Discrete Foundations — Question Sheet 1

Please complete this by Friday 8 October, when the solutions will be given. The starred question (question 7) is primarily for COM6853 students.

1. Let $U = \{1, 2, \dots, 8, 9\}$, and

$$A = \{1, 2, 3, 4, 5\},$$
 $C = \{5, 6, 7, 8, 9\},$ $E = \{2, 4, 6, 8\},$ $D = \{4, 5, 6, 7\},$ $D = \{1, 3, 5, 7, 9\},$ $E = \{1, 5, 9\}.$

Find (a) $A \cup B$, (b) $A \cap B$, (c) $B \cup D$, (d) $A \cup C$, (e) $A \cap C$, (f) $D \cup F$, (g) $A \setminus B$, (h) $B \setminus A$, (i) $D \setminus E$, (j) $F \setminus D$, (k) $A \cap (B \cup E)$, (l) $(A \cap D) \setminus B$, (m) $(A \setminus E)^c$, (n) $(B \cap F) \cup (C \cap E)$.

- 2. Draw the Venn diagrams of the sets $A \cap B^c$ and $(B \setminus A)^c$.
- 3. Use the laws of sets to prove the identity $(U \cap A) \cup (B \cap A) = A$.
- 4. In a survey of 60 people, it was found that 25 people read *Newsweek*, 26 people read *Time*, and 26 people read *Fortune* magazine. Also, 9 people read both *Newsweek* and *Fortune*, 11 people read both *Newsweek* and *Time*, 8 people read both *Time* and Fortune, and 8 people do not read any of the magazines. Use a Venn diagram to calculate the number of people who read all three magazines, and the number of people who read only one magazine.
- 5. Which of the following statements are true and which are false?

1.
$$\emptyset \subseteq \{\text{cat}, \text{dog}\}\$$
 2. $\{\text{cat}\} \not\subset \{\text{cat}, \text{dog}\}\$ 3. $\{\text{cat}, \text{dog}\} \subset \{\text{cat}, \text{dog}\}\$ 4. $\{\text{cat}, \text{dog}\} \not\subseteq \emptyset$ 5. $\{\text{cat}, \text{dog}\} \subset \{\text{cat}\}\$

6. Let $S = \{a, b, c\}$. Which of the following statements are true and which false?

1.
$$a \subseteq S$$
 2. $d \subseteq S$ 3. $\emptyset \subseteq S$ 4. $\{d\} \not\subseteq S$

7*. We define the symmetric difference $A \Delta B$ of two sets A, B by

$$A \Delta B = (A \setminus B) \cup (B \setminus A).$$

- 1. Draw a Venn diagram showing typical sets A, B with $A \Delta B$ shaded.
- 2. Draw Venn diagrams with typical sets A, B, C, illustrating the identity

$$(A \Delta B) \Delta C = A \Delta (B \Delta C). \tag{1}$$

3. Prove (1) from the algebraic laws for sets. Hint: show that each side is equal to

$$(A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C) \cup (A \cap B \cap C).$$