## Discrete Foundations - Question Sheet 3

Please complete this by Friday 27 October, when the solutions will be given. The starred questions are for COM6853 students.

1. Recall that a relation $R$ on a set $A$ is said to be:

- reflexive if $x R x$ for every $x \in A$;
- symmetric if $x R y$ implies $y R x$ for every $x, y \in A$;
- transitive if $x R y$ and $y R z$ imply $x R z$ for every $x, y, z \in A$.

Let $A$ be the power set of $\mathbb{R}$, i.e. the set of all sets of real numbers, and consider the relation $\subseteq$ on $A$. Is this relation (a) reflexive, (b) symmetric, (c) transitive?
2. Prove directly that

$$
\frac{200}{700^{2}}<\frac{1}{500}-\frac{1}{700}<\frac{200}{500^{2}}
$$

3. Prove that

$$
\frac{x(x-1)^{2}-5 x+8}{x+2}=(x-2)^{2}
$$

when $x \neq-2$. What happens at $x=-2$ ?
4. Is the following proof correct? If not, why not?

Theorem $1=2$.
Proof

$$
\begin{aligned}
x=2 & \Rightarrow x-1=1 \\
& \Rightarrow(x-1)^{2}=1 \\
& \Rightarrow(x-1)^{2}=x-1 \\
& \Rightarrow x^{2}-2 x+1=x-1 \\
& \Rightarrow x^{2}-2 x=x-2 \\
& \Rightarrow x(x-2)=x-2 \\
& \Rightarrow \frac{x(x-2)}{x-2}=\frac{(x-2)}{x-2} \\
& \Rightarrow x=1
\end{aligned}
$$

5. Prove by induction that

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

* How could you use this result to calculate $\sum_{k=1}^{n} k^{3}$ ? Hint: consider

$$
\sum_{k=1}^{n}(k+1)^{4}-\sum_{k=1}^{n} k^{4}
$$

6.     * Prove by induction that $n^{3}<3^{n}$ for $n \geq 4$.
7. Prove by induction that $11^{n}-4^{n}$ is divisible by 7 for all $n \in \mathbb{N}$.
8. Prove without differentiation that $x+\frac{1}{x} \geq 2$ when $x>0$. What happens at $x=0$ ?
9. Prove by exhaustion that $x^{2}+y^{2}=11^{2}$ has no integer solution with $x, y>0$.
10. Prove by contradiction that $\sqrt{2}$ is irrational - i.e. that $\sqrt{2}$ cannot be expressed in the form $p / q$ for positive integers $p, q$. You may use without proof the fact that, for an integer $a$, if $a^{2}$ is even, then $a$ is even.
