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In dealing with mathemat ica l  problems, specialization plays, as I believe, a still 
more important  part  than generalization. Perhaps in most cases where we seek 
in vain the answer to a question, the cause of the failure lies in the fact that  
problems simpler and easier than the one in hand have been either not at all 
or incompletely solved. All depends, then, on finding out these easier problems, 
and on solving them by means of devices as perfect as possible and of concepts 
capable of generalization. David Hilbert 

Logic sometimes makes monsters. During half a century we have seen the rise of 
a crowd of bizarre functions which seem to t ry to resemble as little as possible 
the honest functions which serve some purpose. No longer continuity, or perhaps 
continuity but no derivatives, etc. Nay, more: from the logical point of view, it 
is these strange functions which are the most general. Those which one meets 
without seeking, no longer appear  except as a part icular case. - -  Henri Poincard 

Mathematics  belongs to man, not to God. We are not interested in properties 
of the positive integers tha t  have no descriptive meaning for finite man. When 
a man proves a positive integer to exist, he should show how to find it. If God 
has mathemat ics  of his own that  needs to be done, let him do it himself. 
Errett Bishop 

He considered, perhaps in his moments  of less lucidity, tha t  it is possible to 
achieve happiness on earth when it is not very hot, and this idea made him a 
little confused. He liked to wander through metaphysical  obstacle courses. Tha t  
was what  he was doing when he used to sit in the bedroom every morning with 
the door ajar, his eyes closed and his muscles tensed. However, he himself did 
not realize that  he had become so subtle in his thinking tha t  for at least three 
years in his meditat ive moments  he was no longer thinking about  anything. 
Gabriel Garc(a-Mdrquez (novelist) 
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Preface  

ABOUT THE CHOICE OF TOPICS 
Handbook of Analysis and its Foundations hereafter abbreviated HAF is a self-study 
guide, intended for advanced undergraduates or beginning graduate students in mathemat- 
ics. It will also be useful as a reference tool for more advanced mathematicians. HAF 
surveys analysis and related topics, with particular attention to existence proofs. 

HAF progresses from elementary notions - -  sets, functions, products of sets - -  through 
intermediate topics - -  uniform completions, Tychonov's T h e o r e m -  all the way to a few ad- 
vanced results the Eberlein-Smulian-Grothendieck Theorem, the Crandall-Liggett The- 
orem, and others. The book is self-contained and thus is well suited for self-directed study. 
It will help to compensate for the differences between students who, coming into a single 
graduate class from different undergraduate schools, have different backgrounds. I believe 
that the reading of part or all of this book would be a good project for the summer vacation 
before one begins graduate school in mathematics. At least, this is the book I wish I had 
had before I began my graduate studies. 

HAF introduces and shows the connections between many topics that are customarily 
taught separately in greater depth: 

set theory, metric spaces, abstract algebra, formal logic, general topology, real 
analysis, and linear and nonlinear functional analysis, plus a small amount of 
Baire category theory, Mac Lane-Eilenberg category theory, nonstandard anal- 
ysis, and differential equations. 

Included in these customary topics are the usual nonconstructive proofs of existence of 
pathological objects. Unlike most analysis books, however, HAF also includes some chapters 
on set theory and logic, to explain why many of those classical pathological objects are 
presented without examples. 

HAF contains the most fundamental parts of an entire shelf of conventional textbooks. 
In his "automathography," Halmos [1985] said that one good way to learn a lot of math- 
ematics is by reading the first chapters of many books. I have tried to improve upon 
that collection of first chapters by eliminating the overlap between separate books, adher- 
ing to consistent notation, and inserting frequent cross-referencing between the different 
topics. HAF's integrated approach shows connections between topics and thus partially 
counteracts the fragmentation into specialized little bits that has become commonplace in 
mathematics in recent decades. HAF's integrated approach also supports the development 

xiii 
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of interdisciplinary topics, such as the "intangibles" discussed later in this preface. 
The content is biased toward the interests of analysts. For instance, our t reatment  of 

algebra devotes much attention to convexity but little attention to finite or noncommutative 
groups; our t reatment  of general topology emphasizes distances and meager sets but omits 
manifolds and homology. HAF will not transform the reader into a researcher in algebra, 
topology, or logic, but it will provide analysts with useful tools from those fields. 

HAF includes a few "hard analysis" results: Clarkson's Inequalities, the Kobayashi- 
Rasmussen Inequalities, maximal inequalities for martingales and for Lebesgue measure, 
etc. However, the book leans more toward "soft analysis" i.e., existence theorems and 
other qualitative results. Preference is given to theorems that  have short or elegant or 
intuitive proofs and that  mesh well with the main themes of the book. A few long proofs 

e.g., Brouwer's Theorem, James's Theorem are included when they are sumciently 
important  for the themes of the book. 

As much as possible, I have tried to make this book current. Most mathematical  papers 
published each year are on advanced and specialized material, not appropriate for an intro- 
ductory work. Only occasionally does a paper strengthen, simplify, or clarify some basic, 
classical ideas. I have combed the literature for these insightful papers as well as I could, 
but some of them are not well known; that  is evident from their infrequent mentions in the 
Science Citation Index. Following are a few of HAF's unusual features: 

�9 A thorough introduction to filters in Chapters 5 and 6, and nets in Chapter 7. Those 
tools are used extensively in later chapters. Included are ideas of Aarnes and An- 
denaes [1972] on the interchangeability of subnets and superfilters, making available 
the advantages of both theories of convergence. Also included, in 15.10, is Gherman's  
[1980] characterization of topological convergences, which simplifies slightly the classic 
characterization of Kelley [1955/1975]. 

�9 an introduction to symmetric and preregular spaces, filling the conceptual gaps that  
are left in most introductions to To, T1, T2, and T3 spaces see the table in 16.1. 

�9 a unified treatment  of topological spaces, uniform spaces, topological Abelian groups, 
topological vector spaces, locally convex spaces, Fr~chet spaces, Banach spaces, and 
Banach lattices, explaining these spaces in terms of increasingly specialized kinds of 
"distances" see the table in 26.1. 

�9 converses to Banach's Contraction Fixed Point Theorem, due to Bessaga [1959] and 
Meyers [1967], in Chapter 19. These converses show that,  although Banach's theorem 
is quite easy to prove, a longer proof cannot yield stronger results. 

the Brouwer Fixed Point Theorem, proved via van Maaren's geometry-free version of 
Sperner's Lemma. This approach is particularly intuitive and elementary in that  it 
involves neither Jacobians nor triangulations. It decomposes the proof of Brouwer's 
Theorem into a purely combinatorial argument (in 3.28) and a compactness argument 
(in 27.19). 

introductions to both the Lebesgue and Henstock integrals and a proof of their equiv- 
alence in Chapter 24. (More precisely, a Banach-space-valued function is Lebesgue 
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integrable if and only if it is almost separably valued and absolutely Henstock inte- 
grable.) 

�9 pathological examples due to Nedoma, Kottman, Gordon, Dieudonn6, and others, 
which illustrate very vividly some of the differences between IRn and infinite-dimen- 
sional Banach spaces. 

�9 an introduction to set theory, including the most interesting equivalents of the Ax- 
iom of Choice, Dependent Choice, the Ultrafilter Principle, and the Hahn-Banach 
Theorem. (For lists of equivalents of these principles, see the index.) 

�9 an introduction to formal logic following the substitution rules of Rasiowa and Sikorski 
[1963], which are simpler and in this author's opinion more natural than the 
substitution rules used in most logic textbooks. This is discussed in 14.20. 

�9 a discussion of model theory and consistency results, including a summary of some 
results of Solovay, Pincus, Shelah, et al. Those results can be used to prove the 
nonconstructibility of many classical pathological objects of analysis; see especially 
the discussions in 14.76 and 14.77. 

�9 Neumann's [1985] nonlinear Closed Graph Theorem. 

�9 the automatic continuity theorems of Garnir [1974] and Wright [1977]. These results 
are similar to Neumann's, but instead of assuming a closed graph, they replace con- 
ventional set theory with ZF + DC + BP. Their result explains in part why a Banach 
space in applied math has a "usual norm;" see 14.77. 

In compiling this book I have acted primarily as a reporter, not an inventor or discoverer. 
Nearly all the theorems and proofs in HAF can be found in earlier books or in research 
journal articles but in many cases those books or articles are hard to find or hard 
to read. This book's goal is to enhance classical results by modernizing the exposition, 
arranging separate topics into a unified whole, and occasionally incorporating some recent 
developments. 

I have tried to give credit where it is due, but that is sometimes difficult or impossible. 
Historical inaccuracies tend to propagate through the literature. I have tried to weed out 
the inaccuracies by reading widely, but I 'm sure I have not caught them all. Moreover, I 
have not always distinguished between primary and secondary sources. In many cases I 
have cited a textbook or other secondary source, to give credit for an exposition that I have 
modified in the present work. 

EXISTENCE~ EXAMPLES~ AND INTANGIBLES 
Most existence proofs use either compactness, completeness, or the Axiom of Choice; those 
topics receive extra attention in this book. (In fact, Choice, Completeness, Compactness 
was the title of an earlier, prepublication version of this book; papers that mention that 
title are actually citing this book.) Although those three approaches to existence are usually 
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quite different, they are not entirely unrelated AC has many equivalent forms, some of 
which are concerned with compactness or completeness (see 17.16 and 19.13). 

The term "foundations" has two meanings; both are intended in the title of this book: 

(i) In nonmathematical,  everyday English, "foundations" refers to any basic or elemen- 
tary or prerequisite material. For instance, this book contains much elementary set 
theory, algebra, and topology. Those subjects are not part of analysis, but are pre- 
requisites for some parts of analysis. 

(ii) "Foundations" also has a more specialized and technical meaning. It refers to more 
advanced topics in set theory (such as the Axiom of Choice) and to formal logic. Many 
mathematicians consider these topics to be the basis for all of mathematics. 

Conventional analysis books include only a page or so concerning (ii); this book contains 
much more. We are led to (ii) when we look for examples of pathological objects. 

Students and researchers need examples; it is a basic precept of pedagogy that  every 
abstract idea should be accompanied by one or more concrete examples. Therefore, when I 
began writing this book (originally a conventional analysis book), I resolved to give examples 
of everything. However, as I searched through the literature, I was unable to find explicit 
examples of several important pathological objects, which I now call in tang ib les :  

�9 finitely additive probabilities that  are not countably additive, 

�9 elements of (e~)* \ el (a customary corollary of the Hahn-Banach Theorem), 

�9 universal nets that  are not eventually constant, 

�9 free ultrafilters (used very freely in nonstandard analysis!), 

�9 well orderings for N, 

�9 inequivalent complete norms on a vector space, 

etc. In analysis books it has been customary to prove the existence of these and other patho- 
logical objects without constructing any explicit examples, without explaining the omission 
of examples, and without even mentioning that  anything has been omitted. Typically, the 
student does not consciously notice the omission, but is left with a vague uneasiness about 
these unillustrated objects that  are so difficult to visualize. 

I could not understand the dearth of examples until I accidentally ventured beyond the 
traditional confines of analysis. I was surprised to learn that  the examples of these myste- 
rious objects are omitted from the literature because they must  be omitted: Although the 
objects exist, it can also be proved that  explicit constructions do not exist. That  may sound 
paradoxical, but it merely reflects a peculiarity in our language: The customary require- 
ments for an "explicit construction" are more stringent than the customary requirements 
for an "existence proof." In an existence proof we are permitted to postulate arbitrary 
choices, but in an explicit construction we are expected to make choices in an algorithmic 
fashion. (To make this observation more precise requires some definitions, which are given 
in 14.76 and 14.77.) 
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Though existence without examples has puzzled some analysts, the relevant concepts 
have been a part of logic for many years. The nonconstructive nature of the Axiom of Choice 
was controversial when set theory was born about a century ago, but our understanding 
and acceptance of it has gradually grown. An account of its history is given by Moore 
[1982]. It is now easy to observe that nonconstructive techniques are used in many of the 
classical existence proofs for pathological objects of analysis. It can also be shown, though 
less easily, that many of those existence theorems cannot be proved by other, constructive 
techniques. Thus, the pathological objects in question are inherently unconstructible. 

The paradox of existence without examples has become a part of the logicians' folk- 
lore, which is not easily accessible to nonlogicians. Most modern books and papers on 
logic are written in a specialized, technical language that is unfamiliar and nonintuitive to 
outsiders: Symbols are used where other mathematicians are accustomed to seeing words, 
and distinctions are made which other mathematicians are accustomed to blurring e.g., 
the distinction between first-order and higher-order languages. Moreover, those books and 
papers of logic generally do not focus on the intangibles of analysis. 

On the other hand, analysis books and papers invoke nonconstructive principles like 
magical incantations, without much accompanying explanation and in some cases 
without much understanding. One recent analysis book asserts that analysts would gain 
little from questioning the Axiom of Choice. I disagree. The present work was motivated 
in part by my feeling that students deserve a more "honest" explanation of some of the 
non-examples of analysis especially of some of the consequences of the Hahn-Banach 
Theorem. When we cannot construct an explicit example, we should say so. The student 
who cannot visualize some object should be reassured that no one else can visualize it either. 
Because examples are so important in the learning process, the lack of examples should be 
discussed at least briefly when that lack is first encountered; it should not be postponed 
until some more advanced course or ignored altogether. 

Though most of HAF relies only on conventional reasoning - -  i.e., the kind of set theory 
and logic that most mathematicians use without noticing they are using it - -  we come to a 
better understanding of the idiosyncrasies of conventional reasoning by contrasting it with 
unconventional systems, such as ZF + DC + BP or Bishop's constructivism. HAF explains 
the relevant foundational concepts in brief, informal, intuitive terms that should be easily 
understood by analysts and other nonlogicians. 

To better understand the role played by the Axiom of Choice, we shall keep track of its 
uses and the uses of certain weakened forms of AC, especially 

the Principle of Dependent Choices (DC), which is constructive and is equivalent 
to several principles about complete metric spaces; 

the Ultrafilter Principle (UF), which is nonconstructive and is equivalent to the 
Completeness and Compactness Principles of logic, as well as dozens of other 
important principles involving topological compactness; and 

the Hahn-Banach Theorem (HB), also nonconstructive, which has many impor- 
tant equivalent forms in functional analysis. 

Most analysts are not accustomed to viewing HB as a weakened form of AC, but that 
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viewpoint makes the Hahn-Banach Theorem's nonconstructive nature much easier to un- 
derstand. 

This book's sketch of logic omits many proofs and even some definitions. It is intended 
not to make the reader into a logician, but only to show analysts the relevance of some 
parts of logic. The introduction to foundations for analysts is HAF's most unusual feature, 
but it is not an overriding feature it takes up only a small portion of the book and 
can be skipped over by mathematicians who have picked up this book for its treatment of 
nonfoundational topics such as nets, F-spaces, or integration. 

ABSTRACT VERSUS CONCRETE 
i have at tempted to present each set of ideas at a natural level of generality and abstraction 

i.e., a level that  conveys the ideas in a simple form and permits several examples and 
applications. Of course, the level of generality of any part of the book is partly dictated by 
the needs of later parts of the book. 

Usually, I lean toward more abstract and general approaches when they are available. 
By omitting unnecessary, irrelevant, or distracting hypotheses, we trim a concept down to 
reveal its essential parts. In many cases, omitting unnecessary hypotheses does not lengthen 
a proof, and it may make the proof easier to understand because the reader's attention is 
then focused on the few possible lines of reasoning that still remain available. For instance, 
every metric space can be embedded isometrically in a Banach space (see 22.14), but the 
"more concrete" setting of Banach spaces does not improve our understanding of metric 
space results such as the Contraction Fixed Point Theorem in 19.39. 

Here is another example of my preference for abstraction: Some textbooks build Haus- 
dorffness into their definition of "uniform space" or "topological vector space" or "locally 
convex space" because most spaces used in applications are in fact Hausdorff. This may 
shorten the statements of several theorems by a word or two, but it does not shorten the 
proofs of those theorems. Moreover, it may confuse beginners by entangling concepts that 
are not inherently related: The basic ideas of Hausdorff spaces are independent from the 
other basic ideas of uniform spaces, topological spaces, and locally convex spaces; neither 
set of ideas actually requires the other. In HAF, Hausdorffness is a separate property; it is 
not built into our definitions of those other spaces. Our not-necessarily-Hausdorff approach 
has several benefits, of which the greatest probably is this: 

The weak topology of an infinite-dimensional Banach space is an important 
nonmetrizable Hausdorff topology that is best explained as the supremum of a 
collection of pseudometrizable, non-Hausdorff topologies. 

(If the reader is accustomed to working only in Hausdorff spaces, HAF's not-necessarily- 
Hausdorff approach may take a little getting used to, but only a little. Mostly, one replaces 
"metric" with "pseudometric" or with the neutral notion of "distance;" one replaces "the 
limit" with "a limit" or with the neutral notion of "converges to.") 

However, a more general approach to a topic is not necessarily a simpler approach. Every 
idea in mathematics can be made more general and more abstract by making the hypotheses 
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weaker and more complicated and by introducing more definitions, but I have tried to avoid 
the weakly upper hemisemidemicontinuous quasipseudospaces of baroque mathematics. It 
is unavoidable that the beginning graduate student of mathematics must wade through 
a large collection of new definitions, but that collection should not be made larger than 
necessary. Thus we sometimes accept slightly stronger hypotheses for a theorem in order to 
avoid introducing more definitions. Of course, ultimately the difference between important 
distinctions and excessive hair-splitting is a matter of an individual mathematician's own 
personal taste. 

Converses to main implications are included in HAF whenever this can be managed con- 
veniently, as well as in a few inconvenient cases that I deemed sufficiently important. Lists 
of dissimilar but equivalent definitions are collected into one long definintion-and-theorem, 
even though that one theorem may have a painfully long proof. The single portmanteau 
theorem is convenient for reference, and moreover it clearly displays the importance of 
a concept. For instance, the notion of "ultrabarrelled spaces" seemed too advanced and 
specialized for this book until I saw the long list of dissimilar but equivalent definitions 
that now appears in 27.26. To prevent confusion, I have called the student's attention to 
contrasts between similar but inequivalent concepts, either by juxtaposing them (as in the 
case of barrels and ultrabarrels) or by including cross-referencing remarks (as in the case of 
Bishop's constructivism and GSdel's constructivism). 

Although the content is chosen for analysts, the writing style has been influenced by 
algebraists. Whenever possible, I have made degenerate objects such as the empty set into 
a special case of a rule, rather than an exception to the rule. For instance, in this book and 
in algebra books, {S" S c_ X} is an "improper filter" on X, though it is not a filter at all 
according to the definition used by many books on general topology. 

ORDER OF TOPICS 

I have followed a Bourbaki-like order of' topics, first introducing simple fundamentals and 
later building upon them to develop more specialized ideas. The topics are ordered to 
suit pedagogy rather than to emphasize applications. For instance, convexity is commonly 
introduced in functional analysis courses in the setting of Banach spaces or topological 
vector spaces, but I have found it expedient to introduce convexity as a purely algebraic 
notion, and then add topological considerations much later in the book. Most topological 
vector spaces used in applications are locally convex, but HAF first studies topological 
vector spaces without the additional assumption of local convexity. 

Topics covered within a single chapter are closely related to each other. However, in 
many cases the end of a chapter covers more advanced and specialized material that can be 
postponed; it will not be needed until much later in the book, if at all. Most of Part C (on 
topological and uniform spaces) can be read without Part B (logic and algebra). Howeve'~, 
most readers should skim through Chapters 5, 6, and 7. Those chapters introduce filters 
and nets tools that are used more extensively in this book than in most analysis books. 

I have felt justified in violating logical sequencing in one important instance. The real 
number system is, in some sense, the foundation of analysis, so it must be used in examples 
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quite early in the book. Examples given in early chapters assume an informal understanding 
of the real numbers, such as might be acquired in calculus and other early undergraduate 
courses. A more precise definition of the reals is neither needed nor attainable until Chap- 
ter 10. Much conceptual machinery must be built before we can understand and prove a 
statement such as this one: 

There exists a Dedekind complete, chain ordered field, called the real numbers. 
It is unique up to isomorphism if we use the conventional reasoning methods of 
analysts. (It is not unique if we restrict our reasoning methods to first-order 
languages and permit the use of nonstandard models.) 

The existence and uniqueness of the complete ordered field justify the usual definition of 
IR. I am surprised that these algebraic results are not proved (or even mentioned!) in many 
introductory textbooks on analysis. 

A traditional course on measure and integration would correspond roughly to part of 
Chapter 11, all of Chapter 21, and parts of Chapters 22-25 and 29. Integration theory is 
commonly introduced separately from functional analysis, but I have mixed the two topics 
together because I feel that each supports the other in essential ways. All of the usual 
definitions of the Lebesgue space LI[0, 1] (e.g., in 19.38, 22.28, or 24.36) are quite involved; 
these definitions cannot be properly appreciated without some of the abstract theory of 
completions or Banach spaces or convergent nets. Conversely, an introduction to Banach 
spaces is narrow or distorted if it omits or postpones the rather important example of L p 
spaces; the remaining elementary examples of Banach spaces are not diverse enough to give 
a proper feel for the subject. 

H o w  TO USE THIS BOOK 
Because students' backgrounds differ greatly, I have tried to assume very few prerequisites. 
The book is intended for students who have finished calculus plus at least four other college 
math courses. HAF will rely on those four additional courses, not for specific content, 
but only for mathematical maturity i.e., for the student's ability to learn new material 
at a certain pace and a certain level of abstraction, and to fill in a few omitted details 
to make an exercise into a proof. Students with that amount of preparation will find 
HAF self-contained; they will not need to refer to other books to read this one. Students 
with sufficient mathematical maturity may not even need to refer to their college calculus 
textbooks; Chapters 24 and 25 reintroduce calculus in the more general setting of Banach 
spaces. Proofs are included, or at least sketched, for all the main results of this book except 
a few consistency results of formal logic. For those consistency results we give references in 
lieu of proofs, but the conclusions are explained in sufficient detail to make them clear to 
beginners. 

Parts of HAF might be used as a classroom textbook, but HAF was written primarily 
for individual use. My intended reader will skip back and forth from one part of the 
book to another; different readers will follow different paths through the book. The reader 
should begin by skimming the table of contents to get acquainted with the ordering of 
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topics. To facilitate skipping around in the book, I have included a large index and many 
cross-referencing remarks. Newly defined terms are generally given in boldface  to make 
them easy to find. These definitions are followed by alternate terminology in italics if the 
literature uses other terms for the same concept or by cautionary remarks if the literature 
also uses the same term for other concepts. The first few pages of the first chapter introduce 
many of the symbols and typographical conventions used throughout the book; the index 
ends with a list of symbols. A list of charts, tables, diagrams, and figures is included in the 
index under "charts." 

Mathematics textbooks usually postpone exercises until the end of each subchapter 
or each chapter, but HAF mixes exercises into the main text. In fact, HAF does not 
always distinguish sharply between "discussions," "theorems," "examples," and "exercises." 
All such assertions are true statements, with varying degrees of importance, generality, or 
difficulty, and with varying amounts of hints provided. Every student knows that reading 
through any proof in any math book is a challenge, whether that proof is marked "exercise" 
or not. Some computations and deductions are easier or more instructive to do than to 
watch, so for brevity I have intentionally given some proofs as sketches. All the "exercises" 
are actually part of the text; most of them will serve as essential examples or as steps in 
proofs of later theorems. Thus, in each chapter that is studied, the reader should work 
through, or at least READ through, every exercise; no exercise should be skipped. 
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T o  CONTACT ME 
I've surveyed the literature as well as I could, but it's enormous; I 'm sure there is much 
that I've overlooked. I would be grateful for comments from readers, particularly regarding 
errors or other suggested alterations for a possible later edition. I will post the errata and 
other insights on the book's World Wide Web page on the internet. 

Eric Schechter, August 16, 1996 
h t t p : / / m a t h ,  v a n d e r b i l t ,  e d u / ~ s c h e c t e x / c c c /  
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Chapter  1 

Sets  

MATHEMATICAL LANGUAGE AND INFORMAL LOGIC 

1.1. A f e w  typographica l  c o n v e n t i o n s .  Certain kinds of mathematical  objects are most 
often represented by certain kinds of letters. For instance, mathematicians often represent 
a point by "x" and a function by " f , "  and very seldom the other way around. This book 
will usually adhere to the following guidelines, which are consistent with much (but not 
all!) of the literature of algebra, topology, and analysis. The reader is cautioned that  there 
is no s t a n d a r d  usage, in the literature or even in this book. The guidelines in the following 
list will be helpful, but the guidelines will have exceptions (which should be clear from the 
context). There is even some overlap between the categories listed above. For instance, in 
atomless set theory, discussed in 1.46, all sets are sets of sets. 

i, j ,  k,  m ,  n,  p, . . .  
p, q, r,  s, t, . . .  
c, H, q, R, z 
W, X, Y, Z, ft, F, A , . . .  
A, B, C, L, S, T , . . .  
a, b, y, z ,  o~, /3, A, p ,  ~z, . . .  
A ,  ~ ,  e ,  . . . 
f ,  g, p, q, o~, /3, A, p ,  Tr, . . .  
F, A, q), ~ , . . .  

integers 
real numbers 
sets of numbers 
main sets e.g., linear spaces 
subsets of main sets 
elements of sets 
sets of sets - -  e.g., filters, topologies 
functions 
collections of functions 

1.2. All letters are variables, but some letters are more variable than others (as George 
Orwell might have put it). Every high school student has understood at least one example 
of this: 

the solutions of a x  2 + bx + c = 0 are x = 
- b  • v/b 2 - 4ac  

2a 

Here the letters a, b, c are treated as real constants, but they can be a n y  real constants; 
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they vary only slightly less than x does. Usually it should be clear from the context just 
which letters are varying more than others. 

1.3. Notes on "and" and "or." Although mathematicians base their language on English 
or other "natural" languages, mathematicians alter the language slightly to make it more 
precise or to make it fit their purposes better. Some of the differences between English and 
mathematics  may confuse the beginner. 

For instance, there are two different meanings for the English word "or:" 

LJ vel inclusive or A or B or both 
+ aut exclusive or A or B but not both. 

Latin distinguishes between these two meanings by using two different words: "vel" and 
"aut;"  see Rosser [1953/1978]. In everyday English, the term "or" is ambiguous; it could 
have either meaning. For clarification in English, "vel" is sometimes called "and/or," and 
"aut" is sometimes called "either/or." In mathematics, "or" generally means "vel," unless 
specified otherwise. 

Undergraduate mathematics students sometimes confuse "and" and "or" in the following 
fashion: What  is the solution set of x 2 - 4x + 3 > 0, in the real line? It is 

{ x E R  : x < l }  U { x e R  : x > 3 }  = { x e R  : x < l  or x > 3 } .  

Thus, the appropriate word is "or." However, some calculus students write the solution as 
"x < 1 and x > 3," by which they mean "the points x that  satisfy x < 1, and also the points 
x that  satisfy x > 3" thus they are using "and" for U (union). Though such students 
may think that  they know what they mean, this usage is not standard in mathematics  and 
should be discontinued by students who wish to proceed in higher mathematics.  

Another word for "or" is d i s j unc t i on ;  the most commonly used symbol for it is V. 
Another word for "and" is c o n j u n c t i o n ;  the most commonly used symbol for it is A. 
However, we shall use U and R for "or" and "and," in order to reserve the symbols V and 
A for use in some related lattices. 

We shall use "not-A" or "~A" as abbreviations for the statement that  "statement A is 
not true;" some mathematicians use other symbols such as ~ A. The symbol 9, meaning 
"not," is also called nega t i on .  In conventional (ordinary) logic, used throughout most of 
this book, -~-~A = A; that  is, not-not-A is equal to A. That  equality fails in constructivist 
or intuitionist logic, which is discussed very briefly in Chapters 6 and 13. 

1.4. The statement "A imp l i e s  B" will sometimes be abbreviated as "A =~ B" or 
"A --~ B;" the latter expression will be used in our chapter on logic. Either of these 
expressions means "if A is true t h e n  B is true" or more precisely, "whenever A is true, 
then B is also true." The usage of " i f . . .  then" in mathematics differs from the usage ia:, 
English, because the mathematical  statement A =~ B makes no prediction about B in the 
case where A is false. For instance, in everyday English the statement "If it rains, then I 
will take my umbrella" is ambiguous - -  it could have either of the following meanings: 

(i) If it rains, then I will take my umbrella. If it doesn't rain, then I won't take 
my umbrella. 
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(ii) If it rains, then I will take my umbrella. If it doesn't rain, then I might or 
might not take my umbrella. 

In mathematics,  however, (ii) is the only customary interpretation of " i f . . .  then." 
The mathematicians '  implication also differs from the nonmathematicians '  implication 

in this respect: we may have A =~ B even if A and B are not causally related. For 
instance, "if ice is hot then grass is green" is true in mathematics,  but it is nonsense in 
ordinary English, since there is no apparent connection between the temperature of ice and 
the color of grass. The mathematicians '  implication is sometimes referred to as m a t e r i a l  
i m p l i c a t i o n ,  to distinguish it from certain other kinds of implications not commonly used 
in mathematics  but sometimes studied by philosophers and specialized logicians. 

The c o n v e r s e  of the statement "A ~ B" is the statement "B ~ A." These two 
statements are not equivalent; the beginner must be careful not to confuse them. For 
instance, "x = 3" implies "x is a prime number," but "x is a prime number" does not imply 
"x = 3." 

The statement "A if and only if B" may be abbreviated "A iff B;" it is also written 
"A ~ B." This s tatement means that  both A =~ B and the converse implication 
B =~ A are true. 

Statement A is s t r o n g e r  than statement B if A ~ B; then we may say B is w e a k e r  
than A. More generally, a property P of objects is stronger than a property Q if every 
object that  has property P also must have property Q i.e., if the statement "X  has 
property P" is stronger than the statement "X  has property Q." (A related but slightly 
different meaning of "stronger than" is introduced in 9.4.) The mathematical  usage of the 
terms "stronger" and "weaker" (and of other comparative adjectives such as coarser, finer, 
higher, lower) differs from the common nonmathematical  English usage in this important  
respect: In English, two objects cannot be "stronger" than each other, but in mathematics  
they can. Thus, when A ~ B, each statement is stronger than the other. In particular, 
a statement is always stronger than itself. To say that  

A implies B and B does not imply A, 

we could say that  A is s t r i c t l y  s t r o n g e r  than B. For instance, the property of being equal 
to 3 is strictly stronger than the property of being a prime number. 

In general, " i f . . .  then" is quite different from "if and only if." However, in mathematical  
definitions the words "and only if" generally are omitted and are understood implicitly, 
particularly when the defined word or phrase is displayed in boldface or italics. For instance, 
in our earlier sentence 

Statement A is s t r o n g e r  than statement B if A => B; then we may say B is 
w e a k e r  than A. 

the "if" is really understood to be "if and only if." 

1.5. When A and B are variables taking the values "true" or "false," then an expression 
such as "A and B" is a function of those variables that  is, the value of "A and B" 
depends on the values of A and B. The t r u t h  t a b l e  below shows how several functions of 
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A and B depend on the values of A and B. In the table, "T" and "F" stapd for "true" and 
"false," respectively. 

A B not-A 
T T F T 
T F F T 
F T T T 
F F T F 

A o r B  A a n d B  A ~ B A ~ B 
T 
F 
T 
T 

T 
F 
F 
T 

If a statement A is known to be always false, then the statement "A ~ B" is true, 
regardless of what we know or do not know about B; under these circumstances we may say 
~hat the implication "A =~ B" is v a c u o u s l y  t rue ,  or t r iv i a l ly  t rue .  The term "trivially 
true" can also be used to describe the implication "A ~ B" if B is known to be always 
true, since in that case the validity of A need not be considered. 

1.6. Exercises. 
a. The statement "A ~ B" is equivalent to the statement "B or not-A." Explain. 

b. The c o n t r a p o s i t i v e  of "A =~ B" is the statement "not-B => not-A." Show that an 
implication and its contrapositive are equivalent. We shall use them interchangeably. 

c. (De M o r g a n ' s  Laws  for logic.) Explain: 

(not-A) and (not-B) is equivalent to not-(A or B); 

(not-A) or (not-B) is equivalent to not-(A and B). 

1.7. D u a l i t y  a r g u m e n t s .  Some concepts in mathematics occur in pairs; each member 
of the pair is said to be dual to the other. A few examples are listed in the table below; 
these examples and others are developed in more detail in later chapters. The statements 
about these concepts occur in pairs. In some cases, one of the two statements is preferred, 
because it is more relevant to applications or is simpler in appearance. 

A concept III and 
Its dual or 

min 
m a x  

inf 
s u p  

open 
closed 

int 
cl 

ideal 
filter 

C 3 

Generally there is a simple and mechanical method for transforming a statement into 
its dual statement and for transforming the proof of a statement into the proof of the dual 
statement. For instance, De Morgan's Laws for logic (given in 1.6.c) can be used to convert 
between ands and ors, by inserting a few nots. Other such conversion rules will be given 
in later chapters. In some cases, for brevity, we state and/or  prove only one of the two 
statements in the pair. The other statement is left unstated and/or  unproved, but the 
reader should be able to fill in the missing details without any difficulty. 

1.8. On parsing strings of symbols. In this book, we generally read set-theoretical opera- 
tions (n, U, C, etc.) first, then set-theoretical relations (=, C_, ~, etc.), then logical relations 
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between statements. For instance, 

A = B < ',. c n D 2 E (,) 

should be interpreted as 

Generally we omit the parentheses, but we may sometimes use extra spacing to make the 
correct interpretation more obvious: 

A = B ,', ', C A D  D E .  

We emphasize that  this order of precedence depends on the context i.e., the present 
book is concerned with abstract analysis. In a different context, the expression (,) could 
be read in an entirely different order. For instance, in some books on logic, N means "and" 
and _D means "is implied by." Hence all four of the symbols - ,  <::~, N, and _D are binary 
operations on s ta tements  i.e., they are operators [] with the syntax that  if P and Q are 
statements, then P D Q  is a statement.  Therefore, in a logic book, the displayed equation 
(,) could make sense with any arrangement of parentheses, and it would have different 
meanings with different arrangements of parentheses. In that  context, (,) would be highly 
ambiguous; some parentheses would be needed for clarification. 

1.9. P r o o f  by  c o n t r a d i c t i o n  is a nonconstructive technique of logic, so widely used 
in mainstream mathematics that  it generally goes unremarked. It may be confusing to 
beginning mathematicians who have never seen it explained. The technique is this: 

If we wish to prove A ~ B, we can assume the t ru th  of both A and not- 
B. From those two assumptions we deduce a contradiction; the contradiction 
demonstrates that  indeed A ~ B. 

The justification of this technique is 1.6.a. 
Proof by contradiction has this advantage: We work from two assumptions (both A and 

not-B) rather than just the one assumption of A; thus we have more statements on which to 
build. Consequently, proofs by contradiction are often easier to discover than direct proofs. 

Proofs by contradiction also have a couple of disadvantages: 

Proofs by contradiction are often harder to read than direct proofs because they are 
conceptually more complicated. Proofs by contradiction are conceptually complicated. 
A beginning student of mathematics  may prefer to assume that  A is true and try to 
discover what else is then true a sort of one-directional approach. But a proof 
by contradiction works simultaneously in two directions, mixing together statements 
(such as A and its consequences) that  we take to be true with statements (such as 
not-B) that  we temporarily pretend are true but shall eventually decide are false. This 
scheme must seem diabolical, or at least amoral, to beginners: It is not concerned so 
much with "what is true," but rather with "what implies what." 
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�9 A proof by contradiction is often nonconstructive: It may prove the existence of some 
mathematical  object without producing any explicit example of that  object. For a 
very vivid example of this lack of examples, see 6.5. The availability or unavailability 
of explicit examples is one of the main themes of this book. A proof by contradiction 
may convince us that  a statement is true, but it may not give us as much intuitive 
understanding of that  statement as a direct proof would. 

1.10. The phrase "we m a y  a s s u m e "  is often used in the literature in ways that  may 
bewilder the novice. For instance, consider a proposition of this form: 

Proposition A. Let X be a mathematical  object satisfying hypothesis H(X). 
Then X satisfies conclusion C(X). 

A published proof of Proposition A might begin something like this: 

(!) We may assume that  X also satisfies property P(X). 

The reasoning step (!) has several possible meanings; we shall describe three of them below. 
The simplest meaning of (!) would be that  

(1) Hypothesis H(X) actually implies property P(X), by some reasoning that  
should be evident to a sufficiently advanced reader. 

Readers who are not so advanced may spend many hours trying to fill in that  reasoning. 
However, (!) may not mean (1) after all. Indeed, if (1) were true then (!) would probably 
be worded a bit differently e.g., the proof might have begun by saying "We first observe 
that,  obviously, H(X) ~ P(C) ."  A more likely meaning of (!) is this: 

(2) H(X) and no t -P(X)  together imply C(X), by some reasoning that  should 
be evident to the reader. Hence, in trying to prove H(X) ~ C(X), w e m a y  
concentrate on the case where P(X) holds. 

That  is harder but still manageable. Alas, (!) has yet a third meaning, and this one is much 
too subtle for some beginners: 

(3) The text will now give the details of a proof of a slightly easier proposition. 
After reading the proof provided for the easier proposition, the reader is expected 
to figure out the details of how to use that  easier proposition to prove Proposition 
A. The easier proposition is as follows: 

Proposition B. Let Y be a mathematical  object satisfying hypotheses H(Y) and 
P(Y). Then Y satisfies conclusion C(Y). 

The missing details might go as follows: Let any object X be given, satisfying hypothesis 
H(X) but not necessarily property P(X). By some clever method (which the reader must 
figure out), we now construct a collection of related objects Y1,Y2,Y3,..., with each Yk 
satisfying both hypothesis H(Yk) and property P(Yk). Then Proposition B is applicable to 
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the Yk's, and so we can draw conclusions C(Y1), C(Y2), C(Y3), . . . .  By some clever method 
(which, again, the reader must figure out), we may then use that information to help us 
prove C(X).  

In such an argument, object X does not necessarily satisfy P(X) ,  despite the wording 
of statement (!). The effect of statement (!) is to discard the original object X, replace it 
with the new object ]Irk, and re l abe l  Yk to call it X now. Some other relabeling arguments 
will be discussed and used in 2.19, 7.21, and 16.5. 

1.11. How much formalism do we need? It is not necessary to learn the definitions of 
"noun" and "verb" to become a fluent speaker of English (or any other natural language). 
One can learn the language quite well just by studying examples; this is the method by 
which toddlers learn their native tongue. 

Similarly, most mathematicians use logic properly without ever knowing its formal rules. 
This book is intended for "most mathematicians," and we shall discuss logic and formal set 
theory as little as possible. The few concepts from logic and set theory that we shall need 
will be developed briefly and informally. For a more complete and formal development, the 
interested reader is referred to more advanced and specialized books and papers. 

Informal reasoning is not always reliable, in part because informal language is not always 
reliable. Natural languages (such as English) evolved to suit the mundane, ordinary, real 
world, but mathematicians often find themselves considering extraordinary ideas. 

For instance, a self-referencing statement such as 

This statement is false 

cannot be true or false. (This is the simplest form of the P a r a d o x  of  t he  Liar,  also known 
as the P a r a d o x  of  Ep imen ides . )  Such statements do not arise in "ordinary" reality, but 
such statements show mathematicians a need for careful rules about language and reasoning. 

The simplest way to deal with self-referencing statements is to simply prohibit them 
and avoid the confusion. We shall follow that policy in this book. However, we remark that 
self-referencing recently has been analyzed in a meaningful and useful way by Aczel [1988] 
and Barwise and Etchemendy [1987]. Such analyses are especially useful in the theory of 
computer programs. A computer program may operate on data files that are stored in 
memory; one of those files may be the program that is operating. 

