit is
connected to the supply.

Perhaps light is lit, in which case then the unit
must be connected to the supply.

If the light is off; then perhaps the unit is still
connected to the supply, but the light is faulty.

4. Negation : If p is a statement, the negation of p
is ¬p.

p ¬p
T F
F T

5. Equivalence : The equivalence connective, (also
called the biconditional connective,) p ⇔ q is defined
to be (p ⇒ q) ∧ (q ⇒ p).

p q p ⇒ q q ⇒ p p ⇒ q ∧ q ⇒ p
T T T T T
T F F T F
F T T F F
F F T T T

Thus the biconditional is defined by the following
truth table.

p q p ⇔ q
T T T
T F F
F T F
F F T

This proposition is expressed linguistically by using
the phrase if and only if, (iff).

Example I’ll give you £10 if and only if you clean
the car.

The ‘if’ direction says ‘You clean the car⇒ I’ll give
you £10’.
The ‘only if’ direction says ‘I’ll give you £10 ⇒ you
clean the car’.

Two statements are equivalent if and only if their
truth tables are the same.

Example
Show that p ⇒ q ≡ ¬ (p ∧ ¬q).

p q p ⇒ q ¬q p ∧ ¬q ¬ (p ∧ ¬q)
T T T F F T
T F F T T F
F T T F F T
F F T T F T

Example
Consider the statement

It is false that roses are red and violets are blue

This statement can be written in the form ¬(p∧ q)
where p is the proposition that roses are red, and q
is the proposition that violets are blue. By logical
equivalence

¬(p ∧ q) ≡ ¬p ∨ ¬q

and thus the given statement is equivalent to

Roses are not red, or violets are not blue

16

Rules for finding equivalences

We can first remove the connectives⇒ and⇔ using

P ⇔ Q ≡ (P ⇒ Q) ∧ (Q ⇒ P)

and
P ⇒ Q ≡ Q ∨ ¬P.

Then we use the following rules
Commutative laws :

P ∨Q ≡ Q ∨ P, P ∧Q ≡ Q ∧ P.

• Associative laws :

(P ∨Q) ∨R ≡ P ∨ (Q ∨R)
(P ∧Q) ∧R ≡ P ∧ (Q ∧R)

• Distributive laws :

P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R)
P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R)

• De Morgan’s laws :

¬(P ∨Q) ≡ ¬P ∧¬Q ¬(P ∧Q) ≡ ¬P ∨¬Q.

The validity of these equivalences can be checked
by truth tables.

Notice that these are the same as the laws for set
algebra, essentially because

x ∈ A ∩B ≡ x ∈ A ∧ x ∈ B,

et cetera. They are the laws of Boolean algebra.

Tautologies and Contradictions

A tautology is a logical expression that is always
true, independent of the value of its variables, p, q,
etc.

Example

p q p ⇒ q [p ∧ (p ⇒ q)] [p ∧ (p ⇒ q)] ⇒ q
T T T T T
T F F F T
F T T F T
F F T F T

Thus [p ∧ (p ⇒ q)] ⇒ q is a tautology. 2

The opposite of a tautology is a contradiction: a
logical expression that is always false, independent of
the value of its variables, p, q, etc.

Example

p ¬p p ∧ ¬p
T F F
F T F

Thus p ∧ ¬p is a contradiction. 2

The Theorems of Propositional
Logic.

Essentially, the theorems are precisely the tautolo-
gies.

For example, P ⇒ P is a tautology, so it is a
theorem and we write ` P ⇒ P .

To check whether a given statement is a theorem,
draw up a truth table. (This could be tedious for
complicated propositions involving many variables.)

Truth tables suffer from two disadvantages :

• They are unmanageable for a large number of
different propositions.

• They cannot be used with predicate formulae.

Under these circumstances, it is necessary to con-
sider an alternative method of obtaining logical con-
clusions from given ‘initial conditions’. It must be
possible to apply this method using a computer in or-
der to provide a mechanical method of proving prop-
erties of specifications or models of complex systems.

This method, the axiomatic method, is based on
axioms, substitutions and rules of inference.

The axiomatic method

In this approach we single out a small set of tau-
tologies as axioms, from which the theorems will be
deduced in a sequence of steps. Each step comprises
either

(a) writing down and axiom , or
(b) writing down a earlier line with a substitution,

or
(c) using a Rule of Inference applied to one or more

earlier lines.

The axioms (Kleene 1952)

A ⇒ (B ⇒ A),

(A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C)),

(A ∧B) ⇒ A,

(A ∧B) ⇒ B,

A ⇒ (B ⇒ (A ∧B)),

17

A ⇒ (A ∨B),

B ⇒ (A ∨B),

(A ⇒ C) ⇒ ((B ⇒ C) ⇒ ((A ∨B) ⇒ C)),

(A ⇒ B) ⇒ ((A ⇒ ¬B) ⇒ ¬A),

¬¬A ⇒ A.

These are the axioms for the ⇒ , ∧, ∨ and ¬.
The biconditional implication ⇔ is assumed to be
defined by

A ⇔ B ≡ (A ⇒ B) ∧ (B ⇒ A).

Substitution

If a compound proposition P is a tautology and if
all occurrences of a variable p of P are replaced by
a proposition E, then the resulting proposition P ∗ is
also a tautology.

Example
It has been shown that [p ∧ (p ⇒ q)] ⇒ q is a

tautology.

1. If every occurrence of p is replaced by E = q ⇒ r,
the tautology

[(q ⇒ r) ∧ ((q ⇒ r) ⇒ q)] ⇒ q

is obtained.

2. If, instead, every occurrence of q is replaced by
E, the tautology

[p ∧ (p ⇒ (q ⇒ r))] ⇒ (q ⇒ r)

is obtained.

Rules of Inference

An inference rule is a list of propositions above a
horizontal line and one proposition below the line.
If a proof involves an expression that contains the
formula above the line, then it can be replaced by
the formula below the line.

There is just one rule of inference in propositional
logic

Modus Ponens :

P ⇒ Q, P

Q

from P ⇒ Q and P we can deduce Q. (Substitutions
may be made for both P andQ.)

Example
If P ⇒ Q is true, we can deduce ¬Q ⇒ ¬P

because
(P ⇒ Q) ⇒ (¬Q ⇒ ¬P) is a tautology.

We can deduce other rules of inference:
Example

¬¬A

A
[DN]

states that if it has been established that ¬¬P is true,
then I can deduce that P is also true. (DN denotes
double negative.)

To prove this, we start with

¬¬A,

then write down the axiom

¬¬A ⇒ A,

then use Modus Ponens with ¬¬A in place of P , and
A in place of Q.

¬¬A ⇒ A, ¬¬A

A
.

Example
Elimination rules for conjunction

P ∧Q

P
[∧E1] ,

P ∧Q

Q
[∧E2] .

These rules state that if we know that P ∧Q is true,
then P and Q are both true.

E1 and E2 denote that these are elimination rules.
Truth table form : (P ∧Q) ⇒ P is a tautology.

Example
Introduction rule for conjunction

P, Q

P ∧Q
[∧I] .

This rule states that if we know that P is true and P
is true, then P ∧Q is true. Thus

I denotes that this is an introduction rule.
Example
Introduction rules for disjunction

P

P ∨Q
[∨I1] ,

Q

P ∨Q
[∨I2] .

These rules state that if we know that P is true or
Q is true, then P ∨Q is true.

I1 and I2 denote that these are introduction rules.

Elimination rule for disjunction

P ∨Q, P ⇒ R, Q ⇒ R

R
[∨E]

18

The elimination rule ∨E states that if R follows
from P and Q, then if one or both of P and Q is true,
then R is true. This rule follows from the tautology

(P ∨Q) ∧ (P ⇒ R) ∧ (Q ⇒ R) ⇒ R.

