
PMA1050 Discrete Foundations 2004–5

Question Sheet 3
Please complete this by Friday 27 October, when the solutions will be given. The starred questions are

for COM6853 students.

1. Recall that a relation R on a set A is said to be:

• reflexive if xRx for every x ∈ A;
• symmetric if xRy implies yRx for every x, y ∈ A;
• transitive if xRy and yRz imply xRz for every x, y, z ∈ A.

Let A be the power set of R, i.e. the set of all sets of real numbers, and consider the relation ⊆
on A. Is this relation (a) reflexive, (b) symmetric, (c) transitive?

2. Prove directly that
200
7002

<
1

500
− 1

700
<

200
5002

3. Prove that
x(x− 1)2 − 5x + 8

x + 2
= (x− 2)2,

when x 6= −2. What happens at x = −2 ?

4. Is the following proof correct ? If not, why not?
Theorem 1 = 2.
Proof

x = 2 ⇒ x− 1 = 1
⇒ (x− 1)2 = 1
⇒ (x− 1)2 = x− 1
⇒ x2 − 2x + 1 = x− 1
⇒ x2 − 2x = x− 2
⇒ x(x− 2) = x− 2

⇒ x(x− 2)
x− 2

=
(x− 2)
x− 2

⇒ x = 1

5. Prove by induction that
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
.

* How could you use this result to calculate
∑n

k=1 k3 ? Hint: consider
n∑

k=1

(k + 1)4 −
n∑

k=1

k4.

6. * Prove by induction that n3 < 3n for n > 4.

7. Prove by induction that 11n − 4n is divisible by 7 for all n ∈ N.

8. Prove without differentiation that x + 1
x > 2 when x > 0. What happens at x = 0 ?

9. Prove by exhaustion that x2 + y2 = 112 has no integer solution with x, y > 0.

10. Prove by contradiction that
√

2 is irrational — i.e. that
√

2 cannot be expressed in the form p/q
for positive integers p, q. You may use without proof the fact that, for an integer a, if a2 is even,
then a is even.

PMA1050 Discrete Foundations 2004–5

Question Sheet 3: Solutions

1. Recall that a relation R on a set A is said to be:

• reflexive if xRx for every x ∈ A;
• symmetric if xRy implies yRx for every x, y ∈ A;
• transitive if xRy and yRz imply xRz for every x, y, z ∈ A.

Let A be the power set of R, i.e. the set of all sets of real numbers, and consider the relation ⊆
on A. Is this relation (a) reflexive, (b) symmetric, (c) transitive?

The relation ⊆ is reflexive (since x ⊆ x for all x), and transitive (if x ⊆ y and y ⊆ z then x ⊆ z).
It is not symmetric: for example if x is any non-empty subset of R , then Ø ⊆ x but x 6⊆ Ø.

2. Prove directly that
200
7002

<
1

500
− 1

700
<

200
5002

.

Consider first the upper bound.

1
500

− 1
700

=
200

35× 104
<

200
25× 104

Consider now the lower bound.
1

500
− 1

700
=

200
35× 104

>
200

49× 104

3. Prove that
x(x− 1)2 − 5x + 8

x + 2
= (x− 2)2,

when x 6= −2. What happens at x = −2 ?

By direct expansion,
x(x− 1)2 − 5x + 8 = (x + 2)(x− 2)2.

Provided x 6= −2, we can divide by (x + 2). When x = −2, this is invalid; in this case, the left
hand side of the desired formula reduces to 0/0, which is meaningless.

4. Is the following proof correct ? If not, why not?

Theorem 1 = 2.

Proof

x = 2 ⇒ x− 1 = 1
⇒ (x− 1)2 = 1
⇒ (x− 1)2 = x− 1
⇒ x2 − 2x + 1 = x− 1
⇒ x2 − 2x = x− 2
⇒ x(x− 2) = x− 2

⇒ x(x− 2)
x− 2

=
(x− 2)
x− 2

⇒ x = 1

The error is in the penultimate line. It is assumed that x = 2, so division by x− 2 is division by
0, which is invalid.

1

5. Prove by induction that
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
.

* How could you use this result to calculate
∑n

k=1 k3 ? Hint: consider
n∑

k=1

(k + 1)4 −
n∑

k=1

k4.

Induction base. For n = 1 both sides reduce immediately to 1, so the result holds for n = 1.
Induction step. We now assume that the theorem is true for a given arbitrary value of n, and
show that it is true for n + 1. Thus we assume:
Induction hypothesis:

n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
.

Then
n+1∑

k=1

k2 =
n(n + 1)(2n + 1)

6
+ (n + 1)2, by the induction hypothesis,

=
(n + 1)(n(2n + 1) + 6(n + 1))

6

=
(n + 1)(2n2 + 7n + 6)

6

=
(n + 1)(n + 2)(2n + 3)

6
which is the original formula with (n + 1) in place of n. This completes the induction step.
Conclusion: By mathematical induction, the result holds for all n > 1.

*Note that
(k + 1)4 = k4 + 4k3 + 6k2 + 4k + 1

and thus
n∑

k=1

(k + 1)4 =
n∑

k=1

k4 + 4
n∑

k=1

k3 + 6
n∑

k=1

k2 + 4
n∑

k=1

k + n

Thus
n∑

k=1

(k + 1)4 −
n∑

k=1

k4 = 4
n∑

k=1

k3 + 6
n∑

k=1

k2 + 4
n∑

k=1

k + n

or

(n + 1)4 − 1 = 4
n∑

k=1

k3 + 6
n∑

k=1

k2 + 4
n∑

k=1

k + n

Therefore

4
n∑

k=1

k3 = (n + 1)4 − 1− 6
n∑

k=1

k2 − 4
n∑

k=1

k − n

= (n + 1)4 − n(n + 1)(2n + 1)− 2n(n + 1)− (n + 1)
= (n + 1)

(
(n + 1)3 − n(2n + 1)− 2n− 1

)

= (n + 1)
(
(n + 1)3 − (n + 1)(2n + 1)

)

= (n + 1)2
(
(n + 1)2 − (2n + 1)

)

= (n + 1)2n2,

2

so
n∑

k=1

k3 =
n2(n + 1)2

4
=

(
n(n + 1)

2

)2

.

6. * Prove by induction that n3 < 3n for n > 4.

Induction base. For n = 4, we have n3 = 64 < 81 = 3n.

Induction step. We now assume that the theorem is true for a given arbitrary value of n, and
show that it is true for n + 1. Thus we assume:

Induction hypothesis: n3 < 3n.

We have, for n > 4,

(n + 1)3 = n3 + 3n2 + 3n + 1
< n3 + 3n2 + 3n2 + n2, since n > 1,

< n3 + 8n2

6 n3 + 2n3, since n > 4,

= 3n3

< 3.3n, by the induction hypothesis,
= 3n+1.

This completes the induction step.

Conclusion: By mathematical induction, the result holds for all n > 4.

7. Prove by induction that 11n − 4n is divisible by 7 for all n ∈ N.

Define S(n) = 11n − 4n; we show that S(n) is divisible by 7 for all n > 0.

Induction base. For n = 0, we have S(n) = 0 which is trivially divisible by 7.

Induction step. We now assume that the theorem is true for a given arbitrary value of n, and
show that it is true for n + 1. Thus we assume:

Induction hypothesis: S(n) is divisible by 7.

Then

S(n + 1) = 11n+1 − 4n+1

= 11n × 11− 4n × 4
= 11n(7 + 4)− 4n × 4
= 4(11n − 4n) + 7× 11n

= 4× S(n) + 7× 11n.

Hence, using the induction hypothesis, S(n + 1) is divisible by 7. This completes the induction
step.

Conclusion: By mathematical induction, the result holds for all n > 0.

8. Prove without differentiation that x + 1
x > 2 when x > 0. What happens at x = 0 ?

Since (x−1)2 > 0, it follows that x2−2x+1 > 0. By assumption, x > 0, and division by x yields
the required result.

9. Prove by exhaustion that x2 + y2 = 112 has no integer solution with x, y > 0. We need only
consider the integer values of x and y such that 0 < x < 11, y2 = 121− x2. There are no integer
values of x and y that satisfy these equations.

