Discrete Foundations — Question Sheet 2

Please complete this by Friday 15 October, when the solutions will be given. The starred question is for PMA6853 students.

1. Determine if each of the diagrams below defines a function from $A=\{a,b,c\}$ to $B=\{x,y,z\}.$

(a)

(b)

(c)

2. Let $A = \{1, 2, 3, 4, 5\}$ and let $f : A \to A$ be the function defined in the diagram below. Find f(A), i.e. the range of f.

3. Let A be the set of students in a school. Determine which of the following assignments defines a function on A.

- (a) To each student, assign his/her age.
- (b) To each student, assign his/her teacher.
- (c) To each student, assign his/her sex.
- (d) To each student, assign his/her spouse.

4. A function $f: A \to B$ is one-to-one (written 1-1) if different elements in the domain of A have distinct images, that is, f is one-to-one if f(a) = f(b) implies that a = b. Determine if each of the following functions is 1-1.

- (a) To each person on the earth, assign the number which corresponds to his age.
- (b) To each country in the world, assign the latitude and longitude of its capital.
- (c) To each book written, assign the (first-named) author.
- (d) To each country in the world that has a prime minister, assign its prime minister.

5. Let $S = \{1, 2, 3, 4, 5\}$ and consider the following functions from S to S: f(n) = n, g(n) = 6 - n, $h(n) = \max\{3, n\}$ and $l(n) = \max\{1, n - 1\}$. Which of these functions are 1–1, onto?

6. Determine which of the following functions are injective and which are surjective:

- (a) $f: \mathbb{Z} \to \mathbb{N}$ where $f(x) = x^2 + 1$
- (b) $g: \mathbb{N} \to \mathbb{N}$ where $g(n) = 2^n$
- (c) $h: \mathbb{R} \to \mathbb{R}$ where h(x) = 5x 1
- (d) $f: \mathbb{R} \to \mathbb{R}$ where

$$f(x) = \begin{cases} 2x - 3 & \text{if } x \ge 1\\ x + 1 & \text{if } x < 1 \end{cases}$$

- (e) $k: \mathbb{R} \to \mathbb{R}$ where k(x) = x + |x|
- (f) $l: \mathbb{R} \to \mathbb{R}$ where l(x) = 2x |x|

Note: |x| denotes the absolute value of x. Thus |x| = x if $x \ge 0$ and |x| = -x if x < 0.

2

- 7. Write down the Cartesian products $A \times B$ and $B \times A$ of the sets $A = \{0, 1, 2\}$ and $B = \{0\}$.
- 8.* Let $f: X \to Y$ be a function. For $A \subseteq X$ we write $f(A) = \{f(a) : a \in A\}$ and for $G \subseteq Y$ we write $f^{-1}(G) = \{x \in X : f(x) \in G\}$. [I have used the conventional notation here, but notice that $f^{-1}(G)$ is defined even when f is not invertible.] Which of the following general statements are true:
- (a) $f(A \cup B) = f(A) \cup f(B)$ for all $A, B \subseteq X$;
- (b) $f(A \cap B) = f(A) \cap f(B)$ for all $A, B \subseteq X$;
- (c) $f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(H)$ for all $G, H \subseteq Y$;
- (d) $f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H)$ for all $G, H \subseteq Y$?

Justify your answers. When '=' is not true, consider whether '⊆' or '⊇' might be true.