The De Morgan rules

p ∨ q

¬(¬p ∧ ¬q)
[∨DM]

p ∧ q

¬(¬p ∨ ¬q)
[∧DM]

These follow from the De Morgan laws.

Finite Automata

Many systems, including a computer, are defined
by four terms :

• Inputs – the set of inputs from the external
environment

• States – the set of suitable states of the system

• Outputs – the set of possible system outputs
to the environment

• Rules – the laws that relate the future
states/outputs to the current

inputs/states/outputs

Informally, a state is a possible internal configura-
tion of the system.

Informally:
A (deterministic) finite automaton is a machine

which at any given time is in one of a certain finite
set Q of states.

It has an input wire, through which it can be fed
characters selected from its input alphabet Σ.

Each time a character is fed in, the machine
changes to a new state according to a transition
function δ. If it is in state q and is fed with a char-
acter a, the machine changes to state δ(q, a).

The only output consists of a light on the top of
the machine which is on when the machine is in one
the acceptance states. (This is a very rudimentary
output mechanism — we shall consider more articu-
late machines later.)

The machine is started in the initial state q0.

If, after inputting a string of characters a1a2 . . . an,
the light is on, we say the string a1a2 . . . an has been
accepted. Thus, each automaton M is associated
with a set of strings (i.e. a language) L(M),

namely the set of all strings which it accepts. We shall
study this relationship between automata and lan-
guages, together with similar relationships for more
powerful machines.

Some authors use the term ‘finite state recognizer’
instead of ‘finite automaton’.

Formal Definition
A (deterministic) finite automaton (FA) is an

ordered quintuple (Q, Σ, δ, q0, F) where

• Q is a finite set; the set of states — the ma-
chine is always in one of these states;

• Σ is a finite set of characters; the input alpha-
bet — input strings are made up from these;

• δ : Q×Σ → Q is the transition function — if
the machine is in state q and receives an input
character a, it changes to state δ(q, a) and awaits
the next input;

• q0 ∈ Q; the initial state — the state in which
the machine starts;

• F ⊆ Q; the set of final or acceptance states.

We can specify a FA’s transition function either by
giving a transition table or by a state diagram.

Example Σ = {0, 1}, Q = {q1, q2, q3}, initial state
= q1, state diagram: This machine accepts the string

q1 q2 q3

1

0 0,1 0,1

‘0’ and no other: L(M) = {0}.

Transition table

δ 0 1
q1 q2 q3

q2 q3 q3

q3 q3 q3

Example Σ = {0, 1}, Q = {q1, q2, q3}, initial
state = q1, F = {q2}, state diagram as shown be-
low. This machine accepts precisely those strings
consisting of an even number (possibly zero) of 1s:
L(M) = {ε, 11, 1111, 111111, . . . }.

19

q1 q2

0

0,1

0

1

1

q3

Transition table

δ 0 1
q1 q3 q2

q2 q3 q1

q3 q3 q3

Example
Q = {q0, q1, q2}; initial state q0, F = {q2}; and δ

is given by the following transition table.

δ 0 1
q0 q0 q1

q1 q0 q2

q2 q0 q1

The state diagram is:

1

0

0

0

1

1

qqq
1 20

L(M) is the set of all strings ending in a (non-zero)
even number of ones.

Example Variable/keywords names in C++
‘C++ naming rules:
* The only characters you can use in names are

alphabetic characters, digits, and the underscore (_
) character.

* The first character in a name cannot be a digit.
* Uppercase characters are considered distinct from

lowercase characters.
* You can’t use a C++ keyword for a name.
* Names beginning with two underscore characters

or with an underscore character followed by an up-
percase letter are reserved for use by the implemen-
tation. Names beginning with a single underscore

character are reserved for use as global identifiers by
the implementation.

* C++ places no limits on the length of a name,
and all characters in a name are significant.’

For simplicity, let us ignore the problem of avoiding
C++ keywords and build a FA to recognize variable
names and keywords, rejecting words beginning with
an underscore. We assume that the input alphabet
consists of just the letters of the alphabet in upper
and lower case (A–z), the digits (0–9) and the under-
score character (us).

q

q q
10

2

us

A−z

0−9 A−z

0−9
us

A−z

0−9
us

Notice that q2 acts as a ‘rubbish state’ which is not
final and from which all transitions go to itself.

Example Integers in C++
An integer is a string of digits, possibly preceded

by + or -, not beginning with 0 unless the string is
just 0. (e.g. 1234, +1234, -1234, 0, +0, -0, but
not +01234 (leading zero)). A (partial) state diagram
of a machine recognizing integers is shown below. All

1−9

1−9

0

0
+,−

0−9

transitions not shown on the diagram are to a ‘rub-
bish state’ which is not final and from which all tran-
sitions go to itself.

Example Real numbers in C++
These can be written in two ways:
Fixed-point notation: i.e. (integer).(non-empty

string of digits) (e.g. 12.34, -12.034, +12.000,
but not 12. or 1234)

Floating-point or Scientific notation: (fixed
point number or integer)(e or E)(integer) (e.g.
12.3e4, 1.234E0, 0.12e-34)

A state diagram of a FA recognizing fixed-point
numbers is shown below.

The problem of finding a FA to recognize floating-
point numbers will be set for homework.

20

A machine recognizing fixed-point numbers

0−9

1−9

1−9

0−90

0

.

.+,−

0−9

Again, transitions not shown on the diagram are
to a ‘rubbish state’.

Notation We write Σ∗ for the set of all (empty or
non-empty) finite strings of characters from Σ. We
use ε to denote the empty string (some authors
use λ). A language is a subset of Σ∗.

If x, y ∈ Σ∗, say x = a1a2 . . . an and y =
b1b2 . . . bm, then we write xy for the string

xy = a1a2 . . . anb1b2 . . . bm,

the concatenation of x and y.

Definition For a FA, M = (Q, Σ, δ, q0, F) , we
define δ̂ : Q× Σ∗ → Q recursively as follows.

(i) δ̂(q, ε) = q;
(ii) for w ∈ Σ∗ and a ∈ Σ,

δ̂(q, wa) = δ(δ̂(q, w), a).

[Informally, δ̂(q, a1a2 . . . an) is the state you end in
if you start in state q and input a1a2 . . . an.]

We can then formally define:
a string w ∈ Σ∗ is accepted by M if and only if

δ̂(q0, w) ∈ F ;
the language accepted by M is

L(M) = {w ∈ Σ∗ : δ̂(q0, w) ∈ F}.
Remarks
(a) δ̂(q, a) = δ(q, a) for a ∈ Σ — some authors drop

the hat because of this.
(b) ε ∈ L(M) iff q0 ∈ F .

Theorem

δ̂(q, xy) = δ̂(δ̂(q, x), y) (x, y ∈ Σ∗).

Proof We prove this by induction on n = |y|, the
length of y.

Induction base. If n = 0, then y = ε and xy = x,
so

δ̂(δ̂(q, x), y) = δ̂(δ̂(q, x), ε) = δ̂(q, x).

Induction step. We now assume that the theorem
is true for a given arbitrary value of n, and show that
it is true for n + 1. Thus we assume:

Induction hypothesis:

δ̂(q, xy) = δ̂(δ̂(q, x), y) (x ∈ Σ∗)

when |y| = n.

Suppose y′ is a string of length n+1. Then y′ = ya
for some string y of length n, and some character a.
Then

δ̂(q, xy′) = δ̂(q, xya)

= δ(δ̂(q, xy), a), definition of δ̂,

= δ(δ̂(δ̂(q, x), y), a), Induction Hypothesis,

= δ̂(δ̂(q, x), ya), definition of δ̂,

= δ̂(δ̂(q, x), y′).

So the result holds for a string of length n + 1

Conclusion: By mathematical induction, the re-
sult holds for all n ≥ 0, and the theorem is proven.