3

10. Prove by contradiction that
√

2 is irrational — i.e. that
√

2 cannot be expressed in the form p/q
for positive integers p, q. You may use without proof the fact that, for an integer a, if a2 is even,
then a is even. Assume that there exist two integers p and q such that x2 = 2 where x = p

q . It
may be assumed that p and q have no common factors since they may be removed if they were
present.

We have p2 = 2q2, and thus p2 is even, and hence p is even. It follows that there exists an integer
k such that p = 2k, and thus (2k)2 = 2q2, or q2 = 2k2. It follows that q2 is even, and thus q
is also even. We conclude that both p and q are even, thus contradicting our earlier assumption
that p and q have no common factors.

PMA1050 Discrete Foundations 2004–5

Question Sheet 4

Please complete this by Friday 29 October, when the solutions will be given. The starred question is
for COM6853 students.

1. Consider the sequence SEQ = {1, 3, 9, 27, 81 . . .}.
(a) Give a simple formula for the nth term SEQ(n) of a sequence which fits these first 5 terms,

(i.e. SEQ(0) = 1, SEQ(1) = 3, . . .).

(b) Give a recursive definition for the sequence SEQ.

2. Is the following a valid recursive definition for a sequence SEQ ? Explain.

(B) SEQ(0) = 1;
(R) SEQ(n + 1) = SEQ(n)/(100− n) for n > 0.

3. We define a sequence (an) recursively by:
(B) a0 = a1 = 1;
(R) an = an−1 + 2an−2 for n > 2.

(a) Calculate a6 recursively.

(b) Prove that all the terms an are odd integers. [Note that since (an) is defined recursively, the
natural way to prove facts about the an is by induction.]

4. Consider the Fibonacci sequence fn = fn−1 + fn−2 where f1 = f2 = 1. Use induction to prove
that for all n > 1,

f1 + f2 + · · ·+ fn = fn+2 − 1

5. * Consider the infinite sequence defined by an = 3an−1 − 2an−2 for n > 3, where a1 = 6 and
a2 = 11. Prove that for all n > 1,

an =
(
5× 2n−1

)
+ 1.

6. Construct the truth table for [(p ∨ q) ∧ r] ⇒ (p ∧ ¬q).

7. Construct the truth tables for ¬(p ∨ q) ⇒ r and ¬((p ∨ q) ⇒ r).

4

PMA1050 Discrete Foundations 2004–5

Question Sheet 4: Solutions

1. Consider the sequence SEQ = {1, 3, 9, 27, 81 . . .}.
(a) Give a simple formula for the nth term SEQ(n) of a sequence which fits these first 5 terms,

(i.e. SEQ(0) = 1, SEQ(1) = 3, . . .).

(b) Give a recursive definition for the sequence SEQ.

(a) SEQ(n) = 3n. This is, of course, just one formula which fits the given five terms, but it is
probably the simplest.

(b) SEQ(0) = 1, SEQ(n + 1) = 3× SEQ(n) for n > 0.

2. Is the following a valid recursive definition for a sequence SEQ ? Explain.

(B) SEQ(0) = 1;
(R) SEQ(n + 1) = SEQ(n)/(100− n) for n > 0.

No. The sequence breaks down at SEQ(101) = SEQ(100)/0.

3. We define a sequence (an) recursively by:
(B) a0 = a1 = 1;
(R) an = an−1 + 2an−2 for n > 2.

(a) Calculate a6 recursively.

(b) Prove that all the terms an are odd integers. [Note that since (an) is defined recursively, the
natural way to prove facts about the an is by induction.]

(a) a6 = a5+2a4 = a4+2a3+2a4 = 3(a3+2a2)+2a3 = 5(a2+2a1)+6a2 = 11(a1+2a0)+10a1 =
11× 3 + 10 = 43.

(b) We have to show that all the terms an are odd integers. This is true for n = 0 since a0 = 1.
We prove it by induction for n > 1.
Induction base. For n = 1, we have a1 = 1, so the result holds for n = 1.
Induction step. We now assume that the result is true for a given arbitrary value of n > 1,
and show that it is true for n + 1. Thus we assume:
Induction hypothesis: an is an odd integer.
Then,

an+1 = an + 2an−1,

so an+1 is the sum of an even integer (namely 2an−1) and an which, by the induction
hypothesis, is an odd integer. Hence an+1 is an odd integer, and the induction step is
proved.
Conclusion: By mathematical induction, an is an odd integer for all n > 1.

4. Consider the Fibonacci sequence fn = fn−1 + fn−2 where f1 = f2 = 1. Use induction to prove
that for all n > 1,

f1 + f2 + · · ·+ fn = fn+2 − 1

Induction base. For n = 1, the statement is ‘f1 = f3 − 1’. Since f1 = 1 and f3 = 2, this is
certainly true.

Induction step. We now assume that the statement is true for a given arbitrary value of n, and
show that it is true for n + 1. Thus we assume:

Induction hypothesis: f1 + f2 + . . . + fn = fn+2 − 1

1

Then

f1 + f2 + . . . + fn + fn+1 = fn+2 − 1 + fn+1, by the induction hypothesis,
= fn+3 − 1.

This completes the induction step.

Conclusion: By mathematical induction, the result holds for all n > 1.

5. * Consider the infinite sequence defined by an = 3an−1 − 2an−2 for n > 3, where a1 = 6 and
a2 = 11. Prove that for all n > 1,

an =
(
5× 2n−1

)
+ 1.

We use ‘general induction’.

Induction base. The result holds for n = 1, since a1 = 6 = 5 × 20 + 1, and for n = 2, since
a2 = 11 = 5× 21 + 1.

Induction step. We now assume that the statement is true for all k less than a given arbitrary
value of n, and show that it is true for n. Thus we assume:

Induction hypothesis: ak =
(
5× 2k−1

)
+ 1 for all k < n.

Then

an = 3an−1 − 2an−2

= 3
(
5× 2n−2 + 1

)− 2
(
5× 2n−3 + 1

)
, by the induction hypothesis,

= 15× 2n−2 − 5× 2n−2 + 1
= 10× 2n−2 + 1
= 5× 2n−1 + 1

This completes the induction step.

Conclusion: By mathematical induction, the desired result holds for all n > 1.

6. Construct the truth table for [(p ∨ q) ∧ r] ⇒ (p ∧ ¬q).

p q r p ∨ q (p ∨ q) ∧ r p ∧ ¬ q [(p ∨ q) ∧ r] ⇒ (p ∧ ¬ q)
T T T T T F F
T T F T F F T
T F T T T T T
T F F T F T T
F T T T T F F
F T F T F F T
F F T F F F T
F F F F F F T

7. Construct the truth tables for ¬(p ∨ q) ⇒ r and ¬((p ∨ q) ⇒ r).

p q r (p ∨ q) ¬(p ∨ q) ¬(p ∨ q) ⇒ r (p ∨ q) ⇒ r ¬((p ∨ q) ⇒ r)
T T T T F T T F
T T F T F T F T
T F T T F T T F
T F F T F T F T
F T T T F T T F
F T F T F T F T
F F T F T T T F
F F F F T F T F

2

SCHOOL OF MATHEMATICS AND STATISTICS
PMA1050/PMA6853 Discrete Foundations 2004–05

TEST 1 — SOLUTIONS

Q1. If A = {1, 3, 5, 6}, B = {2, 3, 6} and C = {1, 4, 6}, then (A ∩B) ∪ C equals
A. {1, 6} B. {1, 3, 4, 6} C. {1, 2, 3, 4, 5, 6} D. {4, 6}.

Answer: B.
(A ∩B) ∪ C = {3, 6} ∪ {1, 4, 6} = {1, 3, 4, 6}.

Q2. If A = {1, 3, 4, 5, 6}, B = {2, 3, 5, 6} and C = {1, 4, 6}, then A \ (B \ C) equals
A. {1, 3, 4, 5} B. Ø C. {5} D. {1, 4, 6}.

Answer: D.