1.12. We should mention one more type of self-referencing before we leave the topic. The 
self-referencing in Epimenides's Paradox is very direct: The word "this" in the sentence 
"This sentence is false" points directly to the sentence in which that  word is located. But 
Quine's Paradox, below, involves a more indirect type of self-referencing, which has some 
important uses in logic. 

A typical sentence in English consists of a subject followed by a predicate. For instance, 
in each of the sentences 

Jane is a girl. 

Jane runs with the ball. 
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the subject is "Jane" and the predicate is the remainder of the sentence. The subject is 
some "thing" that  is being discussed; the predicate says that  the subject "is" something or 
"does" something. 

Mathematicians often wish to discuss mathematical  objects, so in a mathematics text 
the subject of a sentence can be a mathematical  symbol or formula. For instance, 

[] is a box symbol. 

"[3" is a box symbol. 

x is a variable. 

" x "  is a variable. 

"x - y" is an equation. 

are all acceptable sentences in a mathematics book or paper. Whether  we include or omit the 
quotation marks is generally a mat ter  of taste; our main rule is that  the intended meaning 
should be clear. In this author's opinion, the last example would become confusing if the 
quotation marks were omitted, but the quotation marks are optional in the other examples. 
(Of course, in a book or paper on logic, the quotation marks may have a more technical 
meaning, and then their use or omission is no longer a mat ter  of taste.) 

We shall now consider sentences that  follow the format described above, but in these 
sentences the subject will be some phrase of the English language i.e., a sentence frag- 
ment. Thus, we shall consider sentences that  discuss certain sentence fragments. In each 
case, the sentence fragment will consist of a sentence whose subject has been omitted. 

"is a girl" is a sentence fragment composed of three words. 

"runs with the ball" is a sentence fragment composed of four words. 

"is a sentence fragment" is a sentence fragment. 

"is composed of five words" is composed of five words. 

Each of those four sentences is true. The last two sentences have a peculiar structure: they 
consist of a sentence fragment in quotes, followed by the same sentence fragment without 
quotes, followed by a period. In Hofstadter [1979], the process of forming such a sentence 
from such a fragment is called qu in ing .  Thus, the last sentence displayed above is the 
result of starting from the fragment 

is composed of five words 

and then quining that  fragment. 
Now, Q u i n e ' s  P a r a d o x  consists of the peculiar sentence 

"yields a falsehood when preceded by its quotation" yields a falsehood when 
preceded by its quotation. 
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or, in Hofstadter 's terminology, 

"yields a falsehood when quined" yields a falsehood when quined. 

These sentences are paradoxical: they are false if true, and true if false. (Think about it 
for a moment.)  These sentences do not involve direct self-referencing of the sort found in 
Epimenides's Paradox; there is no "this" that  points to itself. However, in either formu- 
lation, Quine's peculiar sentence discusses another sentence that  would be formed as the 
result of a quining. Just by coincidence (not really), the sentence being discussed happens 
to be identical to the sentence doing the discussing. Quine formed this paradox in order to 
explain Ghdel's Proof; see 14.62. 

BASIC NOTATIONS FOR SETS 

1.13. A set  is a collection of objects. This is not really a definition, since we do not state 
what a "collection" is; we shall rely on the reader's intuition about these terms. A more 
formal approach will be introduced in 1.44 and the sections thereafter. 

Three common ways to specify a set are by listing the objects in the set, by specifying a 
larger set and a property that  determines the subset in question, and by listing a parameter  
set and a way to form some object from each value of the parameter.  For instance, the set 
of odd positive integers can be represented in any of these ways: 

{1, 3, 5, 7 , . . . }  = { h E N  : n i s o d d }  = { 2 m + 1  : m E N } .  

In the last expression, N is used as a i n d e x  set ,  or p a r a m e t e r  set .  (Some mathematicians 
would write that  last expression as {2m + l lm E N}, but this book will have too many 
other uses for vertical bars.) 

The order of the elements of a set is not relevant, and repetitions are ignored; for 
instance, {1, 2, 3, 4} = {4, 3, 1, 2} = {1, 2, 3, 1, 4}. To emphasize this we may occasionally 
refer to a set as an unordered set to contrast it with ordered sets, such as those in 1.32. 
Two sets A and B are defined to be equa l  (as sets) if they contain the same elements 
i.e., if they satisfy x E A 4=~ x E B. 

Two mathematical  objects may be equal as sets even though they have different addi- 
tional structures associated with them. For instance, the real number system with its usual 
topology is different from the real number system with the discrete topology i.e., these 
are different topological spaces. But these topological spaces are equal as sets, since they 
have the same members. 

The term "collection" will usually mean the same thing as "set," but occasionally "col- 
lection" may have the more general meaning of "class," discussed in 1.44. 

1.14. Here are the two most basic notions of sets: 

"x E S" is read as: x b e l o n g s  to S, or x is an e l e m e n t  of S, or x is a m e m b e r  
of S. It is occasionally writ ten as "S ~ x." 
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"A _c B"  means x c A =~ x E B; that is, each element of A is also an element 
of B. It is read as: A i s  a s u b s e t  of B, or B i s  a s u p e r s e t  of A. It is also 
written as "B D A." 

Unfortunately, the terms "include" and "contain" are ambiguous. As they are commonly 
used in the mathematical literature, 

either of the statements "U inc ludes  V" or "U con t a in s  V" can have either of 
the meanings "U ~ V" or "U _D V." 

When the words "include" or "contain" are used, the reader must determine the intended 
meaning from context. 

The statement "x is not an element of S" can be written x ~ S; the statement "A is 
not a subset of B" is occasionally written as A ~ B. When S c_ X and S r X, we say S is 
a p r o p e r  s u b s e t  of X, or X is a p r o p e r  s u p e r s e t  of S; this is sometimes written S C X 
o r X D S .  

The symbols C and D are ambiguous: They are used for C_ and _D by some mathe- 
maticians, and for c and D by other mathematicians. We shall not use c or D in this 
book. 

1.15. Some sets of numbers. Numbers are the basis of what most analysts consider to be 
"analysis." The list below shows some of the most commonly used sets of numbers. 

N 
Z 
Q 
R 

C 
1" 
F 
A, IB, II3 

positive integers (also known as natural numbers) 
integers 
rational numbers (quotients of integers) 
real numbers (introduced formally in Chapter 10) 
extended reals (introduced in 1.17) 
complex numbers (introduced in Chapter 10) 
the circle group (introduced in 10.32.f) 
unspecified field - -  generally understood to be IR or C 
directed sets ("generalized numbers;" see 7.3) 

We assume an informal acquaintance with Q and IR - -  e.g., techniques of computation, 
such as in college calculus. Relying on that informal acquaintance only for some illustrative 
examples, in later chapters we shall carefully develop basic ideas of orderings, groups, and 
fields, leading up to formal definittons of Q, R, and C in Chapter 10. 

1.16. In this book, N and 7Z have their usual, classical meanings, and we assume a familiarity 
with the elementary properties of those sets of numbers. Caution: Many mathematicians 
agree with our definition that N = {1 ,2 ,3 , . . .} ,  but many others instead use the symbol N 
to represent the set {0, 1, 2, 3 , . . .} .  

Set theorists often find it useful to define the integers (and everything else) in terms of 
sets see 1.46. Zermelo defined the nonnegative integers 0, 1,2, 3 , . . .  to be the sets o ,  
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{ O }, { { O } }, { { { ~ } } }, and so on. Later, von Neumann defined the nonnegative integers to 
be the sets 

{e}, {e, {e, 

and so on, as described in 5.44. Either of these definitions is manageable,  but von Neumann 's  
more complicated definition has a few advantages for purposes of set theory, and so it is 
now widely used in tha t  field. 

For purposes outside of set theory, however, it is conceptually simpler not to a t tach 
the labels "0," "1," "2," etc., to particular sets. (This point is discussed further by Hirsch 
[1995].) Instead we usually view the integers as indivisible objects, for which we define 
algebraic operations in the usual fashion. Thus N U {0} is a monoid and Z is a ring; these 
notions are discussed in Chapter  8. 

In dealing with the integers, we shall rely on the reader 's intuition, not on a precise 
definition and list of properties. Although it is possible to specify the positive integers 
uniquely by Peano's  Axioms (see 14.52), tha t  specification is nontrivial and rests on an 
understanding of conventional language. In nonstandard analysis, language is sometimes 
used in a different fashion, and then the "integers" take on a new meaning, as described in 
14.68 and 14.69. The reader of this book does not need to be familiar with the nonstandard 
integers; we have mentioned them here only to emphasize our reliance on some shared 
intuition about  the s tandard (i.e., conventional) integers. 

1.17. Let +oc and - c o  be the names given to some two objects that  are not real num- 
bers; the object +co may also be abbreviated as oc. The e x t e n d e d  rea l  l ine,  denoted 
[ -oc,  +oc], is the set IR U { - o c ,  +co} tha t  is, the real number system IR plus these two 
additional points. We extend the ordering of R to this larger set by defining - o c  < r < +co 
for all real numbers r. Addition and multiplication are usually extended to this larger set 
of numbers by the rules indicated in the following tables. In the tables, "undef.," "pos.," 
and "neg." are abbreviations for "undefined," "positive real," and "negative real." The 
product  of 0 and +oc is sometimes left undefined, but more often it is defined to be 0. Tha t  
product  may come as a surprise to some students and is discussed further in 15.28.c. 

I pLUS II I re ll 
- o c  - o c  - o c  undef. 
real - o c  real +oc 
+oc undef. +oc +oc 

TIMES II-  I neg. I ~  ~ I I 
- o c  +co +co 0 co co 
neg. +oc pos. 0 neg. co 

0 0 0 0 0 0 
neg. oc neg. 0 pos. +oc 
+co cc oc 0 +oc +oc 

1.18. Preview of assorted infinities. The term "infinity" has several different meanings in 
mathemat ics ,  and it is impor tant  not to confuse these with each other. 

1. Some older mathemat ics  books sometimes refer to a p o t e n t i a l  i n f i n i t y  such as limxl0 5, 
this is a very large finite number  that  gets larger without bound. Our dealings with potential  
infinities may be simplified if we adjoin to R some idea l  p o i n t s  - o c  and +oc,  as discussed 
in the preceding section. The resulting number  system [-oc ,  +co] is algebraically somewhat 
awkward unlike R, it is not a field; indeed, it is not even an additive monoid. 
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By adding many more ideal points, we obtain a more satisfactory algebraic system. The 
h y p e r r e a l  line, *R, is an ordered field strictly larger than R; it is discussed in 10.18. 
Among other things, it contains some numbers that  are infinitely large and some numbers 
(besides zero) that  are infinitely small. An infinitely large number is a constant that  plays 
a role similar to the role played by finite variable such as the number x in the expression 
"limxT~ f (x) ."  Similarly, an infinitely small but positive constant number plays a role 
similar to that  played by the finite variable x in the expression "limxl0 f (x) ."  

Yet another kind of infinity is the "number" of elements in an infinite set such as N or 
R; that  "number" is called the c a r d i n a l i t y  of the set. Some older mathematics books refer 
to it as an a c t u a l  inf ini ty ,  in contrast to the potential infinity mentioned above. There 
are several different infinite cardinalities for instance, the cardinalities of the sets N and 
Q are equal (see 2.20.f), but the cardinality of the set R is larger (see 10.44.f). In fact, there 
are infinitely many different sizes of infinities; that  follows from 2.20.1. Some arithmetic of 
cardinalities is possible for instance, in later chapters we shall see that  card(S x T) = 
max{card(S),  card(T)} when S and T are infinite sets, and card(2 X) > card(X) for any set 
X. However, this arithmetic should not be confused with the arithmetic of the hyperreal 
numbers; cardinalities do not form a field. Infinite cardinal numbers are sometimes denoted 
by Nn; we consider this notation briefly in 5.48. Also related are the infinite ordinals, 
introduced in 5.44; the first infinite ordinal is often denoted w. 

Our several notions of the "infinite" are only distantly related. To avoid confusion, think 
of them as entirely unrelated uses of the same strings of letters. 

Yet another unrelated use of "infinity" is that  in theology. The beginner is urged to put 
aside any spiritual notions of infinity, for mathematicians have tamed infinity and made 
it entirely a secular matter.  (On the other hand, mathematics is not devoid of spiritual 
questions; see particularly 6.8 and 14.71.) 

1.19. The set with no elements is called the e m p t y  set  (or null set); it is denoted by 2~ 
(or by { } in some books). 

The word "nothing" is used in different ways in English. For instance, if we order things 
by our preferences, then "a ham sandwich is better than nothing" can be written 

ham sandwich > 2~. 

However, "nothing is better than true love" should not be written as "~ > true love." 
Rather, it should be written as 

{x : x > true love} = 2~. 

Thus, we cannot conclude that  "a ham sandwich is better than true love." 

1.20. A few more sizes of sets. A s i n g l e t o n  is a set {x} containing exactly one element. 
The objects x and {x} can never be equal (see 1.49), and in some contexts the distinction 
between x and {x} is crucial. In some other contexts, however, x and {x} are used in 
substantially different ways, so that  no confusion is possible if we find it convenient to write 
x and {x} interchangeably. (For instance, the unique solution of u 2 + 2u + 1 = 0 is u = - 1 ,  
and the solution set is {-1};  generally these two answers are interchangeable.) 
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Examples for beginners to think about. {x, y} is a singleton if and only if x = y, and 
{{x, y}} is a singleton in any case. The set {Z} is a singleton. 

A set S is f in i te  if the number of elements in S is a finite number i.e., if S can be 
wri t ten in the form {Xl,X2,X3,... ,x~} for some n E N U {0}. (We permit  n = 0; thus, the 
empty set is a finite set.) A set tha t  cannot be so writ ten is inf in i te .  

A set S is c o u n t a b l e  if it is empty or can be wri t ten in the form {Xl,X2,X3,...}. We 
emphasize tha t  repetitions are permitted;  thus by our definition any finite set is also a 
countable set. A set that  is not countable is u n c o u n t a b l e .  A set S is c o u n t a b l y  in f in i t e  
if it is countable and infinite - -  or, equivalently, if and only if it can be writ ten in the form 
{xl ,x2,x3, . . . }  without repetitions. Caution: Some mathemat ic ians  use these terms a 
little differently and apply the term "countable" only to the sets of the form {Xl,X2,X3,...} 
without repetitions i.e., only to the sets that  we have called "countably infinite." 

Other sizes of sets will be discussed in 2.16. 

W A Y S  TO C O M B I N E  S E T S  

1.21. The p o w e r  se t  of a given set X is {S"  S c_ X}, the set of all subsets of X. We 
shall usually write the power set of X as ~P(X). It is also denoted 2 X, for reasons discussed 

in 2.20.k. 
For instance, the power set of {0,1} is the set [P({0, 1}) - ~O, {0}, {1}, {0, 1}}. The 

f 

% . s  

power set of the empty set is ~P(~) - {~}, which is a singleton i.e., it has one element, 
so it is not empty. 

1.22. Suppose that  g - {Sx " A E A} is a set of sets i.e., A is a set, and Sx is a set for 
each A E A. Then the u n i o n  of the Sx's is the set {x �9 x E Sx for at least one A}. It can 
be denoted by any of these expressions" 

AEA 

Other notations are available in certain special cases" The union of finitely many sets 
S1, $ 2 , . . . ,  Sn may be writ ten as U~=l Sk or as S1 U $2 U . - .  U Sn. The union of a sequence 

(:X2 

of sets S1, $2, $3,. �9 �9 may be wri t ten as Uk=l Sk or as S1 U $2 U Sa U. . . .  Note tha t  if L c_ A, 
then UXcL Sx C_ Ua~A Sx. In particular,  Ux~o Sx is just  the empty set. 

1.23. Again suppose that  S - {S~ �9 A E A} is a set of sets. Then the i n t e r s e c t i o n  of the 
S~'s is the set {x" x E S~ for every A}. It can be denoted by any of these expressions: 

AEA 

The expressions 
n cxD 

n sk - s, n s2 o. . .  n s~ and n sk 
k--1 k----1 

- S I N S 2 N S 3 O . . .  



16 Chapter 1" Sets 

are interpreted in a fashion analogous to that  for unions. 
If L C_ A and L ~ O, then ~ E L S ~  _D ~ E A S ~ "  The expression ~ E o S ~  is not 

meaningful without further specification, but the following convention is often useful: If the 
S~'s are all subsets of a fixed set X whose choice is understood, then we may agree to let 
~,~Eo S~ mean X. 

1 .24 .  
the set 

If S and X are sets, then the c o m p l e m e n t  (or relative complement) of S in X is 

x \ s  - e x . r s } .  

For example, {a, b, c}\{c, d} - {a, b}. We emphasize that  S is not necessarily a subset of X. 
Caution: Some mathematicians write the set X \ S instead as X - S. However, that  also 
can be interpreted as { x -  s �9 x E X, s E S} in contexts where subtraction is meaningful 
e.g., if S and X are subsets of I~. 

If the choice of X is clear and/or  does not need to be mentioned explicitly, and S is a 
subset of X,  then the relative complement of S in X may be written more briefly as CS. 
(Some mathematicians write this as CS or S c or S.) The [~ notation is useful especially when 
we are considering many subsets R, S, T, U, etc., of a single set X; note then S \ T  - S N CT. 
The C notation simplifies the appearance of many results for instance, CCS - S. More 
generally, CnS - S when n - 0,2, 4, 6, . . . .  Here we adopt the convention that  Cos - S, 
and C n + I s -  CCns; this exponential notation will be particularly helpful in 13.11. 

The symbol C will be given a more general meaning in 13.1; see the discussion in 13.3. 

1.25. Also simplified by the C notation are De  M o r g a n ' s  Laws  for sets:  

AEA AEA 

That  is: The complement of a union is the intersection of complements, and vice versa. 
The proofs are an easy exercise. 

There is a duality (as in 1.7) between statements about any collection of sets and state- 
ments about the complements of those sets. This duality is order-reversing; i.e., 

S a T  .' ). CSDCT.  
B 

By De Morgan's Laws, the duality transforms unions to intersections, and vice versa. 

1.26. We say that  two sets m e e t  if their intersection is nonempty; otherwise the sets 
are d is jo in t .  Note that  O and any set are disjoint. A collection of sets is disjoint (or for 
emphasis, p a i r w i s e  d is jo in t )  if each pair of distinct sets in the collection is disjoint. A 
p a r t i t i o n  of a set X is a collection of pairwise disjoint sets that  have union equal to X. 

A collection of sets {S~ : A E A} is f ixed if their intersection NAEA SA is nonempty; the 
collection is f ree if its intersection is empty. We emphasize that  this does not refer to the 
pairwise intersection. For instance, if a, b, c are distinct objects, then the collection 
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is free but not disjoint. 
A collection {S~ : k E A} of subsets of a set X is said to be a cover ,  or cover ing ,  of 

X if U ~ A  S~ - X. Note that  this condition is satisfied if and only if {{~S~ �9 ~ c A} is free 
(where C denotes complement in X).  Thus, "cover" and "free" are dual concepts, in the 
sense of 1.7. Also note that  a part i t ion is the same thing as a disjoint covering. 

Examples. Let X = {a, b, c, d, e} consist of five distinct elements. Then the collection of 
sets {{a, b}, {c}, {d, e}} is a part i t ion of X; {{a, b}, {c}, {d}} is a disjoint collection but not 
a part i t ion or a cover; {{a, b}, {b, c}, {c, d, e}} is a free cover. Any disjoint collection of two 
or more sets is free. However, a collection consisting of just one nonempty set is disjoint 
and not free. 

Further definitions. Suppose that  S = {S~ : ~ E A} is a cover of a set X. Then 

�9 A s u b c o v e r  is a cover of X that  is of the form {Sx : A c A0} for some set A0 c_ A. 

�9 A r e f i n e m e n t  of S is a cover 9- = {Tu : p E M} of X with the property that  each Tu 
is contained in some S~. 

�9 A p rec i s e  r e f i n e m e n t  of S is a cover of X of the form 9"= {T~ : A E A} (with the 
same set A), such that  T~ C Sx for each A. 

Of course, any precise refinement is a refinement. 

1.27. The s y m m e t r i c  d i f f e rence  of two sets S and T is the set 

S A T - (S\T)  U (T\S)  - (S n CT) U (CS n T) 
= (S U T) \ (S N T) - {x �9 x is in S or in T but not both}. 

For instance, {a, b, c} A {b, c, d} - {a, d}. Note that  S A T - T A S, that  S A S - ~,  and 
that  S A ~ - S. Also, for subsets of a given set X,  we have C(S A T) -- S A (CT) - (CS)A T. 

Exercise. Show that  

( R A S )  A T  -- R A ( S A T )  
= {x" x is in exactly one or three of the sets R, S, T}. 

More generally, use induction to show that  

$1 A $2 A . . .  A S n  -- {X " X is in an  o d d  n u m b e r  of t h e  sets Sj }. 

1.28. A V e n n  d i a g r a m  is used to indicate the unions, intersections, and complements of 
several sets. Two of these diagrams are shown below. Typically, a Venn diagram is used 
for two or three subsets of a larger set X (which is sometimes called "the universe," or "the 
universal set," in this context see 1.44). The set X may be represented by a rectangle, 
and its subsets A, B, and C are represented as disks contained in that  rectangle. If no 
assumptions are made about the sets A, B, C, then they are drawn "in general position" 
i.e., so that  each of the eight sets 

A N B N C ,  A N B N C C ,  A N C B N C ,  ANCBNCC,  
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CA n B n C, CA n B n CC, CA n {}B n c, CA n CB n CC 

is represented by a single nonempty region in the rectangle. (See the first diagram.) If 
some relationship between the sets is known, then this may be reflected in the diagram; for 
instance, if we know that A c_ C, then we may draw the disk for A inside the disk for C. 
(See the second diagram.) 

A 

B C 

X X C B 

Shaded region 
is (A A B)\C. 

If A C C, then 
(A A B) \C  - B\C.  

Do not rely too heavily on Venn diagrams or other figures particularly complicated 
ones for they can be erroneous in subtle ways. A common error is to attribute to a 
figure more generality than it truly possesses and thus to overlook certain special cases 
not explained by the figure. (In 15.19 are some further remarks about the limitations of 
diagrams.) However, simple diagrams can be trusted if constructed carefully, and, in any 
case, diagrams can be used to help us find other proofs that do not rely on diagrams. 

1.29. Distributive laws. The following equations occur in dual pairs. In each case it is only 
necessary to prove one equation; the other then follows by duality using De Morgan's Laws 
(1.25). 

a. Intersection and union distribute over each other. That  is: 

and 

s e ( T u U )  - (SET)u ( S N U )  

S U ( T N U )  - ( S U T ) n  ( S U U )  

for all sets S, T, U. 

b. In fact, intersection and union are infinitely distributive over each other: 

and 
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for any index sets A, B and any sets S~, T~. This notion is generalized in 4.23. 

1.30. Closure under operations. Let g be a collection of subsets of a set X. We say that  
g is closed under some set operation if performing tha t  operation on members  of g yields 
another member  of g. For instance, g is 

closed unde r  finite union if $1, $2 E g =:k S1 U $2 E g 

or equivalently, if $1, $ 2 , . . .  , ~n E g ==k $1 U $2 U ' "  U ~n E g for each positive integer n. 
Similarly, g is 

OO closed unde r  countab le  union if S1,$2,$3, . . .  c g ==k Uj=I ~J c g; 

c losed  u n d e r  arbitrary union if {Sx :~  E A} c_ g ~ UXEA Sx E g. 

We define closures under intersections analogously. A collection g is c losed  u n d e r  c o m -  
p l e m e n t a t i o n  if S E g =v CS E g. These "closures" are special cases of Moore closures; 
see 4.4.d. 

FUNCTIONS AND PRODUCTS OF SETS 

1.31. A function (or map or mapping or operator or operation) from a set X into a set Y 
is a rule tha t  assigns to each a r g u m e n t  x E X a unique va lue  f ( x )  E Y. This is not really 
a definition; we rely on the reader 's intuition about what  a "rule" is. However, in 1.36 we 
give an al ternate definition that  is less intuitive but more precise, in terms of subsets of 
products of sets. 

We write f : X -~ Y to abbreviate the s ta tement  tha t  f is a function from X into Y. 
The set X is the d o m a i n  of f ,  often abbreviated Domain( f )  or Dora(f) .  We say f is a 
function on X ,  or f is defined on X .  

The set Y is the c o d o m a i n  of f .  It should not be confused with the r a n g e  of f ,  which 
is the set { f ( x ) : x  E X}, often abbreviated Range( f )  or Ran( f ) .  The function f ' i s  called 
s u r j e c t i v e  (or onto, or a surjection) if the range is equal to the codomain. (See also 2.7.) 

The distinction between range and codomain may confuse some beginners. The range is 
a very specific set it is the set of all the values taken on by the function. The codomain 
of the function is a somewhat  arbi t rary or nominal set; the codomain is any convenient set 
large enough to contain the range of the function. We may choose to describe the function 
in terms of the codomain instead of the range because we do not actually know the range. 
Another reason is so tha t  we can compare several functions that  have different ranges. For 
instance, the functions f ( x )  = x 2 and g(x) = x 3 (both defined for real numbers x) have 
different ranges, but they can both be viewed as having codomain R, thus permit t ing us to 
ask such questions as: Is f ( x )  always less than g(x)? 

The concept of "function" evolved over several centuries; some earlier definitions are 
listed by Rfithing [1984]. 



20 Chapter 1" Sets 

1.32. An o r d e r e d  pa i r  is an ordered list (yl, y2) consisting of two mathematical  objects 
Yl, Y2, which may or may not be different from each other. The ordered pair is then a new 
mathematical  object. For some purposes in set theory (discussed in 1.46), it is convenient to 
view an ordered pair as a special kind of set; the ordered pair (y, z) can be represented by the 
set {{y}, {y, z}}. This representation (which is not used in most branches of mathematics  
outside of set theory) preserves the essential property of ordered pairs" Two ordered pairs 
(Yl,Y2) and (Z1,Z2) are considered to be equal (i.e., to be representations of the same 
mathematical  object) if and only if yl - Zl and y2 - z2. 

More generally, for any nonnegative integer n, an o r d e r e d  n - t u p l e  (or finite sequence, 
with length n) is a list of n objects - -  i.e., an object expressed in any of the forms 

(Yl,Y2,. . . ,Yn) - - ( y j ' j - l , 2 , . . . , n ) -  (Yj)j~=I - ( Y j ) ,  

where yl, y 2 , . . . ,  Yn are any mathematical  objects. The notation (yj) can only be used 
if the value of n is understood. There are several ways to represent n-tuples in terms 
of other objects (and we usually do not need to concern ourselves about which of these 
representations is being used). One representation is as an iteration of ordered pairs: 
(Xl ,X2, . . . ,Xn) --((Xl,X2,...,Xn-1),Xn). 

Another way to view an ordered n-tuple is as a function with domain {1, 2, 3 , . . . ,  n}; its 
value at the argument j is yj. Thus, if we represent the same function by f ,  we will have 
f ( j )  = yj. In particular, an ordered pair may be viewed as a function with domain { 1, 2}. 

Yl 
Y2 

An ordered n-tuple can also be written as a column, as in . . This notation is 

yn 
used chiefly when the yj's are numbers, but it may be used for other yj's as well. 

A s e q u e n c e  (or infinite sequence) is an object of the form 

(yl ,y2,y3, . . . )  - ( y j ' j e N ) -  (yj)jC~=l : (y j ) .  

A sequence is a function with domain N. Again, the notation (yj) can only be used if the 
choice of the domain is understood. A sequence (yk) is a s u b s e q u e n c e  of a sequence (xj) 
if Y k -  x~k for some positive integers ~Pl < P2 < ~3 < " "  �9 For instance, (1, 3, 9, 27, 81 , . . . )  
is a subsequence of (1, 3, 5, 7, 9 , . . . ) .  

For finite and infinite sequences, it is understood that  the order of the objects is being 
noted. Thus, two finite or infinite sequences (xj) and (yj) are considered to be equal if and 
only if they have the same length and satisfy xj - yj for all j .  The unordered sets {1, 2} 
and {2, 1} are considered to be the same, but the ordered pairs (1, 2) and (2, 1) are different. 

We now generalize. Any function with domain A may be viewed as a "A-tuple" 

where y~ is the value of the function at the argument A. Again, the notation (y~) can only 
be used if the choice of A is understood. The notation of A-tuples is used mainly when A 
is equipped with some sort of ordering (see especially 7.6), but that  is not a requirement. 
The object y~ is called the Ath c o m p o n e n t  (or e l e m e n t  or e n t r y  or value)  of the A- 
tuple, in particular, in the ordered pair (x, y), the objects x and y are the first and second 



Functions and Products of Sets 21 

component, respectively. We may sometimes refer to (ya) as a p a r a m e t r i z e d  set;  then A 
is the p a r a m e t e r  set .  

We may occasionally write A = {c~, r 7 , . . . }  and (ya) = (y~, yz, y~ , . . . ) ,  where the 
indices c~, 3, 7 , . . .  are intended to represent typical elements of A. If interpreted properly, 
this notation is occasionally useful, because it emphasizes the conceptual similarity between 
n-tuples and more general functions. However, this notation is not standard and should 
only be used with caution. It may give some readers the impression that  the parameter  set 
A is a sequence, but that  meaning is not intended. 

Throughout this book, we use braces { } for unordered sets and parentheses ( ) for 
sequences or other parametrized sets. Note that  the mathematical  literature does not 
always observe this notational convention. 

1.33. The p r o d u c t  of n sets $1,  $2,  . . . ,  Sn is the set of ordered n-tuples 

n 

IIs  
j = l  

-- $1 x $2 X ' ' '  X S n  -- { ( X l , X 2 , . . .  ,Xn)  " Xj E S j  for all j } .  

The product of a sequence of sets $1,  $2, $ 3 , .  �9 �9 is the set of sequences 

oo 

j = l  

S1 X $2 X $3 X ' ' '  = { ( X l , X 2 , X 3 , . . . )  " Xj E S j  for all j } .  

The product of an arbitrary collection of sets (Sa �9 A E A) is the set 

I I  S~ 
AEA 

{(Y~)~EA " Y~ E S~ for all A}. 

In other words, it is the collection of all functions f �9 A ~ UaEA Sx that  satisfy f(A) E Sx 
for each A E A. This collection of functions may also be viewed as a collection of A-tuples; 
if we write A -  {a,/3, 7 , . . . } ,  then the product I-IaEA Sa may be written as 

• s ,  • •  = �9 x ,  s , ,  c 

This representation should only be used with caution, as noted in 1.32. 
We emphasize that  an ordering on A may or not be present; it may be stated explicitly 

or may be implied in a particular context; it may be of great or small importance, in any 
particular context. The set A x B is not the same as B x A, but for some purposes A x B 
is "essentially the same" as B x A, and a rearrangement of ordering may be clear in Some 
contexts. It is convenient to be able to say that  

AEA AEA1 2 

for some purposes, whenever {A1,A2} is a partition of A, but this equation is only valid 
after an obvious rearrangement of the ordering of A and removal of some parentheses. 
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1.34. Associated with any product of sets P = I]~EA Sa is another collection of mappings. 
For each A E A, the Ath c o o r d i n a t e  p r o j e c t i o n  is the surjective mapping 7r~ �9 P ~ S~ 
given by 

Try(f) - f (A)  or 7r~(x~,xz,x.~, . . . )  - xA 

depending on whether we view 1-I~EA S~ as a collection of functions f with domain A or as 
a collection of A-tuples. 

Notations for this mapping vary throughout the literature; the notation 7r~ will be used 
for coordinate projections throughout most of this book. If A is the set {1, 2 , . . . ,  n} or 
N, then the j t h  coordinate projection will be denoted by Try; it is the map that  takes the 
n-tuple (Xl, X 2 , . . . ,  Xn) or the sequence (Xl, X2, X 3 , . . . )  to Xj. 

The term "projection" has other meanings; see for instance 8.12 and 22.45. 

1.35. When all the S~'s are equal to one set S, then their product HAEA SA may also be 
written as 

S A - {f  �9 f is a function from A into S}. 

It is called the A t h  p o w e r  of S. It is related to, but should not be confused with, the 
power set of S; see 1.21 and 2.20.k. 

If A contains just n elements for some positive integer n, then S A may also be written 
as S n . 

1.36. The g r a p h  of a function f "  X + Y is the set of ordered pairs 

Graph(f)  = Gr(f)  = {(x, f ( x ) )  " x E X }  C X • Y. 

We sometimes identify a function with its graph; with this viewpoint, a f u n c t i o n  from X 
into Y is simply a subset of X x Y with the property that  each element of X is the first 
component of one and only one of the ordered pairs that  are members of X x Y. 

Thus, a function may be viewed as a set of ordered pairs. On the other hand, we 
noted in 1.32 that an ordered pair may be viewed as a function with domain {1,2}. To 
avoid confusion or circular reasoning, generally we do not adopt both of these viewpoints 
simultaneously. 

1.37. Degenerate examples. The e m p t y  f u n c t i o n  is the rule that  makes no assignments; 
its domain and graph are both the empty set. 

If S is any set, then S ~ = {~}, since the only rule assigning to each element of O a 
corresponding element of S is the empty function. The set S ~ is also denoted S ~ 

If S is any nonempty set, then ~ s  = ~, since there is no rule that  assigns to each 
element of S a corresponding element of o.  

We emphasize that  2~ ~ {2~}. 

1.38. An example using products. Any intersection of unions can be expressed as a union 
of intersections, and conversely: For any sets C and A~ (~ E C) and S~,~ (a E A.y), we 
have 

N U = U N 
7 E C c~ E A~ f E IIT EcA ~ ~/E C 
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and 

U N : N U 
7 E C c~ E A.~ f E I I .~c  A~ "T E C 

Note that  if C and the A~'s are finite sets, then I-I~Ec A~ is also a finite set; hence 

any finite intersection of finite unions can be represented as a finite union of 
finite intersections, and conversely. 

An analogous s ta tement  is not true for countable intersections and unions; see the remarks 
in 13.10. 

1.39. More notations for functions. 

a. The symbol H stands for " m a p s  to," and is sometimes used to indicate by individual 
values the rule tha t  defines a function. For instance, the function defined by f ( x )  = x 2 
could also be wri t ten as x ~ x 2. 

b. In some cases the rule defining a function f is given explicitly (as by x ~ x2). In other 
cases the rule is only given implicitly or indirectly, and it may be necessary to verify 
that  the function is wel l  de f ined ,  i.e., tha t  the description of f does in fact determine 
a function. In some cases we do not specify the rule, but simply postulate its existence; 
this is the effect of the Axiom of Choice see (AC3) in 6.12. 

c. A function f may also be denoted by the expression "f( .) ,"  with the raised dot showing 
where the argument  should be inserted. This notat ion is useful in more complicated 
expressions. For instance, if F is a mapping from X x Y into Z, then 

�9 for each fixed x C X we obtain a mapping ~x = F(x, . )  : Y ~ Z, defined by 
y ~ F(x, y), and 

�9 for each fixed y c Y we obtain a mapping ~y = F(. ,y)  : X + Z, defined by 

Thus the one function F determines two families of functions, {9)x : x E X} and 
{~v : Y E Y}. The functions in one family have the other family as their domain. We 
may say that  these two families are d u a l  to one another since each family determines 
the other. 

It should be noted tha t  the different functions px, px, are not necessarily distinct; 
it is possible for two different points x , x  ~ in X to have the same action on Y, and 
yet differ in some other respect that  is not under consideration. Thus the mapping 
x H Px, from X to Z Y, is not necessarily injective. 

When two families of functions are dual to each other, notations such as ( , ) or 
( , )  are often used. Thus, F(x, y) might be wri t ten as (Px, ~y), or perhaps as (x, y). 

d. Let f be a function. Some other notations for f ( x )  are 

�9 fx used as in 1.32, especially when X = N. However, be aware that  fx has 
other meanings as well; for instance, it can mean Of/Ox,  the partial  derivative of 
f with respect to x. The reader must interpret "fx" from the context. 
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�9 f x  used especially when f is linear (see Chapter 11). However, this simple 
juxtaposition of symbols also often means composition or multiplication. Again, 
the reader must interpret "fx" from the context. 

1.40. A b i n a r y  o p e r a t i o n  on a set X is a mapping from X x X into X. It is often 
written in the form (x, y) ~ xny ,  for some symbol n. Familiar examples are addition (+) 
and multiplication (.) on IR, and intersection (N), union (U), and symmetric difference (/k) 
on [P(ft) for any set Ft. 

A binary operation rn is a s soc ia t ive  if 

x D (y[:Jz) = (xDy) [3 z for all x, y, z C X. 

When this condition is satisfied, then parentheses are not needed; both sides of the equation 
above can be represented more simply as x n y n z .  By repeated uses of this rule, we find 
that  parentheses are not needed in an expression such as Xl[:]x2 n . . .  Dxn for any positive 
integer n. 

A binary operation [] is c o m m u t a t i v e ,  or Abe l i an ,  if 

x [ ] y  = y [ ] x  for a l lx ,  y C X .  

If the operation [:l is both commutative and associative, then the value of an expression 
such as XlClX2 n - - -  [:]xn does not depend on the order of the xj's. 

In some instances, when the meaning is clear, the symbol [] may be omitted altogether 
- -  i.e., a binary operation is indicated by juxtaposition of the arguments, thus: (x, y) H xy. 
A function written this way is often called multiplication, although its behavior may differ 
significantly from the behavior of multiplication of real numbers e.g., it need not be 
commutative; see for instance 2.3. 

Another symbol commonly used for a binary operation is "+," called addition. Alge- 
braists occasionally use + for a noncommutative operation, but analysts generally do not. 
In this book addition (+) will always denote a commutative operation. 

When addition or subtraction are used for binary operations, they customarily are ap- 
plied last, i.e., after any other operations in the expression. For instance, ax + b -  c/d is 
generally interpreted to mean (ax )+  b -  (c/d). 

Let [::l be a binary operation on a set X, let S be a set, and let f : S x X --, X be some 
function. We say that f d i s t r i b u t e s  (or is distributive) over [:] i f  

f ( s ,  x[:]y) = f (s ,  x) D f (s ,  y) for all s E S and x, y E X. 

A familiar example is that, in o[dinary arithmetic of real numbers, multiplication distributes 
over addition that is, s(x + y) = (sx) + (sy). Another example was given in 1.29.a; 
further examples will be given in later chapters. 

1 .4 i .  Let X and A be sets. By a A - a r y  o p e r a t i o n  on X we shall mean any mapping 
from X A into X. Such a function may be written as f = f ( x ~ , x z ,  x.y,. . .) ,  where A = 
{a,/~, ~/,...}. We may consider the point ( x ~ , x z , x ~ , . . . )  C X A as the single argument of 
f ,  but alternatively we may view f as having many arguments x~, xz, x~ , . . .  E X. We may 
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refer to the  a t h  a rgumen t  of f ,  t h e / ~ t h  a rgumen t  of f ,  etc. The  set A (or the  numbe r  of 
e lements  in A, if it is finite) is called the  a r i t y  of the  opera t ion .  

A b inary  opera t ion  (defined in 1.40) is the  same th ing  as a 2-ary opera t ion .  We note  a 
few other  i m p o r t a n t  cases: 

�9 W h e n  A is a finite set, wi th  n elements,  then  a A-ary opera t ion  is also called an n - a r y  
o p e r a t i o n ;  it may  be viewed as a mapp ing  from X x X x . . .  x X (n factors) into X.  
Typically,  it is wr i t t en  in the  form y = f ( x l , x 2 , . . .  ,Xn). We may consider it to be 
a funct ion with  n a rgumen t s  in X the  first a rgument ,  the  second a rgument ,  etc. 
Opera t ions  tha t  are n -a ry  for finite n are also called f i n i t a r y  operat ions .  

�9 A l -a ry  opera t ion  on X is a mapp ing  from X into X .  It is also called a u n a r y  
o p e r a t i o n .  Typical  examples  are x H - x  (for numbers )  or S H CS (for subsets  of a 
given set). 