Languages

We study formal languages, such as
programming languages constructed accord-
ing to rigid rules, but these are influ-
enced by studies of natural languages —
English, French, Latin, Tolomako, . . . – particu-
larly by Noam Chomsky (see ‘Syntactic Structures’
(1957), Main Library 415.84 (C)). He, and others,
attempt to fit syntactic structures to existing lan-
guages (but not Tolomako). We only have to deal
with artificial languages constructed using those
structures.

Specialists in artificial intelligence involving natu-
ral language recognition will need to study linguistics
further.

21

Alphabets and Languages

In natural languages, the basic building block is the
word, (or the ‘morpheme’, as in ‘cats’ = ‘cat’ + [plu-
ral]), and linguists are concerned with the rules by
which these are built up into sentences. The ‘al-
phabet’ is the set of words (or morphemes): the lan-
guage is the set of all those strings of words which
are grammatical sentences.

In programming languages, like Pascal, the ‘alpha-
bet’ consists of the keywords, variables, arithmetic
operators, brackets,. . . and these are built up into
programs. The language Pascal may be identified
with the set of all strings of these lexical units which
are syntactically correct programs (whether they
work or not!).

To model these ideas, we simplify things and con-
sider an alphabet Σ which is a set of symbols and
a language L over Σ which is a set of strings of
symbols in Σ. We write L ⊆ Σ∗.

Example If Σ = {a, b}, then
Σ∗ = {ε, a, b, aa, ab, bb, aaa, aab, aba, abb, baa, . . . }
A few languages over Σ are

1. {ε, a, aa, aab}

2. {x ∈ Σ∗ : |x| ≤ 8}

3. {x ∈ Σ∗ : |x| is odd }

4. {x ∈ Σ∗ : na(x) > nb(x)}

5. {x ∈ Σ∗ : |x| > 2 and x begins and ends with b}

|x| denotes the number of symbols in the string x.
na(x) and nb(x) denote the number of a’s and b’s

in the string x.

The empty set and the null
string

Note Languages are sets of strings of symbols.
∅ is the empty set — a (very trivial) language con-

taining no strings.
ε is the null string.
{ε} is a set with one member — it’s the (slightly

less trivial) language which contains only one string,
namely ε.

A helpful image of a language might be a ring-
binder containing sheets of paper each with a string
written on it:
{ε} is a ring binder containing one sheet of blank
paper;
∅ is an empty ring binder!

Operations on languages

Since languages are sets of strings, new languages
can be constructed by the set operations

• Union

• Concatenation

• Kleene closure

Question : Why are these operations important ?
Answer : If certain languages are recognized by fi-

nite automata, then the languages that result from
the application of these operations will also be recog-
nized by finite automata

Union operator
Let Σ be a finite set of symbols, and let L1, L2 ⊆ Σ∗

be two languages over Σ.
The union of L1 and L2, denoted by L1∪L2, is the

set

{x : x ∈ L1 or x ∈ L2}

which is the usual definition of the union of two
sets.

Example With Σ = {0, 1}, if L1 = {10, 1} and
L2 = {011, 11}, then

L1 ∪ L2 = {10, 1, 011, 11}

Concatenation operator
Let Σ be a finite set of symbols, and let L1, L2 ⊂ Σ∗

be two languages over Σ.
The concatenation of L1 and L2, denoted by L1L2,

is the set

{xy : x ∈ L1 and y ∈ L2}

which is the set of all possible combinations of a
string from L1 followed by a string from L2.

Example
With Σ = {a, . . . , z}, if L1 = {hope, fear} and

L2 = {less, fully}, then
L1L2 = {hopeless, hopefully, fearless, fearfully}

Kleene (Closure) operator
Use exponential notation to indicate the number of

items being concatenated
If Σ is an alphabet and a ∈ Σ, x ∈ Σ∗, and L ⊆ Σ∗,

then

1. ak = aa · · · a

2. xk = xx · · ·x

3. Lk = LL · · ·L

22

where there are k factors in each product.

If k = 0, then

a0 = ε, x0 = ε, L0 = {ε}

Lk is the set of all strings that can be obtained by
concatenating k elements of L.

Example If L = {a, b} where a and b are strings,
then

1. L0 = {ε} where ε is the empty string

2. L2 = LL = {a, b} {a, b} =
{
a2, ab, ba, b2

}

3.

L3 = L2L = {a, b}{
a2, ab, ba, b2

}

=
{
a3, a2b, aba, ab2, ba2, bab, b2a, b3

}

Extend to include the set of all strings that can be
obtained by concatenating any number of elements of
L :

L0 = {ε}, Li+1 = LLi

The Kleene closure L∗ of L is defined as

L∗ =
∞⋃

i=0

Li

Example If L = {a, b} where a and b are strings,
then

L∗ = {ε, a, b, a2, ab, ba, b2, a3, a2b, aba, ab2, ba2, bab,

b2a, b3, · · · }

Example If L = {10, 1}, then L∗ =
{ε, 10, 1, 1010, 101, 110, 11, · · · }

Fact
If L, L1 and L2 are two languages over Σ that are

recognized by finite automata, then

1. L1 ∪ L2,

2. L1L2 and

3. L∗

are also recognized by finite automata.
These operations provide a set of rules that allow

us to build up formal languages recognized by finite
automata.

Kleene’s Theorem

The following languages over an alphabet Σ are rec-
ognized by finite automata:

• the empty language ∅;

• the language {ε};

• for each a ∈ Σ, the language {a};

• any language produced from these basic build-
ing blocks by the (repeated) application of the
operations of union, concatenation and closure.

Kleene’s Theorem. These and only these lan-
guages are accepted by finite automata.

Definition Let Σ be an alphabet; the regular
expressions over Σ and the sets that they represent
are defined recursively :

1. ∅ is a regular expression and represents the
empty set {}

2. ε is a regular expression and represents the set
{ε}, the set that only contains the string of zero
length

3. For each a ∈ Σ, a is a regular expression and
represents the set {a}

4. If R and S are regular expressions denoting the
sets R and S respectively, then R ∪ S (union),
RS (concatenation) and R∗ (Kleene closure) are
regular expressions that represent the sets R∪S,
RS and R∗ respectively

A string is a regular expression if and only if it can
be derived from the regular expressions (1), (2) and
(3) by a finite number of applications of the rules (4)

Regular expressions and regular
languages

Notice that regular expressions are simply algebraic
expressions. Each regular expression corresponds to
a set of strings (i.e. a language)

The languages corresponding to regular expressions
are called regular languages.

Kleene’s Theorem says that the languages accepted
by finite automata are just the regular languages.

23

Not all languages are regular

Example The language

{0n1n : n = 1, 2, 3, . . . }

is not regular.
To recognise this language, a finite automaton

would have to keep track of how many zeros had
been input, up to an indefinitely large number, and
you cannot store an indefinitely large number in a
machine with only a finite number of states. (The
number of states is fixed before you know how long
the input might be.)

Examples Let Σ be the alphabet {0, 1}.
• 00 is a regular expression representing the set
{00}

• 0∪1 represents {0, 1}
• 0* represents {ε, 0, 00, 000, · · · }
• (0∪1)* represents the set of all strings of 0s or

1s, including the empty string

• (0∪1)*00(0∪1)* represents all strings with at
least two consecutive 0s

Example Let Σ be the alphabet {0, 1}. The string

1∗0(01)∗

is a regular expression representing the set of all
strings consisting of any number (including none) of
1s, followed by a single 0, followed by any number
(including none) of 01 pairs.

Example Let Σ be the alphabet {0, 1}. The string

0 ∪ 00 ∪ 000 ∪ 1∗

is a regular expression representing the set of all
strings consisting of no more than three 0s, or of any
number (including none) of 1s.