A \ (B \ C) = {1, 3, 4, 5, 6} \ ({2, 3, 5, 6} \ {1, 4, 6})
= {1, 3, 4, 5, 6} \ {2, 3, 5}
= {1, 4, 6}.

Q3. Only one of the following statements is generally true for all sets A,B, C: which one?

A. A \ (B \ C) = (A \B) \ C B. A \ (B ∩ C) = (A \B) \ C
C. A \ (B \ C) = (A ∪B) ∪ Cc D. A \ (B ∪ C) = (A \B) \ C.

Answer: D.

A \ (B ∪ C) = A ∩ (B ∪ C)c = A ∩ (Bc ∩ Cc) = (A ∩Bc) ∩ Cc = (A \B) \ C.

Q4. All but one of the following sets are empty. Which is the odd one out?

A. {0} B. {x ∈ R : x2 = −1}
C. {1, 2, 3} \ {1, 2, 3, 4, 5} D. {x ∈ Z : 4x2 − 4x + 1 = 0}.

Answer: A.
The set {0} has one element, the fact that it is the number zero is irrelevant.

Q5. Consider the following rules:
(i) For each x, let y be such that y2 = cos x;
(ii) For each x, let y be such that y3 = cos x;
(iii) For each x, let y be such that y3 = x2.

The rules which define y as a function of x on the domain R are
A. (ii) and (iii) B. (i) and (ii) C. (ii) only D. (iii) only.

Answer: A.
(i) does not define a function for two reasons: (a) cos x can take negative values, in which case there

is no y such that y2 = cos x; and (b) If cos x > 0 then there are two values of y, one positive and one
negative, such that y2 = cos x.

(ii) and (iii) determine functions since every real number has a unique cube root.

Q6. A function f : {1, 2, 3} → {1, 2, 3} is defined by: f(1) = 3, f(2) = 2, f(3) = 3.
Then f is

A. 1–1 and onto B. 1–1 but not onto
C. onto but not 1–1 D. neither 1–1 nor onto.

Answer: D.
The function f is not 1–1 since f(1) = f(3), and not onto since there is no x such that f(x) = 1.

1

Q7. Let N = {0, 1, 2, 3, . . .} and P(N) be the power set of N, i.e. the set of all subsets of N. Let
f : P(N) \ {Ø} → N be the function which associates with any subset of N the smallest element of that
subset. Then f is
A. injective and surjective B. injective but not surjective
C. surjective but not injective D. neither injective nor surjective.

Answer: C.
Note that ‘injective’ is just another name for ‘1–1’ and ‘surjective’ means ‘onto’. You need to be

familiar with both sets of terminology.
We have deliberately given f the domain P(N) \ {Ø} because we can’t define f(Ø) as the smallest

element of Ø.
The function is surjective, since every n ∈ N may be written as n = f({n}). It is not injective

since, for example, f({1}) = 1 = f({1, 2}). Note that we only need one example to prove that f is not
injective; we need to consider all n to prove that it is surjective.

Q8. For all but one of the following, induction is an appropriate method of proof. Which is the odd
one out?

A.
n∑

k=1

k3 =
(

n(n + 1)
2

)2

for n = 1, 2, 3, . . .

B. x < sin x for all positive real numbers x
C. n! > 2n for all integers n > 4
D. for n = 1, 2, 3, . . ., the number of permutations of 1, 2, . . . n is n!.

Answer: B.
All except B involve proving something for n = 1, 2, 3, . . . (or 4, 5, 6, . . .) with some hope of moving

from the nth case to the (n + 1)th. Result B has to be proved for all positive real numbers x, so
induction is not appropriate.

Q9. Consider the compound statements (i) ¬(P ⇒ Q), (ii) P ⇒ Q (iii) P ∧ ¬Q. Then

A. (i) and (ii) are equivalent B. (ii) and (iii) are equivalent
C. (i) and (iii) are equivalent D. (i), (ii) and (iii) are equivalent.

Answer: C.

P Q ¬Q P ⇒ Q ¬(P ⇒ Q) P ∧ ¬Q
T T F T F F
T F T F T T
F T F T F F
F F T T F F

Q10. Consider the compound statements (i) (P ∨ Q) ∨ ((¬P) ∧ (¬Q)) and
(ii) (P ∨Q) ∧ ((¬P) ∧ (¬Q)). Then
A. both (i) and (ii) are tautologies
B. (i) is a tautology and (ii) is a contradiction
C. (i) is a is a contradiction and (ii) is a tautology
D. both (i) and (ii) are neither tautologies nor contradictions.

Answer: B.

P Q ¬P ¬Q P ∨Q (¬P) ∧ (¬Q) (i) (ii)
T T F F T F T F
T F F T T F T F
F T T F T F T F
F F T T F T T F

2

PMA1050/PMA6853 Discrete Foundations 2004–5

Question Sheet 5

Please complete this by Friday 19 November, when the solutions will be given. The starred question is
for PMA6853 students.

1. The most common basic logic circuits are the NAND and NOR gates. (These are less complicated
electronic circuits than AND or OR gates.) The two-input NAND gate implements the logical
connective

A ↑ B = ¬(A ∧B)

and so the one-input NAND gate implements ¬A.

Express the logical connectives ∧, ∨ and ⇒ in terms of ↑ and ¬, thus demonstrating that these
connectives can be implemented in circuits built entirely of NAND gates.

2. A finite automaton M has state set Q = {q0, q1, q2, q3}. Its input alphabet is just Σ = {0, 1}, and
the rest of its specification is given by the following state diagram. Given a transition table and
say what the initial state and final states are.

q q q q
0 1 2 3

1

0

0 0 0,1

11

What is L(M) for this M?

3. A finite automaton M has state set Q = {q0, q1, q2}. Its input alphabet is Σ = {0, 1}, with q0

being the initial state and F = {q0}. The transition function δ is given by the following transition
table.

δ 0 1
q0 q2 q1

q1 q1 q0

q2 q2 q2

Give the state diagram for M and describe the language L(M).

4. Sheep go “baa!” or “baaa!” or “baaaa!” and so on. They do not go “baaa” or “ba!” or “!” or
ε. Construct a finite automaton (with input alphabet Σ = {a, b, !}) that recognizes “sheep-talk”.
Give a state diagram and a transition table.

5. Design a the finite automaton for C++ floating-point real numbers in scientific notation notation.
(It should reject numbers in integer form or in non-scientific notation.) Give a state diagram or
a transition table.

6. * It would be nice to have a finite automaton which checks whether a mathematical expression
has a viable arrangement of brackets. To simplify the problem, suppose the input alphabet is
just brackets: Σ = {‘(’,‘)’}. We want a machine M such that the language L(M) accepted by M
consists of just those strings of brackets in which the number of opening brackets equals the
number of closing brackets and such that in no initial segment of the string does the number of
closing brackets exceed the number of opening brackets. Explain why it is impossible to construct
such a machine.

Reminder The week 8-12 November is a reading week for this course: no formal lectures and no further

homework, but there will be optional help sessions at the usual Wednesday and Thursday times and rooms.

PMA1050 Discrete Foundations 2004–5

Question Sheet 5: Solutions

1. The most common basic logic circuits are the NAND and NOR gates. (These are less complicated
electronic circuits than AND or OR gates.) The two-input NAND gate implements the logical
connective

A ↑ B = ¬(A ∧B)

and so the one-input NAND gate implements ¬A.

Express the logical connectives ∧, ∨ and ⇒ in terms of ↑ and ¬, thus demonstrating that these
connectives can be implemented in circuits built entirely of NAND gates.

A ∧B = ¬(A ↑ B),
A ∨B = ¬(¬A ∧ ¬B), by de Morgan,

= ¬A ↑ ¬B,

A ⇒ B = ¬A ∨B

= A ↑ ¬B.

2. A finite automaton M has state set Q = {q0, q1, q2, q3}. Its input alphabet is just Σ = {0, 1}, and
the rest of its specification is given by the following state diagram. Given a transition table and
say what the initial state and final states are.

q q q q
0 1 2 3

1

0

0 0 0,1

11

What is L(M) for this M?