�9 It is occasionally useful to view a specially selected m e m b e r  of a set X (such as the  
n u m b e r  0, in I~) as an "operat ion."  Since X ~ = X ~ = {~}  is a singleton, a 0-ary 
opera t ion  on X is a funct ion from a s ingleton into X - -  i.e., it is a cons tan t  m e m b e r  of 
X .  In effect, it is a funct ion wi th  0 a rguments .  It is also called a n u l l a r y  o p e r a t i o n .  

�9 The  set A does not  have to be finite. For instance,  an N-ary opera t ion  on X is a 
m a p p i n g  from X N into X - -  t ha t  is, a ma pp ing  tha t  takes each sequence of e lements  
of X to an e lement  of X.  Let X = T ( ~ )  for some set ~; then  

(S1, $2, $3,...) ~ U Sj and (S1, $2, $3,...) ~ N Sj 
j=l j=l 

are two N-ary opera t ions  on X tha t  are i m p o r t a n t  in measure  theory. 

ZF SET THEORY 

1.42.  Remark. This  subchap te r  can be pos tponed;  it will not  be needed until  much later  
in the  book. 

1 .43 .  How big can sets be? As we remarked  in 1.11, we will a t t e m p t  to avoid self-ref- 
erencing s ta tements .  We must  also avoid cer ta in  kinds of self-referencing definit ions of sets. 
Defining sets in a self-referencing way can lead to sets t ha t  are too "big" to be meaningful .  
This  is evident  in the  following paradox.  

R u s s e l l ' s  P a r a d o x .  It seems tha t  some sets are member s  of themselves.  For 
instance,  the collection of all sets that can be described in fewer than 100 words 
of English is a set t ha t  has jus t  been so described; and  the collection of all sets 
that are mentioned in this book is a set t ha t  has jus t  been ment ioned .  Let us 
call such sets "self-inclusive." 
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On the other hand, some sets do not include themselves. For instance, the 
collection of all pages in this book is a set of pages; it is not a page. We shall 
call such sets "non-self-inclusive." 

But now what about the collection of all non-self-inclusive sets? Is it a 
member of itself? It is if it isn't, and it isn't if it is a contradiction either 
way. 

1.44. A few ways to avoid paradoxical sets. In 1.13 we defined a set to be "a collection of 
objects," but tha t  definition leads to Russell's Paradox. A slightly bet ter  definition is: A 
set is a collection of already fixed objects i.e., the objects must already be fixed before 
the collection is formed (Scott [1974], Shoenfield [1977]). This precludes self-referencing. 
With  this definition, the collection of all sets is not a set. Unfortunately, this "definition" 
is not very precise; we shall give it some precision in 5.53. 

A safer but more restrictive method for avoiding excessively large collections is by spec- 
ifying in advance some manageable collection V of sets, and then prohibiting the use of 
any sets outside that  collection. The collection V may be smaller than what one ordinarily 
thinks of as "all sets," but it may still be large enough for all the applications one is in- 
terested in. Thus, without substantial inconvenience, one may replace the term "set" with 
"member of V." The collection V is then called the u n i v e r s e  (or universal set, if it is a set). 
In many contexts in mathematics,  a universe is not specified explicitly or even mentioned; 
one simply assumes that  the universe being used is large enough for one's applications. In 
other contexts it is useful to discuss the choice of the universe and even to specify it explic- 
itly; see for instance 1.48, 5.53, 5.54, and 9.39. One small, easily manageable universe is the 
"superstructure" over IR, which is commonly used in nonstandard analysis; it is described 
in 14.65. 

The most commonly used universe is the one described by the axioms of conventional 
set theory, ZF  -t- AC.  This stands for Zerrnelo-Fraenkel set theory, as modified by Skolem, 
plus the Axiom of Choice. We shall list the axioms of ZF in 1.47; we shall introduce AC in 
6.12. Conventional set theory does not permit Russell's Paradox, and it apparently does not 
lead to any other contradictions either. But we can only say "apparently;" the uncertainty 
of this is discussed further in 14.71 and the sections thereafter. 

1.45. Although we shall only apply the term "set" to members of our universe V, it 
is grammatically convenient to be able to discuss other, much bigger collections, at least 
informally e.g., to discuss as a "collection" those sets that  satisfy a certain property. 
Any collection of objects will be called a class,  but we shall distinguish between two types 
of classes: 

�9 A se t  is a member of the universe V. Intuitively, it is a class of ordinary size. 

�9 A p r o p e r  class  is a collection that  is not a member of V. Intuitively, it is a much 
bigger class, one that  is too big for us to safely apply to it the rules for sets. 

A set can be a member of something; a proper class cannot. We refuse to consider proper 
classes as members of anything. 
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Thus, V is the collection of all sets. It is a proper class, but not a set. We cannot form 
the "set of all sets" or the "class of all classes," so Russell's Paradox does not arise. 

In set theory, it is easy to give examples of proper classes - -  e.g., the class of all singletons 
or the class of all ordinals (investigated later in this book). Outside of set theory, examples 
are harder to produce. The class of all linear spaces and the class of all topological spaces 
are proper classes, but these examples are somewhat contrived for instance, a theorem 
about  topological spaces usually only involves a few topological spaces at a time; it can be 
formulated so that  it does not require us to simultaneously consider all topological spaces. 
However, occasionally a proper class really is needed outside set theory. For instance, a 
convergence structure on a set X (see Chapter  7) can be described by a "limit" function 
defined on the collection of all proper filters on X, or defined on the collection of all nets on 
X. The net approach has some intuitive advantages nets are very much like sequences 

but the net approach must be used with some caution: The collection of all nets on X 
is a proper class, not a set. 

We will need proper classes only a few times in this book, so we shall not develop a 
systematic theory for them. We shall simply use them in an ad hoc fashion, in ways that  
obviously make sense; it should be clear in each context that  we are avoiding self-referencing 
arguments such as Russell's Paradox. The usual operations of sets make sense for classes 
sometimes, but not always, and it is sometimes convenient to apply the terminology of sets 
to a few classes. For instance, it usually makes sense to consider the intersection of two 
classes. By a f u n c t i o n  of  c lasses  we shall mean a mapping f : :JV[ --~ N from one class into 
another i.e., a rule that  assigns to each M E 3V[ some particular f ( M )  C N; see 1.50, 
5.51, 5.53, and 6.23. Generally the graph of such a function f is not a set of ordered pairs, 
but rather  a class of ordered pairs. 

1.46. What are sets made of? A typical set is {0, 1, 2 , - 5 / 3 ,  7r}; this set has five elements. 
For most purposes in "ordinary" mathemat ics  i.e., outside of set theory and logic - -  
we do not think of the individual numbers 0, 1, 2 , - 5 / 3 ,  7r as sets that  may contain other 
objects. Instead we think of these numbers as indivisible; for this reason we may refer to 
them as a t o m s  (or urelements or individuals or primitive objects). Likewise, we generally 
do not think of an ordered pair ( - 5 / 3 ,  7r) as a set. 

A set need not contain just atoms it may contain other sets for its members. For 
instance, {~, {1, 2}, { - 5 / 3 ,  7r}} is a set whose members are sets. Such sets arise naturally 
in analysis; for instance, a topology or a a-algebra on a set X is a collection of subsets of 
X (see 5.12 and 5.25). The set of all topologies on X is a set of sets of sets. "Ordinary" 
mathemat ic ians  i.e., those not involved in logic or set theory seldom need to go to 
any levels deeper than this. However, logicians and set theorists quite commonly have sets 
nested arbitrari ly deep; for instance, consider the ordinals ~,  {~}, {~, { ~ } } , . . .  described 
in 5.44. 

For most purposes in most branches of mathematics ,  it does not mat te r  whether "3" is 
an indivisible object or a set containing three objects. Wha t  mat ters  is how we use 3. We 
may define "3" in any way we wish, provided we define "+" so that  3 + 3 = 6. For most 
mathematicians,  it is simpler to view "3" as an indivisible object, and our language reflects 
that  viewpoint. The e l e m e n t s  of a set are also called its p o i n t s ,  whether those elements 
are known to be indivisible or not. The points of the set {0, {0, 1}} are 0 and {0, 1}. 
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Although atoms seem natural to most mathematicians,  they are not really needed, and 
in some studies of set theory it is customary to dispense with atoms altogether. All familiar 
objects can be represented solely in terms of sets, without any other basic building blocks. 
Some details of this representation will be worked out in later chapters, but we can outline 
it now: 

�9 The nonnegative integers can be built up from the empty set, as in 5.44. 

�9 An ordered pair (z, y) can be represented in terms of sets and an ordered n-tuple in 
terms of ordered pairs, as discussed in 1.32. 

�9 Functions and relations can be represented as sets of ordered pairs; see 3.2 and 1.36. 

�9 A product of sets is a set of functions, and a finite or infinite sequence may be viewed 
as a function; see 1.33. 

�9 A negative integer can be represented by an ordered pair involving a positive integer. 

�9 Rational numbers may be represented in terms of pairs of integers (see 8.22). 

�9 Real numbers may be represented in terms of sets of rationals (see 10.15.d and the 
constructions used in that  proof). 

Thus, all familiar objects can be represented as sets. 
However, to assert that  

all objects can be represented as sets 

is to make an additional assumption about our universe of "objects." This is one of the 
assumptions of conventional set theory: All of its "objects" are sets, and all the members of 
sets are sets, so conventional set theory is atomless. If we omit this assumption and permit 
the existence of objects that  cannot be represented as sets, we obtain a slightly weaker 
system of axioms, known as set  t h e o r y  w i t h  a t o m s  (or set theory with urelements); it is 
occasionally useful in model theory. 

This metaphor may be helpful: Atomless (conventional) set theory is like a great collec- 
tion of transparent bags, some of which are empty and some of which contain other bags 

which may in turn contain other bags, and so on; there is nothing in the system except 
bags, and nothing to distinguish between the bags except the different combinations of 
bags-within-bags that  they contain. In set theory with atoms, the bags may also contain 
beads. The beads do not contain anything, but can be distinguished by their markings. 

Whether  we view certain objects - -  e.g., the nonnegative integers as sets or as atoms 
depends on our viewpoint; different branches of mathematics find different viewpoints ad- 
vantageous. It is sometimes convenient to label the real numbers or other familiar objects 
as "atoms" and treat them as indivisible, even though those objects could instead be rep- 
resented as sets. Then the assumptions that  underlie our work are really the assumptions 
of conventional, atomless set theory, although "atoms" may enter into our terminology. An 
example of this is given in 14.65. (In our metaphor, there is still nothing in the system but 
bags, but we seal some of the bags shut and mark them on the outside, and agree to treat  
them as beads.) 
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1.47. Z e r m e l o - F r a e n k e l  Se t  T h e o r y .  Most of the axioms of ZF are just formal state- 
ments that  correspond to our informal intuition about sets. (An exception is the Axiom of 
Regularity, which will appear at the end of our list of axioms; it is somewhat nonintuitive 
and nonconstructive.) In the next few paragraphs we shall list the axioms of set theory 
to give a general impression, but later in this book we shall usually rely on the reader's 
intuition rather than on the list of axioms. Further discussions of ZF set theory can be 
found in books on set theory; for elementary t reatments  see, for instance, Halmos [1960] or 
Stoll [1963]. 

In some later chapters we shall briefly consider modifications of conventional set theory. 
For that  reason, the reader is encouraged to put aside the usual intuitive meaning of "set" 
and view the axioms below as a self-contained theory that  does not refer to anything familiar. 
To help put aside familiar intuitive notions of sets, some readers may find it helpful to glance 
ahead to the peculiar example in 1.48. 

We assume that  we are given some collection of objects, which we call "sets." We 
assume that  some pairs of these "sets" are related by a relationship, called "is a member 
of," denoted E. That  is, when S and T are "sets," then the statement "S E T "  is either 
true or false. We assume that  this collection of "sets" and this relationship "E" satisfy 
certain axioms, listed below. We may then explore the consequences of those axioms. 

The statement  A c B is an abbreviation for the s tatement  that  every member of A is 
also a member of B. That  is, A c_ B is defined to mean x E A ~ x E B. 

There are at least two different ways to deal with equality of sets. Some books take 
equality (=) to be a logical symbol with its customary properties, as listed in 14.27.a. Two 
objects are equal if and only if they are not distinct; thus equals can be substi tuted for 
equals. In such books, equality (=) and membership (E) are already meaningful before we 
get to the relation between them. The relation between them is taken to be the first axiom: 

Axiom (called "Extensionality" in some books). Two sets are the same if and 
only if they have the same members. That  is, (A - B) ~ ((x E A) .: ;. 
(x B)). 

Other books follow a slightly different approach, which we shall follow here. Equality 
of sets is taken, not as a primitive notion, but as a defined notion. We define two sets to 
be equal when they have the same members. Thus, A -  B means x E A ~ x E B. 
With  this definition, we cannot automatically assume that  equality (=) has all of its usual 
properties; we must not be misled by the fact that  the symbol we are using (=) is a familiar 
symbol. From our definition of equality of sets (and our understanding of the logical symbol 
"r it is easy to prove that  (i) A = A, (ii) A = B => B = A, and (iii) A = B and 
B = C imply A = C. However, the last two axioms in 1 4 . 2 7 . a -  which state that  "equal" 
quantities can be substi tuted for one another in any expression do not follow directly 
from our definition of equality of sets, and so they will require some assumption about sets. 
One particular instance of the substi tution principle is: 

A x i o m  of  E x t e n s i o n a l i t y .  If A - B and A E C, then B E C. 

It turns out that  this is all we need the general substi tution principle (described in the 
last two axioms of 14.27.a) can be proved from our Axiom of Extensionality, by induction 
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on the length of the formulas involved. We shall omit the proof; it can be found in Takeuti 
and Zaring [1982]. 

The next few axioms are formal restatements of some of our basic rules about permit ted 
methods for forming sets, discussed informally earlier in this chapter. 

A x i o m  of  t h e  P o w e r  Set .  If S is a set, then there exists a set whose members 
consist precisely of the subsets of S. That  set is denoted by [P(S). 

A x i o m  of  R e p l a c e m e n t .  Let f be a function defined on a set X that  is, a 
rule that  assigns to each element x E X some set f(x). Then { f ( x ) : x  C X} is 
a set. 

A x i o m  of  C o m p r e h e n s i o n  (or  S e p a r a t i o n ) .  If X is a set, and P(x) is a 
property that  is true or false for each x c X, then {x E X : P(x) is true} is a 
set. Tha t  is, there e x i s t s a s e t  Y s u c h t h a t x c Y  -~ ',- [ x c X  a n d P ( x )  is 
true]. This can also be stated as: The intersection of a set and a class is a set. 

Though the Axiom of Replacement and the Axiom of Comprehension are usually pre- 
sented as separate axioms, some mathematicians formulate their language in a slightly 
different fashion, so that  one of these axioms becomes a consequence of the other; see Bell 
and Machover [1977]. Actually, we have skipped over some of the complexity of the last 
two axioms. We shall not explain at this point precisely what is meant by "function" or 
"property;" those terms mean approximately what one would expect them to mean, but for 
axiomatic set theory the function f or property P must be expressed in a formal first-order 
language. (First-order languages are introduced in 14.15 and thereafter; see also the related 
comments in 14.67.) This actually gives infinite schemes of axioms - -  one for each function 
f and one for each property P. 

A x i o m  of  t h e  E m p t y  Set .  There exists a set that  has no members; it is 
denoted o and called the empty set. 

We could replace this axiom with the assumption that  there exists some set, for then the 
existence of the empty set follows from the Axiom of Comprehension by taking P(x) to 
be the property x % x. Note that  the empty set is unique, since two sets with the same 
members are equal; thus we are justified in introducing a symbol " ~ " for it. 

A x i o m  of  U n i o n s .  If S is a set, then there exists a set Un(S) whose members 
are precisely the same as the members of the members of S. That  is, Un(S) has 
the property that  [A c Un(S)] ~ [there exists some B c S with A c B]. 

We call Un(S) the union of the members of S or more briefly, the union of S. To 
understand this axiom, keep in mind that  all the elements of S are sets. Here are a few 
examples: If S = {A} is a singleton, then Un(S) = A; if S = {A1,A2,A3,...}, then 
Un(S) -- A1 U A2 U A3 U . . . .  If we use either Zermelo's or von Neumann's  definition of the 
integers (see 1.16), then U n ( n ) =  n -  1 for positive integers n, and U n ( 0 ) =  0 also. 

A x i o m  of  P a i r i n g .  If S and T are sets, then there exists a set whose only 
members are S and T; it is denoted {S, T}. 
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Most books on set theory present the Axiom of Pairing as a separate axiom, but in fact we 
can make it a consequence of the previous axioms, as follows: First, following von Neumann, 
define 0 to be the empty set; define 1 to be the power set of 0; define 2 to be the power set 
of 1. Thus 

0 = 2 ~ ,  1 = {;~}, 2 = {2~, {2~}}. 

Now "2" is the name of a set that  contains two elements; those elements are "0" and "1." 
Define a function f on 2 by taking f(0)  = S and f(1)  = T. By the Axiom of Replacement, 
{S, T} is a set. 

The Axiom of Pairing can be used repeatedly, to define the remaining nonnegative 
integers 3, 4, 5, . . . ,  with Zermelo's definition or von Neumann's  definition. However, this 
procedure only yields finitely many nonnegative integers, since the ellipsis ( . . . )  of informal 
mathematics  is not permit ted in formal set theory. To get all of the nonnegative integers 
at once i.e., to get the set a~ = {0, 1, 2, 3 , . . . }  requires something more. The set of 
nonnegative integers can be constructed using 

A x i o m  of  Inf in i ty .  There exists a set S with Z E S, and such that  A E S 
{A} E S. 

The set S given in the axiom is not quite the set of integers that  we're after. However, we 
can construct cz = N U {0} this way: Call a set S "infinity-like" if it satisfies ~ E S and also 
satisfies A E S =~ {A} E S. The Axiom of Infinity guarantees the existence of at least one 
infinity-like set, So. Let 

P(x) = "for every y, if y is infinity-like, then x E y". 

The Axiom of Comprehension guarantees that  Sl = {x C So : P(x)}  is a set. Clearly, Sl 
is the intersection of all infinity-like sets. It can be shown that  S1 is the desired set a~; we 
omit the details. 

The preceding axioms merely formalize the intuition about sets that  we may have ob- 
tained from experience with finite sets. The one remaining axiom of ZF set theory is not 
just a formalization of our intuition, however: 

A x i o m  of  R e g u l a r i t y  (or  F o u n d a t i o n ,  or  R e s t r i c t i o n ) .  If X is a nonempty 
set, then X has a member that  does not meet X i.e., there exists at least one 
set A E X that  satisfies A N X = ~. 

The set A whose existence is postulated by the Axiom of Regularity is sometimes called an 
E - m i n i m a l  e l e m e n t  of X (or more simply, a minimal element), for this reason" A is a 
member of X,  and there does not exist another set B, also a member of X, that  satisfies 
B E A .  

The Axiom of Regularity precludes the possibility of certain counterintuitive sets; see 
1.49. It will be clear from the reformulations in 1.50 and 6.31 that  the Axiom of Regularity 
is concerned with sets of sets of sets of sets of . . . .  Since such deep nesting does not occur 
outside of set theory, the Axiom of Regularity has little effect on "ordinary" mathematics;  
it is merely a technical convenience that  helps set theory work properly. It can be replaced 
with alternative axioms; see Aczel [1988] and Barwise and Etchemendy [1987]. 



32 Chapter 1" Sets 

1.48. Pathological example. Since ZF's axioms are mostly in agreement with our intuition, 
we would not come to unders tand those axioms bet ter  by looking at examples tha t  satisfy 
the axioms. Instead, we shall now present a peculiar little universe tha t  violates most of 
the axioms. This example is a modification of one by Krivine [1971]. 

There are seven "sets" in our peculiar little universe, denoted by A, B, C, D, E, F, G. 
The membership relation c is represented by an arrow in the diagram below we say 
S E T if there is an arrow from S to T. Thus, the only memberships in our miniature 
universe are those listed beside the diagram. 

! l 
�9 

�9 

memberships: 

C c A  
A , D , E  E B 

B E C  
C c D  

F,G c E 
D, G c  F 

F E G  

As usual, we define S c_ T to mean that  X E S ~ X c T. With  this definition, the 
only subset relations are: 

AC_D, DC_A, GC_E, 

plus the fact tha t  each set is a subset of itself. Most of the axioms of ZF are violated: 

�9 "Equality" doesn' t  mean what  we would expect the sets A and D are distinct, yet 
they have the same members,  so they are "equal." 

�9 The Axiom of Extensionality is violated: The sets A and D are "equal," yet they are 
not members of the same sets we have D E F but not A E F.  

�9 The Axiom of the Empty  Set is violated: Each of our "sets" has at least one member.  

�9 The Axiom of Pairing is violated: There is no set whose only members are C and G. 

�9 The Axiom of the Power Set is violated: The sets that  are subsets of D are the sets 
A and D, yet there is no set whose only members are A and D. 

�9 The Axiom of Unions is violated: The members of B are A, D, E; the sets that  are 
members  of A, D, or E are the sets C, F, G; yet there is no set whose only members  

are C, F, G. 
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�9 The Axiom of Comprehension is violated: Let P(X) be the s ta tement  "C E X." Then 
the class {S E B :  P (S )}  is not a set. 

�9 The Axiom of Regulari ty is violated: The only members of E are F and G, yet neither 
of those sets is disjoint from E. 

�9 The Axiom of Infinity, as stated in 1.47, only makes sense if we have already assumed 
the Axiom of the Empty  Set. However, it is clear that  our universe of seven "sets" 
does not yield an infinite set or an infinite collection of sets. 

1.49. 

(i) 
(ii) 

(iii) 

Consequences of regularity. In ZF set theory, none of the following can occur: 

T E T for some set T. 

Tn E Tn-1 E Tn-2 E . . .  E T1 E To = T~ for some positive integer n and sets 
T1,T2,... ,T~. 
�9 .. E T3 E T2 E T1 E To for some infinite sequence of sets To, T1, T2, . . . .  

Proof. Either of conditions (i) and (ii) implies (iii), since the sequence in (iii) may repeat  
itself. If To, T1, T2 , . . .  is a sequence as in (iii), let X = {To, T1, T2, . . .} ;  by the Axiom of 
Regulari ty some member  of X does not meet X a contradiction. 

1.50. (Optional.) We state without proof two more interesting consequences of the Axiom 
of Regularity. 

P r i n c i p l e  of  M e m b e r s h i p  I n d u c t i o n .  Suppose P(.)  is a property of sets 
that  is E-inductive i.e., tha t  has this property: 

Whenever P( .)  is true for all members 
of a set X,  then P(X) is also true. 

Then P(.)  is true for all sets. 

P r i n c i p l e  of  M e m b e r s h i p  R e c u r s i o n .  Let p be a function of classes, from 
{sets} x {sets} into {sets}. (That  is, for any sets S, T suppose some set p(S, T) 
is specified.) Then there exists a unique map F :  {sets} --+ {sets} satisfying 

F(X) - p(X, {F(A)"  A E X } )  for each set X.  

(In other words, it is possible to define F(X) for all sets X,  using a rule that  
specifies F(X) in terms of the values of F on the members of X.)  

We omit the proofs. Proofs can be found, for instance, in Johnstone [1987] and Kunen 
[1980]. Actually, Johnstone shows that  the Principle of Membership Induction is equivalent 
to the Axiom of Regularity. 



Chapter  2 

Functions 

2.1. Functions were defined in 1.31 and in 1.36; they will be studied in greater depth in 
this chapter. 

SOME SPECIAL FUNCTIONS 

2.2. A few numerical functions. We assume the reader has at least an informal familiarity 
with •. A formal introduction to I~ is given in Chapter  10; we shall not use any of the 
deeper properties of ~ until then. 

a. If urn, urn+l, Urn+2,... Un are real numbers parametrized by consecutive integers m, m +  
1, m + 2 , . . . ,  n, then their s u m  is 

n 

uj 
j = m  

U m -~- Um-~- i  ~- U r n + 2  -~- " ' "  --~ U n ,  

and their p r o d u c t  is 

n 

l-I 
j = m  

U m  U m + l  U r n + 2  " ' "  U n .  

(The letter j may be replaced by any other letter not already in use.) These notations 
will later be applied more generally - -  not just to sums and products of real numbers, 
but  also to sums and products of complex numbers or members of any ring. The 
summation notat ion will also apply to sums of vectors or sums of members of any 
additive monoid. 

b. Let X be some set. For each subset S C_ X we define l s  �9 X ~ {0, 1} by 

1 i f x E S  
l s (x )  - 0 if x C X \ S .  

We shall call this the character i s t i c  funct ion  of S. Our notation " l s"  does not 
reflect the choice of X, which must be understood from context. Note that  

1SnT -- 1S �9 1T -- min{1s,  1T}. 

34 
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Similarly, m a x { l s ,  1r} is the characteristic function of S U T ,  and 1 -  l s  is the charac- 
teristic function of CS. Caution: Some mathematicians call l s the indicator function 
of S or denote it by Xs, is, Is, or other symbols. Another meaning for the term 
"indicator function" is given in 12.18. 

c. The s ign f u n c t i o n ,  sgn : R ~ { -1 ,  0, 1}, is defined by 

1 if x > 0  
sgn(x) - 0 if x - 0 

- 1  i f x  < 0 .  

It may also be writ ten as sign(x). (We mention it again in 15.20.) 

d. For any set X, the K r o n e c k e r  d e l t a  is the characteristic function of the diagonal 
set {(x,x)  : x  E X}, considered as a subset of X • X. It is usually wri t ten with its 
arguments as subscripts. Thus, it is the function ~ : X  • X ~ {0, 1} defined by 

_ f 0 whenx=/=y  
~xy 1 when x - y. 

e. Let r l ,  r 2 , . . . ,  r~ be distinct real numbers (or, more generally, distinct elements of any 
field see 8.18). For k = 1, 2, 3 , . . . ,  n, let 

j ~  t - - r j  
Lk(t) -- r k - r j  " 

Show that  L1,L2, . . .  ,Ln are polynomials of degree n -  1 that  satisfy Lk(rj) = 5jk 
(where ~ is the Kronecker delta). These are the L a g r a n g e  p o l y n o m i a l s .  We shall 
use them for a result about linear independence in 11.15, which in turn will be used 
for a cardinality proof in 11.35. 

The Lagrange polynomials are commonly used in numerical analysis in the fol- 
lowing fashion: Let f ( t )  be any function defined on a set that  includes the numbers 
r l ,  r e , . . . ,  rn. Let 

n 

p(t) - E f(rk)Lk(t) .  
k = l  

Then p(t) is the unique polynomial of degree at most n that  agrees with f on the set 
{rl,  r 2 , . . . ,  rn}. It is called the i n t e r p o l a t i n g  p o l y n o m i a l  and is used to approximate 
f in various ways. 

2.3. The c o m p o s i t i o n  of two functions f �9 X --~ Y and g �9 Y ~ Z is the function 
go f :  X ~ Z defined by (gof)(x)  = g(f(x)) .  The symbol "o" may be included for emphasis 
or clarification, but it may be omitted otherwise: g o f may be writ ten "multiplicatively" 
as gf. However, the beginner is cautioned not to assume too much just on the basis of 
notation. For instance, unlike multiplication of real numbers, composition of functions does 
not satisfy the commutative law g f  = f g. 

2.4. A s e l f - m a p p i n g  of a set X is a mapping from X into X. 



36 C h a p t e r  2: F u n c t i o n s  

One par t icu la r ly  i m p o r t a n t  self -mapping of X is the  i d e n t i t y  m a p p i n g ,  deno ted  i �9 
X ~ X ,  defined by i ( x )  - x for all x. Of course, the  ident i ty  maps  of different sets X and 
Y are different functions;  we may  wri te  i x  and iy  if the  dis t inct ion needs to be displayed. 
C a u t i o n :  Some texts  - -  especially on ca tegory  theory  - -  wri te  the  ident i ty  ma p  as 1x,  bu t  
it should not  be confused with  the  c h a r a c t e r i s t i c  f u n c t i o n ,  defined in 2.2.b. 

For a funct ion f �9 X ~ X we may wri te  f2 _ f o f ,  f3  _ f o f o f ,  etc.; these are the  
i t e r a t e s  of f .  It will somet imes  be convenient  to also wri te  f l  _ f and  f o  _ i x ;  then  
f m + n  _ f m  0 f ~  for any nonnega t ive  integers m, n. 

If f is a se l f -mapping of X ,  then  a f i x e d  p o i n t  of f is any point  x c X such tha t  
f ( x )  - x .  Note  th'~t x is then  a fixed point  of all the  i terates  of f ,  too. P r e v i e w :  Many  
problems tha t  do not  appea r  to involve fixed points  can be re formula ted  as problems  abou t  
fixed points.  For instance,  if we are given y and  a funct ion f and  wish to find a solut ion 
x of the  equat ion  y - f ( x ) ,  we may rewri te  the  equa t ion  as g ( x )  - x ,  where  we define 
g ( u )  - f ( u )  - y + u.  This  may  seem ra the r  contrived,  bu t  some problems yield to solut ion 
in this fashion. Several  theorems  abou t  fixed points  will be developed in later  chapters .  

A funct ion f "  X ~ X is i d e m p o t e n t  if f2 _ f ,  or equivalent ly if f ( x )  - x for all 
x c R a n g e ( f ) .  Some e lementa ry  examples:  The  absolute  value function,  the  grea tes t  integer 
function,  and  sgn are i dempo ten t  maps  from I~ into itself. 

An i n v o l u t i o n  of a set X is a funct ion f �9 X ~ X tha t  satisfies f 2  _ i x .  Here are 
some examples .  The  reader  should a l ready be familiar wi th  the  first few of these; the  last 
few are a preview of mater ia l  in later  chapters .  

�9 f ( x )  - - x  is an involut ion on R (or on any addi t ive group).  

�9 f ( x )  = 1 /x  is an involut ion on R \ {0} or on (0, +oc) .  

�9 S H CS is an involut ion on [P(X), for any set X.  (Later  we will generalize this to 
Boolean  algebras.)  

�9 A ~-, A T is an involut ion on cer ta in  collections of matrices.  

�9 (~ H ~ is an involut ion on C; here ~ denotes  the  complex conjugate  of (~. 

2 . 5 .  

a .  

0 

C. 

F u n c t i o n s  tha t  agree�9 

If X is a set and  S c_ X,  then  the  i n c l u s i o n  m a p  i �9 S --~ X is the  ma p  given by 
i ( s )  - s for each s E S. This  a r r angemen t  is somet imes  abbrev ia t ed  as i �9 S c_ X;  for 

emphas is  or clarification we may  occasionally wri te  it as i S c �9 -~ X.  Of course, when 

S - X ,  then  i is s imply the  ident i ty  map,  defined in 2.4. 

L If f "  X ~ Y and  S c_ )6, then  the  r e s t r i c t i o n  of f to S is the  funct ion f S S ~ Y 

tha t  takes the  value f ( s )  at each point  s E S. A funct ion f is an e x t e n s i o n  of a 
funct ion g if g is a res t r ic t ion of f ;  note  tha t  this occurs if and only if g - f o i for 

some inclusion i. 

Two funct ions  f l  " X1 ~ 1/'1 and  f2 " X2 ~ Y2 with  over lapping domains  are said to 
a g r e e  at a point  x0 C X1 A X2 if f l ( x o )  - f2(x0).  They  are said to agree on a set 
S c_ X1 N X2 if they  agree at every point  in S. Two funct ions d i f f e r  at a point  if they  
do not  agree there.  
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Let f l  " X --~ Y1 and f2 " X --~ Y2 be two functions with the same domain and 
different codomains�9 (See the following diagram�9 Then f l  and f2 agree on all of X 

if and only if i l o f l  - i2 o f2 for some inclusions il �9 Y1 c -~ Y and i2 Y2 c �9 - ~  Y ;  

here Y can be any set tha t  contains Ya U Y2. When tha t  is the case, then we usually 
disregard formality and consider f l  and f2 to be the "same" function; but occasionally 
the formal distinction between two such functions is useful. See the related discussions 
in 9.4 and 9.20. 

x/  \ y  Two functions f l ,  f2 tha t  
agree on their domain X 

d. A function v a n i s h e s  at a point or on a set if tha t  function agrees there with the 
constant function 0, where "0" has any of its usual meanings i.e., the empty set, 
the real number 0, the vector 0 in some linear space, etc. 

2.6. Recall from 1�9 tha t  a function f : X ~ Y is surjective if its codomain Y is equal to 
its range f (X ) .  

A function f : X ~ Y is i n j e c t i v e  (or one-to-one, or an injection) if it has the property 
that  Xl ~ X2 ~ f ( x l )  ~ f(x2)�9 (See the following diagram.) More generally, a collection 

of mappings defined on X (possibly with different codomains) is said to s e p a r a t e  t h e  
p o i n t s  of X if for each pair of distinct points Xl,X2 in X there exists at least one f c (I) 
satisfying f ( x l )  ~ f(x2)�9 

If a function f : X ~ Y is injective, then we may define its inverse ,  a function 
f - 1  �9 Range( f )  ~ X, as follows" for each y e Range( f ) ,  let f - l ( y )  be the unique x e X 
that  satisfies f (x) = y. 

We say a function f �9 X ~ Y is b i j e c t i v e  (or a bijection of X onto Y, or a one-to-one 
correspondence between X and Y) if it is both injective and surjective. It then follows that  
f - 1  is also a bijection from Y onto X. A set S c_ X • Y is the graph of a bijection from X 
onto Y if and only if S is a set of ordered pairs such that  each x E X is the first coordinate 
of exactly one of the pairs and each y E Y is the second coordinate of exactly one of the 
pairs. Of course, whenever f : X ~ Y is injective, then f acts as a bijection from X onto 
Range( f ) .  

A bijection from a set X onto itself is called a p e r m u t a t i o n  of X. 
Exercise. Any involution (defined in 2.4) is a permutat ion.  

2.7. Let f �9 X ~ Y be a function�9 The i m a g e  (or forward image) under f of any set 
S c_ X is the set f (S)  - { f ( x ) � 9  E S} c_ Y�9 Thus the same symbol "f" is also used for 
a mapping from [P(X) into [P(Y); in general this does not lead to any confusion. (In a few 
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X Y X Y X Y 

surjective but 
not injective 

injective but 
not surjective 

Examples with Finite Sets 

bijective 

�9 > 0  

self-mapping but 
not permutat ion 

�9 > 0  

permutat ion but 
not involution 

t. .~ ) 

involution but 
not identity map 

unusual contexts it can cause difficulty, however; see 14.65. Some mathematicians use a 
slightly different notation, such as f[S] or f :: S, for the forward image; we shall not follow 
that  practice here.) 

The forward image map preserves some of the basic set operations: 

)~EA AEA 

The forward image map extends the given mapping f : X ~ Y if we identify each 
singleton in X or Y with its unique member. The range of f ,  defined in 1.31, is just the set 
f ( X )  i.e., the image of the domain. 

The notat ion of forward images can also be applied in one or more arguments of a 
function of several variables. Thus, for a function f : X x Y ~ Z we may write 

f ( x , T )  - f ({x  t x T )  - f ( { x } , T )  - { f ( x , t )  �9 t E T }  
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and similarly 
f ( S , T )  - f ( S  x T) - { f ( s , t )  �9 s E S, t E T} 

for sets S C X and T C Y. This notation can also be combined with the notation of 
binary operators. Thus we may write S [ ] T  - { s D t  �9 s E S, t E T}. In  particular, 
S - T - { s - t ' s E S ,  t E T}, as noted in1.24. 

2.8. Let f "  X ~ Y be any function. The inverse  i m a g e  (or preimage) under f of any 
set T C Y is the set f - l ( T ) -  {x E X "  f (x )  E T}. I f f  isinjective, then f - l ( T )  is also 
equal to { f - l ( t ) . t  E T} that  is, the forward image of T N Range(f)  under the mapping 
f - 1 "  R a n g e ( f ) +  X. 

Whether f is injective or not, f - 1  is a mapping from ~P(Y) into [P(X). It is somewhat 
better behaved than the forward image 

1 

AEA 

f - l ( y \ r )  - -  X \ f  - l ( z ) ,  

it preserves all the basic set operations: 

1 

AEA 

f - l ( I / -  ) _ X ,  f - l ( 2 ~ )  -- ~ .  

For any point y E Y, the set f - l ( { y } )  can also be abbreviated as f - l ( y ) .  

2.9. Further properties of forward and inverse images. Let g" X ~ Y be some function. 
Then for all sets S, T C_ X and A, B C_ Y we have" 

a. g - l (g (S ) )  D S. 
b. g(g- l (A))  - A n Range(g) C_ A. 

c. Suppose g is surjective. Then g ( g - l ( A ) ) -  A. Also, A c_ B ~ g - l (A)  C_ g - I (B) ;  
hence A - B  ,z----5, g - l ( A ) - g - l ( B ) .  

DISTANCES 

2.10. For later reference we note this form of the C a u c h y - B u n y a k o v s k i i - S c h w a r z  in- 
equa l i ty :  

X l Y l  + x2Y2 + ' ' "  + X n Y n  <__ I X 2 1  + X 2 + ' ' "  + X2n ~ / y 2  + y~ + . . .  + y~ 

for any real numbers Xl, x2 , . . . ,  xn and yl, y2 , . . . ,  yn. Hint for the proof: 0 < ~ - ~ i c j ( x i Y j  - 
xjYi) 2 A more general form of the CBS inequality will be given in 22.33. 

An important consequence (which will be used in 2.12.a) is: 

r ( X l 2r- y l ) 2 -Jr " " " -~- ( X n -~- y n  ) 2 ~ ~ /  X 2 -~- . . . -Jf- X 2 n -Jr- ~ y 2 -~- . . . -t- y 2 . 

n To prove this inequality, multiply both sides of the CBS inequality by 2, then add }--~d=l (x~ + 
2 yj) to both sides, then take square roots on both sides. 
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2.11. Definitions. A q u a s i p s e u d o m e t r i c  on a set X is a mapping d : X • X --~ [0, +c~) 
that  satisfies d(x, x) = 0 and 

d(x, y) <_ d(x, u) + d(u, y) (triangle inequality) 

for all x, y, u c X. The number d(x, y) is called the distance from x to y. The name 
"triangle inequality" stems from the fact that  in Euclidean geometry, the length of one side 
of a triangle is less than or equal to the sum of the lengths of the other two sides. 

Note that  many different distance functions can be defined on any one set X. For real- 
world examples, note tha t  distance as the crow flies is different from distance as the taxicab 
drives. For an asymmetric example, consider a taxicab in a city that  has Some one-way 
streets; the distance from x to y is not necessarily equal to the distance from y to x. 

Except for a few brief remarks in 5.15.i, all of the quasipseudometrics which we shall 
consider in this book also satisfy 

d(x,y) = d(y,x); ( s y m m e t r y )  

they are then called p s e u d o m e t r i c s .  A pseudometric that  also satisfies 

d(x, y) > 0 when x ~= y ( p o s i t i v e - d e f i n i t e n e s s )  

is called a metric. 
In this book we shall sometimes discuss the positive-definite case and the not-neces- 

sarily-positive-definite case simultaneously, by writing "pseudo" in parentheses. Any such 
discussion should be read once with the "pseudo" and once without it. This convention 
also applies to G-(semi)norms, F-(semi)norms, and (semi)norms, which are special types of 
(pseudo)metrics introduced in later chapters. 

A ( p s e u d o ) m e t r i c  space  is a pair (X, d) consisting of a set X and a (pseudo)metric 
d on X. We may refer to X itself as a (pseudo)metric space, if d does not need to be 
mentioned explicitly. 

A map p :  X ~ Y, from one (pseudo)metric space (X, d) into another (pseudo)metric 
/ \ 

space (Y, e), is called d i s t a n c e - p r e s e r v i n g  or i s o m e t r i c  if it satisfies e(p(xl),p(x2)) 
d(Xl, x2) for all xl ,  x2 E X. It then preserves all the (pseudo)metric structure of X. If it is 
also injective (always true for metric spaces), then by a change of notat ion we may view p 
as an inclusion map that  makes X a subset of Y. 