Example Let Σ be the alphabet {0, 1}. The string

11((10)∗11)∗00∗

is a regular expression representing the set of all
strings consisting of a nonempty string of 11 pairs,
interspersed with any number (including none) of 10
pairs, followed by at least one 0.

Example Let Σ be the alphabet {0, 1}. The string

(1(11)∗0)∗1(11)∗

is a regular expression representing the set of all
strings consisting of. . .

The string
1(11)∗

is a regular expression representing the set of all
strings consisting of a single 1 followed by zero or
more pairs of 1s; i.e. strings consisting of an odd
number of 1s.

Hence, the string

(1(11)∗0)∗1(11)∗

is a regular expression representing the set of all
strings consisting of an odd number of 1s, followed
by a 0, followed by an odd number of 1s, followed by
a 0, followed by an odd number of 1s, etc., ending in
an odd number of 1s, the total number of interspersed
0s being zero or more.

Examples

1. The string 10100010 is in the set represented by
the regular expression

(0∗10)∗ .

2. The string 011100 is NOT in the set represented
by the regular expression

(0 ∪ (11)∗)∗.

3. The string 000111100 is in the set represented by
the regular expression

((011 ∪ 11)∗(00)∗)∗.

Example Find a regular expression over Σ =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, .} for the set of all non-
negative real numbers in fixed point notation.

To save writing, we set

N = 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9

D = 0 ∪N ,

so these correspond to the sets of strings
N = {1, 2, 3, 4, 5, 6, 7, 8, 9},
D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
Then the regular expression

(ND∗ ∪ 0) .DD∗

corresponds to the set of all non-negative real num-
bers.

24

Note : A regular set may be described by more
than one regular expression :

Example The set of all strings of 0s and 1s can
be in represented in (at least) two ways :

(0 ∪ 1)∗ = [(0 ∪ 11∗)∗ ∪ (01)∗]∗

An efficient algorithm that enables one to deter-
mine if two regular sets are equal has not yet been
established.

Examples of finite automata for
regular expressions

Example 1 The finite automaton corresponds to

0,1

0

1

0,1

0,1

the regular expression

0∗1(0 ∪ 1).

Example 2 The finite automaton corresponds to

1

0

1

0

0,1

the regular expression

(0 ∪ (11)∗)∗ = (0 ∪ (11))∗.

Regular Expressions in Action I

Lexical Analysis
The tokens of a programming language – identi-

fiers, literals, operators, reserved words and punctu-
ation – can be described by a regular language.

During lexical analysis – the first stage of compila-
tion – a software version of the corresponding finite
automaton is used to recognisee these tokens.

(Of course, it is actually a finite automaton with
output, but recognition is the key to its operation.)

Regular Expressions in Action
II

Regular expressions are the standard method for
characterizing sets of text sequences in

• web search engines

• UNIX: vi, Perl, Emac, egrep

• Windows editors: WORD, WinEdt, TextPad,
MultiEdit

However, these implementations use a wide variety
of different notations, always include operators other
than the basic three, and frequently do not implement
the full range of regular expressions.

egrep

egrep – extended global regular expression print –
is a standard Unix tool that uses regular expressions
to enable powerful searching. It searches a file for
a specified pattern of characters and prints all lines
that contain the pattern

Examples of egrep

• A string s matches a regular expression r if s is
in the set of strings represented by r

• Given a regular expression, egrep will print ev-
ery line of the file that contains a substring that
matches the regular expression

Example
egrep ’depend’ /usr/dict/words
depend
dependent
independent

The egrep notation

• Closure (*) is written as *

• Union (∪) is written as |
• Concatenation is denoted by adjacency

Example
(0∪1)*00(0∪1)* is denoted by (0|1)*00(0|1)*
The argument in the egrep command is a regular

expression. By Kleene’s theorem, a there is a finite
automaton corresponding to this expression. The
egrep program, in effect, builds a software model of
this FA.

25

egrep syntax

• Alphabet The period character . matches
any character in the alphabet Σ. The set Σ∗

is matched by .∗

• Empty String egrep cannot express the empty
string ε, but r? denotes 0 or 1 occurrences of the
regular expression r

• Beginning of line This is denoted by ˆ

• End of line This denoted by $

On a Solaris or Unix system, the file
/usr/dict/words contains about 25 000 En-
glish words, one per line.

Example

• To find all words containing depend as a sub-
string :

egrep ’depend’ /usr/dict/words

depend

dependent

independent

• To find all words containing depend as a prefix :

egrep ’^depend’ /usr/dict/words

depend

dependent

• To find all words that start and end with y

egrep ’^y.*y$’ /usr/dict/words

yeasty

yeomanry

yesterday

• But ...

egrep ’y.*y’ /usr/dict/words

alleyway

[...]

yesteryear

• Spell checking

egrep ’rec(ie|ei)ve’ /usr/dict/words

receive

• Crossword puzzle : ”s-blank-blank-u-blank-t-
blank-blank-e”

egrep ’^s..u.t..e$’ /usr/dict/words

seductive

structure

Finite State Machines with
Output

Example Pocket calculator
Input: buttons pressed.

Output: characters on LCD display
A finite machine but with a very large number of

internal states. The following two examples have only
modest numbers of states and could be implemented
directly by electronic circuits.

Example Vending machine.
Input: coins, buttons pressed.

Output: instructions, coffee, tea, hot chocolate.

Example Traffic lights controller.
Input: signals from detectors and pedestrian push-

buttons.
Output: different configurations of the lights.

Example Video recorder
Input: signals from the remote control.

Output: commands to start/stop motor, eject,
change channel,. . . .

Often, machines will be implemented in software.
The following are pure software examples

Example Compiler
Input: source code

Output: executable code
Finite machines are a poor model here, but a good

model for the first stage (lexical analysis).

Example Language translator
Input: Russian text

Output: English text
Finite machines are a good model only for the most

rudimentary translators.

Example Arithmetic unit: e.g. a binary adder
Input: two numbers, least significant digits (of

both) first
Output: their sum

Mealy and Moore machines

Mealy or Moore machines are finite automata with
the ability to write output characters.

• Mealy machine - an output is associated with
each transition (as the machine receives an input
and moves from one state to another state)

• Moore machine - an output is associated with
each state, rather than with the transition be-
tween states

26

Definition of a Mealy machine :
A Mealy machine consists of a sextuple M =

(Q, Σ,Γ, q0, δ, ω) where:

• Q is a finite set of states;

• Σ is a finite set of input symbols;

• Γ is a finite set of output symbols;

• q0 is the initial state;

• δ : Q× Σ → Q is the state transition function;

• ω : Q× Σ → Γ is the output function.

If M is in state q ∈ Q with an incoming input
a ∈ Σ, the state changes to δ(q, a) ∈ Q and outputs
the character ω(q, a) ∈ Γ.

Example Let Q = {p, q, r}, Σ = {0, 1}, Γ =
{x, y, z}, initial state = p. We describe δ and ω by
the following transition / output table

input p q r
δ 0 q r r
δ 1 q q p
ω 0 x x z
ω 1 y y x

In drawing state diagrams, we use the following
notation.

a b
x0

The input 0 causes a state transition from a to b,
and an output of x.

Example

qp
1 / y

0 / x

0 / z

r

1 / x

0 / x, 1 / y

Note: no ‘final states’; Mealy machines have a bet-
ter form of output.

Example
What is the output of the Mealy machine on input

ababb ?

p

q

r

s

b / 1

a / 0
b / 1

a / 1

b / 0

b / 1

a / 0

a / 0

1. The first input letter is a, which takes us to q,
and the output is 0.

2. The next input letter is b, which takes us to r,
and the output is 1.

3. The next input letter is a, which leaves us at s,
and the output is 0.

4. The next input letter is b, which takes us to p,
and the output is 1.

5. The next input letter is b, which takes us to s,
and the output is 0.

Thus the output is 01010.
Note : The length of the output string is equal to

the length of the input string (=5).