The machine M has initial state q0; its set of final states is F = {q3} and its transition table is

δ 0 1
q0 q0 q1

q1 q0 q2

q2 q2 q3

q2 q3 q3

The language L(M) consists of the empty string, together with those strings which contain at
least one pair 11 with a further 1 occurring later in the string.

3. A finite automaton M has state set Q = {q0, q1, q2}. Its input alphabet is Σ = {0, 1}, with q0

being the initial state and F = {q0}. The transition function δ is given by the following transition
table.

δ 0 1
q0 q2 q1

q1 q1 q0

q2 q2 q2

Give the state diagram for M and describe the language L(M).

The state diagram is

1

q q

q
2

0 1

1

1

0

0

0,1

The language L(M) consists of those strings which begin and end with 1 and such that the string
strictly between the initial and final characters is a string of 0s interspersed with pairs 11.

4. Sheep go “baa!” or “baaa!” or “baaaa!” and so on. They do not go “baaa” or “ba!” or “!” or
ε. Construct a finite automaton (with input alphabet Σ = {a, b, !}) that recognizes “sheep-talk”.
Give a state diagram and a transition table.

The state diagram is

b a a

a

b

b,a,!

b,a,!

b,!b,!

a,!

!

The transition table is

δ a b !
q0 q5 q1 q5

q1 q2 q5 q5

q2 q3 q5 q5

q3 q3 q5 q4

q4 q5 q5 q5

q5 q5 q5 q5

The state q0 is the initial state and the set of acceptance states is F = {q4}.
5. Design a the finite automaton for C++ floating-point real numbers in scientific notation notation.

(It should reject numbers in integer form or in non-scientific notation.) Give a state diagram or
a transition table.

The state diagram is

where it is understood that transitions not shown on the diagram are to a ‘rubbish state’ which
is not final and from which all transitions go to itself.

2

1−9

1−9 1−9

0−9

0−9

0

0

0

0

.

.+,− +,−

e,E

1−9

0−9 0−9

6. * It would be nice to have a finite automaton which checks whether a mathematical expression
has a viable arrangement of brackets. To simplify the problem, suppose the input alphabet is
just brackets: Σ = {‘(’,‘)’}. We want a machine M such that the language L(M) accepted by M
consists of just those strings of brackets in which the number of opening brackets equals the number
of closing brackets and such that in no initial segment of the string does the number of closing
brackets exceed the number of opening brackets. Explain why it is impossible to construct such a
machine.
Essentially, the difficulty is that a machine to recognize correct bracketting would have to count
the brackets. Since the number of brackets open at some stage could be indefinitely large, and
not known at the point at which the machine is built, any finite machine could be swamped by
confronting it with a sufficiently large string of opening brackets. The following is a rigorous
proof.
Proof. We prove the result by contradiction. Suppose there is a finite automaton M which
recognises this language. Suppose M has n states, Q = {q0, q1, . . . , qn−1}, and set F of final
states. Consider the strings Sk = ((((. . . (with k opening brackets and Tk =)))) . . .) with k
closing brackets. In particular, consider the n + 1 different strings

S0, S1, . . . , Sn,

where S0 = ε. When input, these result in the machines state changing from q0 to the states

δ̂ (q0, S0) , δ̂ (q0, S1) , δ̂ (q0, S2) , . . . , δ̂ (q0, Sn) ,

respectively. Now there are only n states, so at least two of these n + 1 states must be equal; say

δ̂ (q0, Si) = δ̂ (q0, Sj) ,

where i 6= j.
The machine accepts SiTi, opening i brackets and then closing i brackets, so

δ̂ (q0, SiTi) ∈ F.

But

δ̂ (q0, SiTi) = δ̂
(
δ̂ (q0, Si) , Ti

)

= δ̂
(
δ̂ (q0, Sj) , Ti

)

= δ̂ (q0, SjTi)

So
δ̂ (q0, SjTi) ∈ F.

Thus the machine accepts the string SjTi consisting of j opening brackets followed by i closing
brackets, where i 6= j. This contradicts the specification of the machine.

3

PMA1050/PMA6853 Discrete Foundations 2004–5

Question Sheet 6

Please complete this by Friday 26 November, when the solutions will be given. The starred question is
for PMA6853 students.

1. Write regular expressions for each of the following sets defined over the alphabet {0, 1} :

(a) The set of all strings with at least one pair of consecutive 0s and at least one pair of consec-
utive 1s (e.g. 011000 is included; 00101 is not).

(b) The set of all strings with exactly one pair of consecutive 0s (e.g. 011001 is included; 000101
is not).

(c) The set of all strings in which every pair of consecutive 0s appears immediately before a pair
of consecutive 1s (e.g. ε, 01101 and 1100111 are included; 0001101 and 001011 are not).

(d) The set of all strings that do not contain the substring 101 (e.g. 011001 is included; 000101
is not).

2. Describe as concisely as possible in English the sets that are denoted by the following regular
expressions.

(a) 1(1 ∪ 0)∗0

(b) (1 ∪ 01 ∪ 001)∗(ε ∪ 0 ∪ 00)

(c) (01 ∪ 10 ∪ 00 ∪ 11)∗

3. Write regular expressions for the following sets defined over the alphabet {0, 1}.
(a) The set of all strings of 1s and 0s of length 3 (e.g. 011 is included; 000101 is not).

(b) The set of all strings with at least two 0s (e.g. 011010 is included; 11101 is not).

(c) The set of all strings that have at least one 1 and at least one 0 (e.g. 01001 is included; 000,
1111 and ε are not).

4. * It is well known that that an integer is divisible by three if and only if the sum of its digits is
divisible by three. Consider the set L of all strings over the alphabet Σ = {0, 1, . . . , 9} representing
integers divisible by three. For simplicity, we allow integers to have leading zeros (e.g. 0027 ∈ L)
and we include the empty string in L.

(a) Design a finite automaton M with L(M) = L.

(b) Produce a regular expression representing L. To do this in a reasonably compact form, you
may find it useful to set

A = 0 ∪ 3 ∪ 6 ∪ 9

B = 1 ∪ 4 ∪ 7

C = 2 ∪ 5 ∪ 8.

PMA1050/PMA6853 Discrete Foundations 2004–5

Question Sheet 6: Solutions

1. Write regular expressions for each of the following sets defined over the alphabet {0, 1} :

(a) The set of all strings with at least one pair of consecutive 0s and at least one pair of consec-
utive 1s (e.g. 011000 is included; 00101 is not).

(b) The set of all strings with exactly one pair of consecutive 0s (e.g. 011001 is included; 000101
is not).

(c) The set of all strings in which every pair of consecutive 0s appears immediately before a pair
of consecutive 1s (e.g. ε, 01101 and 1100111 are included; 0001101 and 001011 are not).

(d) The set of all strings that do not contain the substring 101 (e.g. 011001 is included; 000101
is not).

Note that there do not exist unique solutions for this question; several regular expressions may
define the same set of strings.

(a) Strings that have at least one 00 occurring earlier than a 11 are of the form

(arbitrary string)(00)(arbitrary string)(11)(arbitrary string)

so the set of all such strings is represented by the regular expression

((1 ∪ 0)∗00(1 ∪ 0)∗11(1 ∪ 0)∗).

The set of all strings with at least one 00 occurring later than a 11 is likewise represented
by the regular expression

((1 ∪ 0)∗11(1 ∪ 0)∗00(1 ∪ 0)∗).

Therefore, the set of all strings with at least one pair of consecutive 0s and at least one pair of
consecutive 1s, which is the union of these two sets, is represented by the regular expression

((1 ∪ 0)∗00(1 ∪ 0)∗11(1 ∪ 0)∗) ∪ ((1 ∪ 0)∗11(1 ∪ 0)∗00(1 ∪ 0)∗).

(b) The set of all strings with exactly one pair of consecutive 0s is represented by the regular
expression

(01 ∪ 1)∗00(10 ∪ 1)∗.

(c) The set of all strings in which every pair of consecutive 0s appears immediately before a pair
of consecutive 1s is represented by the regular expression

(01 ∪ 1 ∪ 0011)∗(0 ∪ ε).