2.12. Basic examples and properties of metrics and pseudometrics. 
a. The u s ua l  m e t r i c  on I~ is d(x, y) = I x -  Yl, where I I is the usual absolute value 

function. 
For any positive integer n, the most commonly used metrics on ]~n (or on C n) are 

d l ( X , y )  

d2(x,y) 
d (x,y) 

---- IXl -- Y l l  Jr-IX2 -- Y21 J r ' ' '  Jr-IXn -- Yn l ,  

- -  V / I X l  - y l l  2 - ~ - I x 2  - y212 - ~ - . . .  ~ - I X n  - yn] 2 

= max {IXl - -  Y l l ,  IX2 - -  Y21, " ' ' ,  IXn -- Y n l } ,  

for any points x = (x l ,x2, . . .  ,Xn) and y = (Yl,Y2,...  ,Yn). It is easy to verify that  
these are indeed metrics; for d2 use 2.10. 



Distances  41 

The metrics dl and d2 are special cases of the metric 

d p ( x , y )  - ~/IXl - yll p + lx2 - y2 p + ' ' '  + lx~ - y~l p, 

where p E [1, co); that  dp is a metric will be proved in 22.11. The metrics dp for 
1 <_ p _< oc may be referred to as the u s u a l  m e t r i c s  on IR n. They are equivalent, in a 
sense discussed in 22.5, and therefore they are interchangeable for most purposes. 

b. A point x in a metric space (X, d) is i s o l a t e d  if there is some number r > 0 (which 
may depend on x) such that  all other points have distance from x at least equal to r. 
A d i s c r e t e  m e t r i c  on a set X is a metric that  makes every point isolated. There are 
many such metrics on a set X, and some of them have substantially different properties 

see 5.34.a and 19.11.e. The simplest discrete metric is the following one, which we 
shall call the K r o n e c k e r  me t r i c :  

f 0 if X Y, d(x,  y) = 1 - ~xy = 1 i f x ~ : y  ! 

(where ~ is the Kronecker delta). Some mathematicians call this the discrete metric. 

c. (This example assumes some familiarity with calculus.) Let X be the set of all Riemann 
integrable (or more generally, Henstock or Lebesgue integrable) real-valued functions 
defined on some interval J C R say on [0, 1], for instance. Define 

d(p, q) - ~ p(t)  - q(t)l dt. 

This is a pseudometric on X, but it is not a metric. For instance, d(p, q) - 0 if 
{t E J �9 p(t)  r q( t )}  is a finite set. The pseudometric d becomes a metric if we restrict 
it to the continuous functions on J.  

d. We may define a metric on the extended real line [-oo,  +co] by taking  d ( x , y )  - 
I f ( x ) -  f(y)q where f is some injective function from [-co,  +co] into R. Three such 
functions f ( u )  are given by 

arctan(u),  tanh(u) ,  
1 + 

with values of f (u) at u = +oc defined by taking limits in the obvious fashion. Assorted 
other functions f will also suffice for this purpose. We do not think of I f ( x ) -  f (Y) l  as 
actually being the "distance" between x and y, but the metric is nevertheless useful for 
defining convergent sequences and other metric concepts. The three choices of f given 
above yield metrics that  are equivalent in the sense that  they yield the same topologies 
and the same uniformities, and consequently agree on many other structures e.g., 
they have the same convergent sequences; these notions are discussed in later chapters. 
(See 18.24.d.) Any of these metrics, or any other equivalent metric, may be referred 
to as the u sua l  m e t r i c  on [-oc,  +oc]. 

e. Id(x, y) - d(u,  v)l <_ d(x,  u) + d(y,  v) for x, y, u, v E X, if d is a pseudometric on X. 
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f. (Optional.) An u l t r a m e t r i c  is a metric tha t  satisfies the following strengthened ver- 
sion of the triangle inequality" 

d(x, y) < max{d(x,  u), d(u, y)}. 

Show that  this inequality implies the triangle inequality. 
metric (in 2.12.b) is an ultrametric.  

Show that  the Kronecker 

2.13. Definitions. By a g a u g e  on a set X we shall mean a collection of pseudometrics on 
X. A g a u g e  s p a c e  is a pair (X, D) consisting of a set X and a gauge D on X. We may 
refer to X itself as a gauge space, if D does not need to be mentioned explicitly. 

As we develop the theory of gauges, we shall devote special a t tent ion to the case of a 
gauge D = {d} consisting of just  one pseudometric d. We shall often write "{d}" and "d" 
interchangeably, discuss d itself as a gauge, and develop some properties of pseudometrics 
as a special case of properties of gauges. Conversely, a gauge space (X, D) often can be 
analyzed in terms of the simpler pseudometric spaces {(X, d) :  d E D}. 

A gauge D on a set X is s e p a r a t i n g  if it has the property that  

for each pair of distinct points x and y in X,  there exists at least one d E D 
satisfying d(x, y) > O. 

Most gauges used in applications are separating. Some mathemat ic ians  make the separation 
condition a part  of their definition of "gauge," but we shall not follow that  practice. 

Note that  a singleton gauge D = {d} is separating precisely when the pseudometric d is a 
metric. Thus, most pseudometrics used by themselves in applications are metrics. However, 
some impor tant  separating gauges D used in applications consist of large collections of 
pseudometrics tha t  are not metrics; for instance, see 28.11.b. 

We caution tha t  the term "gauge" is used in a wide variety of inequivalent ways in the 
literature. Our own usage follows that  of Reilly [1973]; tha t  usage works part icularly well 
with the concepts in this book. Another,  entirely unrelated meaning of the term "gauge" 
is given in 24.6. 

2.14.  Remarks/example. A single pseudometric is not adequate to describe the structure 
of some spaces; sometimes large collections of pseudometrics are needed. For instance, let 
X = R R = {functions from I~ into R}. For each t E I~, define a pseudometric dt on X 
by: dr(p, q) = Ip( t ) -  q(t)l. The resulting gauge D = {dr : t E R} is separating, but no 
proper subset of it is separating. We shall see in 9.18 and 18.9.f that  the gauge D yields 
the product  topology and product uniformity on R R. 

2.15.  Examples and exercises about separation. 
a. If f : X ~ I~ is any real-valued function on any set, then d(x, y) = I f ( x ) -  f(Y)l is 

a pseudometric on X. It is a metric if and only if the function f is injective i.e., 
satisfying x # y ~ f (x)  # f(y).  A special case of this construction was given in 
2.12.d. 

More generally, let (I) = {f~ : I c A} be a collection of real-valued functions on a set 
X.  Then a gauge can be defined by D = {d~: I e A}, where d~ (x, y) = I f~(x)- f~(y)l .  
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This gauge is separating if and only if the collection (I) separates points of X (in the 
sense o f 2.6). 

b. A gauge D on a set X is separating in the sense of 2.11 if and only if the collection 
of functions (I) = {fx,d : x C X , d  E D} defined by fx,d(Y) = d(x, y) is a separating 
collection in the sense of 2.6. 

CARDINALITY 

2.16. The c a r d i n a l i t y  of a finite set is the number of distinct elements in that  set; thus 
it is a nonnegative integer. 

The "cardinality" of a not-necessarily-finite set is a bit harder to define; we shall post- 
pone that  concept until 6.23. However, it is much easier to define the comparison of car- 
dinalities of two sets. This notion is due to Georg Cantor and is the foundation of mod- 
ern set theory. We say that  two sets X and Y have  t h e  s a m e  c a r d i n a l i t y  writ ten 
card(X) = card(Y) - -  if there exists a bijection between X and Y. More generally, we write 
card(X) _< card(Y) if X has the same cardinality as some subset of Y - -  i.e., if there exists 
an injection from X into Y. Similarly, we write card(X) < card(Y) if X and Y satisfy 
card(X) _< card(Y) but do not satisfy card(X) = card(Y) i.e., if there exists an injection 
from X into Y but there does not exist a bijection from X onto Y. (Cantor invented these 
ideas while investigating Fourier series; see 26.48.) 

With  this convention, we can now restate some of the definitions given in 1.20 and add 
a few more definitions. A set S is 

f in i te  if card(S) : card({1, 2 , . . . ,  n}) for some nonnegative integer n (in which 
case we call n the c a r d i n a l i t y  of the set and write card(S) = n); 

in f in i te  if it is not finite; 

cof in i te  if it is being considered as a subset of some set X and its complement 
X \ S is finite; 

c o u n t a b l e  (or d e n u m e r a b l e ) i f  card(S) < card(N); 

u n c o u n t a b l e  if it is not countable; 

c o u n t a b l y  in f in i te  if card(S) = card(N). 

Caution: Some mathematicians apply the term "countable" or the term "denumerable" 
only to the sets that  have the same cardinality as N. Also, some mathematicians use a 
slightly different definition of "infinite" see the remark in 6.27. 

The cardinality of a set X is sometimes abbreviated IXI . 
Much of our presentation of cardinality is based on Dalen, Doets, and Swart [1978] and 

Kaplansky [1977]. 
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2.17. Further remarks. Throughout the mathematical literature, the letter a (a Greek 
lowercase sigma) is often used to indicate countable sums or unions e.g., in a-ideals, 
a-algebras, a-additive measures, a-convex sets, F~ sets. Similarly, 5 (delta) is often used to 
indicate countable products or intersections e.g., in G5 sets. We shall define these terms 
separately in their appropriate contexts. 

2.18. Remarks. It is customary to use the familiar symbol _< for comparison of cardinal- 
ities. Do not assume too much on the basis of this notation, however; the comparison of 
cardinalities is not quite like the comparison of real numbers. Some familiar properties of 
real numbers are also valid for cardinalities, and some are not. For instance, it is quite easy 
to prove that for any sets X, Y, Z we have 

card(X) _< card(Y) and card(Y) _< card(Z) imply card(X) <_ card(Z). 

(The reader should show this now, as an exercise.) It is rather harder to prove that 

card(X) _< card(Y) and card(Y) <_ card(X) imply card(X) - card(Y); 

that is the content of the SchrSder-Bernstein Theorem in 2.19. Thus, comparison of car- 
dinalities is a preordering; comparison of distinct cardinalities is a partial ordering. Still 
stronger properties about the comparison of cardinalities will be proved in 6.22, but the 
proof is deeper and also requires that we assume the Axiom of Choice. 

2 .19 .  S c h r h d e r - B e r n s t e i n  T h e o r e m .  Let X and Y be sets. If there exist injections 
e" Y ~ X and f "  X --~ Y,  then there exists a bijection from X onto Y. In other words, if 
card(Y) < card(X) and card(X) < card(Y), then c a r d ( X ) -  card(Y). 

Proof. This presentation follows Cox [1968]. We may assume that Y c_ X and that we are 
given an injection f �9 X ~ Y. (More precisely, since we have an injection e �9 Y ~ X, 
by relabeling we may identify each point of Y with its image under e; see 1.10.) In the 
following diagram, the big box represents the set X. 

X \ Y f (C)  f2(C) f3(C) f4(C) 
�9 ~ C ' 

x \ s  

Let C - X \ Y .  Since f is injective and has range contained in Y, the sets C, f (C) ,  
f2 (C), f3 (C), . . .  are disjoint. (Here fn  is the nth iterate of f.) Let S - Un~__01 n (C); note 
that I (S )  - S \ C C S. (See the diagram above.) Define a function h" X ---, Y by taking 
h(z) - f ( z )  when z E S and h(z) - z when z E X \ S. Verify that the function h takes 
each fn (C)  bijectively to fn+l(C),  and hence h is a bijection from X onto Y. 

2.20. Exercises and examples. 
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a. c a r d ( o ) =  0 and c a r d ( { ~ } ) =  1. 

b. card(2~) < card((1}) < card({1,2}) < card({1,2,3}) < . . .  < card(N). 

c. In N, the subset {n : n > 4} is cofinite. 

d. The sets N, N U {0}, Z, and {even positive integers} all have the same cardinality. 
Hint" See diagram below. 

N = { 1, 2, 3, 4, 5, 6, 7, . . .}  

I I I I I I I 
N U{0} = { 0, 1, 2, 3, 4, 5, 6, . . .} 

I I I I I I I 
Z = { 0, 1 , - 1 ,  2 , - 2 ,  3, -3 ,  . . .}  

I I I I I I I 
{even positive i n t e g e r s } -  { 2, 4, 6, 8, 10, 12, 14, . . .}  

e. C a n t o r ' s  T h e o r e m  on pai rs .  N x N is countably infinite�9 Hint" By tracing along 
the diagonals in the diagram below, we obtain the sequence (1, 1), (2, 1), (1,2), (3, 1), 
(2,2), (1,3), (4,1), . . . ,  which is an enumeration of N x N. 

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1) 

S S S S 
(1, 2) (2, 2) (3, 2) (4, 2) (5, 2) 

J S S J 
(I, 3) (2, 3) (3, 3) (4, 3) (5, 3) 

S S S S 
(I, 4) (2, 4) (3, 4) (4, 4) (5, 4) 

J S S J 
(i, 5) (2, 5) (3, 5) (4, 5) (5, 5) 

f. card(Q) - card(N). 

g. 

No 

Hint: Use the preceding result, together with the Schr6der- 
Bernstein Theorem�9 

Remark. Later we will show card(R) - card(N N) - card(2 N) > card(N). See 
10.44.f. 

If card(X) _> card(N) and u is any object, then card(X U {u}) = card(X).  Hints: This 
is trivial if u E X. If u ~ X, use 2.20.d. 

If X and Y are finite sets, then card(X x Y) = card(X)card(Y) and card(X Y) = 

card(X) card(Y) (with the conventions r ~ - 1 for r _> 0 and 0 ~ - 0 for r > 0). 

For any set X,  we have card(X x X) _> card(X).  Hint: Treat separately the cases of 
X = ~ and X -r ~. 

Remarks. We have card(X x X) > card(X) when X is a finite set containing more 
than one element. We have card(X x X) = card(X) when X is empty or a singleton. 
In 6.22 we shall see that  card(X x X) = card(X) when X is an infinite set; however, 
the proof of that  result will require the Axiom of Choice. 
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jO 

ko 

If X, Y, and Z are any sets, then there is a natural  bijection between Z x x v  and 
( zY )  x .  Indeed, f c Z x x Y  means that  (x,y) ~ f ( x , y )  is a map from X x Y into 
Z, while f E (ZV) X means that  x ~ f ( x ,  .) is a map from X into Z v. It is easy to 
see that  this correspondence between Z XxY and (ZY) X is no more than a change of 
notation. 

The set {0, 1} is often called "2." Let X be a set; we can identify each subset S C_ X 
with its characteristic function l s  " X --~ {0, 1}, defined in 2.2.b. Thus there is a 
natural  bijection between the power set of X, 

�9 (X) - {subsets of X}, 

and the X t h  power of the set 2, 

2 X m {functions from X into 2}. 

These two objects are often used interchangeably. 
If X is a finite set, then card([P(X)) = 2 card(X) is the number of subsets of X. 

Exercise for beginners. List the eight subsets of X = {0, 1, 2}. Hint: Don't  forget O 
and X. 

1. T h e o r e m  ( C a n t o r ) .  card([P(X)) > card(X) for every set X. 
Hints: Easily card([P(X)) > card(X).  Now suppose that  there exists a bijection 

f : X ---, [P(X). Define R = {x c X : x  ~ f(x)},  and let r = f -X(R).  Show that  
r E R ~ r ~ R, a contradiction. Note: This contradiction is not paradoxical, but 
it is similar to Russell's Paradox (1.43). 

m .  Example. card(2 N) > card(N). 

n. Example. card(2 N) = card(NN). Hints: 

card(N N) G card((2N) N) = card(2 NxN) = card(2 N) G card(NN). 

2.21. How many kinds of infinity are there? By Cantor 's  Theorem (in 2.20.1), 

card(N) < card([P(N)) < card([P(~(N))) < card([P([P([P(N)))) < . . .  

(where [P denotes the power set). Thus there are infinitely many different kinds of infinity. 
We can get still more infinities, as follows: Let S be the union of all the sets N, T(N), 
[P([P(N)), [P(~P([P(N))), . . . .  Then S is bigger than any one of those sets. We can go further: 
We have 

card(S) < card([P(S)) < card(~(T(S)))  < card(~P([P(~(S)))) < . . .  

and we can continue this process again and again, infinitely many times. 
Are there still more infinities? Perhaps there are some even bigger than anything o b- 

tained in the "list" suggested above; or perhaps there are some lying between two consecu- 
tive elements of that  list. 

An inaccess ib l e  c a r d i n a l  (also known as a strongly inaccessible cardinal) is, roughly, 
a set too big to be in the list given above; i.e., it is an uncountable set that  is bigger than 
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anything obtainable from smaller sets via power sets and unions. We shall not make this 
precise; refer to books on set theory and logic (e.g., Shoenfield [1967]) for details. It is not 
intuitively obvious whether such enormous cardinals exist. Their existence or nonexistence 
is taken as a hypothesis in some studies in set theory. Surprisingly, such assumptions about 
enormous sets lead to important  conclusions about "ordinary" sets such as R; see 14.75. 

In applicable analysis one seldom has any need for infinite cardinalities other than 
card(N) or card(2 N) = card(N). The C o n t i n u u m  H y p o t h e s i s  ( C H )  asserts that  there 
are no other cardinalities between those two. The G e n e r a l i z e d  C o n t i n u u m  H y p o t h e s i s  
( G C H )  asserts that  for any infinite set X, there are no other cardinalities between card(X) 
and card(2X). Cantor spent a large part of his last years trying to prove that  CH was true 
or false. The question remained open for decades. Finally, GSdel and Cohen developed 
new methods to show that  neither the t ru th  nor the falsehood of CH can be proved from 
the usual axioms of set theory; thus CH is independent of those axioms. This is explained 
briefly in 14.7, 14.8, 14.53, 14.73, and 14.74. 

INDUCTION AND RECURSION ON THE INTEGERS 

2.22. We assume the reader is familiar with the basic properties of the natural  numbers N = 
{1 ,2 ,3 , . . . } .  (Caution: Some mathematicians use the symbol N for the set {0, 1 ,2 ,3 , . . . } ,  
but in this book 0 ~ N.) 

Following are two basic principles about the natural  numbers. I n d u c t i o n  is a method 
for proving statements about objects that  have already been defined; r e c u r s i o n  is a method 
for defining new objects. 

Principle  of Countable  Induction.  Suppose 1 E T C N and T has the 
property that  whenever n E T then also n + 1 E T. Then T -  N. 

This principle can also be formulated as a method for proving that  a statement P(z) is true 
for every z E N just take T -  {z E N �9 P(z)} .  (Note: To logicians, this reformulation is 
not quite equivalent. It is usually understood that  the statement P(x) must be expressed 
using finitely many symbols from a language with only countably many symbols, so there 
are only countably many possible P ' s  but there are uncountably many sets T c_ N.) 

For our second principle, we shall agree that  the empty sequence the sequence with 
no components, or the sequence of length 0 is a finite sequence and hence a member of 
the domain of p. 

Principle  of Countable  R e c u r s i o n .  Let T be a set, and let p be some map- 
ping from {finite sequences in T} into T. Then there exists a unique sequence 
( t l , t 2 , t 3 , . . . )  in T that  satisfies t~ - p ( t l , t2 , . . . , tn -1)  for all n. 

In other words, our definition of t~ may depend on all the preceding definitions. 
Both of these principles are generalized to sets other than N in 1.50, a.a9.f, 3.40, and 

5.51; they are then referred to as transfinite induction and recursion. For now, we note a 
few elementary applications of the countable case. 
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2.23. Examples  in countable induct ion and recursion. 
a. F a c t o r i a l s  are defined recursively: 0! = 1, and (n 4- 1)! = (n 4- 1) .  (n!) for n = 

0, 1,2,3, . . . .  (We read "n!" as "n factorial.") The first few factorials are 0! = 1, 
1! = 1, 2! = 2, 3! = 6, and 4! = 24. 

b. The b i n o m i a l  coef f ic ien t  (~) (read "n choose k") can be defined directly by a formula: 

( k ) -  n, ( n - 0 1 2 , 3 ,  . . ;  k - 0 , 1 2 ,  . n) 
k ! ( n - k ) !  ' ' " ' " ' 

or it can be defined by recursion on n: we take (o) - (n) _ 1 for n - 0, 1, 2, 3 , . . . ,  and 
then 

( k +  4 - ~ ) -  ( k ) 4 -  ( n ) k 4 - 1  ( 0 < k < n ) .  

Show by induction that  the two methods of defining (~) yield the same values. Also, 
using the second method,  show that  the (~)'s are the numbers in Pascal 's  Triangle. 

1 
P a s c a l ' s  T r i ang le :  1 

Each number is 1 2 
the sum of the two 1 3 
numbers above it. 1 4 6 

3 1 
4 1 

By convention, we define (~) - 0 when n _> 0 and k c Z \ {0, 1, 2 , . . . ,  n}. 

c. By induction on n, prove the B i n o m i a l  T h e o r e m :  

(x  + - j 0= xJY -J (n  - 1, 2, 3 , . . . ) .  

An example is (x + y)4 _ y4 + 4xy3 4- 6x2y 2 4- 4x3y 4- x 4. 

d. A p r i m e  n u m b e r  is an integer greater than 1 that  is not divisible by any positive 
integer except itself and 1. The first few prime numbers are pl = 2, p2 = 3, p3 = 5, 
pa = 7, and P5 = 11. The following induction argument proves that  there are infinitely 
many prime numbers and also gives us a crude but easy upper bound on Pn. 

Assume that  P l , P 2 , . . . , P n  have already been found, for some positive integer n. 
Then q - PiP2 "'" Pn 4-1 is greater than Pn, and it is not divisible by any of pl ,  p2,. �9 �9 Pn. 
Hence either q is a new prime, or it is divisible by a new prime. In any case, pn+l _< 
q <_ 2 p l P 2 " " p n .  Use induction to show that  pn <__ 22n" 

e. Joke. Every positive integer has some remarkably interesting property. 
"Proof." If not, let no be the first uninteresting number. Then no has the property 

tha t  it is the f irst  uninteresting number but isn't that  an interesting property? 
Exercise. Carefully explain what has gone wrong here. Hint: See 1.11. 
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Relations and Orderings 

3.1. Preview. The chart below shows the connections between some kinds of preorders 
that we shall study in this and later chapters. Lattices and order completeness are studied 
in greater detail in Chapter 4; directed orderings are studied further in Chapter 7; Boolean 
algebras and Heyting algebras are covered in Chapter 13. 

preordered set 

set with 
equivalence poset directed set 

r e l a t i o n ~  lattic ~ 

Dedekind ~ 
complet~ poset ~ distributive lattice 

\ ~ ~ /  se~mi-infinitely distributive lattice 

~ Heyling algebra ~n f in i t e ly  distributive lattice 

~ ~ ~algebraofsets) I latticegroup 

~ (T(f~),C__) chain I 

ordered field 

R 

49 
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RELATIONS 

3.2. A r e l a t i o n  (or binary relation) on a set X is simply a set R c_ X x X, but with 
this change in our notation" instead of writing (x, y) E R, we may write xRy. We may 
sometimes refer to the subset of X x X as the g r a p h  of the relation; we may even denote it 
by Graph(R) or Gr(R). Other symbols may be used in place of R. Some familiar symbols 
used in this fashion are - ,  r (relations on any set X), _<, < (relations on R), and c ,  c_ 
(relations on a collection of sets). 

3.3. Examples and special kinds of relations. 
a. Equality (=) is a relation; its graph is the d i a g o n a l  set  I -  { ( x , x ) ' x  E X}. 
b. The largest relation on a set X is 

the u n i v e r s a l  r e la t ion :  xRy for all x, y E X. 

Its graph is X x X. Trivial though it may be, this relation is occasionally useful. When 
it is viewed as an ordering, we shall call it the u n i v e r s a l  o rde r ing .  

c. The smallest relation on X is the e m p t y  re la t ion ;  its graph is the empty set. 

d. The inve r se  of a relation R is the relation R -1 defined by xR-ly  4=~ yRx. For instance, 
the inverses of =, =/=, C_, C, <, < are the r e l a t i o n s - ,  r  _D, ~, _>, >, respectively. 
Note that  ( R -  1 ) -  1 __ R .  

If 4 and ~ are relations that  are inverses of each other, then there exists a duality 
between 4 and ~; each statement about either of these relations can be converted to 
a statement about the other relation. See 1.7. 

e. The c o m p o s i t i o n  of any two relations Q and R on a set X is the relation defined by 

Q o R  - {(x,y) E X x X  �9 xRuanduQy fora t l eas toneuEX} .  

This definition generalizes that  in 2.3 i.e., if Q and R are in fact functions, then 
the composition defined in this fashion is the same as the composition defined in 2.3. 
Exercise. Verify that  the compositions of relations satisfy (P o Q) o R - P o (Q o R). 

f. If R is a relation on X and Y c_ X, then the r e s t r i c t i o n  of R to Y (or t r a c e  of R on 
Y) is the relation Rly  defined by 

URIyV  if and only if u, v E Y  and uRv. 

In other words, G r a p h ( R i y  ) - Graph(R)M (Y x Y). By a slight abuse of notation, we 

often denote Riy  simply by the same symbol R -  for example, a restriction of any of 

the relations - ,  ~=, C, c ,  <, < is still denoted by the same symbol. 
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3.4. Let R be a relation on a set X,  and let I be the diagonal set of X (see 3.3.a). Many 
relations of interest to us satisfy the condition of 

t r a n s i t i v i t y "  R o R C R. Tha t  is, xRy and yRz imply xRz. 

Most relations of interest to us also satisfy either 

re f lex iv i ty"  R _D I. Tha t  is, xRx for all x E X,  or 
i r r e f l ex iv i ty :  R n I -  ~. Tha t  is, xRx for no x E X. 

Also, most satisfy either 

s y m m e t r y "  R -1 - R. Tha t  is, xRy implies yRx, or 
a n t i s y m m e t r y "  R n R -1 c_ I. Tha t  is, xRy and yRx imply x -  y. 

Some examples are given in 3.6. 

3.5. More symbols for relations�9 A familiar symmetric  relation is equality (=).  For other 
symmetric  relations, we often use the symbols ~ or - 

Inequality (_<) and inclusion (C_) are familiar relations that  are not symmetric�9 For other 
relations that  are not symmetric,  or that  are not known to be symmetric,  we shall often use 
the symbols 4 and -<�9 Occasionally we may also use E and r � 9  

Some mathemat ic ians  prefer to use the symbols < and < for any relation that  is not 
necessarily symmetric  because these symbols are more familiar and therefore easier to draw. 
However, beginners sometimes inadvertently a t t r ibute  to those symbols some familiar prop- 
erties of the ordering of the real numbers e.g., they may implicitly assume tha t  < is a 
chain ordering (defined in 3.23)�9 To reduce the frequency of this type of error, we will 
usually reserve the symbols _<, < for chain orderings, and use ~, -< for a more "generic" 
ordering. This makes it easier for beginners to disassociate themselves from the familiar 
properties of R and start  over with a fresh perspective. Admittedly, 4 is difficult to draw 

on a blackboard, perhaps < < �9 ~ or n could be used as a blackboard substitution. 
In this book the symbols 4 and -< will always denote, respectively, a reflexive relation 

and an irreflexive relation, which are connected as follows: 

x ~ y means that  either x -< y or x - y  holds; 

x -< y means that  both x ~ y and x # y hold. 

In other words, the sets I - {(x,x)  �9 x E X} and Graph(-<) form a parti t ion of the set 
Graph(~)�9 Because ~ and -< are connected in this fashion, we can usually state our results 
just  in terms of ~, without explicitly mentioning corresponding results for -<. A similar 
convention will apply to the pair _ ,  E. 

Inverses (see 3�9149 of ~, -<, __E, E will be denoted respectively by ~, >-, ~,  -1�9 
The symbols 4 and _E may be read as p r e c e d e s ,  is s m a l l e r  than, is l i t t l e r  than, is 

less than, is e a r l i e r  than. Their inverses (~ and ~)  may be read as s u c c e e d s ,  is l a r g e r  
than, is b i g g e r  than, is m o r e  than, is l a t e r  than. 

The symbols -< and E may be read as s t r i c t l y  p r e c e d e s ,  etc., and the symbols >- and 
z may be read as s t r i c t l y  s u c c e e d s ,  etc. 
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3.6. Examples and exercises. 
a. If R is a relation on X that  is transitive and irreflexive, then R is also ant isymmetr ic  

but vacuously so" there cannot be x, y satisfying xRy and yRx simultaneously. 

C --  C ~ b. Six familiar relations are =,  :/:, c_, , <, <. Among these examples, , C_, ~ _ ,  
are transitive, =,  C, _< are reflexive, ~,  C, < are irreflexive, - ,  :/: are symmetric,  and 
C, C _<, < are antisymmetric.  

c. Show that  R -  {(1,2), (2,3), (2,2), (3,2)} is a relation on the set X - {1,2,3} tha t  
has none of the properties listed in 3.4 i.e., R is not transitive, reflexive, irreflexive, 
symmetric,  or antisymmetric.  

d. Let R be a relation that  is both symmetr ic  and antisymmetric.  Then (i) R is reflexive 
if and only if R is equality (=),  and (ii) R is irreflexive if and only if R is the empty  
relation. 

e .  Let 4 be a reflexive relation on a set X and let -~ be the corresponding irreflexive 
relation. Then (i) ~ is symmetr ic  if and only if -~ is symmetric,  and (ii) ~ is transit ive 
if and only if -~ is transitive. 

PREORDERED SETS 

3.7. A p r e o r d e r  on a set X is a relation ~ that  is both 

transit ive (x ~ y and y ~ z imply x ~ z) and 
reflexive (x ~ x). 

A preordered set is a pair (X, ~) consisting of a set X and a preorder ~ on X; we may 
refer to X itself as the preordered set if ~ does not need to be mentioned explicitly. A 
similar syntax will be used for special kinds of preordered sets - -  partially ordered sets, sets 
with equivalence relations, directed sets, chains, well ordered sets, lattices, etc. 

3.8. We note a few important  special types of preorders. Let (X, ~) be a preordered set. 
Then ~ is a 

partial  order and (X, ~) is a partially ordered set, or poset  
ant isymmetr ic  (x ~ y and y g x imply x -  y); 

if ~ is 

equivalence relation if it is symmetr ic  (x ~ x for all x); 

directed order and (X, ~) is a directed set 
exists some y c X satisfying xl ~ y and x2 ~ y. 

- -  if for each Xl, X2 E X there 

3.9. Basic properties and examples. 
a. In a set X equipped with a relation ~, we say that  two elements x, y are comparable  

if at least one of the relations x ~ y or y ~ x holds. (This terminology is mainly used 
in posets.) 
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b. The only partial order that is also an equivalence relation is equality (=). 

c. If 4 is an equivalence relation, then so is its inverse, ~. 

d. If 4 is a partial order, then so is its inverse, ~. 

e. Trivially, the empty set is directed. Any singleton {x} is directed, when equipped with 
the relation { (x, x)}. 

f. Example (from McShane [1952]). A stream or river, together with its tributaries, is 
directed by the relation "is upstream from." Indeed, if x, y are any two locations in 
the system, then there exists a third location z that is downstream (i.e., later in the 
water flow) from both x and y. 

Most directed orderings of interest to us are antisymmetric. However, the universal 
ordering (defined in 3.3.b) is a directed ordering that we shall find useful and that is 
not antisymmetric. By calling the universal ordering and similar orderings "directed," 
we shall achieve a few simplifications in the development of the theory. 

Caution" Some mathematicians make antisymmetry part of their definition of "di- 
rected set." Though we shall not follow that practice, we remark that adding an- 
t isymmetry to the definition of "directed set" does not greatly affect the ultimate 
applications. A not-necessarily-antisymmetric directed set can usually be replaced by 
a (perhaps more complicated) antisymmetric directed set, as in 7.12. 

If C is any collection of subsets of a set X, then (C, c_) is a poset. Actually, this example 
is as general as we could ask for: Every poset can be represented isomorphically in this 
form; see 3.16.d. 

i. Subsets of ordered sets. Define restrictions as in 3.3.f. Verify that if the relation 
on X has the following property, then its restriction to any set S c X has the 

same property: reflexive, irreflexive, symmetric, antisymmetric, transitive, preorder, 
equivalence, or partial order. 

The restriction of a directed order is not necessarily directed. For instance, Z 2 with 
the product ordering is directed (in fact, a lattice), but its subset {(x, y) E Z 2 �9 x + y - 
O} is not directed. 

j. For each I in some index set A, let 4~ be a relation on some set Xx. Then the p r o d u c t  
of the 4,\ 's is the relation 4 on the product of the Xx's, defined thus: 

go 

hQ 

f 6 g in I-[ X:~ 
AEA 

means that f(A) 4x g(A) for every A C A. 

It may also be called the componentwise ordering or coordinatewise ordering since it 
acts separately on each component or coordinate. We shall use the product relation 
on 1-I~A X~ unless some other arrangement is specified. 

Verify that if all the ~x's  have one of the following properties, then the product 
ordering ~ has the same property: reflexive, symmetric, antisymmetric, transitive, 
preorder, equivalence, directed order, or partial order. 

k. There are many ways to define an ordering on a collection of functions. One commonly 
used method is the product ordering, defined above. Another common method is by 
inclusion of g r a p h s -  i.e., let f ~ g mean that Gr(f)  c Gr(g). The resulting relation 

is a partial ordering; this is a special case of 3.9.h. 
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MORE ABOUT EQUIVALENCES 

3.10. An e q u i v a l e n c e  r e l a t i o n  is a relation ~ that  is 

symmetric 
reflexive 
transitive 

(x ,,~ y ~ y ,,~ x),  
(x ~ x for all x), and 

(x ,-~ y, y ~ z =~ x ~ z). 

If some equivalence relation ~ has been specified, two objects x and y satisfying x ~ y 
are said to be e q u i v a l e n t .  The student is cautioned that  the term "equivalent" is highly 
context-dependent: That  one word is used for many different relations in different parts 
of mathematics.  Our language would be more precise if we gave slightly different names 
to different equivalence relations e.g., if we distinguished between "a-equivalence" and 
"9~-equivalence '' but unfortunately that  is not customary. 

Here are a few examples of ways that  equivalence relations can arise: 

a. On any set X, the smallest equivalence relation is equality (=). The largest equivalence 
relation is the universal relation, defined in 3.3.b; that  is, x ~ y for all x and y in X. 

b. Let 7r be a function with domain X. Define Xl ~ x2 if 7r(xl) = 7r(x2); we easily verify 
that  this makes ~ an equivalence relation on X. Actually, every equivalence relation 
can be expressed in this form, as shown in 3.11. 

C. Let g = {Sx : A c A} be a parti t ion of a set X that  is, the sets Sx are disjoint and 
their union is the set X. Call two elements of X equivalent if they belong to the same 
Sx. It is easy to see that  this is an equivalence relation on X. The Sx's are then called 
the e q u i v a l e n c e  c lasses  of the relation. Actually, every equivalence relation can be 
represented in this form, as shown below. 

3.11.  Let ~ be any equivalence relation on a set X. 
For each x E X,  let 7r(x) = {y E X : y ~ x}. We easily verify that,  for any x, x' E X 

the sets 7r(x) and 7r(x') are either identical or disjoint; hence the distinct sets of the form 
7r(x) form a part i t ion g of the given set X. Moreover, the given equivalence relation ~ can 
be retrieved from this partition, as in 3.10.c. 

The surjective mapping 7r �9 X ~ g is called the q u o t i e n t  m a p  or q u o t i e n t  p r o j e c t i o n .  
The given equivalence relation ~ can be retrieved from this mapping, as in 3.10.b. 

The collection $ of equivalence classes is called the q u o t i e n t  set .  Represented in many 
ways, it is most often represented by an expression of the form X / 5 ,  where ~ is any device 
used to define the equivalence relation. Thus, the quotient set may be represented by 

x~ 
X/Tr 
X/S 
X/~ 
X/J 

where ~ is the equivalence relation, 

if ~ is determined by a mapping 7r as in 3.10.b, 

if ~ is determined by some subgroup S, as in 8.14, 

if ~ is determined by a filter 9=, as in 9.41, 

if ~ is determined by an ideal [J, as in 9.41. 
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3.12. Let ~ be an equivalence relation on a set X; let Q be the resulting quotient set and 
let 7r : X ~ Q be the quotient mapping. 

A function f defined on X is said to r e s p e c t  the equivalence ~ if the value of f ( x )  
is unchanged when x is replaced by an equivalent element of X that  is, if Xl  ~-~ X2 ==~ 

f ( x l )  = f (x2) .  Another  way to say this is tha t  each set of the form f - l ( z )  is a union of 
equivalence classes. Similarly, a relation R on X is said to r e s p e c t  the equivalence ~ if the 
validity of the s ta tement  u R v is unaffected when u, v are replaced by equivalent elements 
of X that  is, if 

U , ~  U l , V ~,~ V l , U R V = ~  U / _ t ~  V / . 

Show: 

a. Let f "  X --+ Y be some function. We can define a corresponding function f "  Q --+ Y 
A A 

by the rule f(Tr(x)) - f (x )  if and only if f respects ~.  We then say that  the function f 
is wel l  de f ined .  The hat over the f is sometimes omitted; if no confusion will result, 
we sometimes use the same symbol f again for the new function defined on Q. 

b. Let R be some relation on X. We can define a corresponding relation R on Q by the 
rule 

i 

R ,,. R 

if and only if R respects the equivalence relation ~.  We then say that  the relation 
is wel l  de f ined .  The hat over the R is sometimes omitted: If no confusion will result, 
we sometimes use the same symbol R again for the new relation defined on Q. 

c. Example. Let ~ be a preordering on a set X,  and define x ~ y to mean that  x ~ y 
and y 4 x. Show that  ~ is an equivalence relation on X,  and that  4 respects this 

i 

equivalence relation. Show that  the resulting relation 4 is a partial  ordering on the 
quotient set Q. 

d. Let (X, d) be a pseudometric space (defined in 2.11). An equivalence relation ~ on X 
can be defined by: x ~ y if and only if d(x, y) = 0. Then d acts as a metric on the 
quotient space X~ ~. More precisely, let 7r : X ~ X~ ~ be the quotient map; then a 
metric D on X~ ~ can be defined by D (Tr(x), 7r(y)) = d(x, y). 

More generally, let (X, D) be a gauge space. Define an equivalence relation on X 
by: x ~ y if and only if d(x, y) = 0 for a l lpseudometr ics  d c D. Then D acts as a 
separating gauge on the quotient space X~ ,~. 

3.13. The term "equivalent" also has some common uses tha t  are implicit in our mathe- 
matical language: 

Two words, phrases, or definitions are equivalent if they have the same meaning. This 
is an equivalence relation on the set of all words, phrases, or definitions in our vocabulary. 

Similarly, two s ta tements  are equivalent if each implies the other via some set of rules of 
inference. This is an equivalence relation on the set of all s ta tements  tha t  can be expressed 
in our mathemat ica l  language. Since different rules of inference may be used, there are 
act.ually several meanings for "equivalent statements."  Here are two main interpretations: 

�9 Many mathemat ic ians  call two s ta tements  "equivalent" if each implies the other easily 
- -  i.e., by a fairly short and elementary proof. Of course, "elementary" is a subjective 
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term here; what is elementary for one mathematician may not be elementary for 
another. Most mathematicians do not make any restriction on the use of the Axiom of 
Choice; it may be used freely as a "rule of inference." An example: The mathematical 
literature sometimes refers to Caristi's Fixed Point Theorem 19.45 and BrSnsted's 
Maximal Principle ((DC4) in 19.51) as "equivalent" because each implies the other 
easily; see 19.51. Strictly speaking, the relation "each implies the other easily" is not 
really an equivalence relation, for it is not transitive: If 

(A1) ~ (A2), (A2) ,-v--->, (A3), . . . ,  (A99) ~ (A100) 

by 99 easy proofs, then (A1) ~ (A100) by a proof that is not necessarily easy. 