Example
What is the output of the following machine on

input 101 ?

0 / z

1 / x

p
0 / y

q

1 / z

0 / x

r

1 / x

Answer : xyz
Example Design a Mealy machine to add two

numbers in binary form. The numbers will have to be
fed in backwards: least significant digits first. They
will also have to have sufficient leading zeros (fed in
last) to make both numbers of the same length and
so that each has at least one leading zero, to allow
time for the machine to output a final carry digit.

27

To deal with the two input streams, we simply have
as the input alphabet

Σ = {0, 1}2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.
The output alphabet is Γ = {0, 1}. There are just
two states, q0 and q1, corresponding to the carry digit
being 0 or 1. The initial state is q0 and the transition
/ output table is the following.

input q0 q1

δ (0, 0) q0 q0

δ (0, 1) q0 q1

δ (1, 0) q0 q1

δ (1, 1) q1 q1

ω (0, 0) 0 1
ω (0, 1) 1 0
ω (1, 0) 1 0
ω (1, 1) 0 1

Here is the state diagram.

(0,0)/0, (0,1)/1, (1,0)/1 (0,1)/0, (1,0)/0, (1,1)/1

(1,1)/0

(0,0)/1

q q
0 1

The function ω̂

As with the transition function δ, so with the out-
put function ω, we can extend the function to de-
scribe the behaviour when the machine is fed with
a whole string rather than a single character. Thus,
ω̂(q, a1a2 . . . an) will be the output string you get if
you start in state q and input a1a2 . . . an.

We define ω̂ : Q× Σ∗ → Γ∗ recursively as follows.
(i) ω̂(q, ε) = ε;
(ii) for w ∈ Σ∗ and a ∈ Σ,

ω̂(q, wa) = ω̂(q, w)ω(δ̂(q, w), a).

Definition Two Mealy machines

M = (Q, Σ, Γ, q0, δ, ω), M ′ = (Q′,Σ,Γ, q′0, δ
′, ω′),

with the same input alphabets and the same output
alphabets, are equivalent if they produce the same
output from any given input: formally, if

ω̂(q0, w) = ω̂′(q′0, w) for every w ∈ Σ∗.

Some authors introduce a translation function
fM : Σ∗ → Γ∗ defined by

fM (w) = ω̂(q0, w).

Then we can just say that M and M ′ are equivalent
if and only if fM = fM ′ .

Minimization of Mealy Machines

Although we have treated finite state machines as
abstractions, electronic devices (eg., logic elements)
may be used to build circuits that act like finite state
machines. In order to keep the number of internal
states to a minimum, we try to ‘minimize’ a finite
state machine.

Let M be a given finite state machine. Minimiza-
tion of M is the process of finding another machine
M ′ with the following properties.

1. M ′ is equivalent to M .

2. M ′ has as few states as possible.

Two stages :

1. eliminate unreachable states;

2. merge equivalent states.

Stage 1 : Eliminating unreachable states.

p q

r

0 / x

1 / y

0 / x

0 / z

1 / y
1 / z

The state r is unreachable.

Example
A Mealy machine is represented by the following

table. Without drawing the state diagram, determine
the states unreachable from the initial state p.

input p q r s t
δ 0 q t r s p
δ 1 t q s q p
ω 0 x y y x y
ω 1 x y y x y

28

1. We start in state p

2. Inputs 0,1 lead to states q, t respectively, so these
are reachable.

3. From states q, t further inputs only lead to states
p, q, t which are already on our list of reachable
states.

4. Thus only states p, q and t are reachable. The
states r and s are unreachable and can be deleted
to produce a smaller equivalent machine.

Stage 2 : Merge equivalent states
Definition : Two states p and q in a Mealy ma-

chine are equivalent if they yield the same output for
every given input, i.e. if

ω̂(p, w) = ω̂(q, w) for all w ∈ Σ∗.

The set of states is divided up into equivalence
classes, so that two states are equivalent if and only
if they belong to the same equivalence class. We then
produce a machine M ′ whose states correspond to the
equivalence classes of M .

The problem is: how do we tell when states are
equivalent? It seems that we have to consider indefi-
nitely long input strings w.

Definition Two states p, q of a Mealy machine M
are k-equivalent if they yield the same output for
every given input of length k, i.e. if

ω̂(p, w) = ω̂(q, w) for all w ∈ Σk.

For example, p, q are 1-equivalent if ω(p, a) =
ω(q, a) for all a ∈ Σ.

We can characterize k-equivalence recursively as
follows:

(i) any two states are 0-equivalent;
(ii) two states p, q are k-equivalent if and only if

ω(p, a) = ω(q, a) for all a ∈ Σ

and

δ(p, a) and δ(q, a) are (k−1)-equivalent for all a ∈ Σ.

We start by determining which states are 1-
equivalent; we divide up the set of states into 1-
equivalence classes.

We then use (ii) above to determine the 2-
equivalent states. Note that 2-equivalence is a
stronger condition than 1-equivalence: i.e. 2-
equivalent states are always 1-equivalent. The con-
verse is false: states may be 1-equivalent but not
2-equivalent. The result is that the 1-equivalence

classes may break up into smaller 2-equivalence
classes.

We proceed to 3-equivalence, 4-equivalence etc..
Eventually, we reach a point where k-equivalence

is the same as (k − 1)-equivalence. It follows from
(ii) that (k + 1)-equivalence will be the same as k-
equivalence, and then (k + 2)-equivalence will be the
same, and so on.

At this point, we stop. These k-equivalence classes
will be the desired equivalence classes

Example
Minimize the following Mealy machine, with start
state p.

p q r s t u
δ 0 q p t u r q
δ 1 r t s r s r
ω 0 x y y x y y
ω 1 y x y y y x

1-equivalent states are those states that produce
the same output for an input string of length 1 (a
single character)

The 1-equivalence classes of M are {p, s} , {q, u}
and {r, t}

Finding the 2-equivalence classes : Consider each
of the 1-equivalence classes separately.

• States p and s move to states q and u for an
input of 0.

• States p and s move to state r for an input of 1.

Since q and u are 1-equivalent, and r is trivially
1-equivalent to itself, it follows that {p, s} is a 2-
equivalence class.

• States q and u move to states p and q for an
input of 0.

• States q and u move to states t and r for an input
of 1.

Since p and q are NOT 1-equivalent, q and u are
not 2-equivalent.

1. States r and t move to states t and r for an input
of 0.

2. States r and t move to state s for an input of 1.

Since t and r are 1-equivalent, and s is 1-equivalent
to itself, it follows that {r, t} is a 2-equivalence class.

Thus the 2-equivalence classes are

{p, s}, {q}, {u}, {r, t}

29

Finding the 3-equivalence classes :

• States p and s move to states q and u for an
input of 0. As q and u are not 2-equivalent, p
and s are not 3-equivalent.

• r and t are 3-equivalent because r and t are 2-
equivalent, and s is 2-equivalent to itself.

Thus the 3-equivalence classes are

{p}, {s}, {q}, {u}, {r, t}

Finding 4-equivalent states :
States r and t move to states t and r for an input

of 0 and to state s for an input of 1. Since {r, t}
and {s} are 3-equivalence classes, the 4-equivalence
classes are the same as the 3-equivalence classes, and
no further refinement is possible.

The equivalence classes are

{p}, {s}, {q}, {u}, {r, t}.