(d) The set of all strings that do not contain the substring 101 is represented by the regular
expression

(0 ∪ ε)(1 ∪ 00 ∪ 000)∗(0 ∪ ε).

2. Describe as concisely as possible in English the sets that are denoted by the following regular
expressions.

(a) 1(1 ∪ 0)∗0

(b) (1 ∪ 01 ∪ 001)∗(ε ∪ 0 ∪ 00)

(c) (01 ∪ 10 ∪ 00 ∪ 11)∗

(a) The expression 1(1∪0)∗0 defines the set of all strings that begin with a 1 and end with a 0.

(b) The expression (1 ∪ 01 ∪ 001)∗(ε ∪ 0 ∪ 00) defines the set of all strings that do not contain
the substring 000.

1

(c) The expression (01 ∪ 10 ∪ 00 ∪ 11)∗ defines the set of all strings with an even (including
zero) number of characters.

3. Write regular expressions for the following sets defined over the alphabet {0, 1}.
(a) The set of all strings of 1s and 0s of length 3 (e.g. 011 is included; 000101 is not).

(b) The set of all strings with at least two 0s (e.g. 011010 is included; 11101 is not).

(c) The set of all strings that have at least one 1 and at least one 0 (e.g. 01001 is included; 000,
1111 and ε are not).

(a) The set of all strings of 1s and 0s of length 3 is represented by the regular expression

(0 ∪ 1)(0 ∪ 1)(0 ∪ 1).

(b) Strings with at least two 0s are of the form

(start)(1st expression containing 0)(middle)(2nd expression containing 0)(end)

Thus the set of all such strings is represented by the regular expression

(0 ∪ 1)∗0(0 ∪ 1)∗0(0 ∪ 1)∗.

(c) The set of all strings that have at least one 1 and at least one 0 is represented by the regular
expression

(0 ∪ 1)∗0(0 ∪ 1)∗1(0 ∪ 1)∗ ∪ (0 ∪ 1)∗1(0 ∪ 1)∗0(0 ∪ 1)∗.

4. * It is well known that that an integer is divisible by three if and only if the sum of its digits is
divisible by three. Consider the set L of all strings over the alphabet Σ = {0, 1, . . . , 9} representing
integers divisible by three. For simplicity, we allow integers to have leading zeros (e.g. 0027 ∈ L)
and we include the empty string in L.

(a) Design a finite automaton M with L(M) = L.

(b) Produce a regular expression representing L. To do this in a reasonably compact form, you
may find it useful to set

A = 0 ∪ 3 ∪ 6 ∪ 9

B = 1 ∪ 4 ∪ 7

C = 2 ∪ 5 ∪ 8.

(a) A suitable FA is

0,3,6,9

0,3,6,9

0,3,6,9

1,4,7

1,4,71,4,7

2,5,8

2,5,8
2,5,8

q q

q

0 1

2

2

(b) Clearly we have to consider three groups of digits:

A = 0 ∪ 3 ∪ 6 ∪ 9

B = 1 ∪ 4 ∪ 7

C = 2 ∪ 5 ∪ 8.

We consider regular expressions corresponding to the various paths through the state diagram

(i) A represents the path from q0 just looping straight back to q0.

(ii) BA∗C represents paths going from q0 to q1, possibly looping at q1, then returning to q0.

(iii) (A ∪BA∗C)∗ represents all paths from q0 to itself not visiting q2.

(iv) Likewise (A ∪BA∗C)∗ also represents all paths from q1 to itself not visiting q0.

(v) Therefore B(A∪BA∗C)∗C represents all paths from q0 to itself, via q1, with no intermediate
visits to q0, and not using the transition from q2 to q0.

(vi) Similarly, C(A∪CA∗B)∗B represents all paths from q0 to itself via q2, with no intermediate
visits to q0, and not using the transition from q1 to q0.

(vii) B(A ∪BA∗C)∗BA∗B represents paths going once round the triangle, clockwise, with no
intermediate visits to q0.

(viii) C(A∪CA∗B)∗CA∗C represents paths going once round, anticlockwise, with no interme-
diate visits to q0.

The complete set of paths from q0 to itself are all concatenations of paths (i), (v), (vi), (vii)
and (viii). The required regular expression is

(A ∪B(A ∪BA∗C)∗C ∪C(A ∪CA∗B)∗B ∪B(A ∪BA∗C)∗BA∗B ∪C(A ∪CA∗B)∗CA∗C)∗ .

PMA1050/PMA6853 Discrete Foundations 2004–5

Question Sheet 7

Please complete this by Friday 3 December, when the solutions will be given. The starred questions are
for COM6853 students.

1. The Mealy machine shown below has input alphabet Σ = {0, 1} and output alphabet Γ =
{a, b, c, d, e, f, g}. Note that the label ‘0, 1/g’ indicates a transition which is made, with output g,
on input either 0 or 1. What is the output generated by the input 0010101?

0/a

0/b

1/c1/d
0/f

0,1/g

1/e

rs

p q

3

2. The one’s complement of an input bit string is a string that has 1 wherever there was a 0, and a
0 wherever there was a 1; for example, the one’s complement of 001 is 110. Construct a Mealy
machine that computes the one’s complement.

3. Construct a Mealy machine that outputs 1 whenever the substring 101 is encountered, and 0 at
all other times; i.e. it outputs 1 only at the point where the current input is 1 and the previous
two inputs have been 10.

4. Design a Mealy machine to implement a two unit delay. The input alphabet should be Σ = {a, b}
and the output alphabet Γ = {a, b, x}. The first two letters of the output string should be xx and
the nth letter should be the (n − 2)nd letter of the input string, for n > 2. Thus input abbaba
produces output xxabba, etc..

5. * Suppose we have two finite automata M1 = (Q1,Σ1, δ1, q01, F1) and M2 = (Q2,Σ2, δ2, q02, F2),
accepting languages L1 = L(M1), L2 = L(M2), respectively. Let Σ = Σ1 × Σ2 be the alphabet
of pairs (a, b) of characters with a ∈ Σ1 and b ∈ Σ2. (This is the usual Cartesian product of two
sets.) Let L be the language over Σ defined by

L = {(a1, b1)(a2, b2) . . . (an, bn) : a1a2 . . . an ∈ L1 and b1b2 . . . bn ∈ L2}.

(This is not the same as saying L = L1 × L2; why not?)

By developing a notion of the ‘Cartesian product’ of two automata, or otherwise, show that there
is a finite automaton M such that L(M) = L.

Hence, or otherwise, show that if M1 = (Q1, Σ, δ1, q01, F1) and M2 = (Q2, Σ, δ2, q02, F2) are two
finite automata with the same input alphabet, then there is a finite automaton M such that
L(M) = L(M1) ∩ L(M2).

6. * One of the following ‘laws’ is generally true for regular expressions R, S,T ; prove the one that
is true and provide a counterexample for the ones which are false:
(i) (R)∗ ∪ S = (R ∪ S)∗;
(ii) (R ∪ S)T = RT ∪ ST ;
(iii) R ∪ (ST) = (R ∪ S)(R ∪ T);
(iv) R∗ = (RR)∗.

7. * Consider a Mealy machine fed with an infinite input stream. (I use the word ‘stream’ rather
than ‘string’ to indicate that it is an unending succession of characters: my terminology.) We say
that such a stream is eventually periodic if it is of the form

a1a2 . . . akb1b2 . . . bnb1b2 . . . bnb1b2 . . . bnb1b2 . . . bn . . .

for some positive integers k, n. Show that if the input stream is eventually periodic, then so is the
output stream. (Warning: the output stream will not necessarily have the same parameters k, n.)

4

PMA1050/PMA6853 Discrete Foundations 2004–5

Question Sheet 7: Solutions

1. The Mealy machine shown below has input alphabet Σ = {0, 1} and output alphabet Γ = {a, b, c, d, e, f, g}.
Note that the label ‘0, 1/g’ indicates a transition which is made, with output g, on input either 0
or 1. What is the output generated by the input 0010101?

0/a

0/b

1/c1/d
0/f

0,1/g

1/e

rs

p q

On input 0010101, the machine moves as follows (outputs shown over the arrows).

p
a→ q

b→ p
d→ s

f→ q
c→ r

g→ s
e→ p.