Logicians sometimes give the Axiom of Choice special status and treat it as a statement 
rather than as a rule of inference. When this system is followed, then the Axiom of 
Choice or its consequences can only be used when stated explicitly as hypotheses. 
This system which will be followed in parts of this book enables us to trace 
the effects of the Axiom of Choice. For emphasis, statements equivalent in this sense 
are sometimes called effect ively equiva len t .  See 6.18. With this interpretation, 
Caristi's Fixed Point Theorem and BrSnsted's Maximal Principle are not equivalent; 
see the discussion in 19.51. 

MORE ABOUT POSETS 

3.14. Definit ions.  Recall that a p a r t i a l  o r d e r  is a relation 4 that is 

reflexive (x 4 x for all x), 
transitive ( x 4 y ,  y 4 z  ==> x 4 z ) , a n d  
antisymmetric (x 4 y and y 4 x imply x -  y). 

A set equipped with such an ordering is a p a r t i a l l y  o r d e r e d  set,  or pose t .  
Let (X, 4) be a partially ordered set. An o r d e r  in te rva l  in X is a subset of the form 

[a,b] - { x E X  �9 a 4 x 4 b }  

for some a, b E X. 
In R or [-oc, +oc], slightly different terminology is commonly used. An in te rva l  is any 

set of one of the following types" 

[ a , b ]  = 

[a ,b )  = 

( a , b ]  = 

(a,b) = 

{x E [ -oc ,+oc]  " a < x < b}, 

{xE [-oc ,+oc]  �9 a < x < b } ,  

{x E [ -oc ,+oc]  �9 a < x < b}, 

{ x  e �9 a < �9 < b} ,  
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for any extended real numbers a, b. In particular, the extended real line is the interval 
[-oc, +oc] (thus justifying our notation), and the real line R is the interval ( -co ,  +oc). Two 
other important sets are [0, +oc) - {x E R" x _> 0} and [0, +oc] - {x c R" x >_ 0}U{+oc}. 

An interval of the form [a, b] is sometimes called a c losed interval ;  an interval of the 
form (a, b) is an o p e n  in terval .  This terminology reflects the topological structure of IR or 
E-oc, +oc], introduced in 5.15.f. 

3.15. Let X be a poser. A set S c_ X is o r d e r  b o u n d e d  if it is contained in an order 
interval. It is simply called "bounded" if the context is clear, but be aware that the term 
"bounded" has other, possibly inequivalent meanings see 4.40, 23.1, 27.2, and 27.4. 
Fortunately, all the usual meanings of "bounded" coincide at least for subsets of R n. 

Note that any subset of an order bounded set is order bounded. 
Although the statement "S is bounded" does not mention the set X explicitly, bound- 

edness of a set S C_ X depends very much on the choice of X. For instance, Z is unbounded 
when considered as a subset of R (with its usual ordering), but Z is bounded when con- 
sidered as a subset of the extended real line [-oc, +oc] (introduced in 1.17). In fact, every 
subset of [-oc, +oc] is bounded, since [-oc, +oc] itself is bounded. 

3.16. Let (X, 4) be a poset. A lower set  in X is a set S c_ X with the property that 

x 4 s ,  x E X ,  s E S  =r x E S .  

Some older books refer to lower sets as initial segments or order ideals. 

Special examples and properties. 
a. Clearly, X is a lower set in itself. Any other lower set is called a p r o p e r  lower set. 

b. One lower set is the set  of  p r e d e c e s s o r s  of w, defined by 

Pre(w) - { x C X  �9 x-<w}.  

It is proper. It is empty if and only if w = min(X). 

c. The p r inc ipa l  lower set  determined by any w E X is the set {x E X :x  ~ w}. It is 
sometimes denoted by ~w. It is nonempty. It is improper if and only if w = max(X).  

Exercise. A lower set is equal to the union of all the principal lower sets that it 
contains. 

d. The mapping w ~ ~w, sending each element to its principal lower set, is an order 
isomorphism from (X, 4) onto a subset of the poset (T(X), C_). Thus any poset can 
be represented isomorphically in the form (e, c_) for some collection e of sets. 

Lower sets are discussed further in 4.4.b. 

3.17. Let (X, ~) and (Y, __) be partially ordered sets. A mapping p" X ~ Y is 

i nc rea s ing  (isotone, order-preserving)if Xl ~ x2 ~ p(xa) E p(x2); 

d e c r e a s i n g  (antitone, order-reversing) if Xl ~ x2 ~ p(xl)  ~_ p(x2); 
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m o n o t o n e  if it is increasing or decreasing; 

s t r i c t l y  increasing or decreasing or monotone if it is injective and (respectively) 
increasing or decreasing or monotone; 

an o r d e r  i s o m o r p h i s m  if it is a bijection from X onto Y such that  both p and 
p-1 are increasing. 

(The terms "isotone" and "antitone" are used especially if X and Y are collections of sets, 
ordered by inclusion.) The relationships between these kinds of mappings are explored 
in the next few exercises; a chart below summarizes the results. The chart also includes 
sup-preserving and inf-preserving, as a preview of notions that  will be introduced in 3.22. 

monotone 

Y 
" " decreasing 

strictly sup- inf- 
increasing preserving preserving 

order isomorphism 

Caution: Some mathematicians use the terms nondecreasing or weakly increasing where 
we have used the term "increasing;" some of these mathematicians use the term "increasing" 
where we have used the term "strictly increasing." Analogous terminology is used for 
decreasing. 

3.18. Basic properties and examples. 
a. A sequence of real numbers (rl,r2,r3,...) is increasing if rl _< r2 _< r3 _< . . . .  

b. S H CS is an antitone mapping from (IP(X), c_) into itself, for any set X. 

c. The inverse of an increasing bijection need not be increasing. For instance, let _< be 
the usual ordering on Z, and let ~ be the partial ordering on Z defined by 

x ~ y if y -  x C {0,5, 10, 15, 2 0 , 2 5 , . . . } .  

Then the identity map x H x is increasing from (Z, ~) into (Z, _<), but not from (Z, _<) 
into (Z, 4).  

d. Let f "  X ~ Y be any function. Then the forward image map f "  T(X) ~ T(Y)' 
and the inverse image map f - 1  . T ( y )  ~ T(X),  defined in 2.7 and 2.8, are both 
o r d e r - p r e s e r v i n g -  that  is, 

S1 ~ ~2 ~ f(S1) C f(S2), T1 C_ T2 =~ f - l ( T 1 )  C_ f - l (T2) .  
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MAX, SUP~ AND OTHER SPECIAL ELEMENTS 

3.19.  Definitions. Let (X, ~) be a partially ordered set, and let y, z c X and S c_ X.  

a. We say z is an u p p e r  b o u n d  for S if s ~ z holds for each s E S; we then say S is 
b o u n d e d  a b o v e .  We emphasize tha t  z is not required to be an element of S. 

Dually, z is a l o w e r  b o u n d  for S if s ~ z holds for each s E S; we then say S is 
b o u n d e d  be low .  

A set is order bounded (as defined in 3.15) if and only if it is bounded both  above 
and below. 

b. z is a m a x i m u m  element of S (also known as a greatest, largest, biggest, highest, or 
last element of S) if z E S and z ~ s for all s E S. Clearly, a subset of a poset has at 
most one maximum. If it exists, it is denoted by max(S) .  

Dually, z is a m i n i m u m  element of S (also known as a least, smallest, littlest, 
lowest, or first element of S) i f z  E S a n d  z ~ s for all s E S. Again, a s u b s e t  of a 
poset has at most one minimum; it may be denoted by min(S).  

c. If S c_ X is bounded above and the set of upper  bounds  of S has a least element, then 
tha t  element is called the l eas t  u p p e r  b o u n d ,  or s u p r e m u m  or s u p  of S. (Among 
algebraists, it is also known as the join of S.) It is denoted 1.u.b.(S) or sup(S) or V s .  
If the elements of S are represented by subscripted notat ion,  as in S - {x~ �9 c~ E A}, 
then V s may also be denoted by V~cA x~. The sup of two elements x and y is also 
wri t ten as x V y. To be precise, the value sup(S) may be referred to as the supremum 
of S in X,  for reasons indicated in 3.20.e. 

Dually, if S c_ X is bounded below and the set of lower bounds of S has a greatest  
element, then tha t  element is called the g r e a t e s t  l o w e r  b o u n d ,  or i n f i m u m  or in f  
of S. ( a m o n g  algebraists, it is also known as the meet of S.) It is denoted g.l.b.(S) 
or inf(S) or A S .  The infimum o f a s e t  S -  {x~ �9 c~ c A} may also be denoted by 
/ ~ A  x~. The inf of two elements z and y is also wri t ten as x A y. 

d. A m a x i m a l  element of S is any so E S with the proper ty  tha t  no element of S is 
strictly greater than  so. 

Dually, a m i n i m a l  element of S is any so E S with the proper ty  tha t  no element 
of S is strictly less than  so. 

3.20.  Further remarks and notational conventions. 
a. We emphasize tha t  "max" and "min" are the abbreviat ions for "maximum" and "min- 

imum," not "maximal" and "minimal." 

It may be helpful to think of maximal  elements and suprema as two kinds of "almost 
maximums" i.e., objects with most of the propert ies one would find in a maximum. 
They can often be used in place of a maximum, in situations where a maximum is 
not available. (For instance, if we are trying to generalize some known theorem by 
modifying a known proof, we may at some point replace a maximum with a maximal  
element or a supremum.)  

Analogously, a minimal element or an infimum is an "almost minimum." 
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b. Vie write "~-upper  bound," "~-maximal ,"  "~-max(S) , "  "max4(S) ,"  etc., if we wish 
to emphasize or clarify which partial  ordering is being used. 

e. When the terms "max," "sup," etc., are applied to a collection of sets and no ordering 
is specified, then it is generally understood tha t  C_ is the ordering being used. Thus, 
for instance, a maximal element of a collection 9" of sets is an element of 9" tha t  is not 
a subset of any other element of 9 ~. Similarly, a largest element of ff is an element of 9" 
tha t  is a superset of every other element of 9=. Note tha t  a collection 9 ~ of sets can only 
have a largest element if the union of all the elements of 9" is itself an element of 9 " -  
in which case tha t  union is the largest element. Similarly, if 9" has a smallest member,  
tha t  smallest member  is equal to the intersection of all the members of 9 ~. 

There are some slight similarities between our language for (X, ~)  and our language 
for (T(S), c_) tha t  may help in learning the vocabulary: x V y is the join of two objects, 
while the union A U B of two sets is obtained by "joining" them together. Also, x A y 
is the meet of two objects; two sets A and B are said to "meet" (in the sense of 1.26) 
if and only if their intersection A N B is nonempty. 

d. If f is a mapping from a set S into a poset, the expressions max f (S )  and maxs~s f ( s )  
both mean  max{f ( s )  �9 s E S}. Expressions for min, sup, and inf are interpreted 
analogously. 

e. Context dependence of the definitions. The notat ion "sup(S)" does not mention X 
explicitly, but the value of sup(S) depends very much on the choice of the poset (X, 4)  
in which S is a subset. For instance, let I denote the interval [0, 1], and let 

I I z 

c ( i ,  - 

S - 

{functions from I into I}, 

{continuous functions from I into I}, 

{ f E C(I, I) �9 f (O) - O}. 

Then S c C(I, I) c I z. Let I / be given the product ordering, and let C(I, I) be given 
the restriction of tha t  ordering. Then the supremum of S in C(I, I) is the constant 
function 1, whereas the supremum of S in 11 is the characteristic function of the interval 
(0, 1]. 

3 .21.  Elementary examples and properties. Let (X, ~) be a partially ordered set. Let 
z c X a n d S C X .  Then: 

a. z = max S if and only if z is both an element of S and an upper bound for S. 

b. z = min S if and only if z is both an element of S and an lower bound for S. 

c. If max(S)  exists, it is also the supremum of S and the only maximal  element of S. 

d. If min(S) exists, it is also the infimum of S and the only minimal element of S. 

e. X itself is bounded (in its own ordering) if and only if it has both a max imum and a 
minimum. 

f. Let x, y c X.  Then 

x @ y  e. > m a x { x , y } - y  .: :- s u p { x , y } - - y .  
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g. Suppose that  sup(S) exists in X. Then 

z > s u p ( S )  -' ;, z > s for every s E S. 

h. Degenerate example, rg is a bounded subset of X. Indeed, every element of X is an 
upper bound and a lower bound for the empty set, since the requirement involving 
s E S is vacuously satisfied when there are no s's. 

The set ~ has a least upper bound if and only if X has a first element, in which 
case those objects are the same. Similarly, ~ has a greatest lower bound if and only if 
X has a last element, in which case those objects are the same. 

Clearly, ~ has neither a maximum nor minimum element, nor a maximal  or minimal 
element, since it does not have any element. 

i. A subset of a poset can have at most one maximum and at most one supremum. 
However, a subset of a poset may have more than one maximal  element. For instance, 
let f~ be any set containing more than one element, and let X = {proper subsets of f~} 
be partially ordered by inclusion. Then each complement of a singleton (i.e., each set 
of the form ft\{w}) is a maximal  element of X. 

j.  A subset of a poset may have an upper bound without having a maximum. For instance, 
let X = Z 2 have the product  ordering. Then the subset S = { (0, - 1), ( -  1, 0) } has no 
maximum element, but it has (0, 0) as an upper bound. 

k. A subset of a poset need not have any maximal elements. For instance, let X be the 
real line with its usual ordering. Then the set S = {x E R : x < 0} has no maximal  
element, but it has 0 as a supremum. The set IR, considered as a subset of itself, has 
no maximum, no maximal  element, and no supremum. 

1. Let (X, ~) be a poset. Then sup is an isotone map, and inf is an antitone map, from 
their domains into X. Tha t  is: 

A c_ B c_ X =:~ sup A 4 sup B, inf A > inf B 

whenever those sups and infs exist. 

m. Proposition. Suppose that  {S~ : a E A} is a collection of nonempty subsets of X and 
inf(S~) exists for each c~. Then inf{inf(S~) : a E A} exists if and only if i n f ( ~ e  a S~) 
exists, in which case they are equal. (Analogous results hold for sups.) 

Hint: Show that  p is a lower bound for {inf(S~) : c~ E A} if and only if p is a lower 

bound for U~EA S~. 

n. Let P = l--[aEA Xa be a product  of posets, with the product ordering (see 3.9.j). Let 
be a nonempty subset of P.  Verify that  sup �9 exists in P if and only if the set 

{f(A) : f E ~} has a supremum in Xa for each A in which case sup (I) is a function 
defined on A by 

( sup~) (~)  - sup{f(~)  �9 f E ~} for each ~ c A. 

Thus, the supremum in P is defined coordinatewise. We shall call it the p o i n t w i s e  
s u p r e m u m ,  or sometimes simply the s u p r e m u m ,  of the set (I) in P. We emphasize 
tha t  sup �9 is a member  of P but not necessarily a member  of (I). Analogous notations 
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are used for inf, max, and min. In particular, when �9 contains just two functions, we 
obtain 

(x V y)(~) - x(~) V y(~), (x A y)(~) -- x(~) A y(~). 

3.22. Let (X, 4)  and (Y, __) be partially ordered sets. A mapping p" X --, Y is 

s u p - p r e s e r v i n g  if, whenever S is a nonempty subset of X and a - sup(S) 
exists in (X, ~), then sup{p(s) �9 s e S} exists in (Y, __) and is equal to p(cr); 

i n f - p r e s e r v i n g  if, whenever S is a nonempty subset of X and ~ = inf(S) exists 
in (X, ~), then i n f {p ( s ) : s  e S} exists in (Y, _) and equals p(~). 

These are special kinds of increasing maps; see 3.17. Some basic properties follow. 

a. Any order isomorphism is sup- and inf-preserving and strictly increasing. 

b. Any sup- or inf-preserving map is also increasing. Hint: 3.21.f. 

c. Examples. The inclusion maps C ( I , I )  c -> i i  in 3.20.e, V c -~ R 3 in 4.21, and 

ba(A) c RA  -~ in 11.47 are order-preserving, but they are not sup-preserving or inf- 

preserving. The inclusion 9" _c IP(X) given in 5.21 is sup-preserving but not inf- 
preserving. 

CHAINS 

3.23. Definition. Let (X, 4)  be a poset. Then the following conditions are equivalent. If 
any, hence all, are satisfied, we say that (X, 4) is a cha in  (or 4 is a total order or linear 
order or chain order). 

(A) Any two elements of X are comparable (defined in 3.9.a). 

(B) Each two-element subset of X has a first element. 

(C) Each two-element subset of X has a last element. 

(D) Each nonempty finite subset of X has a first element. 

(E) Each nonempty finite subset of X has a last element. 

(F) (X, 4) satisfies the T r i c h o t o m y  Law: for each x, y E X, exactly one of the 
three conditions 

x -4 y, y -~x, x = y  

holds. In other words, the sets Graph(-~), Graph(~-), and I form a partition 
of X x X .  

3.24. Some important examples. The number systems N C_ Z c_ @ c_ R c_ [-oc, +oc] play 
a major role in analysis. We shall give formal introductions to @ and R in later chapters, 
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but for now we assume that  the reader is already familiar with these number systems at 
least informally. The reader should understand arithmetic and inequalities in R. 

All of the number systems N , Z , Q , R  are chains. Indeed, R is a chain, and all the 
inclusions N c_ Z c_ Q c_ IR are order-preserving. 

3.25. Elementary properties. 
a. Any subset of a chain is a chain. 

b. If (X, 4)  is a chain, then (X, , )  is a chain. 

c. A product of chains, with the product ordering (from 3.9.j), is not necessarily a chain. 
For instance, N 2 is not a chain. 

Certain other orderings on a product may be chains or well orderings; see 3.44. 

d. Suppose (X, <) is a chain and S c_ X with a - sup(S). Then for each z E X with 
z < a there exists some s c S with z < s < a. 

3.26. A t o t a l  p r e o r d e r  on a set X is a preorder 4 (i.e., a reflexive, transitive relation) 
that  also has this property: 

Any two elements z, y E X are comparable 
z 4 y or y 4 z holds. 

i.e., at least one of the relations 

Observe that  a total  preorder is in fact a total  order if and only if it is antisymmetric. 
Let 4 be a total preorder on X; then: 

a. An equivalence relation is given on X by this rule: z ~ y if both z 4 y and y 4 z. 

b. 4 defines a total  order on the equivalence classes, i.e., on the quotient set X~ ~. 
c. 4 can be extended to a total  order < on X (so that  Graph(4 )  _D Graph(_<)) by this 

natural  method: Define a chain ordering < arbitrarily within each of the equivalence 
classes. When z and y are not equivalent, say z _< y if and only if z 4 y. 

3.27. The reader may be bet ter  able to appreciate transitivity and chains after considering 
C o n d o r c e t ' s  P a r a d o x :  

Even if we assume that  each individual voter's preferences are ranked in a chain 
ordering, the preferences of a collection of voters (determined by majori ty rule) 
are not necessarily a chain ordering they need not be transitive! 

For instance, a recent presidential election in the United States had three main candidates: 
Bush, Clinton, and Perot, hereafter represented by B, C, P. (For those readers who are not 
interested in politics, ask which fruit is preferred: banana, cherry, or peach; the mathematics 
is the same.) Before the election, I took a "straw poll" and asked my students which 
candidate they preferred. The class preferred Clinton over Bush; the class preferred Bush 
over Perot; but the class preferred Perot over Clinton! How is this possible? The following 
chart shows the details. 

Each individual voter's preferences are given by a chain ordering of the three candidates. 
There are six possible chain orderings of the candidates. For instance, one ordering is: Bush 
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3-way 

C > B  
C < B  

B > P  
B < P  

P > C  
P < C  

B B 
C P 
P C 

1 5 

1 5 

1 5 

1 6 1 

C C P P 
B P B C 
P B C B 

6 1 2 7 

6 1 7 

2 7 

2 7 

Sum 

22 

14 
8 

12 
10 

14 
8 

Result 

Clinton 
beats Bush 

Bush 
beats Perot 

Perot 
beats Clinton 

is first choice; Clinton is second choice; Perot is third choice. That ordering is represented 
by "B C P," in the first column. The row labeled "3-way" shows how many members of 
the class have that  chain ordering; thus, that  row shows the votes that would be cast in a 
contest between all three candidates. For instance, just one of the 22 voters had a "B C P" 
preference, so the number 1 appears in the "B C P" column, in the "3-way" row. 

Below the "3-way" row are rows showing the results of contests between any two candi- 
dates. The totals for each contest are in the column with the heading "sum." For instance, 
in a contest between Bush and Clinton, 14 voters preferred Clinton over Bush, while 8 
voters preferred Bush over Clinton. Thus we obtain the result "C > B." 

Of course, this situation can arise with other numbers of voters and other numbers of 
candidates. 

Exercise. The simplest case of Condorcet's Paradox involves 3 candidates and 3 voters. 
Work out the details. 

This type of paradox was first published by Condorcet in 1785. A characterization of the 
combinations of numbers that yield Condorcet's paradox, and further references, were given 
by Weber [1993]. A generalization to infinite sets of voters (with majority rule replaced by 
other kinds of rule) were studied be Haddad [1989]; further considerations about finite or 
infinite sets of voters can also be found in Kirman and Sondermann [1972]. 

VAN MAAREN'S GEOMETRY-F REE SPERNER 
LEMMA 

3.28. Discussion and preview. The main result of this subchapter is a technical combina- 
torial result about preordered sets: 

Van  M a a r e n ' s  T h e o r e m .  Let t~ : X ~ P be some given function, where P 
and X are nonempty sets and P is finite. For each p E P, assume ~p is a total 
preordering of X. Then there exists a function a from some nonempty subset 
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of P into X, satisfying: 

�9 or(q) 4q or(r) for all q, r E Dora(a). 

�9 There is no z c X that  satisfies a(q) -<q z for all q c Dora(a). 

�9 Dom(cr) = e(Ran(cr)). 

This theorem is due to Maaren [1987]; our presentation is based on the exposition given 
by van de Vel (see Vel [1993]). The proof will take several pages and will require several 
more definitions and preliminary results. We complete the proof of the theorem in 3.36, 
and follow it with a corollary about approximate fixed points in 3.37. 

This material may be postponed. It is rather specialized and will not be used until 
27.19, where we use it to prove Brouwer's Fixed Point Theorem and related results. We 
include van Maaren's argument this early in the book mainly in order to emphasize how 
elementary it is i.e., to show that  it does not depend on topology or geometry. For an 
abridged treatment,  readers who are willing to skip some proofs may proceed directly to 
3.37; the other ideas in this subchapter will not be needed elsewhere in this book. 

The literature contains many different proofs of Brouwer's Theorem. Some of the proofs 
may appear short or elementary, but that  is only because they have concealed some of the 
d i f f i c u l t y -  usually by using some well-known but nontrivial theorem, about measures and 
Jacobian determinants or about the algebraic topology of simplicial triangulations. Those 
proofs, when carried out in detail, are (in this author's opinion) non-intuitive; they involve 
n-dimensional diagrams that  are hard to visualize and that  seem to have little to do with 
the central ideas of Brouwer's Theorem. Van Maaren's proof, though not shorter or simpler 
than the other proofs, avoids such drawbacks. Our presentation separates the proof of 
Brouwer's Theorem into two main components: a purely combinatorial result in 3.37 and a 
compactness argument in 27.19. 

3.29. Notations and definitions. The cardinality of a set S will be denoted ISI. The 
symmetric difference of two sets S, T will be denoted S A T. The domain and range of a 
function a will be denoted, respectively, by Dom(a) and Ran(a).  

Throughout this subchapter, we assume some nonempty sets P and X are given, with 
P finite. Also, we assume some mapping g : X ~ P is given; we shall call this function the 
labe l ing .  An a s s i g n m e n t  will mean a function 

cr : Dom(c~) ~ X, where Dom(a) is a nonempty subset of P. 

Note that  any assignment has a finite domain, hence also a finite range. An assignment 
is c o m p l e t e  (with respect to e ) i f  Dom(r = e(Ran(cr)). An assignment cr will be called 
a l m o s t  c o m p l e t e  if IDom(cr)\ e (R~(~) ) l  _< 1. Two assignments Crl,a2 will be called 
n e i g h b o r s  if either 

Dom(r = Dom(cr2)and IRan((~l)A Ran(r I -- 1, or 

Ran(r = Ran(or2)and IDom(crl)A D o m ( ~ 2 ) ] -  1. 
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3.30. Observations. For any assignment a, 

a. [g(Ran(a))] _< Ran(a)] _< ]Dora(a)]. Since ] S ] -  IT - S \ T ] -  IT \ S[ for any finite 
sets S and T, we have 

Dom(cr)]-  Ig(Ran(er)) I 

= ]Dom(~r) \ g(Ran(er)) I - g(Ran(~)) \ Dom(~)l 

<_ [Dora(a) \ f(Ran(cr)) I. 

b. If Dom(a) \ f ( R a n ( a ) ) ] -  0 then a is complete. 

c. If a is almost complete, then 0 <_ ]Dom(a) [ -  f(Ran(a))] _< 1. 
A A - ~  

d. Let us abbreviate D - ] D o m ( a ) [ ,  R - ] R a n ( a ) ] ,  f - ] f ( R a n ( a ) ) ] .  The almost com- 
plete assignments can be classified into the complete assignments and three types of 
noncomplete assignments" 

Is a injective? 
t~ injective on Ran(a)? 

A A A 

D , R , f  �9 

Ig(Ran(a)) \ D o m ( a ) l -  

Complete Type (i) Type (ii) Type (iii) 
yes no yes yes 
yes yes no yes 

A A 

D - R  
A - f  

A 

D 1-- 
A A 

R - f  

A A 

D - R -  
A 

f §  

A A 

D - R  
A 

�9 ~ I ]  . 

0 0 0 1 

3.31. If a is an almost complete assignment that is not complete, then Dom(a ) \  f(Ran(a))  
contains exactly one element. We shall call it the e x t r a n e o u s  e l emen t  for a. 

Proposition. Suppose that a and a'  are assignments that are almost complete but not 
complete and they are neighbors. Then they have the same extraneous element. 

Proof. Suppose that a and a'  have extraneous elements p and p', respectively, where p =/= p'; 
we shall arrive at a contradiction. 

Since Dom(a) and Dom(a') differ by at most one element, one must contain the other; 
say Dom(a) C_ Dom(a').  Since p e Dora(a) \ f(Ran(a)),  we have p e Dom(a').  Since p 
is not the extraneous element of a' ,  we have p E f(Ran(a')) .  Since p ~ f(Ran(cr)), the 
sets Ran(a ' )  and Ran(a) are different, and therefore Dom(a') - Dom(a). Since the sets 
Ran(a ')  and Ran(a) differ by at most one element, we have f(Ran(a)) C_ f(Ran(cr')). Then 

p' E Dom(a') \ f(Ran(a '))  C Dom(a) \ t~(Ran(a)), 

and so p' is an extraneous element of a a contradiction. 

3.32. More assumptions and definitions. In the remainder of this subchapter we assume 

P is the index set for a collection { 4 p ' p  c P} of total preorderings of X. 

(Recall from 3.26 that a preordering of X is total if it makes every two elements of X 
comparable. In several of the next few sections we make the additional assumption that 
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all the 4p'S are a n t i s y m m e t r i c -  i.e., they are chain orderings but in 3.36 we drop that  
restriction.) 

An assignment a will be called a c r y s t a l  if it satisfies these two conditions: 

(CR-1) o(q) 4q a ( r )  for all q, r E Dom(a) .  

(oR-2) There is no x E X that  satisfies c(q) -<q x for all q E Dom(a) .  

Let e be the set of almost complete crystals. A crystal a with IDom(c)I = k will be called 
a k - c r y s t a l .  

3.33. Observations. Assume all the 4p'S are antisymmetric.  Then: 

a. Condition (CR-1) in 3.32 can be restated as: 

a(q) is the 4q-smallest member of Ran(a) .  

Thus, a crystal is uniquely determined by its domain and range. 

b. Any l-crystal  is almost complete. 

c. Let a be an assignment whose domain is a singleton i.e., Dom(a)  = {p} for some 
p E P. Then a is a crystal if and only if a(p) is the 4p-largest member of X. 

A l-crystal  is uniquely determined by its domain. 

e. Suppose that  a l , c 2  E e with Ran(a1) c_ Ran(a2).  Then a l ~ a  2 agree (i.e., take the 
same values) on Dom(a l )  C1 a~- l (Ran(al ) ) .  

Hint: Let q E D o m ( a l ) A  a21(Ran(al)). By (CR-1), oj(q) is the 4q-smallest 
member of Ran(a j )  for j = 1, 2. 

f. A special case of the preceding result is as follows: Suppose that  a l ,  a2 E e with 
Ran(a l )  = Ran(c2).  Then Cl, c2 agree on D o m ( a l ) A  Dom(a2).  

g. Suppose that  ~- and ~-' are neighboring almost complete crystals. Then one of T, T' is 
injective and the other is not. If ~- is injective and T' is not, then ~- and T' must be 
related in one of these two ways: 

(a) Ran(T')  -- Ran(T) and Dom(T') D Dom(~-). In this case 7- and T' agree on Dom(~-). 

(b) Dom(T) -- Dom(T') and Ran( r )  D Ran(T') .  In this case ~- and T' agree at all but 
one point of Dom(T). 

Hints: Use 3.30.d, 3.33.e, and 3.33.f. 

do 

3.34. Proposition. Assume all the ~p 'S  are  antisymmetric.  Then any noncomplete 1-crystal 
7- has precisely one neighbor 0-' in C. 

Proof. Any 1-crystal ~- is injective. Clearly T' cannot have empty range, so 3.33.g(b) is not 
possible. Thus we must have Ran(T')  -- Ran(T) and Dom(~-') D Dom(T). Say ~- has graph 
{ (q, b)}; then Graph(T')  = { (q, b), (q', b)} for some q' ~: q. For T' to be almost complete, 
it must satisfy IDom(T ' ) \  t~(Ran(T')) I < 1; that  is, I{q, q'} \ {g(b)}l-< 1. Therefore at least 
one of q, q' must equal t~(b). By assumption (q, b) is not complete, so g(b) # q. Thus we 
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must have q' - g(b).  Finally, we easily verify tha t  r '  - { (q, b), (g(b),  b)} is indeed a member  
of C. 

3.35.  Proposition. Assume all the ~---~p'S a re  antisymmetric.  Then for k > 2, a noncomplete 
k-crystal a E C has precisely two neighbors in C. 

Proof. We analyze the possible values for a neighbor a~. We consider several cases, according 
to the type of a (with types as listed in 3.30.d). 

~r is of  T y p e  (i). In this case cr is not injective. There is one and only one pair of elements 
pl,p2 in Dom(cr) such that  pl r P2 and or(p1) = a(p2). We shall obtain one neighbor of a 
from each of these two points. 

Let p be one of Pl, p2. We shall obtain a neighbor by either modifying or removing or(p) 
i.e., by either changing the definition of the function at p or removing p from the domain. 

We do this in two cases, according to whether there does or does not exist a solution x E X 
to this problem: 

( ,)  ~r(q) -<q x for all q E Dora(a) \ {p}. 

If ( ,)  has any solutions, let v be the ~p-largest of those solutions. Note tha t  v ~p or(p), 
since otherwise a and v would contradict (CR-2). Now a neighbor ~r ~ can be defined with 
Dora(or') = Oom(a) ,  by taking 

, {- or(q) when q -r p 
or(q) - v w h e n q - p .  

, %  

On the other hand, if ( ,)  has no solution, then a neighbor ~ can be defined by just restricting 
to a smaller domain i.e., taking Dom(cr') = Dom(~r) \ {p} and taking ~' equal to ~r on 

Dom(a~). It is tedious but straightforward to verify that  the function ~' defined in either 
of these fashions is a neighboring almost complete crystal. 

Thus we obtain one neighbor by either modifying or removing cr(pl) and another by 
either modifying or removing a(p2). Now we shall show that  there are no other neighbors 
possible besides those two. 

Let a ~ be a neighbor of a in e; what  form can a ~ take? By 3.33.g, cr ~ is injective, and 
there are two cases to consider: 

(1) Ran(a)  = Ran(or') and Dom(a)  = {p} U Dom(a ' )  for some p r Dom(cr'), and a '  and 
agree on Dom(a~). Since cr ~ is injective, p must be one of pl ,p2.  Since cr ~ is a crystal, by 

(CR-2) we know that  there is no x e X satisfying a(q) -~q x for all q E Dom(a ' ) .  Thus 
there is no solution of problem (,) ,  and the function a ~ can only be the one obtained by 
removing o(p). 

(2) Dom(cr) = Dom(cr') = D and Ran(or') = R a n ( a ) U  {cr'(p)} for some p e D with 
cr'(p) ~ Ran(a) ,  and a and a '  agree on D \ {p}. Since Ran(a)  c_ Ran(a ' ) ,  we have a(p) = 
a'(ql) for some ql E D. Since a(p) belongs to Ran(a)  and a'(p) does not, we know a '(p)  -/= 
a(p) = cr'(ql), and therefore p =/= ql. Since a and a '  agree on D \ {p}, we have or(q1) = 
cr'(ql) = or(p). Thus p and ql are distinct members of D that  are mapped to the same value 
by a. Therefore the set {p, ql} is equal to the set {Pl, P2}. Hence p is one of Pl,P2. Since 
or' satisfies (CR-1) and or' is injective, we have o"(q) ~q o"(p) for all q e D o m ( a ' ) \  {p}. 
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That  is, or(q) -<q cr'(p) for all q E Dora(or') \ {p}, so cr'(p) is a solution of ( ,) .  To see that  
cr'(p) must be the 4p-largest solution of ( ,) ,  suppose that  x is a 4p-larger solution. Then 
cr(q) -<q x for all q E Dora(or) \ {p}, and cr'(p) -<p x as well. Tha t  is, cr'(q) -~q X for all 
x E Dora(or'), contradicting the fact that  or' must satisfy (CR-2). Thus, we have established 
that  there is a solution of problem (,) ,  and the function or' can only be the one obtained 
by modifying or(p). 

cr is of  T y p e  (ii). In this case cr is injective, but g is not injective on Ran(or). Thus 
IDom(cr)l = tRan(cr)l > It!(Ran(cr))l. There is a unique pair of distinct elements Wl, w2 E 
Ran(or) that  get mapped by g to the same value. There are unique elements Pl, P2 E Dom(cr) 
with cr(pj) = wj. We shall obtain one neighbor of cr from each of these two points. 

If Dom(cr') ~ Dom(cr) and Ran(or') - Ran(a) ,  then we have ]Dom(cr ')]-  1 _> IDom(cr)[ _> 
le(Ran(~))l + 1 = Ig(Ran(~'))l + 1, contradicting a.a0.r Thu~ a.aa.g(~) cannot hold. 

Therefore Dom(cr) = Dom(cr') and Ran(or) = Ran(or')tO {or(p)} for some p with or(p) 
Ran(or'), and cr and or' agree on the set S - Dom(cr) \ {p}. Since Ran(or') c Ran(a) ,  we 
must have or' (p) C cr(S). 

If p ~ {Pl,P2}, then Pl,P2 are distinct members of S with g(cr'(pl)) = g(cr'(p2)), and 
t!(cr'(p)) E t!(cr'(S)), too. It follows that  Ig(Ran(cr')) I _< IDom(cr ' ) l -  2, contradicting 3.30.c. 
Thus we must have p E {Pl, P2}. 

For each of those two choices of p, the value of cr'(p) is determined uniquely: By 3.33.a, 
cr'(p) must be equal to the 4p-lowest member of Ran(or'). 

We have shown that  only two functions (one with p = Pl, the other with p = P2) could 
possibly be almost complete crystals that  neighbor or. It is easy to verify that  both of those 
two functions are, indeed, such crystals. 

r~ is of  T y p e  (iii). In this case cr is injective, and g is injective on Ran(a) .  We shall 
obtain one neighbor of cr from the unique member of g(Ran(cr)) \ Dom(a)  and another from 
the unique member of Dom(a)  \ g(Ran(a)) .  By 3.33.g, we can obtain a neighbor only by 
enlarging the domain or decreasing the range; we shall show that  each of these two methods 
yields precisely one neighbor. 

(1) Enlarging the domain: In this case Dom(a ' )  = Dom(cr)tO {p} for some p ~ Dom(a) ,  
and Ran(a ' )  = Ran(a)  = R, and cr and a '  agree on Dom(a) .  Since p ~ Dom(a) ,  p is not 
the extraneous element of a, and therefore p is not the extraneous element of a ' .  Hence 
p ~ g(Ran(~')) = g(R) = g(Ran(~)).  Thus p is the unique member  of t~(R) \ Dom(cr). By 
3.33.a, cr'(p) must be the 4v-least member of R. Thus we have specified cr' uniquely. It 
is easy to verify that  the function cr' defined in this fashion is indeed an almost complete 
neighboring crystal. 

(2) Decreasing the range: In this case Dora(or) = Dora(or') = D and Ran(a ' )  = Ran(or)\  
{or(p) } for some p c D, and cr and cr' agree on D \ {p}. Since t~ is injective on the range of 
or, we have e(cr(p)) E e(Ran(cr)) \ e(Ran(cr')). Since g(cr(p)) E g(Ran(cr)), we have g(cr(p)) 
Dom(cr) \ t!(Ran(cr)). Tha t  is, t!(cr(p)) ~ Dora(or ') \  t~(Ran(cr')), since cr and or' have the same 
extraneous point. But g(cr(p)) ~ t~(Ran(cr')), so we conclude g(cr(p)) ~ Dom(cr') = Dom(cr). 
Thus we have identified g(cr(p)) uniquely: it is the unique member  of t!(Ran(cr)) \ Dom(cr). 
Since g and cr are injective, we have determined p uniquely: It is the unique member of 
Dora(or) that  satisfies g(cr(p)) ~ Dora(or). The functions cr and cr' agree on D \ {p}, and the 
value of cr'(p) is determined uniquely by 3.33.a. Thus we have defined or' uniquely. It is a 
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tedious but straightforward exercise to verify that  the function a t defined in this fashion is 
indeed an almost complete crystal that  neighbors a. 

3.36. Van  Maaren~s  T h e o r e m .  Suppose that  P and X are finite sets and for each p c P 
we are given a total preorder ~p on X (not necessarily antisymmetric). Let any labeling 
t~" X ~ P be given. Then (X, P)  has at least one complete crystal with respect to t~. 

Diagram for 
proof of 3.36 

Proof. A preliminary first step is this: We can replace each total preorder ~p with a 
total order, hereafter denoted ~p, by arbitrarily choosing a total ordering on each of the 
equivalence classes of ~p. This replacement results in fewer crystals. Thus, it suffices to 
prove the theorem under the additional assumption that  each preordering ~p is a total 
ordering. 

Since X is a finite set, e is finite also. By 3.33.c, there exists a l-crystal a0, with a 
singleton domain Dom(ao) = {po}. In (~, each incomplete 1-crystal has exactly one neighbor, 
and each incomplete 2-crystal has exactly two neighbors. Follow a path, starting at a0, going 
from each crystal to its neighbor. If we do not encounter any complete crystals along the 
path, then our route is uniquely determined; it must begin and end at distinct l-crystals 
(see the preceding diagram). However, at each step the extraneous point is preserved, by 
3.31; thus the beginning and ending l-crystals must have the same extraneous point 
contradicting the fact that  they are distinct. This proves that  the path must include at 
least one complete crystal. (Incidentally, we have given a constructive algorithm for finding 
a complete crystal: just follow the path until one is encountered.) 

3.37. The first theorem below is included only for motivation; we give references for it in 
lieu of a proof. The second theorem, though more complicated to state, is easier to prove, 
and we shall do so below. It will be used to prove Brouwer's Theorem in 27.19. For both 
theorems, let R n be metrized by d(x, y) - m a x  { I x j  - YjI " 1 < j <_ n}. 