The new Mealy machine is obtained by defining
a new state w corresponding to the only non-trivial
equivalence class, {r, t}. You could say ‘w = r = t’.

input p q w s u
δ 0 q p w u q
δ 1 w w s w w
ω 0 x y y x y
ω 1 y x y y x

Example
Minimize the following Mealy machine, with start
state p

input p q r s t u v
δ 0 r s p q v r t
δ 1 s r t u u p p
ω 0 x y x y y x y
ω 1 x y x y y x y

The 1-equivalence classes are
{p, r, u} and {q, s, t, v}

Calculate the 2-equivalence classes. Consider each
of the 1-equivalence classes separately.

• States p and r move to states r and p for an input
of 0

• States p and r move to states s and t for an input
of 1

Since r and p are 1-equivalent, and s and t are
1-equivalent, it follows that {p, r} is a 2-equivalence
class

• States p and u move to state r for an input of 0

• States p and u move to states s and p for an
input of 1

Since s and p are NOT 1-equivalent, p and u are not
2-equivalent. Thus the 1-equivalence class {p, r, u}
splits into two 2-equivalence classes: {p, r} and {u}.

Consider now the 1-equivalence class {q, s, t, v}.

• States q and s move to states s and q for an input
of 0

• States q and s move to states r and u for an
input of 1

Since s and q are 1-equivalent, and r and u are
1-equivalent, it follows that {q, s} is a 2-equivalence
class

• States q and v move to states s and t for an input
of 0

• States q and v move to states r and p for an
input of 1

Since s and t are 1-equivalent, and r and p are
1-equivalent, it follows that q and v are 2-equivalent.

Similarly, q and t are 2-equivalent, and thus
{q, s, t, v} is a 2-equivalence class.

Thus the 2-equivalence classes are {p, r}, {u} and
{q, s, t, v}

To calculate the 3-equivalence classes, consider the
2-equivalent states.

• p, r are 3-equivalent.

• u is 3-equivalent to itself.

• q, v are 3-equivalent.

• s, t are 3-equivalent.

• q, s are not 3-equivalent.

Thus the 3-equivalence classes are {p, r}, {u},
{q, v} and {s, t}.

Note: to show that {q, v} and {s, t} are complete
3-equivalence classes, we only need the fact that some
member of one class is not 3-equivalent to some mem-
ber of the other: in our case, q is not 3-equivalent to s.

Exercise : Show that the 4-equivalence classes are
the same as the 3-equivalence classes, and thus no
further reduction is possible.

30

A minimal Mealy machine is defined by defining
a = p = r, b = q = v and c = s = t :

input a b c u
δ 0 a c b a
δ 1 c a u a
ω 0 x y y x
ω 1 x y y x

Summary : Minimization algorithm

1. Remove unreachable states.

2. Compute equivalence classes by recursively com-
puting the 1-, 2-, . . . , k-equivalent states, until
the k- and (k + 1)- equivalence classes are iden-
tical.

3. Merge states in each equivalence class.

Remark
Let p1, p2, . . . , pn be k-equivalent, but not necessar-

ily equivalent, states. If these n states are merged into
one, then the system will produce exactly the same
output for all inputs of length less than or equal to k
but the original machine and the reduced machine
may produce different outputs for strings of length
greater than k.

Moore Machines

Moore machines output when in a state rather than
when moving from one state to another. They are
equivalent in power to Mealy machines, but often
require more states than the equivalent Mealy ma-
chines. However, in some situations they may provide
more natural models.

Note that in Gersting ‘Mathematical Structures for
Computer Science’ Moore machines are simply called
‘finite state machines’ and Mealy machines are not
treated.

Definition A Moore machine is a sextuple M =
(Q, Σ,Γ, q0, δ, ω) where:

• Q is a finite set of states;

• Σ is a finite set of input symbols;

• Γ is a finite set of output symbols;

• q0 is the initial state;

• δ : Q× Σ → Q is the state transition function;

• ω : Q → Γ is the output function.

When M is in state q ∈ Q it outputs the character
ω(q) ∈ Γ.

Example A good example where a Moore machine
provides a suitable model is a traffic lights controller.
(See Carroll and Long ‘Theory of Finite Automata’
Example 7.16). Moore machines can be represented
by state diagrams in which states are labelled ‘q/x’
where q is the state and x the character output in
that state.

As with Mealy machines, one can define ω̂(q, w) ∈
Γ∗, the result of starting in state q and inputting the
string w. The definition is by recursion on the length
of w, but building up w from the right:

(i) ω̂(q, ε) = ε;
(ii) for w ∈ Σ∗ and a ∈ Σ,

ω̂(q, aw) = ω(δ(q, a))ω̂(δ(q, a), w).

Note that ω(q) does not form part of ω̂(q, w). We
reckon that the machine does not start outputting
until after it has made its first move.

Again, one may introduce a translation function
fM : Σ∗ → Γ∗ defined by

fM (w) = ω̂(q0, w)

and say that M andM ′ are equivalent if and only if
fM = fM ′ .

Moore machines can be mimimized in a similar way
to Mealy machines — we omit the details.

Linguistics

We seek a theory of grammar which generates all
grammatical (syntactically correct) sentences of the
language, and only these, rather in the way that a
theory of chemical structure might generate all pos-
sible molecules and only those.

We distinguish between syntax and semantics.

Colourless green ideas sleep furiously.
Furiously sleep ideas green colourless.

Both are semantically incorrect — i.e. nonsense —
but the first is recognized as syntactically correct.

The first will typically be read with normal sen-
tence intonation: the second as a series of discon-
nected words, with falling intonation on each word.

The syntax/semantics distinction is less easy in
computer languages; is an undeclared variable a syn-
tactic or a semantic error? In formal definitions of
the syntax of a language full declaration of variables

31

is often not included — but it would be checked for by
the compiler rather than allowed to cause a run-time
error (as in BASIC).

In discussing natural languages,

• the ‘alphabet’ is the set of all words (essentially);

• the ‘language’ is the set of all grammatically cor-
rect sentences.

In discussing programming languages,

• the ‘alphabet’ is the set of all lexical units —
keywords, variables, numbers, separators;

• the ‘language’ is the set of all syntactically cor-
rect programs.

Is English a regular language? NO!
The following are grammatical sentences.
God is dead. (Nietzsche)

The man who said that God is dead is dead.
The man who said that the man who said that God
is dead is dead is dead.
The man who said that the man who said that the
man who said that God is dead is dead is dead is
dead.
. . .

The number of occurrences of ‘the man who said
that’ has to match the number of occurrences of ‘is
dead’. This cannot be checked by a finite automaton.
c.f. the bracket-matching problem discussed in an
earlier problem sheet.

Objection: all but the first few of these are so
long as to be unwieldy and not recognizable as gram-
matical.

One could go on to say that only sentences of less
than one million words are grammatical, so English
is finite, so regular.

But: (i) It is difficult to see a sharp cut-off on
grounds of length.

(ii) Although English, if finite, would be regular,
the FA recognizing it might be nothing more than a
device containing a list of all English sentences. This
sort of theory gives us no insight at all. We want a
grammar small compared to the language (in a vague
sense). The best way to get this is to simplify English
by assuming it is infinite.

Chomsky’s Phrase Structure
Grammars

Let

S= sentence,
NP= noun phrase e.g. ‘the belligerent cat’,

‘the cat which caught the mouse’,
‘the heart of the matter’,

V P = verb phrase e.g. ‘sat on the mat’,
‘ate the fish’,
‘slept’,

N = noun e.g. ‘cat’, ‘mat’, ‘fish’, ‘camel’
V = verb e.g. ‘ate’, ‘sat’, ‘slept’, ‘run’
T = definite article ‘the’

S, NP , V P , N , V , T are non-terminal vari-
ables.

We start with S and elaborate it according to a
certain (finite) set of productions, which form the
grammar, until we get a string of terminal vari-
ables — i.e. words (roughly).

Sample productions

S → NP + V P

NP → T + N

V P → V + NP

V P → V

N → cat, fish, et cetera
V → ate, slept, et cetera
T → the

Example: generating a sentence.