Thus the output string is abdfcge.

2. The one’s complement of an input bit string is a string that has 1 wherever there was a 0, and a
0 wherever there was a 1; for example, the one’s complement of 001 is 110. Construct a Mealy
machine that computes the one’s complement.

This can be implemented by the following single-state Mealy machine, (with Σ = Γ = {0, 1}).

0/1, 1/0

3. Construct a Mealy machine that outputs 1 whenever the substring 101 is encountered, and 0 at
all other times; i.e. it outputs 1 only at the point where the current input is 1 and the previous
two inputs have been 10.

Again, Σ = Γ = {0, 1}. The state p is the starting state and corresponds to the either no characters

0/0

1/0
p q r

0/0

1/1

1/0

0/0

1

having been received or the last pair of characters received having been 00; q corresponds to the
last character received having been a 1 and r corresponds to the last pair of characters received
having been 10. The ‘1’ arrow out of r is therefore labelled as giving output 1, indicating that a
101 string has been discovered.

4. Design a Mealy machine to implement a two unit delay. The input alphabet should be Σ = {a, b}
and the output alphabet Γ = {a, b, x}. The first two letters of the output string should be xx and
the nth letter should be the (n − 2)nd letter of the input string, for n > 2. Thus input abbaba
produces output xxabba, etc..

The following Mealy machine implements a two unit delay. As specified, the input alphabet is
Σ = {a, b} and the output alphabet Γ = {a, b, x}. The states remember up to the last two inputs.

a
a/x

b/x

0

aa

ab

b

bb

ba

q

q

q

q

q

q

q

a/x

b/x

b/x

a/x

b/ba/a

b/a

a/b

b/a

b/b

a/b

a/a

The starting state q0 corresponds to no input received so far. States qa, qb correspond to only a
single character, a or b having been received. States qaa, qab, qba, qbb correspond to at least two
characters having been received and the last two characters having been aa, ab, ba, bb, respectively.
Given these interpretations of the states, the transition and output functions are obvious.

5. * Suppose we have two finite automata M1 = (Q1, Σ1, δ1, q01, F1) and M2 = (Q2, Σ2, δ2, q02, F2),
accepting languages L1 = L(M1), L2 = L(M2), respectively. Let Σ = Σ1 × Σ2 be the alphabet of
pairs (a, b) of characters with a ∈ Σ1 and b ∈ Σ2. (This is the usual Cartesian product of two
sets.) Let L be the language over Σ defined by

L = {(a1, b1)(a2, b2) . . . (an, bn) : a1a2 . . . an ∈ L1 and b1b2 . . . bn ∈ L2}.
(This is not the same as saying L = L1 × L2; why not?)

By developing a notion of the ‘Cartesian product’ of two automata, or otherwise, show that there
is a finite automaton M such that L(M) = L.

Hence, or otherwise, show that if M1 = (Q1,Σ, δ1, q01, F1) and M2 = (Q2, Σ, δ2, q02, F2) are
two finite automata with the same input alphabet, then there is a finite automaton M such that
L(M) = L(M1) ∩ L(M2).

We define the Cartesian product M = (Q, Σ, δ, q0, F) of M1 and M2 by:

Q = Q1 ×Q2,

2

Σ = Σ1 × Σ2, given,

q0 = (q01, q02),
F = F1 × F2,

with the transition function δ : Q× Σ → Q defined by

δ((q1, q2), (a1, a2)) = (δ1(q1, a1), δ2(q2, a2)).

It is easy to see that M acting on an input (a1, b1)(a2, b2) . . . (an, bn) simply mimics the action
of the two machines M1 and M2 working side-by-side, on inputs a1a2 . . . an and b1b2 . . . bn. The
definition of F means that the string is accepted if and only if a1a2 . . . an is accepted by M1 and
b1b2 . . . bn by M2.

If M1 = (Q1,Σ, δ1, q01, F1) and M2 = (Q2, Σ, δ2, q02, F2) are two finite automata with the same
input alphabet, we let M be as above, except that we restrict the input alphabet to Σ′ = {(a, a) :
a ∈ Σ}. Then M accepts the language

L = {(a1, a1)(a2, a2) . . . (an, an) : a1a2 . . . an ∈ L1 ∩ L2}.

Clearly Σ′ can be identified with Σ and the definition of M adjusted accordingly, to give a machine
over the alphabet Σ accepting L1 ∩ L2.

6. * One of the following ‘laws’ is generally true for regular expressions R, S,T ; prove the one that
is true and provide a counterexample for the ones which are false:
(i) (R)∗ ∪ S = (R ∪ S)∗;
(ii) (R ∪ S)T = RT ∪ ST ;
(iii) R ∪ (ST) = (R ∪ S)(R ∪ T);
(iv) R∗ = (RR)∗.

For all our counterexamples, we let the alphabet be Σ = {0, 1} and let R = 0, S = T = 1.

(i) (R)∗ ∪ S = (R ∪ S)∗ is false: in our example, the left hand side corresponds to either a
string of 0s or a 1, whereas the right hand side represents any string.

(ii) (R ∪ S)T = RT ∪ ST is true: the left hand side corresponds to a string from R or from S
followed by a string from T . This is the same as saying either a string from R followed by a
string from T or a string from S followed by a string from T , which is what the right-hand
side represents.

(iii) R∪ (ST) = (R∪S)(R∪T) is false: in our example, the left hand side corresponds to either
0 or 11, whereas the right hand side represents the strings 00, 01, 10 and 11.

(iv) R∗ = (RR)∗ is false: in our example, the left hand side corresponds to any string of 0s,
whereas the right hand side represents just the strings of 0s of even length.

7. * Consider a Mealy machine fed with an infinite input stream. (I use the word ‘stream’ rather
than ‘string’ to indicate that it is an unending succession of characters: my terminology.) We say
that such a stream is eventually periodic if it is of the form

a1a2 . . . akb1b2 . . . bnb1b2 . . . bnb1b2 . . . bnb1b2 . . . bn . . .

for some positive integers k, n. Show that if the input stream is eventually periodic, then so is the
output stream. (Warning: the output stream will not necessarily have the same parameters k, n.)

A Mealy machine is fed with the input stream

a1a2 . . . akb1b2 . . . bnb1b2 . . . bnb1b2 . . . bnb1b2 . . . bn . . .

Let qr be the state after the (k + rn)th input character. Since the machine has only finitely many
states, there must exist r 6= s such that qr = qs, say with r < s. Thus, after the (k + sn)th input,

3

the machine is in the same state as after the (k + rn)th input, and it subsequently receives the
same input. Therefore it must give the same output. Thus the output is of the form:

x1x2 . . . xk+rny1y2 . . . y(s−r)ny1y2 . . . y(s−r)ny1y2 . . . y(s−r)n . . . ,

which is eventually periodic.

To write this formally,

δ̂ (q0, a1a2 . . . ak (b1b2 . . . bn)r) = qr, ω̂ (q0, a1a2 . . . ak (b1b2 . . . bn)r) = x1x2 . . . xk+rn

and
δ̂
(
qr, (b1b2 . . . bn)s−r

)
= qs = qr, ω̂

(
qr, (b1b2 . . . bn)s−r

)
= y1y2 . . . y(s−r)n.

PMA1050/PMA6853 Discrete Foundations 2004–5

Question Sheet 8

Please complete this by Friday 10 December, when the solutions will be given. The starred question is
for PMA6853 students.

1. Find the unreachable states of the Mealy machine with states p, q, r, s, t, initial state p and the
following transition/output table.

input p q r s t
δ 0 q p t q t
δ 1 s q r p q
ω 0 x x x x x
ω 1 y x y y x

2. Minimize the Mealy machine with states p, q, r, s, t, initial state p and the following transi-
tion/output table (which is not the same as in the previous question).

input p q r s t
δ 0 q r t q t
δ 1 s q r p q
ω 0 x x x x x
ω 1 y x y y x

3. The Moore machine shown below has input and output alphabets Σ = Γ = {0, 1} What is the
output generated by the input 01011101? How is the output related to the input generally?

p/0 q/0 r/1

00

1 1 1

0

4. The one’s complement of an input bit string is a string that has 1 wherever there was a 0, and a
0 wherever there was a 1; for example, the one’s complement of 001 is 110. Construct a Moore
machine that computes the one’s complement. (Compare this with the equivalent Mealy machine
constructed last week.)