F i r s t  A p p r o x i m a t e  F i x e d  P o i n t  T h e o r e m .  Let n be a positive integer, 
let f - (fl ,  f 2 , . . . ,  fn) " [0, 1] n ~ [0, 1] n be a function, and let any number 
c > 0 be given. Then there exists a set S c_ [0, 1] n with diameter less than e, 
with the following property" For each j c {1, 2 , . . . ,  n} there exist some points 

I x - ( x l , x 2 , . . . , x n )  and x ' -  (X~l ,X~, . . . ,Xn) in  K such that  xj < f j ( x )  and 
x~ >_ f j (x ' ) .  

S e c o n d  A p p r o x i m a t e  F i x e d  P o i n t  T h e o r e m .  Let n be a positive integer. 
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Let A be the standard n-simplex; that  is, the set 

A { } U E R n " U l , U 2 , . . . , U n  ~ 0 a n d  Uj _< 1 . 

j = l  

Let any function f "  A + A and any number c > 0 be given. Then there exists 
a set S c_ A that  acts as an approximate fixed point of f ,  in the following sense: 

�9 diam(S) _< e 

�9 For each i - 1, 2 , . . . ,  n, there is some u c S such that  ui - e <_ f (u) i .  
n n �9 There exists some point v ~ S satisfying ~ = 1  vi + e _> ~ = 1  f(v)~. 

Remarks. We emphasize that  f is not assumed to be continuous or even measurable. Aside 
from the domain and codomain, we make no assumption at all about f .  Thus, these 
theorems are not really "about" f;  they are theorems about the combinatorial structure of 
IR ~. An analogous theorem about infinite dimensional vector spaces will be given in 27.19. 

A similar argument in two dimensions, more geometrical and elementary in presentation, 
was given by Shashkin [1991]. Theorem 2 of Baillon and Simons [1992] is also very similar. 

The First Approximate Fixed Point Theorem can be proved by methods similar to 
those below, using Wolsey's [1977] Cubical Sperner Lemma instead of our 3.36. It would 
be interesting to know if the First Approximate Fixed Point Theorem can also be proved 
by some short argument using 3.36; no such argument is presently known to this author. 

n Proof of the Second Approximate Fixed Point Theorem. By writing Un+ 1 - -  1 - }-~j=l uj, 
we may rewrite 

A _ _  { } u c ] R  ~+1 �9 U l , U 2 , . . . , u n , u ~ + l > 0 a n d  u j - 1  
j = l  

The (n + 1)st coordinate will be treated just like the other coordinates in the following 
argument. 

Let M be an integer large enough so that  2(n + 1) /M < c. Let X consist of the 
collection of all points u E A for which all of M u l , M u 2 , . . .  ,Mun ,  MUn+l are integers. Let 
P - { 1 , 2 , 3 , . . . , n , n  + 1}. For 1 < j < n + 1 define a preordering of X by taking u 4 j  v 
when uj < vj. 

Let cr be a crystal, and let S be its range. If 

~(i)~ _< 
i~Dom(~) 

n + l  

M 

then there exists a member x E X that  satisfies a(i)i  < xi for all i E Dora(a),  contradicting 
(CR-2) in 3.32. Thus the inequality above does not hold. 
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For any i , j  e Dom(a) ,  we have a(i)i <_ a(j)i, and therefore 

n + l  
1 < E a(i)i < E a(j)i < 

M ~ 
i~Dom(~) i~Dom(~) 

from which it follows that  0 < a ( j ) ~ -  a(i)~ < n+l for each i j e Dom(a)  Therefore 
la(j)i - a ( k ) i l  <_ 2 ( n +  1)/M whenever i , j , k  e Dom(a) .  Hence ]ui-vi l  <_ c for all u,v e S 
and i E Dom(a) .  

X--~n+l 
On the other hand, since z_,i=l a ( j ) i  - 1, we must have ~i~tDom(~)a(j)~ -< --M--n+1 for 

j e Dom(a)  and, in particular a(j)i < n+l for each i ~ Dom(a)  Thus 0 < ui < c/2 for 
all u e S and i ~ Dom(a) .  Therefore diam(S) < c. 

Define a labeling t~ : A ~ {1, 2 , . . . ,  n, n + 1} as follows: let t~(u) = i if i is the first 
coordinate tha t  satisfies ui <_ f(u)i.  By 3.36 there exists a complete crystal a with respect 
to tha t  labeling. When i e Dom(a)  = t~(Ran(a)), then i = t~(u) for some u e S, so 
u~ < f(u)~. On the other hand, we noted earlier in this proof that  when i ~ Dom(a)  and 
u E S, then ui _< r hence f (u)i  >_ ui - c. This completes the proof. 

WELL ORDERED SETS 

3.38.  Definition. Let (X, g)  be a poset. We say g is a well  o r d e r i n g  if each nonempty 
subset of X has a first element. Then X is a well  o r d e r e d  set ,  or a wose t .  

Examples. The set N is well ordered. Also see 3.43 and 5.44. 
Remark. Well ordered sets are only used infrequently in analysis. This subchapter may 

be postponed or omit ted if the reader is concerned only with the usual topics of analysis. 

3.39. Basic properties of wosets. 
a. Any woset is a chain. 

b. Any subset of a woset is a woset. 

c. Let S be a subset of a woset X. Then S is a proper lower set in X if and only if 

S - Pre(b) for some b E X, with notat ion as in 3.16.b. 
Hint for the "only if" part: Let b be the first element of X \ S. 

A 

d. Let X be a woset. Then the lower sets of X form a woset X,  when o r d e r e d  by 
c .  The last element of X is X. If X is not empty, then the first element of X is 
B 

- Pre(min(X)) ,  where min(X)  is the first member of X. 

e. Any woset X is a proper lower set of some larger woset Y. Indeed, one way to form 
such a larger set is by adjoining some new element call it [::] that  is not already 
present in X and defining [] to be larger than all the elements of X. 

f. I n d u c t i o n  on  W o s e t s .  Let (X, 4)  be a woset, and let S be a subset of X with the 
property that  Pre(b) C_ S =~ b E S. Then in fact S -  X. 

Hint" If not, let b be the first element of X \ S. 
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3.40.  Notation. For the result below, if (X, ~)  is a well ordered set and T is a nonempty 
set, then an X-based sequence in T will mean a function whose domain is some proper lower 
set of X and whose range is contained in T. As a degenerate case, we may view the empty 
function (with graph equal to the empty set) as an X-based sequence in T. 

T h e o r e m  of  R e c u r s i o n  on  W o s e t s .  Let (X, f )  be a woset and let T be a nonempty set. 
Let any function 

p : {X-based sequences in T} --+ T 

be given. Then there exists a unique function F : X  -+ T satisfying 

F(x) - p(FIPre(x))  for each x E X. 

Here FIPre(x ) denotes the restriction of F to the set Pre(x) - {w c X ' w  -< x}. Thus, the 

value of F at any x is determined, via the rule p, by the values of F at  all the predecessors 
of x. 

Remark. Compare this result with 2.22. 

Proof of theorem. First we prove uniqueness. Suppose F1, F2 are two such functions, and 
F1 # F2. Let x be the first member  of X that  satisfies F l (x)  # F2(x). Then F1 (w) = F2(w) 

for all w E Pre(x) that  is, the restrictions F1 .IPre(x) and F2 .IPre(x) are the same function 

p. But then F l (x)  = p(p) = F2(x), a contradiction. This proves uniqueness. 
We now turn to the existence proof. It will be convenient to replace X with a slightly 

larger set. Let Y = XU{~}, where ~ is some object not belonging to X. Extend the ordering 
of X to an ordering on Y by setting x -< ~ for all x E X; then Y is also a woset. Note that  
for each y E Y, the set Pre(y) is a lower set in X; in particular,  Pre(~) = X. 

We shall prove that  for each y E Y there is a function Fy : Pre(y) -+ T satisfying 

Fy(x) - p(FylPre(x)) for each x E Pre(y).  

(Once this is established, we simply take F = F~ to prove the theorem.) First note that  
for each y, we may unambiguously use the notat ion "Fy" because there is at most one such 
function Fy; tha t  is clear by a uniqueness argument  similar to the one at the beginning of 
the proof of the theorem. 

The proof of the existence of Fy's is by induction on y. Assume, then, that  some r/E Y 
is given and tha t  Fy's exist for all y -< ~; we are to demonstra te  the existence of F.~. We 
demonstra te  that  in two different ways, according to the nature of rl: 

First, suppose ~ has an immediate  predecessor ~ - -  that  is, suppose r/is the first member  
of Y after some member  ~. Then Pre(~) = {~} tO Pre(~), and F~:  Pre(~) -+ T is a function 
of the sort described above. Define a function Fv : Pre(r/) --+ T by 

{ F~(x) when x E Pre(~) 
r , ( x )  - , ( 5 )  w h e n  x - 

It is easy to verify that  Fn has the required properties. 
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On the other hand, suppose r/ has no immediate predecessor in Y. Then Pre(r/) - 
[.Jy_~v Pre(y). Also, Graph(Fy) is an increasing function of y - -  that  is, 

y -< y' -< rl ~ Graph(Fy) C_ Graph(Fy,). 

Verify that  Graph(Fn) - Uy-<n Graph(Fy) defines F v with the required properties. 

3.41. C o m p a r a b i l i t y  T h e o r e m .  If (X, <) and (Y, ~) are wosets, then exactly one of 

these three conditions holds" 

�9 There exists an order isomorphism between X and Y. 

�9 There exists an order isomorphism from X onto a lower set of Y. 

�9 There exists an order isomorphism from Y onto a lower set of X. 

Furthermore, in each case the isomorphism is uniquely determined. 

Proof. For each proper lower set L C_ X and each function y)" L ~ Y, define 

_ J" min(Y \ Range(~)) if Range(~) r Y 
P(~) min(Y)  if Range(~)  - Y. 

Now define F "  X ~ Y by recursion, as in 3.40. Then F(Pre(x))  is an increasing function 
of x, so X0 - {x C X "  F(Pre(x))  r Y} is a lower set in X. Show that  F(Xo) is a lower set 
in Y and F gives an order isomorphism from X0 onto F(Xo). If F(Xo) r Y, then X0 - X. 
This establishes the existence of at least one isomorphism. 

If f and g were distinct order isomorphisms from X onto a lower set of Y, then we could 
take x0 to be the first element of X satisfying f(xo) r g(x0); show that  this leads to a 
contradiction. This proves uniqueness in either direction. 

Suppose f is an order isomorphism from X onto a lower set of Y and g is an order 
isomorphism from Y onto a lower set of X. Then g o f is an order isomorphism from X 
onto a lower set of X - -  but by the uniqueness result of the previous paragraph, g o f must 

then be the identity map of X. 

3.42. Corollaries. 
a. If X and Y are wosets, then card(X) _< card(Y) or card(Y) <_ card(X). 

b. If X is an infinite woset, then card(X) _> card(N), and for any ~ ~ X we have card(X) = 

card(X U {~}). 

3.43. C a n o n i c a l  Wel l  O r d e r i n g  T h e o r e m .  Let X be a set, and let some mapping 

p : {proper subsets of X} --~ X 

be given that  satisfies p(S) r X \ S for each S. Then there exists a unique well ordering 

on X with the following property: 

- p ( { u E X  �9 u-<x}~ f o r e a c h x E X .  X 
k ] 
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(In other words, to find the next term in the ordering, just apply p to the set of all the 
terms that  have already been ordered. Contrast  this with (AC4) in 6.20.) 

Proof (modified from Malitz [1979]). Consider well orderings of subsets of X. When 
is such a well ordering, let S f  be the subset of X that  it well orders, and let its sets of 
predecessors be denoted by 

Pre~(x)  - { s E S ~  �9 s ~ x ,  s : f i x}  

for points x E S~. Say ~ is a p-well ordering if it also satisfies 

x - p ( P r e ~ ( x ) )  f o r e a c h x E S ~ .  

Let iK be the set of all p-well orderings. It is clear that  9C is nonempty, since the empty 
relation is a p-well ordering of the empty set. We are to show that  X has a unique member 

satisfying $4 = X. As a preliminary step, we shall show that  

(**) Whenever 41 and 49 are p-well orderings, then one of the wosets ($41,41) ,  
($42 ,42)  is a lower set of the other, whose ordering is just the restriction of the 
other's ordering. 

Indeed, by 3.41, we know that  there exists an order isomorphism between one of the wosets 
($41,41) ,  ($42 ,42)  and a lower set of the other. Say p : $41 --~ $42 is an order isomorphism 

from ($41 , 4 1 ) o n t o  a lower set of ($42 , 42). Then p (P re41 (u ) )  - Pre42 (p(u)) for 
% 

any 

u E $4 , .  To prove (**), it suffices to show that  this isomorphism is actually an inclusion 
/ 

map i.e., that  p(x) = x in X for all x E $41. If/3 = p(c~) =/= c~ for some c~ E $41, choose 
the 41-first such c~ in $41 and the corresponding/3. Then p acts as the identity map on 
Pre ~ (c~). Thus 

Pre~l(Ct ) - p(Pre~l(oe))  - Pre~2(p(ct))  - Pre~2(/3), 

/ \ / \ 

and t h e r e f o r e  o e -  p/Prea__{l(OL)) - - p i P r e _ _ ~ 2 ( / ~ ) J  - ~, a contradiction. This proves the 
\ / \ / 

claim (**). 
Each member of ig is a relation on X, which may be viewed as a subset of X x X. From 

(**) it follows easily that  the union of the elements of iK is itself a member of X. Hence it 
is the largest member of iK; let us denote it by E. If S :  is not equal to X, then _E extends 
to a strictly larger p-well ordering on S___ U {p (S__)}, by defining p ( S g )  to be larger than 
all the members of SE contradicting the maximality of E. Thus SE -- X. Uniqueness 
follows from (**). 

3.44. Products of wosets. A product of wosets, with the product ordering, is not necessarily 
a woset; an example is given by N 2. Other orderings on a product may be well ordered, 
however" 

a. Let (A,_<) be a woset, and for each A E A let (X~,_<) be a chain. (The _<'s may 
represent different orderings.) Let P -  1-I~EA X~. The l e x i c o g r a p h i c a l  o r d e r  (or 
dictionary order) on P is defined as follows: p < q in P if p(t,) < q(t,) where u E A is 
the first component in which p and q differ. Show: 



76 Chapter 3: Relations and Orderings 

(i) 
(ii) 

The lexicographical ordering is a chain ordering on P. 

If each (X~, _<) is well ordered and A is a finite set, then the lexicograph- 
ical ordering is a well ordering on P. 

(iii) In general, the lexicographical ordering on an infinite product is not a 
well ordering. Indeed, if A is an infinite woset with no last element and 
each Xa is a woset containing at least two elements, then P is not well 
ordered. To see this, let ~ be the function whose value at A is the smallest 
member of Xa; show that  P \ {~} has no smallest element. For a more 
concrete special case, show that  {x c {0, 1} N : x r (0, 0, 0 , . . . )}  has no 
first element in {0, 1} N. 

b. (This construction will be used in 3.45.) Let (X, <_) be a well ordered set. Define an 
ordering __ on X x X, as follows: For (x, y) and (u, v) in X x X, say (u, v) E (x, y) 
means that  

�9 max{u, v} < max{x, y}, or 

�9 max{u, v} = max{x, y} and u < x, or 

�9 max{u, v} = max{x, y} and u = x and v < y. 

Verify that  this is a well ordering on X x X. 

3.45. T h e o r e m  on  c a r d ( X 2 ) .  Let X be an infinite set, and suppose that  X can be well 
ordered. Then card(X x X ) -  card(X).  

Remarks. The present result does not require the Axiom of Choice, which tells us that  every 
set can be well ordered; see 6.20 and 6.22. 

Proof of theorem. Let I I denote cardinality. Clearly, IXI < IX x X I. Suppose IXI < IX x X I 
for some infinite woset (X, ,<); we shall obtain a contradiction. Clearly, we can replace X 
by any other woset with the same cardinality; by 3.39.d we may replace X with the first 
lower set in X that  is infinite and satisfies IXI < IX x X I. Observe that  if K is any proper 
lower set in X,  then either K is finite or I K I -  IK x KI; hence IKI ~= IXI, hence (since 
K c X) we have IKI < IXI. In particular, X does not have a last element for, if X were 
an infinite woset with last element ~, then X \ {~} would be a proper lower set with the 
same cardinality as X, a contradiction. 

Define a well ordering _ on X x X as in 3.44.b. Since X and X x X are well ordered, one 
of these sets is uniquely order isomorphic to a lower set of the other. Since IXI < IX x XI, 
the order isomorphism must be from X onto a set L that  is a proper lower set of X x X. 
Then I L l -  IXI is an infinite cardinal. 

Let (u0, vo) be the _E-first member of (X x X) \ L. Let wo be the maximum of u0 and 
vo in (X,_<). Let M -  {x E X �9 x <__ wo}. Then M is a lower set in X. Since X does not 
have a last element, M is a proper lower set in X, and therefore IMI < IXI. Observe that  

(u,v) e L  => (u,v) E (u0 ,  v0) ==> m a x { u , v } < w 0  => u, v e M ,  

and thus L C_ M x M. Hence ILl < IM x M I. Since L is an infinite set, M must be infinite, 
too. By our choice of X, then, IM x M I - I M I .  Now I X I -  ILl < IM x M I - I M ]  < ]XI, a 
contradiction. This completes the proof. 
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3.46. Definition. A collection 9" of subsets of a set X is said to have f ini te  c h a r a c t e r  if 
for each set S c_ X, 

S is a member of 9" if and only if each finite subset of S is a member of 9:. 

Example. If (X, 4) is a poset, then {S c X �9 S is chain ordered by 4} has finite character. 
Other examples will be given in 5.7.e, 11.10, 12.17.f, and 14.31. 

We shall now prove the following theorem" 

F i n i t e  C h a r a c t e r  T h e o r e m  (canon ica l  choice  ve r s ion) .  Let X be a set 
that  can be well ordered and let 9" be a collection of subsets of X that  has finite 
character. Then 9" has a C-maximal element. 

Remark. Contrast this with (AC5) in 6.20. The present theorem does not require the Axiom 
of Choice, which would tell us that  every set can be well ordered. 

Proof of theorem. Let 4 be a well ordering of X. We shall determine a maximal set M E 9" 
by defining its characteristic function 1M " X ---+ {0, 1}, by transfinite recursion. At the c~th 
step, we have defined 1M on all of Pre(c~), and thus we have determined which elements 
of Pre(c~)should be members of M i.e., we have determined the set Pre(c~)N M. Now 

define IM(C~), by taking it to be 1 if the set (Pre(c~)N M )  U {c~} is a member of 9" and 0 
\ 

otherwise. Verify that  the resulting set M is a C_-maximal member of 9 ~. 



Chapter  4 

More about  Sups and Infs 

4.1. Chapter overview. Sups and infs were introduced briefly in Chapter 3. This chapter 
investigates sups and infs further and introduces the related notions of Moore closures and 
order completeness. A Moore collection is a collection of sets that  is closed under arbitrary 
i n t e r s e c t i o n -  i.e., under arbitrary infimum with respect to the ordering given by inclusion. 
Order completeness of a poset refers to the existence of sups and infs in that  poset. Order 
completions can be constructed most easily using polars, a special type of Moore closure. 

MOORE COLLECTIONS AND MOORE CLOSURES 

4.2. The term "closure" has several different meanings in mathematics. Most of the 
meanings of "closure" are specializations of the Moore closure, defined below. (An exception: 
the "pretopological convergence closures" introduced in 15.4 need not be Moore closures; 
see the example in 15.6.) 

Many mathematicians write the closure of a set S as S. However, that  notation has 
certain disadvantages: (i) It is used for other purposes (e.g., complex conjugation). (ii) It 
becomes awkward if one wishes to work simultaneously with two or more closures (e.g., 
from two different topologies). In this book we shall write a closure of a set S as cl(S). We 
shall use subscripted notation, such as c19-(S ) and clll (S), if we need to distinguish between 
several different closures. 

4.3. Let  X be a set, and let C be a collection of subsets of X. We shall say C is a M o o r e  
co l l ec t ion  of  se ts  if: 

(i) X c e ,  and 

(ii) C is closed under arbitrary intersection 

N~eA S~ ~ e. 

i.e., if {Sx"  k E A} c_ e, then 

(If we adopt the convention that  the intersection of no subsets of X is just X, then condition 
(i) can be omitted; it follows from (ii) by taking A -  ~.) In the present context, members 
of C will be called M o o r e  c losed sets, or just c losed sets if the context is understood. 

Now, let any set S c_ X inot necessarily a member of e) be given. Then there exist 
closed sets that  are supersets of S - -  for instance, X itself is such a set. Among all the closed 

78 
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supersets of S, there is a smallest namely, the intersection of all the closed supersets of 
S. We shall call it the M o o r e  c losu re  (or more simply, the c losure)  of S, relative to the 
collection C, and we shall denote it by cl(S). (It is easy to see that  a set T c_ X is closed if 
and only if cl(T) -- T.) 

In this fashion we define a mapping cl �9 iP(X) ~ C, called the M o o r e  c losure  o p e r a t o r  
associated with the collection e. In some cases (i.e., for some choices of X and e) we can 
also give some other, equivalent description of cl(S) that  may be more convenient e.g., a 
characterization directly in terms of S, which does not mention the collection of all closed 
supersets of S. 

The Moore closure of S is also known as the member of e that  is g e n e r a t e d  by S; we 
may call S a g e n e r a t i n g  se t  for cl(S). This terminology is particularly common when the 
elements of X and S are themselves subsets of some set ~ i.e., when S is a collection of 
sets, and cl(S) is the collection of sets generated by S. (Of course, from the viewpoint of 
axiomatic set theory, all sets are sets of sets, but most mathematicians do not share that  
viewpoint.) 

Though Moore closures appear in many parts of mathematics,  the terminology varies 
greatly. In most applications of the concept, the "closed" / "closure" terminology is com- 
monly used, or the "generated" / "generating" terminology is commonly used, but not both. 
Another term sometimes used for a Moore closed set is s a t u r a t e d  set; other terms some- 
times used for a Moore closure are hull,  s a t u r a t i o n ,  or s a t u r a t e d  hull. The following 
table previews a few kinds of Moore closures that  will be studied later. We shall introduce 
appropriate terminology separately in each context. The top part of the table deals with 
sets of points; the bot tom part of the table deals with sets of sets. 

Moore closed set Moore closure 

sublattice 
full (order convex) set 

upper set 
max closed gauge 

saturated set 
topologically closed set 

ideal (in a variety) 
convex set 

balanced set 
linear subspace 

filter of sets 
ideal of sets 
(a-)algebra 

topology 
monotone class 

Moore collection 

sublattice generated 
full hull 

up closure 
max closure 
saturation 

topological closure 
ideal generated by a set 

convex hull 
balanced hull 

linear span 
filter generated 
ideal generated 

(a-)algebra generated 
topology generated 

monotone class generated 
Moore collection generated 
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Further remarks about the terminology. Most Moore closures of interest are either algebraic 
(introduced in 4.8) or topological (introduced in 5.16.b and 5.19). Very few closures of 
interest are both algebraic and topological; that  is clear from 16.8.b. 

The term "closure" by itself is commonly used by algebraists to refer to any Moore 
closure (as defined above), but the term "closure" usually is used by analysts to refer only 
to topological closures. We shall follow the analysts '  convention in some parts of this book 
since this book is largely devoted to the foundations of analysis. 

The basic property given in 4.5.a is due to Moore [1910], although the notation certainly 
has changed since then. Most properties of closures in this chapter are taken from Cohn 
[1965], Evers and Maaren [1985], McKenzie, McNulty, and Taylor [1987], and Tsinakis 
[1993]. 

4.4. A few examples of Moore closures. 
a. Let (X, ~) be a preordered set. For a,b E X let [ a , b ] -  {x E X ' a  ~ x g b}. A set 

S C_ X is called full (or o r d e r  convex)  if a, b E S ~ [a, b] C_ S. (For example, in 
[-c~, +cc], any interval [a, b] or [a, b) or (a, b] or (a, b) is full.) Show that  the full subsets 
of X form a Moore collection. Hence any set T c_ X is contained in a smallest full 
superset, called the full hul l  of T. Show that  the full hull of T is equal to Ua,DET[a, b]. 

For later applications we note some further properties of full subsets of chains. Let 
(X, _<) be a chain. Show" 

(i) 

(ii) 

If S1, $2 are full sets that  are not disjoint, then S1 U $2 is full. 

For any T C X and p E T, let C(p,T) be the union of all the full 
sets S that  satisfy p E S C T. Show that  C(p, T) is a full subset of T 
and that  C(p,T) is maximal for that  property i.e., C(p, T) is not a 
proper subset of some other full subset of T. Show that  the sets C(p, T) 
form a parti t ion of T that  is, any two sets C(p l ,T ) ,  C(p2, T) are 
either identical or disjoint. We may refer to the C(p,T)'s as the full 
c o m p o n e n t s  of T. This will be used in 15.35.c and 17.24. 

b. Let (X, ~) be a partially ordered set, and let S C_ X. We say that  S is 

up -c losed ,  or an u p p e r  set ,  if x ~ y, y E S =v x E S; 

d o w n - c l o s e d ,  or a lower  set ,  if x ~ y, y E S =v x E S; 

s u p - c l o s e d  if, whenever A is a nonempty subset of S and a - sup(A) exists 
in X, then a is a member of S; 

in f -c losed  if, whenever A is a nonempty subset of S and c -  inf(A) exists 
in X, then ~ is a member of S. 

(Lower sets were defined in 3.16.) Show that  the collections of such sets are Moore 
collections, with resulting Moore closures as follows: 

up-cl(S) 
down-cl(S) 

- { x E X  �9 x ~ s f o r s o m e s E S } ,  

-- { x E X  �9 x ~ s f o r s o m e s E S } ,  
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sup-cl(S) 

inf-cl(S) 

- {x E X �9 x - s u p ( A )  for some nonempty A c S}, 

- {x E X �9 x - - in f (A)  for some nonempty A c_ S}. 

Show also that  

(i) Any up-closed set is sup-closed; any down-closed set is inf-closed. 

(ii) A set S is up-closed if and only if X \ S is down-closed. 

(iii) Any union of up-closed sets is up-closed; any union of down-closed sets 
is down-closed. (This property is not shared by most Moore collections.) 

(iv) 2~ is up-closed and down-closed. 

c. If P = {d l , d2 , . . .  ,dn} is a finite collection of pseudometrics on a set X (defined in 
2.11), then another pseudometric, VP, can be defined by 

(VP) (x , y )  -- m a x { d l ( x , y ) ,  d2(x,y),  . . . ,  dn (x , y ) } .  

Clearly, VP is the supremum of P in the family of all pseudometrics i.e., it is the 
smallest pseudometric tha t  is larger than or equal to all the dj's. We may also denote 
it by dl V d2 V . . .  V dn. When P contains just  a single pseudometric,  then VP equals 
that  pseudometric. 

Let D be a gauge on X that  is, a collection of pseudometrics. We shall say tha t  
D is m a x - c l o s e d  if dl, d2 E D => dl V d2 E D or, equivalently, if dl, d 2 , . . . ,  dn E 
D =:> dl V d2 V . "  V dn E D. (In the wider literature, another name for max-closed is 
s a t u r a t e d . )  Clearly, this determines a type of Moore closure on the collection of all 
pseudometrics on X; the m a x  c l o s u r e  of a gauge D is the gauge 

max-cl(D) - {VP �9 P is a finite subset of D} .  

do 

Similarly, a gauge D is closed under addition, or sum-closed, if dl,d2 E D => 
dl + d2 E D. This also determines a Moore closure, which we shall call the sum 
closure. 

A gauge D is d i r e c t e d  if for each finite set P C_ D, there exists some pseudometric 
d E D such that  V P _< d. Note that  if D is max-closed or closed under addition, then 
D is directed. 

Preview. In 5.15.h we shall see that  any gauge D is topologically equivalent to its 
max closure and its sum closure; in 18.13 we shall see tha t  any gauge D is uniformly 
equivalent to its max closure and its sum closure. Hence, for many purposes, D may be 
replaced with its max closure or sum closure i.e., D may be replaced by a directed 
gauge. For some theorems, this replacement will not affect the hypotheses, but may 
simplify the proofs. 

If 5I~, 510, 5 I ~ , . . .  are collections of subsets of X,  each of which is closed under finite 
union, then ["I~E{~,0,~ .... } 3V[~ is also closed under finite union. Thus, the collection 

{5I c_ [P(X)" 5{ is closed under finite union} is a Moore collection of subsets of [P(X). 
The resulting Moore closure may be described as follows: If 8 is a collection of subsets 
of X,  then the smallest collection tha t  is closed under finite union and contains 8 is 

U-cl(g) = {M C_ X �9 M is the union of finitely many members of g}. 
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Similarly, the other "closures" defined in 1.30 are also Moore closures. 
In particular, the closure under arbitrary intersections is a Moore closure. Thus 

the collection of all Moore collections of subsets of X is a Moore collection of subsets 
of [P(X). 

e. Let ~ be an equivalence relation on a set X; let Y be the quotient set; let 7r" X --+ Y 
be the quotient map. Say that  a set S c_ X is 7 r - sa tu ra t ed ,  or ~ - s a t u r a t e d ,  if it is 
closed under this equivalence i.e., if 

Xl C S, Xl ~ x2 ~ x2 C S 

that  is, if S is a union of equivalence classes. 
The collection of saturated subsets of X is a Moore collection i.e., it is closed 

under intersection. Hence we can define the corresponding Moore closure: The 7r- 
s a t u r a t i o n ,  or 7 r - s a t u r a t e d  hull,  of a set A c_ X is the smallest 7r-saturated set that  
contains A; it is the intersection of the 7~-saturated sets that  contain A. Show that  

7r-l(Tr(A)) - U {x r x . x  ..~ a} - 
aCA 

the 7r-saturation of A. 

The forward image mapping S H 7r(S) = {Tr(x) : x c S} is usually defined as 
a mapping from T(X) into ~P(Y) (see 2.7); but if we restrict it to a smaller domain, 
we get a bijection from {Tr-saturated subsets of X} onto ~P(Y), whose inverse is given 
by the inverse image mapping T H 7r-l(T) = {x c X : 7r(x) r T}. This bijection 
preserves the basic set operations: complementations, intersections, and unions. That  
is, 

c~E c~EA c~EA 

for any 7~-saturated sets S and S~. 

4.5. Some basic properties of Moore closures. 
a. A x i o m s  for a M o o r e  C l o s u r e  O p e r a t o r .  Let X be a set, and suppose we are given 

a function cl �9 T(X) ~ ~P(X). Show that  "cl" is the Moore closure operator for 
some Moore collection of subsets of X (as defined in 4.3) if and only if "cl" satisfies 
these three rules: 

S c_ cl(S) (extensive) 

cl(cl(S)) - cl(S) (idempotent) 

S c_ T =~ cl(S) c_ cl(T) (isotone) 

for all sets S, T C_ X. Of course, if "cl" does satisfy these axioms, then the correspond- 
ing Moore collection e C_ iP(X) is uniquely determined by "cl:" it consists of those sets 
S c_ X that  satisfy cl(S) - S. 
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b. Note that  any Moore closure on X is an isotone mapping from {P(X) into {P(X); hence 
it satisfies the conclusions of 4.29.c. It also satisfies 

for any sets S~ c_ X (c~ E A). 

c. Let e be a Moore collection of subsets of X. Then each subset of e has a sup and an 
inf in e. (Thus (e, C_) is a complete lattice; see the definition in 4.13.) 

Indeed, let any collection g = {Sa : ~ E A} c_ e be given. Then A = NXEA Ss is 
the largest member of e that  is contained in all the Sx's; thus it is the i n f i m u m  of the 
Sx's. Also, B - cl(U,xEA S,x) is the smallest member of e that  contains all the Sa's; 
thus it is the s u p r e m u m  of the Sx's. 

SOME SPECIAL TYPES OF MOORE CLOSURES 

4.6. Many Moore closures used in applications are formulated as closures with respect to 
some sort of operations. Let X be a set, and let �9 be a collection of A-ary operations on 
X (defined as in 1.41). Different members of �9 may have different A's, and we permit the 
A's to be empty or nonempty, finite or infinite. We shall say that  a set E C_ X is c losed  
u n d e r  t h e  o p e r a t i o n s  �9 if it has this property" 

Whenever ~b is a A-ary operation in ~, with index set A - {c~,/~,'~,...}, and 
e~, e/~, e~ , . . ,  are members of E, then ~b(e~, e/~, e~ , . . . )  E E also. 

Here the notation is as in 1.32; it is not intended to imply that  the index set A - {c~,/3, ~y,...} 
is a countable or ordered. 

It is easy to see that  the sets that  are "closed" in this sense satisfy Moore's axioms 4.3(i) 
and (ii). Hence they are the closed sets for a Moore closure operator,  cl, defined as in 4.3. 
The closure obtained in this fashion is called the c l o s u r e  w i t h  r e s p e c t  to  t h e  o p e r a t i o n s  
�9 . Here is an elementary example: A collection g of subsets of a set X is closed under finite 
union if and only if g is closed under the binary operation tO �9 ~P(X) x ~P(X) --+ [P(X). 

Observation. The empty set is closed under the operations �9 if and only if none of the 
operations in �9 is nullary. 

4.7. Exercise (optional). Actually, every Moore closure can be represented as a closure 
under operations (although such a representation is not necessarily helpful). 

Hints: Let cl be a Moore closure on a set X that  is, let cl" [P(X) --+ {P(X) be a given 
mapping satisfying the axioms in 4.5.a. For each set A c_ X and each point z E cl(A), define 

�9 X A X by taking a A-ary operation ~)A,z --+ 

( 
Z 

r  x z ,  x ~ ,  . . .)  - 
' / some member of {x~" ~ E A} 

if x~ - A for every A E A 
otherwise. 
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(In particular,  when A is the empty  set, then we form a nullary operation ~Po,z() - z for 
each z in cl(O), if there are any such z's.) Let �9 be the collection of all operations formed 
in this fashion; verify tha t  closure under the operations �9 is the same as the given Moore 
closure. 

4.8. Theorem and definition. Let X be a set, let :K be a Moore collection of subsets of 
X,  and let cl �9 IP(X) ~ K be the resulting Moore closure operator. Then the following 
conditions are equivalent. If one, hence all, of these conditions are satisfied, we say tha t  
iK is an a l g e b r a i c  c l o s u r e  s y s t e m  and cl is an a l g e b r a i c  c l o s u r e  o p e r a t o r .  (For some 
important  examples, see 9.21.d and 12.3. See also the related exercise in 16.8.b.) 

(A) cl is the closure with respect to some collection �9 of finitary operations on X 
that  is, A-ary operations, where the A's are finite sets. 

(B) Whenever e is a subset of X that  is directed by inclusion, then the union of 
all the members  of C is a closed set. In other words, if C C_ K and the union 
of any two members  of e is a subset of a member  of C, then the union of all 
the members  of e is a member  of iK. 

(C) Whenever �9 is a collection of subsets of X that  is directed by inclusion, then 

(U. 9 D) C 
(D) For set S c_ X we have cl(S) - U{c l (F )"  F is a finite subset of S}. 

Proof. (A) =v (B) is an easy exercise. For (B) =~ (C), let e -  {el(D)" D E �9 For (C) 
=~ (D), take � 9  {F  C_ S"  F is finite}. 

It remains only to prove (D) ~ (A). Let �9 be the collection of all finitary operations 
f "  X n --. X (for nonnegative integers n) that  satisfy 

f (  K • 2 1 5 2 1 5  ) C_ 

n times 

K for each K E K. 

Let L be the collection of subsets of X that  are closed under the operations ~.  We shall 
show tha t  iK - L. It is easy to see tha t  [K c_ L. 

Now let any S G L be given; we wish to show that  S G K. Thus, it suffices to show that  
cl(S) c_ S. We may assume cl(S) is nonempty and let any a E cl(S) be given; it suffices to 
show tha t  a E S. By (D), there is some finite set F C_ S such that  a E cl(F).  

We may write F - {Ul ,U2 , . . . ,  Un} for some nonnegative integer n (which is 0 if F is 
the empty  set). Now define f "  X n ~ X by 

a if  n - -  0 or (X l ,  X 2 , . . . ,  X n )  - -  (?-tl, ? - t 2 , . - . ,  ?-tn) 
f(Xl,X2,...,Xn) - -  X l  otherwise. 

Here it is understood tha t  if n - 0, then f is a nullary operation - -  i.e., a constant function. 
In tha t  case the list of arguments  Xl, x 2 , . . . ,  Xn is empty; that  is, f ( x l ,  x 2 , . . . ,  Xn) - f ( ) .  

"We claim tha t  f E ~.  Indeed, let any K E X be given and any Xl ,X2, . . .  ,xn G K; we are 
to show tha t  f ( x l , x 2 , . . . , X n )  E K.  This is clear in the case where f ( x i , x 2 , . . .  ,Xn) - Xl. 
In the remaining case, we have F c_ K and, therefore, 

f ( x l , x 2 , . . . , X n )  -- o" G cl(F) C_ cl(K) -- K. 
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Thus f E ~. By assumption S E L, and so the set S is closed under the operation f .  
Hence a - f ( u l ,  u 2 , . . . ,  Un) is a member of S. 

4.9. Definitions. Let X and Y be sets. A p o l a r  from X to Y is a mapping p" ~P(X) ---, [P(Y) 
that  satisfies 

P(iUcI A i )  --NP(Ai)iEI 

for any collection {Ai " i E I} of subsets of X. The d u a l  of p is the mapping q �9 T(Y) 
T(X)  defined by 

[ .J{s c x �9 e c_ ; ( s ) )  or, equivalently, q(B) - {x e x .  B c 

We shall also write p(A) = A ~ and q(B) = B ~'. (In many books, one symbol is used for 
both <1 and [>. Typically it is o or _1_ or T.) 

Exercises/basic properties: 

a. Any polar is antitone i.e., if A 1 C A 2 in X, then p(A1) _D p(A2) in Y. 

b. The dual of a polar is also a polar. Moreover, if q is the dual of p, then p is the dual 
of q. Thus we may speak of p, q as a p o l a r  p a i r  between X and Y. 

Examples of polars will be given in studying Dedekind cuts (see 4.34) and topological vector 
spaces (see 28.25); several other examples are also mentioned in 4.12. 

4.10.  Let X and Y be sets, and let p" [P(X) --~ [P(Y) and q" iP(Y) ~ [P(X) be some given 
functions. Then the following four conditions are equivalent. 

(A) p and q are a polar pair. 

(B) p(A) - {y E Y "  A C q({y})} and q(B) - {x E X "  B C_ p({x})} for all 
A C X a n d B C Y .  

(C) p and q are antitone (as in 4.9.a), and q o p and p o q are extensive" 

A c_ q(p(A)), B c_ p(q(B)) for all A c_ X, B c_ Y. 

(D) There exists a set F C_ X x Y such that,  for all A C_ X and B C_ Y, 

p(A) - { y E Y  �9 A •  q ( B ) -  { x e x .  { x } •  

This condition can be restated in the triangle notat ion as: 

A < - { y E Y  �9 A •  B { ex. 

4.11.  Further properties of polars. Suppose p " T (X)  ~ [P(Y) and q " iP(Y) --~ IP(X) are a 
polar pair. Then: 

a. p o q o p - p and q o p o q - q. Hint. This follows easily from 4.10(C). 
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b. q o p and p o q are Moore closure operators in X and Y, respectively. The resulting 
closed subsets of X or Y are the sets A or B that  satisfy A = q(p(A))  or B = p(q(B) ) ,  
respectively. 

c. Applied to just the collections of closed sets, the polar maps A ~ p(A)  and B ~ q(B)  
are inverses of each other; they give a bijection between the closed subsets of A and 
the closed subsets of B. 

d. Let e l -  qop. Then cl (["IiEZ Ai) - ["liE/cl(Ai) for any collection {Ai" i E I} of subsets 
of X that  is, the closure of an intersection equals the intersection of the closures. 
An analogous result also holds in Y for p o q. 