S → NP + V P

⇒ T + N + V P

⇒ T + N + V + NP

⇒ the + N + V + NP

⇒ the + cat + V + NP

⇒ the + cat + ate + NP

⇒ the + cat + ate + T + N

⇒ the + cat + ate + the + N

⇒ the + cat + ate + the + fish

Thus

S
∗⇒ the + cat + ate + the + fish.

Notation: We use ⇒ to mean that one line
follows from the previous one by elaborating one of
the variables according to a production.

32

The symbol ∗⇒ means the application of a finite
sequence of ⇒s.

It is much more instructive to draw a derivation
tree.

S

NP VP

T N V NP

the cat ate NT

the fish

Note that we may apply whatever productions we
like at each stage:

S

NP VP

T N

the cat

V

slept

This grammar can cope with our Nietzschean ex-
ample. With suitable productions, we have

NP
∗⇒ the + man + who + said + that + S,

so

S → NP + V P
∗⇒ the + man + who + said + that + S + is + dead
∗⇒ the + man + who + said + that + the + man + who +

+said + that + S + is + dead + is + dead
. . .

with, at some stage,

S
∗⇒ God + is + dead.

We have evaded the question of tenses. To cope
with those, we introduce a non-terminal V S =

verb stem and a terminal Past, with productions such
as

V → V S + Past, V S → sleep, eat, et cetera.

The action of the grammar is to produce a sequence

S

NP VP

T N

the cat

V

VS Past

sleep

of morphemes, ‘the cat sleep Past’ which, at a later
stage, (‘morphological rules’) is turned into ‘the cat
slept’.

Transitive and intransitive verbs
Unfortunately our grammar so far allows ‘the cat

slept the fish’. which is ungrammatical as ‘sleep’ is an
intransitive verb: it cannot have an object. We could
avoid this by introducing non-terminal variables Vt

(transitive verb) and Vi (intransitive verb). We also
introduce an end-of-sentence marker ‘.’, which is a
terminal. Then we have productions

S → NP + V P + .

V P → V + NP

V + NP → Vt + NP

V + . → Vi + .

Vi → sleep, walk, et cetera
Vt → catch, chase, et cetera.

The effect of this (which should be combined with
the mechanism for handling tenses) is that a verb
followed by a noun phrase must be transitive and a
verb at the end of a sentence intransitive.

Consider the productions

V + NP → Vt + NP

V + . → Vi + .

these are context-sensitive productions. They say

V → Vt

V → Vi

but the first only in the context of being followed by
a noun phrase, and the second only in the context of
being followed by ‘.’.

33

By contrast, all the productions we had met pre-
viously had been context-free: they had a single,
non-terminal variable on the left-hand side.

A general phrase structure grammar, also
called a type 0 grammar has productions with al-
most any terminal and non-terminal variables on ei-
ther side, the only restriction being that there must
be at least one non-terminal somewhere on the left.

A context-free or type 2 grammar is one all of
whose productions are context-free.

A context-sensitive or type 1 grammar is one
all of whose productions are context-sensitive (i.e.
context-free productions with a ‘context’ surround-
ing either side of the production).

Precise definitions will be given later.

Backus-Naur Form (BNF)
This is a means of defining the syntax of program-

ming languages first devised by John Backus (1959)
and Peter Naur (1960) to describe the programming
language ALGOL. It is, more or less, a context-free
grammar for the language. In fact it contains some
extra refinements to make it easier to write the pro-
ductions.

Notation The symbol ::= is used in productions
where we have used →.

The symbol | means ‘or’, which saves writing sev-
eral very similar productions separately.

Angle brackets < > surround the names of non-
terminal variables.

Example A program might be described by the
production

<program> ::= program
<declaration_sequence>

begin
<statements_sequence>

end ;

where <program> plays the rôle of
S = sentence (the starting variable),
and the non-terminals
<declaration_sequence> and
<statements_sequence> are elaborated by fur-
ther productions.

e.g.

<statements_sequence> ::= <statement>|
<statement>;<statements_sequence>

Further extensions are the use of square brackets
[. . .] to indicate optional items, braces {. . . } to in-
dicate items which may be repeated any number of
times (i.e. Kleene closure), and various ways of dis-
tinguishing terminal variables.

<statements_sequence> ::=
<statement>{";" <statement>}

References to documents about BNF and to lan-
guage specifications using BNF may be found on the
course web page.

Phrase Structure Grammars — Formal Def-
initions

A phrase structure grammar is a quintuple

G = (V, N, Σ, P, S)

Where

• V = N ∪ Σ is a (finite, non-empty) set of vari-
ables,

• N is the (non-empty) set of non-terminal vari-
ables,

• Σ ⊂ V is the (non-empty) set of terminal vari-
ables,

• S ∈ N is the starting variable,

• P is a (finite, non-empty) set of productions
α → β with each α ∈ V ∗NV ∗ and β ∈ V ∗.

We say α′ ∈ V ∗ directly generates β′ ∈ V ∗,
written α′ ⇒ β′, if, for some α1, α2 ∈ V ∗, α ∈
V ∗NV ∗ and β ∈ V ∗,

α′ = α1αα2, β′ = α1βα2, (α → β) ∈ P.

We say α′ generates β′, written α′ ∗⇒ β′, if there
is a chain

α′ = γ1 ⇒ γ2 ⇒ . . . ⇒ γn = β′.

The language defined by G is

L(G) = {w ∈ Σ∗ : S
∗⇒ w}.

Two grammars G1, G2 are equivalent if L(G1) =
L(G2).

Example Consider the grammar G1 with

1. N = {S, A,B}
2. Σ = {a, b}
3. starting variable S

4. productions

S → aA, A → aAB, B → b, A → a

34

Then we get derivations such as:

S → aA ⇒ aaAB ⇒ aaaABB ⇒ aaaaBB ⇒

⇒ aaaaBb ⇒ aaaabb,

so that S
∗⇒ aaaabb.

Productions

S → aA, A → aAB, B → b, A → a.

Generally, a derivation has to start with S → aA,
and the A will have to produce an a eventually, so all
strings in L(G) contain at least two as. Production
of any further as depends on the use of A → aAB,
which ultimately leads to an equal number of bs at
the end of the string.

L(G1) = {an+2bn : n ≥ 0}.

Example Consider the grammar G2 with

1. N = {S, A}
2. Σ = {a, b}
3. starting variable S

4. productions

S → aaA, A → aAb, A → ε

Clearly this operates in a similar way to G1, but pro-
ducing bs directly, rather than through Bs, and pro-
ducing two as in the first move, but allowing A to
just vanish.

L(G2) = {an+2bn : n ≥ 0}.

The grammars G1 and G2 are equivalent. We are

interested in grammars with various restrictions on
the productions. In this context, a general phrase
structure grammar as defined above will also be called
a Type 0 grammar.

A context-free grammar, or Type 2 grammar,
is one in which all the productions are of the form

A → β, with A ∈ N, β ∈ V ∗.

Example Consider the language L over the alpha-
bet Σ = {‘(’,‘)’} consisting of just those non-empty
strings of brackets in which the number of opening
brackets equals the number of closing brackets and
such that in no initial segment of the string does
the number of closing brackets exceed the number

of opening brackets. Find a context-free grammar
for L.

Let S be our starting symbol and the sole non-
terminal variable and let the productions be

S → ()
S → (S)
S → SS

For example, we obtain the string
‘(() () ((()) ()))’ by

S → (S)
⇒ (SS)
⇒ (SSS)
∗⇒ (()()(S))
⇒ (()()(SS))
∗⇒ (()()((S)()))
⇒ (()()((())()))

The derivation tree looks like this.