4

5. Construct a Moore machine that outputs 1 whenever the substring 101 is encountered, and 0 at all
other times; i.e. it outputs 1 only at the point where the current input is 1 and the previous two
inputs have been 10. (Compare this with the equivalent Mealy machine constructed last week.)

6. Minimize the Mealy machine with states p, q, r, s, t, u, v, w,, initial state p and the following tran-
sition/output table.

input p q r s t u v w
δ 0 r v t w s t s t
δ 1 r r r s u u p p
δ 2 s q w p p w u w
ω 0 2 2 1 1 2 1 0 2
ω 1 1 1 1 1 1 1 2 1
ω 2 2 2 0 0 2 0 0 2

7. *

(a) Show that for every Moore machine there is an equivalent Mealy machine (i.e. one with the
same translation function) with the same number of states, or fewer.

(b) Show that for every Mealy machine M there is an equivalent Moore machine M ′. Obtain an
upper bound on the number of states in M ′, in terms of the number of states in M , the size
of the input alphabet and the size of the output alphabet.

5

PMA1050/PMA6853 Discrete Foundations 2004–5

Question Sheet 8: Solutions

1. Find the unreachable states of the Mealy machine with states p, q, r, s, t, initial state p and the
following transition/output table.

input p q r s t
δ 0 q p t q t
δ 1 s q r p q
ω 0 x x x x x
ω 1 y x y y x

The initial state is p, and δ(p, 0) = q, δ(p, 1) = s, so p, q and s are reachable. However, the
transitions from q and s just go to p and q, so r and t are unreachable.

2. Minimize the Mealy machine with states p, q, r, s, t, initial state p and the following transition/output
table (which is not the same as in the previous question).

input p q r s t
δ 0 q r t q t
δ 1 s q r p q
ω 0 x x x x x
ω 1 y x y y x

All the states are reachable.

The states fall into the following 1-equivalence classes: {p, r, s}, {q, t}.
The 2-equivalence classes are {p, r, s}, {q}, {t}.
The 3-equivalence classes are {p, s}, {r}, {q}, {t}.
The 4-equivalence classes are {p, s}, {r}, {q}, {t}.
The situation has stabilized, so we have a minimal machine with states v, corresponding to
{p, s}, r. q and t. Its transition/output table is

input v q r t
δ 0 q r t t
δ 1 v q r q
ω 0 x x x x
ω 1 y x y x

The start state is v.

3. The Moore machine shown below has input and output alphabets Σ = Γ = {0, 1} What is the
output generated by the input 01011101? How is the output related to the input generally?

p/0 q/0 r/1

00

1 1 1

0

The output generated by the input 01011101 is 00001100. Generally, the machine outputs 1 when
the previous two inputs have been 11 and 0 at all other times.

1

p/0 q/0 r/1

00

1 1 1

0

4. The one’s complement of an input bit string is a string that has 1 wherever there was a 0, and a
0 wherever there was a 1; for example, the one’s complement of 001 is 110. Construct a Moore
machine that computes the one’s complement. (Compare this with the equivalent Mealy machine
constructed last week.)

The one’s complement of an input bit string — a string that has 1 wherever there was a 0,
and a 0 wherever there was a 1 — can be implemented by the following Moore machine, (with
Σ = Γ = {0, 1}). Notice that this machine has two states — the minimum possible since we need

p/0 q/1

1

0

1

0

one state outputting 1s and another outputting 0s. The corresponding Mealy machine only had
one state.

5. Construct a Moore machine that outputs 1 whenever the substring 101 is encountered, and 0 at all
other times; i.e. it outputs 1 only at the point where the current input is 1 and the previous two
inputs have been 10. (Compare this with the equivalent Mealy machine constructed last week.)

Our Moore machine that outputs 1 whenever the substring 101 is encountered, and 0 at all other
times needs four states — one more than the corresponding Mealy machine. Again, Σ = Γ =
{0, 1}.

1 10
p/0 q/0 r/0 s/1

0 1

0

1

0

The state p is the starting state and corresponds to the either no characters having been received
or the last pair of characters received having been 00; q corresponds to the last character received
having been a 1 and r corresponds to the last pair of characters received having been 10. We
then need a further state s for the machine to go to when 101 has been received and from which
it outputs 1.

6. Minimize the Mealy machine with states p, q, r, s, t, u, v, w,, initial state p and the following tran-
sition/output table.

2

input p q r s t u v w
δ 0 r v t w s t s t
δ 1 r r r s u u p p
δ 2 s q w p p w u w
ω 0 2 2 1 1 2 1 0 2
ω 1 1 1 1 1 1 1 2 1
ω 2 2 2 0 0 2 0 0 2

We first observe that q and v are unreachable, and these are the only unreachable states. After
deleting these, the machine’s table looks like this.

input p r s t u w
δ 0 r t w s t t
δ 1 r r s u u p
δ 2 s w p p w w
ω 0 2 1 1 2 1 2
ω 1 1 1 1 1 1 1
ω 2 2 0 0 2 0 2

The remaining states fall into the following 1-equivalence classes: {p, t, w}, {r, s, u}.
The 2-equivalence classes are {p}, {t}, {w}, {r, s, u}.
The 3-equivalence classes are {p}, {t}, {w}, {r, u} {s}.
The 4-equivalence classes are {p}, {t}, {w}, {r, u} {s}.
The situation has stabilized, so we have a minimal machine with states p (the start state), t, w, s
and x, corresponding to {r, u}. Its transition/output table is

input p x s t w
δ 0 x t w s t
δ 1 x x s x p
δ 2 s w p p w
ω 0 2 1 1 2 2
ω 1 1 1 1 1 1
ω 2 2 0 0 2 2

7. *

(a) Show that for every Moore machine there is an equivalent Mealy machine (i.e. one with the
same translation function) with the same number of states, or fewer.

(b) Show that for every Mealy machine M there is an equivalent Moore machine M ′. Obtain an
upper bound on the number of states in M ′, in terms of the number of states in M , the size
of the input alphabet and the size of the output alphabet.

(a) Given a Moore machine M = (Q, Σ, Γ, q0, δ, ω), we form an equivalent Mealy machine M ′ =
(Q, Σ, Γ, q0, δ, ω

′) by defining
ω′(q, a) = ω(δ(q, a)).

Expressed informally, what we have done is to produce a Mealy machine with the same set
of states, the same initial state and the same transition function, but the output function is
defined so that the output of M ′ for a given transition is the output of M at the end state
of that transition.

(b) Given a Mealy machine M = (Q, Σ,Γ, q0, δ, ω), we form an equivalent Moore machine M ′ =
(Q′, Σ, Γ, q′0, δ

′, ω′) by defining Q′ = Q× Γ, with ω′((q, γ)) = γ and

δ′((q, γ), a) = (δ(q, a), ω(q, a)).

3

We set q′0 = (q0, γ) for some γ ∈ Γ (it doesn’t matter which γ).
What we have done is to split each state of M into several states, one for each possible
output. The transition function for M ′ is like the transition function for M , but it chooses
which of the several states to move to by the output that M would have made during that
transition.
Since |Q′| = |Q|.|Γ|, this gives us an upper bound on the number of states required by an
equivalent Moore machine.
This is not the only possible solution: here is another. Define an equivalent Moore machine
M ′′ = (Q′′,Σ,Γ, q′′0 , δ′′, ω′′) by Q′′ = (Q× Σ) ∪ {q′′0}, with ω′′((q, a)) = ω((q, a)) and

δ′′((q, a), b) = (δ(q, a), b), δ′′(q′′0 , a) = (q0, a).