This result does not generalize to all Moore closures. For a simple counterexample, 
let cl be the usual topological closure when R is equipped with its usual topology. Let 
A1 = {rational numbers} and A2 = {irrational numbers}. Then A1 N A2 = 2~, but 
cl(A1) = cl(A2) = R. Consequently, cl(A1 A A2) = ~ but el(A1) N cl(A2) = R. 

4.12.  Generalized orthogonality. We now describe a special type of polar pair. Assume X 
is a set, 0 is some special member of X, and 2_ is a relation on X with these properties: 

(i) 2_ is symmetric; that  is, x 2_ y ,z----5, y 2_ x. 

(ii) 0 2 _ x f o r a l l x E X .  

(iii) x 2 - x  ~ x = 0 .  

If x _L y, usually we say that  x and y are o r t h o g o n a l  (or p e r p e n d i c u l a r ) .  
We now apply the results of the preceding sections, using 4.10(D) with F = {(x, y) E 

X x X : x _L y}. Then the po l a r sp (S )  = S <~ and q(S) = S ~ are the same; we shall 
denote them both by S • Thus, S • = {y E X : x  2- y for all x E S}. This set is called the 
o r t h o g o n a l  c o m p l e m e n t  of S. Let us first restate, in the present notation, some of the 
conclusions already reached in the preceding sections: 

S C S  •177 a n d s  •  •177177 

S c_ T =~ S • _D T • (Thus the mapping S H S • is antitone.) 

S H S •177 is a Moore closure operator on X. We shall denote it by cl, at 
least for the moment.  Caution: This operator is not called a "closure" in most 
specialized contexts where it is applied. Instead it is given other names, such as 
"closed linear span." 

(UAEA SA) • -- NXeA (S~-) and (NXEA Sa) • - cl (UAEA (Sk))" 

cl(NxE A Sx) - NXEA CI(Sx). 

We also have a few new conclusions, which do not apply to all polar pairs. Show: 

~_L _ {0}• _ X and X • - {0}. Hence cl(~a) - {0}. Thus the empty set is not 
a closed set. (Hence this Moore closure is not a topological closure; see 5.19.) 
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Examples .  

a. Let X - R a for some set ft, and let z 2_ y mean tha t  x(a~)y(oa) - 0 for all aJ E ft. Show 
that  a set S c_ X is closed (in the sense of the Moore closure) if and only if it is of the 
form CM -- {x  E X �9 X I M  - 0} for some set M c_ ft. Show also that  (CM) • -- C a \ M .  

b. (This example requires some familiarity with analytic geometry from college calculus.) 
Let X = R 2 and define x _1_ y to mean x . y  = 0 that  i s ,  Xly I Jr- X2y 2 = 0. Represent 
X by points in the plane. When x and y are both nonzero, show that  x . y  means tha t  
the line segment from the origin to x is perpendicular (in the usual geometric sense) to 
the line segment from the origin to y. Show that  a subset of X is closed (in the sense 
of this Moore closure) if and only if it is either {0}, X,  or a straight line through 0. 
For an example of a set S tha t  is not closed, let S be the line segment from the point 
(1, 0) to the point (2, 0); show that  the closure of S is the entire line {(x, y ) :  y = 0}. 

More examples will be given later in this book, in Riesz spaces (see 11.59) and in Hilbert 
spaces (see 22.50). In 13.4.f we shall see that  the collection of closed sets obtained in the 
fashion indicated above is a complete Boolean lattice. 

LATTICES AND COMPLETENESS 

4.13.  Defini t ions.  Let (X, 4)  be a poset. We say that  

(X, 4)  is a D e d e k i n d  c o m p l e t e  poset if either of the following equivalent 
conditions holds. (Exercise.  Prove the equivalence.) (A) Whenever S c_ X 
is nonempty and bounded above, then S has a least upper bound in X. (B) 
Whenever S c_ X is nonempty and bo/mded below, then S has a greatest lower 
bound in X. 

(X, 4)  is a l a t t i c e  if every two-element subset of X has a sup and an inf in X. 

(X, 4)  is c o m p l e t e  (or o r d e r  c o m p l e t e ,  or a c o m p l e t e  l a t t i c e  ) if every 
subset of X has a sup and an inf in X. 

Examples are given later in this chapter. 

4.14.  Remarks .  The term "complete" generally means "not missing any parts," or "not 
having any holes or gaps," but this has several different meanings in different parts of 
mathematics .  We also caution that  the term "complete poset" has a more specialized and 
technical meaning among some algebraists e.g., in domain theory. 

Uniform completions will be studied in later chapters. There are some strong analogies 
between the theories of order completions and uniform completions. It is possible to develop 
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those analogies into a unifying theory, 1 but that  theory is rather technical and complicated 
and not recommended for beginners. Readers of this book are urged to instead view order 
completeness and uniform completeness as two entirely unrelated concepts that,  just by 
coincidence, use some of the same words and have slightly analogous meanings. 

Formal logic also uses the term "complete" to mean "without holes," but the precise 
meaning is not closely related to order or uniform completeness. See 14.58. 

4.15. Relations between types of posets. 

a. If 4 has any of the following properties, then ~ has the same property: lattice ordering; 
Dedekind complete; order complete. 

b. Any well ordered set is Dedekind complete. 

c. Every chain is a lattice. 

d. Any lattice is both a poset and a directed set. 

e. A poset (X, 4)  is order complete if and only if it is order bounded and Dedekind 
complete. 

f. If (X, 4)  is a Dedekind complete poset and both 4 and ~ are directed, then (X, 4)  is 
a lattice. 

4.16. Observations on products. With the product ordering 3.9.j, a product of lattices is a 
lattice; a product of complete lattices is a complete lattice; a product of Dedekind complete 
posets is a Dedekind complete poset. In each case the supremum or infimum in the product 
is defined pointwise; see 3.21.n. 

See also the corollary in 4.28. 

MORE ABOUT LATTICES 

4.17. If (X, 4) is a lattice, then the binary operation A : X x X ~ X is both 

commutative: X 1 A x 2 --  x 2 A Xl and 

associative: (Xl A x2)  A x3 --  Xl A (x2 A x3) .  

It follows that  the operations in X l A X2 A x3 A ' "  A Xn can be evaluated in any order 
left to right, right to left, center to outside, etc. and thus parentheses are not necessary. 
The value of the expression is the same as in f{x l ,x2 , . . .  ,Xn}. (Hint" 3.21.m.) AnalogoUs 
conclusions apply for V's and sups. 

An equivalent definition of lattice is: A poset in which every finite nonempty subset has 
a sup and an inf. 

1 See "reflective subcategories," in books on category theory, for other examples besides order completions 
and uniform completions. 
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4.18.  Lattices, particularly finite ones, can be illustrated with l a t t i c e  d i a g r a m s .  Elements 
of the lattice are indicated by vertices i.e., dots. In these diagrams, we have x ~ y if 
there is a downward path from x to y. Two examples are given below. 

{a,b} 
Lattice 

diagrams 

2 2 M3 

1 

0 

The first diagram shows the inclusion relation between the subsets of a two-element set. 
This lattice is known (among some lattice theorists) as 22 . 

The second diagram shows a lattice containing five members; 0 is the smallest member  
and 1 is largest. This lattice is sometimes known as M3. 

4.19. Miscellaneous properties. 
a. In a lattice, the union of two order bounded sets is order bounded. (Hence, in a lattice, 

the order bounded sets form an ideal of sets, in the sense of 5.2.) 

b. Not every subset of a lattice is a lattice; not every subset of a directed set is directed. 
For instance, Z 2 with the product ordering is a lattice but its subset {(x, y) E Z 2 : 
x + y - 0} is not directed. 

4.20.  M e e t - j o i n  c h a r a c t e r i z a t i o n  of  l a t t i c e s .  We have defined "lattice" in terms of 
its ordering ~, but we shall now show that  "lattice" can be defined instead in terms of the 
binary operations A and V. Show that  these laws are satisfied, for all x, y, z in a lattice" 

L1 ( c o m m u t a t i v e ) "  x A y - - y A x  and x V y - y V x ,  

L2 ( a s soc i a t i ve ) "  x A ( y A z ) - - ( x A y ) A z  and x V ( y V z ) - ( x V y ) V z ,  

L3 ( a b s o r p t i o n ) :  x A ( x V y ) = x  and x V ( x A y ) = x ,  

and 

(,) x g y  ~ x A y = x  ~ x V y = y .  

Conversely, suppose X is a set equipped with two binary operations A, V tha t  satisfy L1-L3. 
Show t h a t x A y = x  ~ x V y = y .  Define ~ by ( ,)  ; then show that  ( X , ~ )  i s a l a t t i c e .  
(Hint: First use L3 to prove tha t  x V x = x A x = x.) 

4.21.  Let (X, ~) be a lattice. Then a s u b l a t t i c e  of X is a subset S tha t  is closed under 
the lattice operations V, A i.e., tha t  satisfies 

81,82 E ~ =:~ 81 V 82, 81 A 82 E ~. 
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It then follows that  S is also a lattice, when equipped with the restrictions of V, A. 
If (X, ~) is a lattice, S is a subset, and S is a lattice when equipped with the restriction 

of the ordering ~, it does not follow that  S is necessarily a sublattice of X. 
The collection of all sublattices of a lattice X is a Moore collection of subsets of X. The 

closure of any set S C_ X is the smallest sublattice containing S; it is called the s u b l a t t i c e  
g e n e r a t e d  by  S. 

Example. Let V - { (x  l, x2, x3)E  ]I~ 3 �9 X l-Jr-x2- x3_}. Then V is a subset (in fact, a 

linear subspace) of ]R 3. We shall order V by the restriction of the product ordering; that  is, 

(Xl,X2, X3) m---K (Yl, Y2, Y3) means xj <_ yj for all j. 

Then V is a lattice (in fact, a vector lattice), but the lattice operations V, A determined on 
V by the ordering ~ are not simply the restrictions of the lattice operations on IR 3. Rather,  
the reader should verify that  

(x V y)l = max{xl ,Yl},  

(x V Y)2 = max{x2,y2}, 

(xVy)3- - - -  [(x V y)l "}- (x V y)2] 
and A is computed analogously with minima. 

For instance, let x = (1, 2, 3) and y = ( 3 , -  1, 2). Then the lattice operations of R 3 yield 
x V y = (3, 2, 3), which is not a member of V; the lattice operations of V (defined by the 
formulas above) yield x V y = (3, 2, 5). 

This example may seem somewhat contrived, but it is actually quite typical of the 
behavior one sees in lattices of measures, which are discussed in later chapters. 

4.22.  Example. The set N = {positive integers} is a lattice when ordered by this rule: 
x ~ y if x is a divisor of y - -  that  is, if xu = y for some u E N. With  this ordering, u V v and 
u A v are the least common multiple and greatest common divisor of u and v, respectively. 

A sublattice of N is given by {divisors of m}, for any positive integer m. 

4.23.  Definition. For a lattice (X, ~),  the following two conditions are equivalent: 

(A) x A ( y V z ) = ( x A y ) V ( x A z )  for a l lx ,  y, z E X .  

(B) x V ( y A z ) = ( x V y ) A ( x V z )  for a l lx ,  y, z E X .  

If these conditions are satisfied, we say (X, ~) is a d i s t r i b u t i v e  lattice. 

4.24.  Definition. We shall say that  a lattice (X, ~) is s e m i - i n f i n i t e l y  d i s t r i b u t i v e  if it 
satisfies either of the following conditions" 

(A') 

(B') 

x A sup(S) - -  suP,Es(X A s), 

x V inf(S) - inf ,Es(x V s); 

where the equations are to be interpreted in this sense: If the left side of the equation exists, 
then so does the right side, and they are equal. If both of these two conditions are satisfied, 
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the lattice X is in f in i te ly  d i s t r i bu t i ve .  It is clear that  any semi-infinitely distributive 
lattice is distributive. In 5.21 we shall give an example of a semi-infinitely distributive 
lattice that  is not infinitely distributive; thus the two laws (A') and (B') are not equivalent 
to each other. 

Exercise. Let X be a lattice. Show that  conditions (A') and (B') are respectively 
equivalent to the following two conditions: 

(A") sup(R) A s u p ( S ) - - s u p { r A s  �9 r E R ,  s E S } ,  

(B") inf(R) V i n f ( S ) - i n f { r V s  �9 r E R ,  s E S } ,  

for any nonempty sets R, S c_ X. Again, each equation is to be interpreted in this fashion: 
If the left side of the equation exists, then so does the right side, and they are equal. Hint" 
See 3.21.m. 

4.25. Examples. 

a. If f~ is any set, then ([P(Ft), c_) is an infinitely distributive lattice. (See 1.29.b.) 

b. The five-element lattice Ma is not distributive. (See 4.18.) 

c. Every chain is an infinitely distributive lattice. 

Further examples of infinitely distributive lattices will be given in 8.43. 

4.26. A l a t t i ce  h o m o m o r p h i s m  is a mapping f "  X ~ Y, from one lattice into another, 
that  satisfies f (x l  V x2) - f ( x l )  V f(x2) and f (x l  Ax2) -- f ( x l )  A f(x2) for all Xl,X2 in X. 
Lattice homomorphisms will be studied further in 8.48 and thereafter. 

MORE ABOUT COMPLETE LATTICES 

4.27. Some important examples. In Chapter 10, in our formal development of R, we shall 
show that  1R is Dedekind complete. (More precisely, we shall prove that  there exists a unique 
Dedekind complete ordered field and then define R to be that  field.) For now, however, we 
shall "borrow" that  result from Chapter 10: We shall accept the fact that  R is Dedekind 
complete and use that  fact in some examples below. 

The extended real line, [-oc,  +oc], was introduced in 1.17. Recall that  it is obtained by 
adjoining two new objects, - o c  and +oc, to the real number system and defining - o c  < 
r < +oc for all real numbers r. It follows that  [-oc,  +oc] is a chain that  is order complete. 

4.28. Observation. Let A be any nonempty set. Then R A - {functions from A into R} 
is Dedekind complete, and [-oc,  +oc] A - {functions from A into [-oc,  +oc]} is a complete 
lattice, when these products are equipped with the product ordering. 
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4 .29 .  Miscellaneous properties. 
a. For any set X, the ordering c_ makes [P(X) into a complete lattice; hence it is both a 

directed ordering and a partial ordering. It is not a chain ordering if X contains more 
than one element. 

b. Not every subset of a complete lattice is a complete lattice; not every subset of a 
Dedekind complete poset is Dedekind complete. For instance, [0, 1] (with its usual 
ordering) is order complete, but Q N [0,1] is not Dedekind complete. 

c. Let X and Y be complete lattices, and suppose f : X --~ Y is an order-preserving 
function that  is, xl ~ x2 =~ f (x l )  ~ f (x2) .  Then 

)~EA AEA 

for any set {xx �9 A E A} c_ X. Neither of these 4 ' s  is necessarily equality; that is 
evident from an example in 15.11. 

4.30. Ta r sk i ' s  F i x e d  P o i n t  T h e o r e m .  Let (L, 4) be a complete lattice, and suppose 
f : L ~ L is isotone. Then f has at least one fixed point i.e., there exists at least one 
point p E L such that f (p)  = p. 

Furthermore, among the fixed points there is a largest one. In fact, that  largest fixed 
point is also the largest member of the set S = {x E L : x 4 f(x)}.  

Hints: S is nonempty, since it includes the first member of L. Let p - sup(S); show that 
p E S; show that f (p)  - p. 

ORDER COMPLETIONS 

4.31. Definitions. A set D c_ X is s u p - d e n s e  in X if X is the sup closure of D i.e., if 
each point ~ in X is the sup (in X) of some nonempty subset of D. It is easy to see that in 
this case 

L~ - {d E D �9 d 4 ~} is nonempty, and ~ -  sup(L~). 
x 

Dually, a set D C_ X is in f -dense  in X if X is the inf closure of D i.e., if point ~ in X 
is the inf (in X) of some nonempty subset of D. It is easy to see that in this case 

U~ = {d E D �9 d ~ ~} is nonempty, and - inf (U~) .  

4.32. Proposition. Let ( X , ~ )  be a poset, and let D C_ X. Let D be ordered by the 
restriction of the ordering ~; let this restriction be denoted again by ~. Then: 

(i) If D is inf-dense in (X, ~), then the inclusion map D c_ X is sup-preserving 
from (D, ~) to (X, ~). 
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(ii) If D is sup-dense in (X, 4) then the inclusion map D c , -~ X is inf-preserving 
from (D, 4 ) t o  (X, ~). 

Outline of proof. We shall only prove (i); then (ii) follows since it is dual to (i). 
We shall use "suPD" and "suPx" to denote the supremum in D or in X, respectively; 

denote an infimum analogously. 
Let S C_ D be nonempty, and assume that c r -  suPD(S ) exists. Then cr is also an upper 

bound for S in X; we wish to show that it is the least upper bound in X. Let ~ be any 
upper bound for S in X; we wish to show that a 4/3.  

Define L~, U~ as in 4.31. Consider any d E U~. Then d ~ /3  ~ s for every s E S. Hence 
d is an upper bound for S, and d lies in D. Since a is the least of all the upper bounds for 
S that lie in D, it follows that cr 4 d. Thus d E U~ i.e., we have shown that U~ C_ U~. 
Since the infimum operation is antitone (see 3.21.1), it follows that infx(U~) ~ infx(U~) 
that is, ~ ~ or. 

4.33. The literature contains many different kinds of order completions. (A survey of 
different kinds of completions applicable to lattice groups was given by Ball [1989].) The 
following notion of completion seems to be best suited for the purposes of this book. 

Definition. Let D and X be posets, with partial orderings both denoted by 4. We shall 
say that X is a D e d e k i n d  c o m p l e t i o n  of D if 

(i) D C_ X, and the ordering of D is the restriction to D of the ordering of X; 

(ii) D is both sup-dense and inf-dense in X; and 

(iii) (X, 4 ) i s  Dedekind complete. 

Note that the inclusion D c -~ X is then sup-preserving and inf-preserving, by 4.32. 
This type of completion might be more precisely named a "generalized Dedekind com- 

pletion," since the term "Dedekind completion" usually refers to chains. See also 4.36.c. 

4.34. E x i s t e n c e  T h e o r e m .  Every poset has a Dedekind completion. 

Proof. Let (D, 4)  be the givenposet.  DefineF - {(u,v) E D x D  �9 u 4 v } ,  and define 
a polar pair between D and itself as in 4.10(D). By a cu t  we shall mean an ordered pair 
(A, B) such that 

(1) A and B are nonempty subsets of D, and 

(2) A - B > and B - A < in the sense of 4.9. 

Note that condition (2) can be restated as: 

(2a) A is the set of lower bounds of B, and 

(2b) B is the set of upper bounds of A. 

It follows that A is down-closed and B is up-closed. 
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Let X be the set of all cuts. Show that  any cuts (A1,B1) and (A2,B2) satisfy A1 c_ 
A2 ~ B1 _D 132; hence we may define a partial ordering __ on X by: 

(A1, B1) E (A2, Be) -: :- A1 C_ A2 -: :- B1 _D B2. 

For each d E D define 

j(d) - ( { e c D ' e g d } ,  { e E D ' e ~ d } ) .  

It is easy to verify that  j(d) is a cut and that  the mapping j �9 D --~ X is injective; hence 
we may view D as a subset of X by identifying each d c D with its image j(d). Verify that  
dl 4 d2 ~ j (d l )  ___ j(d2); thus the ordering of D is the restriction of the ordering of X. 

To show that  (X, E) is Dedekind complete, let S -  {(A~,B~) �9 ,~ E A} be a nonempty 
subset of X. Verify that  

if S has a E-lower bound, then the E-inf of S is the pair (A_ ,B_) ,  where 
A_ - n~eA A~ and B_ - p(A_); and 

if S has a _E-upper bound, then the ___-sup of S is the pair (A+,B+) ,  where 
B+ - N ~ A  B~ and A+ - q(B+). 

Use those two facts to show that  D is inf-dense and sup-dense in X; verify that  any cut 
(A, B) is the _-infimum of {j(b)" b E B} and the E-supremum of { j (a ) ' a  c A}. 

4.35. Example. Let Q -  {rational numbers} have its usual ordering. Let 

L -  { q E Q "  q < 0 o r q 2 < 2 } ,  U - { q c Q  �9 q > 0 a n d q 2  >2} .  

Then the pair (L, U) is a cut in Q, in the sense of the proof in 4.34. We shall see in 
Chapter 10 that  the order completion of Q is the real number system ]R; the cut (L, U) 
described above corresponds to the number v/2 in R. 

4.36. Further properties of the Dedekind completion. Let X be a Dedekind completion of 
a poset D. Then: 

a. X has a first element if and only if D has a first element, in which case they are the 
same. Similarly for last elements. 

b. If D is a lattice, then X is a lattice. Hint: 4.15.f. 

c. Let (D, 4) be any poset. Then there exists a complete lattice (X, 4) with D c_~ X, 
such that  the inclusion is both sup- and inf-preserving. (Such a complete lattice X is 
sometimes called a M a c N e i l l e  c o m p l e t i o n  of D.) 

Hint: Adjoin a lowest element and a highest element, and then take the Dedekind 
completion. (Or take the Dedekind completion first if you prefer; the result will be t~e 

same.) 

4.37. Remarks. In the theorem below we shall consider Dedekind completions only for 
chains. The theorem can be extended to a more general setting, but it then becomes more 
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complicated; we shall not need the greater generality later in this book. We are mainly 
concerned with completing Q to obtain IR. Most other Dedekind complete structures used 
in analysis can be obtained by putt ing together copies of IR in various ways. 

4.38. Theorem on completions of chains. 
(i) (Linear ordering.) If X is a Dedekind completion of a chain D, then X is 

also a chain. 

(ii) (Extension of m a p p i n g s . )  If X is a Dedekind completion of a chain D, 
and Q is another chain tha t  is Dedekind complete, and f "  D -~ Q is a sup- 
preserving mapping, then f extends uniquely to a sup-preserving mapping 
F "  X -~ Q. In fact, F must be defined by this formula: 

F(~) - sup f (L~)  - sup{f (d ) "  d E L~}, (**) 

where L~ - {d E D"  d < ~}. 

(iii) (Uniqueness of completions.) The Dedekind completion of a chain D is 
unique up to isomorphism over D, in the following sense: If X1, X2 are two 
Dedekind completions of D, then there exists an order isomorphism from X1 
onto X2 that  maps each member  of D to itself. 

Proof of linear ordering. Define L~, U~ as in 4.31. Suppose X is not a chain. Then there 
exist two distinct elements x, y E X that  are not c o m p a r a b l e -  i.e., such that  neither x ~ y 
nor y ~ x is valid. Consider any a E Lx and b E U v. Then we cannot have a > b, since that  
would imply x ~ a ~ b ~ y. Since D is a chain, it follows that  a < b. Hold a fixed, and let 
b vary over all of Uy; thus a is a lower bound for Uy, so a E L v. This reasoning is applicable 
for every a c Lx, so Lx c_ L v. Since x -  sup(Lx) and y -  sup(Lv) , it follows that  x ~ y. 

Proof of extension of mappings. Define L~, U~ as in 4.31. For each x E X, the set Lx is 
nonempty and is bounded above in D by any dl E Ux. Therefore f (d l )  is an upper bound 
for the set f ( L x )  - {f (d ) "  d E Lx}. Since Q is Dedekind complete, sup f ( L x )  exists in Q. 
Hence a function F "  X -+ Q can be defined by (**). 

It is easy to see that  this function is increasing and is an extension of f ,  since f is 
sup-preserving on D. If f has a sup-preserving extension F "  X -+ Q, that  extension must 
satisfy (**), since x -- sup(Lx). 

It suffices to show the function F defined by (**) is indeed sup-preserving. Let S be a 
nonempty subset of X, and suppose a - sup(S) in X; we are to show that  q - sup{F(s)  �9 
s E S} exists in Q and equals F(cr). 

For simplicity of notation, we may replace S with the set {x E X �9 x < s for some 
s E S}; this does not affect our hypotheses or desired conclusion. Thus we may assume S 
is down-closed in X. Hence S V/D - U~Es L~. For each s E S we have s - sup(L~), and 
therefore 

by 3.21.m. Also, from 3.25.d we see that  L~, c_ S U {~}. 
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For each s C S we have s ~_ a and hence F(s) <_ F(a) ;  thus the set {F(s)  �9 s C S} 
is bounded above by F(a ) .  Since Q is Dedekind complete, it follows that  q - sup{F(s)  �9 
s C S} exists in Q and that  q _~ F(a ) .  It remains to show the reverse of this inequality. If 
a ~ D, then L~ C_ S, and so F(a) - sup{f(d) �9 d E L~} _< sup{F(s)  �9 s c S} - q. On the 
other hand, if a c D, then (since f is sup-preserving on D) 

f (a) - f ( sup(S  N D)) - sup( f (S  N D)) _< sup(F(S))  - q. 

Proof of uniqueness of completions. For k - 1, 2, let fk " D g-) Xk be the inclusion 
map. Using the Extension Property with X = Xj (for j = 1, 2) and Q = Xk, we see that  
fk extends uniquely to a sup-preserving mapping Fjk : Xj ~ Xk. Thus Fjk is the only 
sup-preserving mapping from Xj into Xk that  leaves elements of D fixed. 

Since the identity map of X1 is a sup-preserving map that  leaves elements of D fixed, 
it follows that  F l l  is the identity map on X1 and that  this is the only sup-preserving map 
from X1 into itself that  leaves elements of D fixed. Analogous statements are valid for F22 
and X2. 

The compositions F21 o F12 : X1 ~ X l  and F12 o F21 : X2 ----+ X2 are sup-preserving 
maps that  leave elements of D fixed. Hence these maps are the identity maps on X1 and 
X2, respectively. Therefore F12 :X1 ~ X2 is an order isomorphism. 

4.39. (Optional remarks.) Although the "Dedekind completion" defined in 4.33 is probably 
the simplest for the purposes of this book, some mathematicians may prefer a different sort 
of completion. 

Let (X, 4)  be a poset. Let S c X be partially ordered by the restriction of 4. We shall 
say that  (X, ~) is a sup  c o m p l e t i o n  of (S, ~) if these further properties are satisfied: 

(i) (X, ~ ) i s  Dedekind complete. 

(ii) The inclusion map S c_ X is sup-preserving, from (S, ~) to (X, ~). 

(iii) If (Q, _)  is any Dedekind complete poset and f "  (S, ~) ~ (Q, __) is any 
sup-preserving function, then f extends uniquely to a sup-preserving function 

This definition is slightly more complicated than the one in 4.33. However, it has the 
following advantages: Every poset S has a sup completion X that  is unique, in the sense that  
any two sup completions X1, X2 are order isomorphic via a map that  acts as the identity on 
members of S. Moreover, S is sup-dense in its sup completion X; X is bounded if and only 
if S is bounded, in which case the two posets have the same maximum and same minimum; 
X is a chain if and only if S is.a chain, in which case the sup completion agrees with the 
Dedekind completion (defined in 4.33). The Dedekind complete posets form a reflective 
subcategory of the category of posets, if we use sup-preserving maps for morphisms; this 
notion is developed in books on category theory. We shall not prove these results, but for 
the ~mbitious reader we provide a hint: To prove existence of a sup completion of S, let 
X - {C c_ S" C is nonempty, bounded above, down-closed, and sup-closed}; then partially 
order X by C_. 
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SUPS AND INFS IN METRIC SPACES 

4.40. Let (X ,d )  be a pseudometric space (defined in 2.11), let S C X be a nonempty 
subset, and let x E X. Then the d i s t ance  from x to S and the d i a m e t e r  of the set S are 
the numbers 

distd(x,S) - inf d(x ,s) ,  diamd(S) -- sup d(u,v)  
sES u,vES 

in [0, +oc]. We may omit the subscript d if no confusion is likely. By convention, we define 
diam (o) = 0. 

(The existence of these infs and sups follows from the fact that [0, +oe] is order complete 
a fact that will not be established rigorously until we investigate the real numbers care- 

fully in Chapter 10. We shall "borrow" that result now, to give some important examples 
of sups and infs; we promise not to engage in any circular reasoning.) 

A set S is b o u n d e d  (or, more specifically, metrically bounded) if it has finite diameter. A 
function is sometimes called b o u n d e d  if its range is a metrically bounded set. Caution: The 
term "bounded" has several other meanings (see 3.19.a, 23.1, 27.2, and 27.4). Fortunately, 
most meanings of "bounded" coincide, at least when applied to subsets of R. 

4.41. 

a .  

b. 

c .  

d .  

e .  

Basic properties and examples. Let (X, d) be a pseudometric space. Then: 

d(x, y) - dist(x, {y}). 

Idist(x, S ) -  dist(y, S)I _< d(x, y) for any nonempty set S c_ X. 

Any subset of a bounded set is bounded, and the union of finitely many bounded sets 
is bounded. Thus, the bounded subsets of X form an ideal of sets, in the sense of 5.2. 

In a metric space, a set with diameter 0 contains at most one point. 

Show that d(x ,y)  - I  x - Yl and e(x ,y)  - min{1, I x -  Yl} are metrics on R that yield 
different collections of bounded sets. In most other respects, however, these metrics are 
equivalent - -  they yield the same topological structure and the same uniform structure 
(see 18.14). 

Let A be any set. Then p( f ,g )  - sup{if(h ) -g (A)I  �9 ~ E A} is a metric on B(A) - 
{bounded functions from A into R}. 

Suppose d is a metric on the given set A. Then we may embed the metric space 
(A, d) in the metric space (B(A), p), as follows: Fix any point in A; we shall" denote 
it by "0" (although we do not assume any additive structure here). For each p E A 
define a function f~ E B(A) by 

fu(A) - d(A,#) - d(A,0) (AEA).  

Verify that p(fu,  f~) - d(#, ~). Thus # H fu is a distance-preserving map from A into 
B(A), and so we may view A as a subset of B(A). 

The space B(A) has certain special properties that will be of interest later" It is a 
Banach space. Thus the example above shows that every metric space can be embedded 
isometrically in a Banach space. See 19.11.f and 22.14. 
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4.42.  Let X be a set, and let f "  X • X ~ [0, +oc) be some function satisfying f ( x ,  y) - 
f ( y , x ) .  Then we can define a pseudometric d on X by 

d(x, y) - inf f (a j -1 ,  aj) �9 
j=l 

m>__0, a 0 - x ,  a ~ n - y  ; 

here the infimum is over all nonnegative integers rn and all finite sequences (aj)~_ o in X 
that  go from x to y. The existence of the infimum follows from the fact tha t  [0, +cc] is 
order complete. We permit  m = 0 in the case when x = y; then the sum is interpreted to 
be 0. This construction can be summarized informally as "the distance between two points 
is the shortest route connecting them." It is not hard to show that  d(x, y) <__ f (x ,  y) and 
that  in fact d is the largest pseudometric that  is less than or equal to f .  

4.43.  More generally, the formula above defines a pseudometric d if the function f is merely 
defined on a subset D C_ X • X,  provided that  subset is large enough that  for each pair 
(x, y) E X • X there exists at least one finite sequence (aj)~= 0 from x to y satisfying 

(a0,a l ) ,  (a l ,az) ,  (az,a3), . . . ,  (am-l ,am) C D. 

We then define d to be the infimum of the sums over all such sequences. Again, we permit  
m - 0 when x - y. This more general construction will be used in 19.48. 

4.44.  W e i l ' s  P s e u d o m e t r i z a t i o n  L e m m a .  Let V0, V1, V2, V3,. . .  be a sequence of re- 
flexive symmetr ic  relations on a set X,  satisfying Vn-1 D_ Vn o Vn o Vn for all n E N, with 
V0 - X • X. Then there exists a pseudometric d on X that  satisfies 

{(x,y) E X 2 �9 d ( x ,  y)  < 2 -n} C_ Yn C_ {(x,y) E X 2 " d ( x ,  y)  ~_ 2 -n} (~ : $ $) 

for n - 0, 1, 2, . . . .  In fact, d may be selected as follows: Define 

2_ n 
f ( x , y )  - i n f { 2 - n ' ( x , y )  e tin} - 0 

if (x, y) E V~ \ Yn_F1 
if (X, y) C Mn~ Yn, 

and then define d as in 4.42. 

Remark. The li terature contains several variants of this lemma. Some other formulations 
may be simpler, but the present formulation which follows Murdeshwar [1983] has 
the advantage tha t  it can be applied directly in the settings of uniform spaces, topological 
groups, topological vector spaces, and locally solid vector lattices; see 16.16, 26.29, and 
26.57. 

Outline of proof. We begin by observing that  

f(Ul, U4) _~ 2max{f (u l ,  uu), f(u2, u3), f(u3, u4)} for all Ul, u2, u3, u4 e X. (1) 

Indeed, if 2 -n  -- m a x { f ( u l ,  u2), f(u2, u3), f(u3,  u4)}, then (?-tl, u2), (u2, u3), (tt3, u4) are all 
in Vn, so (Ul, u4) C Vn o Vn o Vn C Vn-1. 
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Next, by induction on m, we shall show that  

m 

f ( x o , X m )  <_ 2 E f ( x i - l , X i )  
i=1 

for any m E N and xo, X l , . . . ,  Xm E X.  (2) 

To see this, let b - Eim=l f(xi- l ,Xi);  we are to show f(xo, Xm) <_ 2b. If b - O, then 
(X~-l, xi) C Vn for all i and n, hence (x0, xm) c Vn for all n, and we are done. Thus we may 
assume b > O. Choose j as large as possible satisfying J E i = I  f(xi_l,x~) <_ b/2. Then j < m 
and E j+ 1 m i=1 f(xi-1,  xi) > b/2; hence Y:~i=j+2 f (x i -1 ,  xi) < b/2. By two uses of the induction 
hypothesis we have 

f (xo,xj)  < b and f(xj+l,Xm) < b. 

Also f (x j ,x j+l)  <_ b by our definition of b. By (1) we have f(xo,xm) <_ 2b, completing the 
induction proof of (2). 

Now define d as in 4.42. Then d is a pseudometric and d < f .  From (2) we have 
f < 2d. The second inclusion in ( ,  �9 ,)  is obvious, since d < f .  For the first inclusion in 
( ,  �9 ,) ,  suppose d(x, y) < 2 -n .  By the definition of d, then, there exists a finite sequence 
ao ,a l , . . . , a~  E X, with a0 - x and am -- y and ~-~jm=l f ( a j _ l , a j )  < 2 -n. By (2), then, 

f(x,  y) < 2 -n+ l .  Since f takes on only the values 2 o 2 -1 2 -2 and 0 we must have 
f (x, y) <_ 2 -n, and hence (x, y) e Vn. 



Chapter 5 

Filters  Topologies  
Sets 

and Other Sets of 

FILTERS AND IDEALS 

5.1. Let 9" be a nonempty collection of subsets of a set X. We say 9 ~ is a f i l ter  on X if 

(i) S c g " a n d S C _ T C X i m p l y T c 9 " , a n d  

(ii) S , T ~ 9  ~ ~ S n T c g L  

(For clarification or emphasis we may sometimes call 9 ~ a f i l ter  of  sets .)  Note that  any 
such collection 9 ~ necessarily satisfies X E 9". Clearly, [P(X) is a filter on X; we shall refer 
to it as the i m p r o p e r  fil ter.  Any other filter on X will be called a p r o p e r  fi l ter.  It is 
easy to see that  a filter 9" is proper if and only if 

(iii) O ~ 9=. 

Our terminology here follows that  of algebraists. However, we remark that  many math- 
ematicians particularly topologists use the term "filter" to refer only to collections 
satisfying all of (i), (ii), and (iii). We prefer the algebraists' terminology because in later 
chapters we shall use the duality between filters and ideals. 

Elementary examples of filters and ideals are given in 5.5, and further examples (par- 
ticularly of interest to analysts) are previewed in 5.6. An intuitive discussion is given in 
5.3. 

5.2. A nonempty collection :I of subsets of a set X is an ideal  on X if 

(i) S E : J a n d S 2 T i m p l y T c J ,  and 

(ii) S, T c ~J :=~ S u T  E J. 
If the context is not clear, we might say that  3 is an ideal  of  sets ,  to distinguish it from 
the "ideal in an algebra" introduced in 9.25. We can also avoid ambiguity by referring to 
J as an idea l  in t h e  B o o l e a n  a l g e b r a  g)(X) because in that  setting the two notions of 
"ideal" coincide (see 13.17.a). " 

For any ideal ~J, we have o e 3, by (i). Clearly, [P(X) = {subsets of X} is an ideal on 
X; we shall call it the i m p r o p e r  ideal .  Any other ideal on X is called a p r o p e r  ideal .  It 

100 



Filters and Ideals 101 

is easy to see tha t  an ideal J is proper if and only if 

(iii) X ~ J. 
A a - i d e a l  is an ideal :1 tha t  is closed under countable unions - -  i.e., such tha t  $1, $2, $3, �9 �9 E 
~I =:g> S 1 U S 2 U S 3 U . . .  E ~. 

There is a simple correspondence between filters and ideals. Let 9" be a collection of  
subsets of X,  and let J - {CS �9 S E 9"}, where C denotes complementat ion in X; then 9" is a 
filter (proper filter, improper filter) if and only if :J is an ideal (proper ideal, improper ideal 
respectively). We say that  fl" and :J are d u a l  to each other. Any s ta tement  about 9" can be 
t ranslated into a s ta tement  about  :J, and vice versa, but some concepts can be expressed 
more simply in terms of filters or in terms of ideals. 

Caution" The dual ideal {CS" S E fl:} should not be confused with the other comple- 
mentary  set, [P(X) \ 9 " -  {T C_ X "  T r 9"}. In general, ~P(X) \ 9" is neither a filter nor an 
ideal. However, under special circumstances {CS" S E 9"} is equal to the ideal ~P(X) \ 9"; 
see 5.8. 

5.3. To bet ter  unders tand the definitions of filter and ideal, suppose 3 is a nonempty 
collection of subsets of a set X,  and let 9" be the dual collection {X \ S �9 S E J}. Say that  
a set S c_ X is "small" if S E 5, or "large" if S E 9" (i.e., if X \ S is small). 

Then :I is an ideal and 9= is a filter if and only if 

(i) any subset of a small set is small, and 

(ii) the union of two small sets (or finitely many small sets) is small. 

The ideal and filter are proper if and only if also 

(iii) not every set is small. 

If this third condition is satisfied, then a set S c_ X cannot be both small and large. Can a 
set be neither small nor large? That  depends on what 3 and 9" are; see 5.5.d and 5.8(B). 

Our three rules (i), (ii), and (iii) are compatible with common nonmathemat ica l  usage 
of the words "small" and "large." However, different rules would also be compatible with 
the nonmathemat ica l  usage of those words, since nonmathemat ica l  usage deals only with 
finite sets; the mathemat ica l  usage also covers infinite sets. We have drawn this connection, 
not so much to explain small and large, but rather  to explain ideal and filter. 

Different ideals give us different collections of small sets. A set may be small with respect 
to one ideal while large with respect to another ideal; see the example in 24.39. Other words 
sometimes used in place of small are neg l i g ib l e  and nul l  (although the lat ter  term also 
sometimes refers to the empty  set). 

Other words sometimes used in place of large are r e s i d u a l  or g e n e r i c  especially 
in the context of directed sets or in the context of Baire category theory. Also, a large 
subset of X is a l m o s t  all  of X.  We might also say that  a condition K on points x E X is 
satisfied a l m o s t  e v e r y w h e r e  or a l m o s t  a lways ,  or is 9"-true or a l m o s t  t r u e ,  if the set 
{x E X �9 K is satisfied at x} is a member  of 9 ~. 

This interpretat ion of "true" preserves some, but not all, of the usual features of that  
word for instance, the conjunction of finitely many 9"-true s ta tements  is 9"-true (as with 
ordinary t ruth) ,  but the conjunction of infinitely many 9"-true s ta tements  is not necessarily 
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5[-true (unlike ordinary truth).  This slightly unusual interpretation of "truth" is occasionally 
useful to logicians. 