S

()S
S S

S S
)()(

S()
SS

(()
)(

)S

If we wanted L to be the language of possibly empty
strings of brackets satisfying the same conditions, we
could achieve this with the productions

S → ε

S → (S)
S → SS

where we can retrieve S → () because

S → (S) ⇒ (ε) = ()

Example Find a context-free grammar G with
Σ = {a, b, c} such that

L(G) = {anbmcn : n ≥ 3, m ≥ 0}.

35

Let us start with N ⊇ {S, S1, S2, S3}, start symbol S
and productions

S → aS1c, S1 → aS2c, S2 → aS3c.

There is only one possible derivation:

S → aS1c ⇒ a2S2c
2 ⇒ a3S3c

3

We now need a grammar with start symbol S3 which
generates the language

{a`bmc` : ` ≥ 0, m ≥ 0}.
We can get the as and cs in equal numbers by adding
the production

S3 → aS3c

We then switch to producing bs by introducing an-
other non-terminal variable B say with productions

S3 → B, B → bB, B → ε

This completes the desired grammar: N =
{S, S1, S2, S3, B}, the start symbol is S and the full
list of productions is:

S → aS1c, S1 → aS2c, S2 → aS3c,

S3 → aS3c S3 → B, B → bB, B → ε.

Between types 0 and 2 comes the following.

A context-sensitive grammar, or
Type 1 grammar, is one in which all the
productions are of the form either

αAγ → αβγ, with A ∈ N, α, γ ∈ V ∗, β ∈ V +.

(i.e. A → β in the context α . . . γ)
or S → ε, though if this occurs then S must not occur
on the right-hand side of any production.

[You do not need to know about context-sensitive
grammars for this course: they are included here to
help explain the term ‘context-free’.]

A right-linear grammar is one in which all the
productions are of the form

A → w, A → wB, with A, B ∈ N, w ∈ Σ∗.

A left-linear grammar is one in which all the
productions are of the form

A → w, A → Bw, with A, B ∈ N, w ∈ Σ∗.

A regular grammar, or Type 3 grammar, is
one which is either right-linear or left-linear.

Theorem

The set of languages generated by right-linear
grammars

is equal to
the set of languages generated by left-linear gram-

mars
and these languages are precisely the regular lan-

guages;
i.e. the languages defined by regular expressions,
i.e. the languages accepted by finite automata.

Example Consider the right-linear grammar G3

with N = {S,A, B}, Σ = {a, b}, starting variable S
and productions

S → aA, A → aA, A → aB, B → abB,

B → b, A → a

Then we get derivations such as:

S → aA ⇒ aaA ⇒ aaaA ⇒ aaaa

S → aA ⇒ aaA ⇒ aaaB ⇒ aaaabB ⇒
⇒ aaaababB ⇒ aaaababb

Generally, one can see that

L(G3) = {an : n ≥ 2} ∪ {an(ab)mb : n ≥ 2, m ≥ 0};

i.e. it corresponds to the regular expression

aa∗(a ∪ a(ab)∗b)

Examples In the earlier examples above, G1, with
productions

S → aA, A → aAB, B → b, A → a

is context-free, but not regular, since the production
A → aAB is neither right- nor left-linear.

The (equivalent) grammar G2 with productions

S → aA, A → aAb, A → a

is also context-free, but not regular, since the pro-
duction A → aAb is neither right- nor left-linear.

Example Consider the grammar G4 with N =
{S, A}, Σ = {a, b, c}, starting variable S and pro-
ductions

S → aA, A → Sb, S → c

Notice that G4 is neither left-linear nor right-linear,
so it is not regular.

36

All derivations are of the form:

S → aA ⇒ aSb ⇒ aaAb ⇒ aaSbb ⇒ . . .

. . . ⇒ anSbn ⇒ ancbn

L(G4) = {ancbn : n ≥ 0}.
We recognize this as a language which is not regular.

Example Consider the grammar G5 with N =
{S,A}, Σ = {a, b, c}, starting variable S and pro-
ductions

S → aA, S → A, A → Sb, A → S, S → c

Again, G5 is neither left-linear nor right-linear, so it
is not regular.

All derivations are similar to those of G4 except
that the as and bs are not necessarily produced
equally as the non-terminal variable switches be-
tween A and S: e.g.

S → aA ⇒ aS ⇒ aaA ⇒ aaSb ⇒ aacb

Generally

L(G5) = {ancbm : n,m ≥ 0}.

L(G5) = {ancbm : n,m ≥ 0}.
We recognize this as a regular language, correspond-
ing to the regular expression

a∗cb∗.

A regular language is one which can be produced
by a regular grammar. This example shows that it
may also be produced by a non-regular grammar.

Problem. Find a regular grammar G6 with
L(G6) = L(G5).

Answer. Let G6 be the grammar with N =
{S,B}, Σ = {a, b, c}, starting variable S and produc-
tions

S → aS, S → cB, B → bB, B → ε

Pushdown Automata

Regular languages correspond to the concept of
computation embodied in the idea of a finite automa-
ton.

To what do context-free grammars correspond?

The answer is the non-deterministic pushdown
automata (NPDA).

Basically, these are finite automata with an infinite
memory, but with the memory organized in the form
of a pushdown stack; i.e. a last-in-first-out (LIFO)
store.

A pushdown automaton

Z

Z

Z

Z

Z

4

1

stack

input
Q

finite automaton
3

2

0

Definition An NPDA is a septuple M =
(Q, Σ, Γ, δ, q0, Z0, F) where:

1. Q is a finite set of states;

2. Σ is the input alphabet;

3. Γ is the stack alphabet;

4. q0 ∈ Q is the initial state;

5. Z0 ∈ Γ is the start symbol, indicating the bot-
tom of the stack;

6. F ⊆ Q is the set of final states;

7. δ is a mapping from Q× (Σ∪{ε})×Γ to the set
of finite subsets of Q× Γ∗.

To understand this, consider the special case of a
deterministic pushdown automaton. In this,

δ : Q× Σ× Γ → Q× Γ∗.

When the machine is in state q and receives an in-
put a, it looks at the character on the top of the stack.
If this character is Z, then δ specifies its course of ac-
tion. Suppose

δ(q, a, Z) = (p, γ).

Then the machine moves to state p and records the
string γ in place of Z at the top of the stack (the
rightmost symbol of γ being placed lowest).

The machine accepts an input if at the end of the
input the machine is in one of the final states. (An

37

alternative, and equivalent, model accepts if the stack
is empty.)

Non-deterministic PDAs have

δ(q, a, Z) = {(p1, γ1), (p2, γ2), . . . , (pn, γn)}.
They can make any one of the moves defines by the
(pi, γi). Thus the progress of the machine is not com-
pletely determined: from a given situation, with given
inputs, the machine has a variety of possible futures.
A string is accepted if it is accepted in any one of
these possible futures.

A further refinement is that the machine can make
moves without receiving any input (ε-moves). If

δ(q, ε, Z) = {(p1, γ1), (p2, γ2), . . . , (pn, γn)},
then the machine can make any of the moves specified
by the (pi, γi).

Theorem The set of strings accepted by a NPDA
is a context-free language and every context-free lan-
guage is the set of strings accepted by some NPDA.

Remarks

• From a practical, compiler designer’s, point of
view, it is more convenient to work with lan-
guages accepted by deterministic PDAs. These
are called the deterministic context-free lan-
guages and it is possible to define classes of
grammars which define (some) such languages.
The deterministic context-free languages do form
a proper subset of the context-free languages.

• There is a similar notion of non-deterministic
finite automata (NFA), but they accept the
same class of languages as do the deterministic
finite automata. However, NFAs are needed to
prove Kleene’s Theorem.

• In another direction, characterizations of type 0
and type 1 languages may be given using more
general models of computation (Turing ma-
chines).

• A level 2 course ‘Machines and Languages’ stud-
ies these matters further.

END OF LECTURE COURSE

MERRY

CHRISTMAS!

38