Like the previous machine, this has a group of states corresponding to each state q of the
original machine. The action of this machine mimics that of M , but with a one step delay.
On input a, if the machine M moves from state q to state p, outputting ω(q, a), then M ′′

moves to state (q, a). In state (q, a), the output of M ′′ is ω′′((q, a)) = ω((q, a)), the output
that M makes in moving from state q to state p in reaction to input a.
Since |Q′′| = 1+ |Q|.|Σ|, this gives us another upper bound on the number of states required
by an equivalent Moore machine. We can combine the two, to give the upper bound

min{|Q|.|Γ|, 1 + |Q|.|Σ|}.

PMA1050/PMA6853 Discrete Foundations 2004–5

Question Sheet 9

Please complete this by Thursday 16 December, when the solutions will be given. The starred question
is for PMA6853 students.

1. For each of the following production sets, classify the grammar as type 0, type 1 (context-sensitive),
Type 2 (context-free) or Type 3 (regular), and in the last case, say if it is right-linear or left-linear.
Then describe the language generated; in the case of regular languages, do this by giving the
corresponding regular expression. (In all cases the non-terminal variables of the grammar are
those capital letters appearing in the production set and the terminals are the lower-case letters;
the starting symbol is S.)

(a) S → aSb, S → Ab, A → Ab, A → a.

(b) S → aSb, S → C, aC → Ca, C → c.

(c) S → aS, S → baA, A → bA, A → cA, A → a.

(d) S → AB, A → aAbC, bCb → bA, A → cA, A → a. (Trick question!)

(e) S → AC, A → aAb, bC → bcC, C → aC, A → ε, C → ε.

2. Find two grammars, one right-linear and one left-linear, whose languages correspond to the regular
expression

01∗21(11 ∪ 20)∗(1 ∪ ε)

3. Find a context free grammar G over the alphabet Σ = {a, b, c, d} such that

L(G) = {anbmcmdn : n,m > 0}.

4. * Devise an algorithm for minimizing a context-free grammar: i.e. replacing it by an equivalent
grammar with as few non-terminal variables as possible. (This is an open-ended question: do not
expect to get a perfect algorithm.)

4

Apply your algorithm to the grammar with the following productions. (as usual, the non-terminal
variables of the grammar are those capital letters appearing in the production set and the terminals
are the lower-case letters; the starting symbol is S.)

S → aAb, S → aBb,

A → aAb, A → a, A → Dc, A → Fc,

B → cBb, B → cGa, B → b,

C → aEbb, C → c,

D → b, D → Fb,

E → aC, E → aE, E → a,

F → Db, F → b,

G → Ga.

5

PMA1050/PMA6853 Discrete Foundations 2004–5

Question Sheet 9: Solutions

1. For each of the following production sets, classify the grammar as type 0, type 1 (context-sensitive),
Type 2 (context-free) or Type 3 (regular), and in the last case, say if it is right-linear or left-
linear. Then describe the language generated; in the case of regular languages, do this by giving
the corresponding regular expression. (In all cases the non-terminal variables of the grammar are
those capital letters appearing in the production set and the terminals are the lower-case letters;
the starting symbol is S.)

(a) S → aSb, S → Ab, A → Ab, A → a.

(b) S → aSb, S → C, aC → Ca, C → c.

(c) S → aS, S → baA, A → bA, A → cA, A → a.

(d) S → AB, A → aAbC, bCb → bA, A → cA, A → a. (Trick question!)

(e) S → AC, A → aAb, bC → bcC, C → aC, A → ε, C → ε.

(a) This grammar is context-free, but not regular (because of the first production).

L(G) = {anbm : m > n > 1}.

(b) This grammar is a type 0 grammar which is not even context-sensitive (because of the third
production).

L(G) = {aicajbi+j : i, j > 0, i + j > 1}.
(c) This grammar is right-linear, and therefore regular: L(G) is given by the regular expression

a∗aba(b ∪ c)∗a

(d) This grammar is a type 0 grammar which is not even context-sensitive (because of the third
production).
Any derivation must start with S → AB, but thereafter, the B cannot be changed, so we
can never reach a string of non-terminals (not even the empty string). Therefore

L(G) = Ø.

(e) This grammar is context-sensitive but not context-free (because of the third production).

L(G) = {aibicjak : i > 1, j = 0 or 1, k > 0} ∪ {ak : k > 0}.

2. Find two grammars, one right-linear and one left-linear, whose languages correspond to the regular
expression

01∗21(11 ∪ 20)∗(1 ∪ ε)

A suitable right-linear grammar has productions

S → 0A, A → 1A, A → 21B, B → 11B, B → 02B, B → 1, B → ε.

Note how this is constructed by simply working through the regular expression from left to right.

To construct a left-linear grammar, we simply work through the regular expression from right to
left. The grammar has productions

S → A, S → A1, A → A11, A → A02, A → B21, B → B1, B → 0.

For both grammars, Σ = {0, 1, 2}, N = {S, A, B} and the starting variable is S.

1

3. Find a context free grammar G over the alphabet Σ = {a, b, c, d} such that

L(G) = {anbmcmdn : n,m > 0}.

A suitable grammar G has N = {S,A}, starting symbol S and productions

S → aSd, S → A, A → bAc, A → ε.

4. * Devise an algorithm for minimizing a context-free grammar: i.e. replacing it by an equivalent
grammar with as few non-terminal variables as possible. (This is an open-ended question: do not
expect to get a perfect algorithm.)

Apply your algorithm to the grammar with the following productions. (as usual, the non-terminal
variables of the grammar are those capital letters appearing in the production set and the terminals
are the lower-case letters; the starting symbol is S.)

S → aAb, S → aBb,

A → aAb, A → a, A → Dc, A → Fc,

B → cBb, B → cGa, B → b,

C → aEbb, C → c,

D → b, D → Fb,

E → aC, E → aE, E → a,

F → Db, F → b,

G → Ga.

The first step is to remove ‘unreachable non-terminals’, that is, non-terminals which do not appear
in any sequence of ⇒s starting with S. In our case, C and E are unreachable.

Next, we remove all ‘ineffective non-terminals’ (my terminology) meaning non-terminals from
which no sequence of ⇒s reaches a string of terminals. These can play no part in generating
strings in L(G). In our case, only G is ineffective.

Having removed the unreachable and the ineffective non-terminals and all productions involving
them, we are left with the grammar with non-terminals S,A, B, D, F and the productions

S → aAb, S → aBb,

A → aAb, A → a, A → Dc, A → Fc,

B → cBb, B → b,

D → b, D → Fb,

F → Db, F → b.

We now merge ‘equivalent’ non-terminals, meaning non-terminals which generate the same strings.
We first say that two non-terminals are k-equivalent if they generate the same strings in derivations
of length less than or equal to k. As with the minimization of Mealy machines, the set of non-
terminals splits into k-equivalence classes, for each k. Two non-terminals are k + 1-equivalent if
and only if a single ⇒ takes them to strings which are k-equivalent, in the obvious sense. It
follows that if the k-equivalence classes and (k + 1)-equivalence classes coincide, then these are
the equivalence classes, which can then be merged into single non-terminals.

Looking for 1-equivalence means looking for productions of the form X → w where X ∈ N and
w ∈ Σ∗. If two non terminals have exactly the same sets of such productions, then they are
1-equivalent.

In our case, the 1-equivalence classes are {A}, {B,D, F}, and {S}.
Then D and F are 2-equivalent, because when we look at the productions starting with D and
with F , namely D → Fb and F → Db, their right-hand sides are 1-equivalent. (We need not look

2

at productions of the form D → w and F → w with w ∈ Σ∗ again: they have already been dealt
with in finding that D and F are 1-equivalent.) However, B is not 2-equivalent to D and F , since
there is a production B → cBb and cBb is not 1-equivalent to Fb and Db.

Thus the 2-equivalence classes are {A}, {B}, {D, F}, and {S}.
A similar argument show that D and F are 3-equivalent, so the 3-equivalence classes are the
same as the 2-equivalence classes. The process has finished. We must merge D and F into a new
non-terminal; call it J .

The final grammar has non-terminals S,A, B, J (starting symbol S) and the productions

S → aAb, S → aBb, A → aAb, A → a, B → cBb, B → b, A → Jc, J → b, J → Jb.

3