5.4. We have noted that  T(X) is a filter on X, and we can easily verify that  the intersection 
of any collection of filters on X is another filter on X. Thus, the collection of all filters on 
X is a Moore collection of subsets of T(X).  Similarly, the collection of all ideals on X is a 
Moore collection. 

Hence, given any 9 C [P(X), there exists a smallest filter (or ideal) that  contains 
namely, the intersection of all the filters (or ideals) that  contain 9. We call it the filter 
(respectively, the ideal) g e n e r a t e d  by 9; we say that  9 is a g e n e r a t i n g  set  for it. (This is 
a special case of the Moore closure, introduced in 4.3, but the terms "closed" and "closure" 
are generally not used for filters and ideals.) 

We shall say that  9" is a s u p e r f i l t e r  of 9 whenever 9" is a filter and 9" _~ 9. With this 
terminology, the filter generated by 9 is simply the smallest superfilter of 9. 

Show that  the filter generated by a collection 9 C T(X) is 

~Y - { F C _ X  �9 F _D G 1 N G 2 N ' " N G n  

some finite set {G1, G2,. . . , Gn} C_ 9}.  for 

Dually, the ideal generated by a collection 9 C_ T(X) is 

~J = { I  C X �9 I c_ G l U G 2 U . . . U G n  

for some finite set {G1, G 2 , . . . ,  Gn} C_ 9}.  

We permit n - 0 in both formulas, with the conventions that  the intersection of no subsets 
of X is just X and the union of no subsets of X is just o.  

5.5. Examples and elementary properties. Let X be a set. 

a. Degenerate examples: The singleton {X} is the smallest filter; the singleton {O} is the 
smallest ideal. These are dual to each other; they both are generated by the empty 
set. 

b. Let A be a nonempty subset of X, and let 9" be a filter on X. Then the following 
conditions are equivalent: 

(A) 

(B) 

(C) 

9 = is fixed (i.e., has nonempty intersection - -  
of its members is. A. 

9" is the filter generated by the singleton {A}. 

5 - { S C _ X . S ~ A } .  

see 1.26) and the intersection 

Assume that  those conditions are satisfied. 
~P(X\A). 

Then the filter 9 ~ is dual to the ideal 
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c. We note an important  special case of the preceding example: Let p E X,  and take A 
to be the singleton {p}. Thus we obtain the filter 

= {scx-s {p}} = { s c x . p e s } .  

It is the fixed filter generated by the singleton {{p}}. It is actually an ultrafilter 
(defined in 5.8); hence it is called the u l t r a f i l t e r  f ixed a t  p. 

d. The idea l  of  f in i te  se t s  is {S c_ X �9 S is finite}. It is generated by the collection of all 
the singletons in X. The filter tha t  is dual to this is the co f in i t e  f i l ter ,  {S c_ X �9 CS 
is finite}, also known as the F r 6 c h e t  f i l ter .  This ideal and filter are proper if and only 
if the set X is infinite. 

Ezample. If subsets of N are classified as small or large as in 5.3, using the ideal of 
finite sets and the cofinite filter, then the set {1, 3, 5, 7 , . . . }  is neither small nor large. 

e. Let 9 ~ and :J be a filter and ideal on X, dual to each other. Show that  the following are 
equivalent: 

(A) 9" is free (i.e., has empty  intersection). 

(B) 9: contains the cofinite filter. 

(C) J is a cover of X. 

(D) :J contains the ideal of finite sets. 

f. Let 91 and 92 be filters on X. We shall say tha t  ~1 m e e t s  ~}2 if every member  of 
~1 meets (i.e., has nonempty intersection with) every member  of 92. Show that  there 
exists a proper filter 9f _2 ~1 U ~2 if and only if ~1 meets ~}2- 

g. Let 9" be a filter on X,  and suppose Y c_ X. Then 9~y - {Y n F �9 F E 9"} is a filter on 
Y, sometimes called the t r a c e  of 5 on Y. It is a proper filter if and only if X \ Y ~ 9 ~. 

h. K o w a l s k y ' s  f i l ter .  (Optional; this will be used in 15.10.) Let I and X be sets, let 9 
be a filter on I, and for each i E I let 9"i be a filter on X. Then Uc~9  n i ~ c  9~i is a 
filter on X. 

H o w  to  e n l a r g e  a f i l ter .  Let 9"be a proper filter on X, and let K c_ X; suppose 
tha t  neither K nor CK is an element of 9". Then {F  n L"  F E 9" and K C_ L c_ X} is 
a proper filter tha t  contains {K} U 9". 

5.6. Preview of more examples. Other important  filters studied later are the collection of 

�9 absorbing subsets of a vector space (see 12.8); 

�9 neighborhoods of a point in a topological space (see 5.16.a); 

�9 eventual sets of a net (see 7.9). 

Other  impor tant  ideals studied later are the collection of 

�9 relatively compact  subsets of a Hausdorff topological space (see 17.7.c); 

�9 equicontinuous sets of maps between two uniform spaces (see 18.30.e); 
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�9 bounded subsets of a lattice (4.19.a), a metric space (4.41.c), or a topological vector 
space (27.3.b); 

�9 precompact or totally bounded subsets of a uniform space (see 19.15.0; 

�9 nowhere-dense subsets of a topological space, and meager subsets of a topological 
s p a c e -  the latter is in fact a a-ideal (see Chapter  20); 

�9 null sets with respect to a positive charge i.e., a finitely additive, positive set 
function; this is in fact a a-ideal if the measure is countably additive (see 21.15). 

�9 shy sets of a Banach space; this is in fact a a-ideal - -  see 21.21. 

5.7. We consider several useful generalizations of the notion of a proper filter. Let 9 be a 
nonempty collection of subsets of X; then ~ may or may not satisfy the following conditions" 

(i) ~ is a proper filter on X. 

(ii) Every member of ~ is nonempty, and ~ is closed under finite intersection. 

(iii) ~ is a f i l t e rba se  on X that  is, each member of ~ is nonempty, and for 
each pair of sets A, B E ~ there exists some C C ~ with C c_ A N B. 

(iv) ~ is a f i l ter  s u b b a s e  on X, or ~ has the f in i te  i n t e r s e c t i o n  p r o p e r t y  
that  is, the intersection of finitely many elements of ~ is always nonempty. 

Clearly, ( i ) = ~  ( i i )=>  ( i i i )=> (iv). Show the following further results: 

a. Let ~ be a collection of subsets of X. Show that  the filter generated by ~ is a proper 
filter if and only if ~ is a filter subbase. 

b. If 9" is a filter subbase on X and $1, $ 2 , . . . ,  Sn are disjoint subsets of X, then at most 
one of the Si's is an element of 9". 

c. If 9 is a filterbase, then the filter generated by 9 is the proper filter 

9" - { S C X  �9 S _ D G f o r s o m e G E g } .  

We then say that  ~} is a ba se  for the filter 9 ~. 

d. If S is a filter subbase, then iB = {intersections of finitely many members of S} satisfies 
condition (ii) above, and it generates the same filter as S does. 

e. Let X = [P(~t) for some set Ft. Then the set of all filter subbases on ~ is a collection 
of subsets of X that  has finite character (defined in 3.46). 

5.8. Definition and exercise. Let 9" be a nonempty collection of subsets of X. Show that  
the following conditions on 9 ~ are equivalent. If any (hence all) of them are satisfied, we say 
9"is an u l t r a f i l t e r .  Hint: For 5.8(C) ~ 5.8(B), use 5.5.i. 

(A) 9" is a proper filter, and the complementary set [P(X) \ 9 " -  {S C X "  S ~ 9"} 
is an ideal. (This is the special circumstance mentioned in the cautionary 
remark at the end of 5.2.) 
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(B) 

(c) 

(D) 

9" is a proper filter on X that  also satisfies" for each set K C_ X, either K E 9" 
or CK E 9". (In the terminology of 5.3, every subset of X is either large or 
small. Thus, the dual ideal {CS" S E 9"} is equal to g~(X) \ 9:.) 

9" is a maximal filter on X (or more precisely, a maximal proper filter). That  
is, 9" is a proper filter on X, and no other proper filter on X contains 9". 

~F is a maximal filter subbase on X 
other filter subbase contains 9". 

i.e., 9" is a filter subbase on X, and no 

(E) 9" is a proper filter on X,  and whenever $1 U $2 U ' "  U Sn E 9", then at least 
one of the Si's is an element of 9". 

(F) 9" is a proper filter on X,  and whenever $1 U S 2 E ~T', then at least one of 
S1, $2 is an element of 9-. 

5.9. Let II be an ultrafilter on X. Then one of the following two cases must hold: 

(1) 1~ is a f ixed u l t r a f i l t e r  (i.e., having nonempty intersection see 1.26 and 5.5.b). In 
this case 1~ is also known as a p r i n c i p a l  u l t r a f i l t e r .  Show that  in this case 1~ is the 
ultrafilter lip fixed at some point p E X (defined in 5.5.c). 

(2) 1~ is a free u l t r a f i l t e r  (i.e., having empty intersection see 1.26). In this case II is 
also called a n o n p r i n c i p a l  u l t r a f i l t e r .  Show that  in this case II is a superset of the 
cofinite filter and no element of 1~ is a finite set. In particular, this case cannot occur 
if X itself is a finite set. 

5.10. Remarks. Free ultrafilters will play an important  role in some later parts of this 
book. A free ultrafilter on a set X can be described as a classification of subsets of X into 
small sets and large sets, satisfying conditions 5.3 (i), (ii), and (iii) and also satisfying 

(iv) every set is either small or the complement of a small set, and 

(v) every finite set is small. 

Our description of fixed ultrafilters in 5.5.c is quite constructive: It tells us explicitly how 
to form such objects. In contrast, our description of a free ultrafilter is indirect, and we find 
it difficult to visualize such an object. Before continuing to the next sentence, the reader is 
urged to try to give a completely explicit example of a free ultrafilter. 

Surprisingly, free ultrafilters do exist, but explicit examples of free ultrafilters do not 
exist! Thus, free ultrafilters are our first intangibles. This bizarre situation will be explained 
in 14.76 and 14.77. Basically, it arises because the customary criteria for "explicit examples" 
are somewhat stricter than the customary criteria for existence proofs. 

5.11. Remarks. Ultrafilters will be studied further in the last part  of Chapter  6 and 
thereafter. For purposes of convergences, filters can be used interchangeably with nets; this 
concept is developed in 7.9 and 7.14, and used extensively thereafter. 



106 Chapter 5: Filters, Topologies, and Other Sets of Sets 

TOPOLOGIES 

5.12. Definition. A t o p o l o g y  on a set X is a collection q" of subsets of X satisfying these 
three axioms: 

(i) O, Xc9", 
(ii) S1, $2 c ~" ::~ S1 N $2 c {~', and 

(iii) {S~'AEA}c_9" => U~eAS~cT. 
That is, T contains O and X, and 9"is closed under finite intersections and arbitrary unions. 
A topo log ica l  space  is a pair (X, if) consisting of a set X and a topology ~" on X; we may 
refer to X itself as the topological space if 9" does not need to be mentioned explicitly. The 
members of 9" are called the o p e n  subsets of X. 

A point x is called i so la ted  if it is the only member of some open set; the topological 
space X is d i s c o n n e c t e d  if it can be partitioned into two disjoint nonempty open sets. If 
no such partition exists, the space X is connec t ed .  

Topological spaces can be described in other ways in terms of closed sets (5.13), 
convergences (15.8.b and 15.10), closure or interior operators (5.19, 5.20, and 15.7), neigh- 
borhood systems (5.22 and 15.8.a), bases (15.36.5), or distances (5.15.i). 

Topological spaces will be studied briefly in the next few sections and in Chapter 9, and 
then in much greater detail in Chapter 15 and thereafter. 

5.13. More definitions. Let (X, if) be a topological space. The complements of the open 
sets are the c losed subsets of X. 

Closed sets are dual to open sets (in the sense of 1.7). Although it is customary to define 
a topological space in terms of its open sets, we could as easily define it in terms of the 
closed sets, as follows. Let X be a set, and let 9C be a collection of subsets of X; then ~ is 
the collection of closed sets for a topology on X if and only if 9C satisfies these conditions: 

(i) O , X  e XT, 

(ii) $1, $2 c X =:> S1 U $2 c X, and 

(iii) {S~ �9 A E A} C X => NAEA SA 6 X. 

That  is, ~K contains o and X, and X is closed under finite unions and arbitrary intersections. 

5.14. Remarks and more definitions. In common nonmathematical English, "open" and 
"closed" are opposites. This could lead beginners to expect that every subset of a topological 
space X must be either open or closed, but that expectation is incorrect. Some sets may 
be neither open nor closed. In fact, in topological spaces commonly used, most subsets are 
neither open nor closed. We shall demonstrate this in 15.37.c in the case where X is the ~' 
real line, a space typical of the topological spaces used by analysts. 

Also, some sets may be both open and closed. Such sets are called c lopen.  Indeed, in 
any topological space X, both o and X are clopen. Exercise. The space X is connected 
(as defined in 5.12) if and only if it has no other clopen subsets besides o and X. 
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5.15. Elementary examples of topologies. Let X be any set. Then: 

a. The i nd i sc r e t e  t o p o l o g y  (also called chaotic topology) is {O,X}; it is the smallest 
topology on X. 

b. The d i sc re t e  t o p o l o g y  is T(X) - {subsets of X}; it is the largest topology on X. It 
is the only topology that  makes every subset of X clopen. It is also the only topology 
that makes every point of X isolated. 

Finite sets are usually equipped with the discrete topology. The set 2 - {0, 1} will 
be used in many different contexts; we shall understand it to be equipped with the 
discrete topology unless some other arrangement is specified. 

Z - {integers} is also usually equipped with the discrete topology. (That topology 
can be described another way; see 5.15.f.) 

c. The cofini te  t o p o l o g y  is {S c_ X �9 either S is empty or CS is finite}. The cofinite 
topology coincides with the discrete topology when X is a finite set, but the two 
topologies are different when X is an infinite set. 

The cofinite topology is the smallest topology on X that  makes every singleton {x} 
in X a closed set. That  is, a topology on X makes every singleton a closed set if and 
only if that topology contains the cofinite topology. 

d. Lower  set  t o p o l o g y  (op t iona l ) .  The set N is most often equipped with its discrete 
topology. However, another interesting topology on N is given by 

{~ ,  {1}, {1,2}, {1,2,3}, {1,2,3,4}, . . . ,  N}. 

More generally, let (X, ~) be a preordered set, and let 7 -  {lower sets of X}. Show 
that  

(i) 7 is a topology on X. We shall call it the lower set  t o p o l o g y  on X. 

(ii) The preorder ~ can be recovered from the topology 7. Thus, the mapping 
H 8" is injective (i.e., different preorders determine different lower 

set topologies), so we may view {preordered spaces} as a subclass of 
{topological spaces}. 

(iii) Analogous properties are easily verified for the u p p e r  set  t opo logy ,  
which is defined to be {upper sets of X}. (Indeed, if ~ is a preorder on 
X, then ~ is another preorder.) 

Example. The upper set topology on N is 

V - {{1 ,2 ,3 , . . . } ,  {2 ,3 ,4 , . . .} ,  {3 ,4 ,5 , . . .} ,  . . . ,  ~} .  

e. Let X be a subse t  of a topological space (Y,9). Verify that  { X N T  �9 T e 7} is a 
topology on X. It is called the re l a t ive  t o p o l o g y ,  or s u b s p a c e  t opo logy ,  induced 
on X by Y. Any subset of a topological space will be understood to be equipped with 
its relative topology, unless some other arrangement is specified. Show that  

(i) A subset of X is open in the relative topology if and only if it is of the 
form X n G for some set G c_ Y that  is %open. 
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(ii) 

(iii) 

(iv) 

A subset of X is closed in the relative topology if and only if it is of the 
form X N F for some set F C Y that is %closed. 

Suppose X itself is T-open. Then a subset of X is open in the relative 
topology if and only if it is %open. 

Suppose X itself is %closed. Then a subset of X is closed in the relative 
topology if and only if it is %closed. 

(v) Suppose W C_ X c_ Y. Then the relative topology induced on W by Y is 
the same as the relative topology induced on W by the relative topology 
induced on X by Y. 

f. Let (X, __) be a chain. Let T be the collection of all sets T C_ X that satisfy the 
following condition: 

For each p E T, there exists some set J of the form {x c X �9 a < x} or 
{x E X "  a < x < b} or {x c X ' x  < b} such that p E J C T. 

Then T is a topology on X, called the o r d e r  in te rva l  t opo logy .  
The usual topologies on I~ and [-oc, +oc] are their order interval topologies. These 

sets will always be understood to be equipped with these topologies, unless some other 
arrangement is specified. The topology of I~ is in many ways typical of topologies used 
in analysis. In fact, most topological spaces used in analysis are built from copies of 
I~, in one way or another. 

Any subset of R is a chain, but such sets are not always equipped with their 
order interval topologies. Rather, they are usually equipped with the relative topology 
induced by I~ (as defined in 5.15.e). That  topology does not always agree with the 
order interval topology; we shall compare the two topologies in 15.46. 

g. Definitions. Let (X,d) be a pseudometric space (defined as in 2.11). For any z c X 
and r > 0, we define the o p e n  ball  centered at z with radius r to be the set 

Bd(z, r) = {x e X �9 d(x, z) < r}. 

(We may omit the subscript d when no confusion will result.) A set T c_ X is said to 
be o p e n  if 

for each z C T, there exists some r > 0 such that Bd(z, r) C_ T. 
The reader should verify that the collection of all such sets T is a topology Td on X; 
we call it the p s e u d o m e t r i c  t o p o l o g y  (or the m e t r i c  t opo logy ,  if d is known to 
be a metric). Any pseudometric space will be understood to be equipped with this 
topology, unless some other is specified. 

The reader should verify that Bd(z, r) is an open set in the topological space (X, 9"4), 
thus justifying our calling i~ the open ball. We also define the c losed bal l  with center 
z and radius r to be the set 

Kd(z ,r )  -- {x C X " d(z ,x)  ~_ r}. 

The reader should verify that this is a Td-closed set. 
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The usua l  m e t r i c  on IR is that  given by the absolute value function that  is, 
d(x, y) = I x -  Yl. The set ]R is always understood to be equipped with this metric, 
unless some other arrangement is specified. 

Exercise. Show that  the resulting metric topology on IR is the same as the order 
interval topology on R. (This result will be easier to prove later; see 15.43.) 

Two of the usual metrics on the extended real line [-oc,  +oc] are 

d(x, y) - I arctan(x) - arctan(y)l and d(x, y) - x y . 
l+lxl l+lyl 

(It follows easily from 2.15.a that  these are both metrics.) In fact, there are many 
usual metrics on [-c~, +oc], all of them slightly more complicated than one might 
wish. Fortunately, they are interchangeable for most purposes" They all yield the 
same topology, and in fact we shall see in 18.24 that  they all yield the same uniformity. 

Exercise. Show that  the two metrics given above both yield the order interval 
topology on [-oc,  +oc]. (This exercise may be postponed; it will be easier after 15.43.) 

Further examples of pseudometric topologies are given in 5.34 and elsewhere. 

h. For many applications we shall need a generalization of pseudometric topologies: 
Let D be a gauge (i.e., a collection of pseudometrics) on a set X. For each d E D 

let Bd be the corresponding open ball, as in 5.15.g. Let 9-D be the collection of all sets 
T C_ X having the property that  

for each x C T, there is some finite set Do c_ D and some number r > 0 such 

that ndCDo Bd(X, r) C_ T. 

Then (exercise) ~YD is a topology on X. We may call it the g a u g e  t o p o l o g y  determined 
by D. Any gauge space (X, D) will be understood to be equipped with this topology 
unless some other arrangement is specified. We may write 9", omitting the subscript 
D, if the choice of D is clear or does not need to be mentioned. 

Exercises. If D is a gauge and E is its max closure or its sum closure (as defined in 
4.4.c), then D and E determine the same topology. If D is a directed gauge (as defined 
in 4.4.c), then we can always choose Do to be a singleton in the definition of 9-0 given 
above. 

Remarks continued. Whenever convenient, we shall treat pseudometric spaces as 
a special case of gauge spaces, with gauge D consisting of a singleton {d}. When no 
confusion will result, we may write d and {d} interchangeably and consider d itself as a 
gauge. Conversely, in 5.23.c we shall see that  any gauge topology 9-0 can be analyzed 
in terms of the simpler pseudometric topologies {9"d " d E D}. 

Different gauges on a set X may determine the same topology or different topologies. 
Two gauges D and E are called e q u i v a l e n t  (or t o p o l o g i c a l l y  e q u i v a l e n t )  if they 
determine the same topology. This terminology is discussed further in 9.4. 

A topological space (X, 9") is metrizable (or pseudometrizable) if there exists at least 
one metric d on X (respectively, at least one pseudometric d on X) for which 9 " -  9-d; 
the topological space is gaugeable if there exists at least one gauge D on X for which 
9 " -  9"0. This (pseudo)metric or gauge is not necessarily unique. When we state that  a 
topological space is (pseudo)metrizable or gaugeable, we do not necessarily have some 
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particular (pseudo)metric or gauge in mind. We say that a topology �9 and a gauge D 
are c o m p a t i b l e  if 9 ~ - ~D; this term also applies to topologies and pseudometrics. 

Most topologies used in analysis are gaugeable. In 16.18 we present some examples 
of topologies that are not gaugeable, but these examples are admittedly somewhat 
contrived. 

Actually, the term "gaugeable" is seldom used in practice. We shall see in 16.16 
that a topology is gaugeable if and only if it is uniformizable and if and only if it is 
completely regular; the terms "uniformizable" and "completely regular" are commonly 
used in the literature. 

Exercise. If (X, D) is a gauge space and S c_ X, then the relative topology on 5' is 
also gaugeable; it can be given by the restriction of D to S. 

i. (Optional.) We can generalize the notion of pseudometric topologies still further. Let 
D be a q u a s i g a u g e  on X i.e., a collection of quasipseudometrics on X (which are 
not necessarily symmetric; see 2.11). We can use D to define a q u a s i g a u g e  t o p o l o g y  
9~D in a fashion analogous to that in 5.15.h. That  is, 9~D is the collection of all sets 
T C_ X that have the property that 

for each x c T, there is some finite set Do c_ D and some number r > 0 such 
that {u e X " maxdcDo d(x, u) < r} C_ T. 

(This is the supremum of the topologies ~d determined by the individual quasipseudo- 
metrics d c D; see 5.23.c.) 

ReiUy's Representation. Actually, every topology �9 on a set X can be determined 
by a quasigauge D. Show this with D = {dG : G E if'}, where 

1 i f x E G a n d x ' ~ G  
dG(x, x') -- 0 otherwise. 

Consequently, many of the ideas that we commonly associate with gauge spaces 
uniform continuity, equicontinuity, completeness, etc. - - c a n  be extended (in a weaker 
and more complicated form) to arbitrary topological spaces. 

This presentation follows Reilly [1973]. Similar ideas have been discovered inde- 
pendently in other forms; for instance, see Kopperman [1988] and Pervin [1962]. 

5.16. Definitions. Let (X, ~ be a topological space, and let S c_ X. 

a. We shall say that S is a n e i g h b o r h o o d  of a point z if z E G c_ S for some open set 
G. Then N(z) - (neighborhoods of z} is a proper filter on X, which we shall call the 
n e i g h b o r h o o d  fi l ter a t  z or the f i l ter  of  n e i g h b o r h o o d s  of z. 

Caution" Some mathematicians define neighborhood as we have done, but other 
mathematicians also require the set S to be open, as part of their definition of a neigh- 
borhood of a point. With the latter approach, the neighborhoods of a point generally 
do not form a filter. The two definitions yield similar results for the main theorems 
of general topology, but the open-neighborhoods-only approach is not compatible with 
the pedagogical style with which general topology is developed in this book" We shall 
use filters frequently. 
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b. There exist some closed sets that  contain S (for instance, X itself), and among all 
such sets there is a smallest (namely, the intersection of all the closed supersets of S). 
The smallest closed set containing S is called the t o p o l o g i c a l  c l o s u r e  of S; we shall 
denote it by cl(S). It is a special case of the Moore closure. It is probably the type of 
closure tha t  is most often used by analysts. It may be called simply the c l o s u r e  of S, 
if the context is clear. 

c. There exist some open sets that  are contained in S (for instance, O), and among all 
such sets there is a largest (namely, the union of all the open subsets of S). The largest 
open set contained in S is called the i n t e r i o r  of S; we shall denote it by int(S).  

d. Let X and Y be sets, and suppose some element of Y is designated "0" e.g., if Y 
is a vector space, or if Y c_ [-c~,  +c~]. Let f �9 X ~ Y be some function. If X is a 
topological space, then the s u p p o r t  of f means the set 

supp(f )  - c l ( { x E X  �9 f ( x ) r  

If X is not equipped with a topology, then the support  of f usually means the set 
{x E X �9 f ( x )  ~ 0}. Note that  these two definitions agree if X has t h e  discrete 
topology. 

5.17. Elementary properties. 

a. int(S) c_ S c_ cl(S). A set S is open if and only if S - int(S),  and a set S is closed if 
and only if S - cl(S). 

b. The notions of closure and interior are dual to each other, in the sense of 1.7. Show 
that  

C cl(S) - int(C S), {~int(S) - cl(C S), 

where C A - X \ A. 

c. A set S c X is open if and only if S is a neighborhood of each of its points. 

d. z c cl(S) if and only if S meets every neighborhood of z. 

e. If G is open and cl(S) n G is nonempty, then S n G is nonempty. 

5.18.  Closures and distances. Let (X, d) be a pseudometric space. The diameter  of a set 
and the distance from a point to a set were defined in 4.40. Let S be a nonempty subset of 
X,  and let z E X. Then: 

a. dist(z, S) = dist(z, cl(S)), and dist(z, S) = 0 ~ z e cl(S). 

b. diam(cl(S))  = diam(S).  

c. c l(B(z ,r))  c_ K(z , r ) ,  where B and K are the open and closed balls, defined as in 
5.15.g. 

Show that  cl(B(z ,r))  c K ( z , r )  may sometimes occur, by taking X - R and 
d(x, y) = min{1, ]x - Yl}. (See 26.4.a for a further related result.) 
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d. (Optional.) Assume (X, d) is a metric space. Let 9 C -  {nonempty, closed, metrically 
bounded subsets of X}. For S, T E 9C, let 

h(S, T) = max ~sup dist(s, T), sup dist(t, S ) ~ .  
L sES tET  J 

(See example in the figure below.) Show that  h is a metric on K; it is called the 
H a u s d o r f f  me t r i c .  

Example. Hausdorff distance h 
between a circle and a rectangle 

5.19. K u r a t o w s k i ' s  C losu re  Ax ioms .  Let X be a set, and let cl" [P(X) --+ ~P(X) be 
some mapping. Show that  cl is the closure operator for a topology on X if and only if cl 
satisfies these four conditions: 

c 1 ( O ) -  o ,  S c el(S), cl(cl(S)) - cl(S), cl(S U T) - cl(S) U cl(T) 

for all sets S, T C_ X. Of course, if these conditions are satisfied, then the corresponding 
topology is uniquely determined by cl; its closed sets are those sets S c X that  satisfy 
s - c l ( S ) .  

5.20. The dual of Kuratowski's axioms follows easily; we include it here for convenient 
later reference. 

Let X be a set, and let int �9 [P(X) -+ [P(X) be some mapping. Then int is the interior 
operator for a topology on X if and only if int satisfies these four conditions: 

int(X) - X, S _D int(S), int(int(S)) - int(S), int(S n T) - int(S) n int(T) 

for all sets S, T C_ X. Of course, if these conditions are satisfied, then the corresponding 
topology is uniquely determined by int; its open sets are those sets S c X that  satisfy 
S -  int(S). 

5.21. The lattice of open sets (optional). Let (X, T) be a topological space. Then (O', C_) 
is a complete lattice. Indeed, for any open sets Gx c 9" (A c A), the smallest open set 
containing all the Gx's is 

V G ~  - U G h ,  
AEA AEA 

while the largest open set contained in all the G~'s is 

AEA 



Topologies 113 

Note that  when the index set A is finite, then C1AEAG,~ is an open set, and so AAEA GA 

generally is equal to NAEA GA. Hence the inclusion iT c - ,  iP(X) preserves finite sups and 
infs; thus it is a lattice homomorphism. However, when the index set A is infinite, AAEA GA 

generally is not equal to NAEA GA. Thus the inclusion 7 c_ iP(X) is sup-preserving, but it 
generally is not inf-preserving. 

It is easy to verify that  (iT, c_) satisfies one of the infinite distributive laws" 

HA V G.x = V (HAG.x). (1) 
AEA AEA 

(See also the related results in 13.28.a.) However, (iT, c_) does not necessarily satisfy the 
other infinite distributive law, 

H v A = A (H V a,x). (2) 
AEA AEA 

For instance, that  law is not satisfied in the following example, taken from Vulikh [1967]: 
1 Let iT be the usual topology on the real line. Let H - (0, 1), A - N, and Gn - ( 1 -  n '  2) 

for n = 1, 2, 3, . . . .  Verify that  AnEN Gn = (1, 2), hence the left side of equation (2) is 
(0,1) U (1,2). On the other hand, H V Gn = (0,2), hence the right side of equation (2) is 
(0,2). 

It is possible to study at least some properties of a topological space purely in terms 
of its lattice of open sets; one can disregard the individual points that make up those sets. 
(See the related result in 16.5.d and the related comments in 13.3.) An introduction to 
this "pointless topology" was given by Johnstone [1983]. However, this pointless topology 
is seldom useful in applied analysis, which is greatly concerned with points. 

5.22. N e i g h b o r h o o d  A x i o m s .  Let X be a set. For each x E X, suppose 2/(x) is some 
filter on X, such that  x is a member of every member of N(x). Let 

iT - {(TC_X �9 ( T E N ( z )  for e v e r y z E G } .  

(In particular, ~ E iT, since there is no z E G in that  case.) Then the following three 
conditions are equivalent" 

(A) There exists a topology on X for which {N(z) �9 z E X} is the system of 
neighborhood filters. 

(B) For each z E X, the collection of sets iT A N(z) is a base for the filter N(z). 
That  is, every member of N(z) contains some member of N(z) N iT. 

(C) For each z E X and each S E N(z), there is some G E N(z) with the property 
that  u E G =~ S E N(u). 

Moreover, if (A), (B), (C) are satisfied, then the topology in (A) must be iT. 

Hints" Let us first restate (B) as follows: 

(B') For every S E N(z), there is some G E iN(z) A iT such that  G c_ S. 
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For (A) ~ (B'), let int be the interior operator of the given topology; show that G - int(S) 
is a member of the collection of sets 9" described above. For (B') ~ (C), note that 
u e G :::> G e N(u) :::> S e N(u) since S_D G. For (C) => (A), define an operator 
int �9 {P(X) -+ {P(X) by i n t ( S ) -  {z e X "  S e N(z)}; then verify that this operator int 
satisfies the conditions of 5.20. 

5.23. Here are a few more ways to make topologies" 

a. If {9"~ �9 A E A} is a collection of topologies on a set X, then 

n g - ~  - { s c x  . S c g " ~ f o r e v e r y A }  
ACA 

is also a topology on X. It is sometimes called the i n f i m u m  of the 9"~'s, since it is 
their greatest lower bound i.e., it is the largest topology that is contained in all the 
~S. 

b. From the preceding result we see that the collection of all topologies on X is a Moore 
collection of subsets of ~P(X). Thus, if ~ is any collection of subsets of X, then there 
exists a smallest topology 9+ containing ~ - -  namely, the intersection of all the topologies 
that contain ~. The topology 9+ obtained in this fashion is the topology generated 
by ~; the generating set ~ is also called a subbase for the topology 9+. (The topology 
generated is a special case of the Moore closure, but the terms "closed" and "closure" 
generally are not used in this context.) 

Example. The order interval topology on a chain X (defined in 5.15.f) is the topol- 
ogy generated by the sets that can be expressed in either of the forms 

Sa={xeX'a<x} or S  -(xeX x<b} 

for points a, b E X. 
Exercise. Let ~} be a collection of subsets of a set X. A set T c_ X is a neighborhood 

of a point x E X with respect to the topology generated by ~ if and only if T has the 
following property" 

n There is some finite set (GI, G2,..., Gn} C_ ~ such that x E Nj=I Gj c_ T. 

(We permit a - 0, with the convention that the intersection of no subsets of X is all 
of X.) 

c. If {9"~ �9 k C A} is a collection of topologies on a set X, then the topology generated by 

-- U ~A -- (SC_X �9 SCffA for someA} 
AEA 

is called the supremum of the ffA's, since it is their least upper bound - -  i.e., it is the 
smallest topology that contains all the ffA's. 

The collection of all topologies on X is a complete lattice when ordered by c_ since 
each subco]lection has an inf (see 5.23.a) and a sup. 

Important example. On any gauge space (X,D), the gauge topology 9"D is the 
supremum of the pseudometric topologies (ffd" d C D} (defined as in 5.15.g). 
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5.24. Remarks. The theory of topological spaces will be developed a little further in 
Chapter 9. It will be continued in much greater detail in Chapter 15 and thereafter. 

ALGEBRAS AND SIGMA-ALGEBRAS 

5.25. Let X be a set, and let C denote complementation in X. An a l g e b r a  (or field) of 
subsets of X is a collection S c_ T(X) with the following properties: 

(i) X e 8, 

(ii) S E g  =~ C S c 8 ,  and 

(iii) S, T E S ~ S U T  E 8. 
In the terminology of 1.30, that says: 8 contains X itself and 8 is closed under complemen- 
tation and finite union. It follows that O E 8 and that 8 is closed under finite intersection 
and relative complementation" S, T c S implies S n T, S \ T  c 8. 

Caution: The term "algebra" has many different meanings in mathematics; several 
meanings will be given in 8.47 and one more in 11.3. When we need to distinguish the 
algebra defined above from other kinds of algebras, the algebra defined in the preceding 
paragraph will be called an a l g e b r a  of  sets.  

A a - a l g e b r a  (or a-field) of subsets of X is an algebra that is closed under countable 
union: 

(x) 
(iii') S l ,S2 ,~3 , . . .  C ~ ~ Uj=I ~j e S. 

It follows immediately that any a-algebra S is also closed under countable intersection: 
$ 1 , $ 2 , $ 3 , . . .  E S ~ Nj=I sj  E s. 

A m e a s u r a b l e  space  is a pair (X, S), where X is a set and $ is a a-algebra of subsets 
of X. The elements of g are referred to as the m e a s u r a b l e  se ts  in X. We may refer to X 
itself as a measurable space if S does not need to be mentioned explicitly. Measurable spaces 
(X, 8) should not be confused with measure spaces (X, S, #), introduced in 21.9, or with 
spaces of measures {#~}, introduced in 11.47, 11.48, and 29.29.f. Somewhat impre.cisely, 
we may say that a measure is device for measuring how big sets are; a measurable space is 
a space that is capable of being equipped with any of several different measures; a measure 
space is a space that has been equipped with a particular measure; and a space of measures is 
a collection of measures that is equipped with some additional structure (linear, topological, 
etc.) that leads us to call it a "space." 

5.26. Examples of (a-) algebras. In the following examples, any statement involving a- in 
parentheses should be read once with the a- omitted and once with it included. Let X be 
any set; then: 

a. {0, X} is the smallest (a-)algebra on X; we shall call this the i nd i s c r e t e  (er-)algebra.  

b. T(X)  = {subsets of X} is the largest (a-)algebra on X. We shall call it the d i sc re t e  
( a - ) a l g e b r a .  
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c. Let J c_ ~ be an interval (possibly all of R). Let A be the collection of all unions of 
finitely many subintervals of J (where a singleton is considered to be an interval and, 
by convention, O C A also). Show that A is an algebra of subsets of J. 

d. Let { 8 ~ ' a  E A} be a collection of (a-)algebras on X. Then 

A 8 ~  - { T C _ X  �9 
a C A  

T E 8~ for every a c A} 

is also a (a-)algebra on X. 

e. In view of the preceding exercise, the collection of all (a-)algebras on X is a Moore 
collection of subsets of ~P(X). Hence, given any collection 9 of subsets of X, there 
exists a smallest (a-)algebra that contains 9 namely, the intersection of all the 
(a-)algebras that contain 9. We call it the (r  g e n e r a t e d  by ~}; we say 
that 9 is a g e n e r a t i n g  set for that (a-)algebra. (The (a-)algebra thus generated is 
a special case of the Moore closure, introduced in 4.3. However, the terms "closed" 
and "closure" generally are not used in this context.) The a-algebra generated by 9 is 
sometimes denoted by a(9). 

f. {S C_ X"  S or CS is finite} is the algebra generated by the singletons of X. 

{S c_ X �9 S or [:S is countable} is the a-algebra generated by the singletons of X. 
(The proof of this result assumes some familiarity with the most basic properties of 
countable sets; see particularly 6.26.) 

Let ~} be a collection of subsets of X. Then: 

(i) The algebra generated by 9 is equal to the union of the algebras generated 
by finite subsets of 9. 

(ii) The a-algebra generated by 9 is equal to the union of the a-algebras 
generated by countable subcollections of 9. 

i. Some of the most important a-algebras are determined in one way or another by 
topologies. 

Let (X, 9") be a topological space. The Bore l  a - a l g e b r a  is the a-algebra generated 
by g " -  that is, the smallest a-algebra containing all the open sets. Its members are 
called the Bore l  sets. (Remark. In 15.37.e we shall see that when X is any subinterval 
of the real line, equipped with its usual topology, then the Borel a-algebra is generated 
by the algebra in 5.26.c.) 

Some other a-algebras based on topologies are 

�9 the almost open sets, also known as the sets with the Baire property, studied in 
20.20 and thereafter; 

�9 the Baire sets, mentioned in 20.34; and 

�9 in ~n, the Lebesgue measurable sets, studied in Chapters 21 and 24. 

Caution: The "Baire sets" are not the same as the "sets with the Baire property," and 
the "Lebesgue measurable sets" are not the same as the "Lebesgue sets" (introduced 
in 25.16). 

gO 

hQ 
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j .  The clopen subsets of a topological space X form an algebra of subsets of X. 

5.27.  More definitions (optional). Let ft be a set. A r i n g  of subsets of ~t (also known as 
a c lan)  is a collection ~ of subsets of ft tha t  satisfies ~ c ~ and also 

A , B  E ~E ~ A u B ,  A \ B  r ~. 

A a - r i n g  (also known as a t r i b e )  is a ring J~ that  also satisfies 

A1,A2 ,A3 , . . .  6 :R :==> AI U A2 U A3 U ' "  6 ~. 

Clearly, a collection ~ C_ T(ft) is an algebra (or a-algebra) if and only if it is a ring (or 
a-ring) in which ft is a member.  

Most t rea tments  of measure theory use either a-algebras or a-rings. The a-algebra 
approach has the advantage tha t  it is more algebraic i.e., the algebraic s tructure of a 
a-algebra is simpler than that  of a a-ring. On the other hand, a-rings are more general, 
and more useful in the s tudy of regular measures on locally compact Hausdorff spaces 
see the remarks in 20.35 but we shall not s tudy such measures in this book. 

5.28.  Exercise. If A is a (a-)algebra on X and J is a (a-)ideal, then 

o 4 A J  - { A A I  �9 A E A a n d I E J }  

is a (a-)algebra on X. It is the smallest (a-)algebra of sets that  contains both A and J. 
(See hint in diagram below. This result will be used in 20.21 and 21.16.) 

X 

H 

Hint for exercise on A A J" 
Show that  a set S c X 
is an element of o4 A J 
if and only if there exist 
sets G, H,  and T such tha t  
G C S C _ H ,  GC_TC_H,  
T c o4, and H \ G  E J. 

5.29. Let f~ be a set. A m o n o t o n e  c lass  of subsets of f~ is a collection ?v[ of subsets of f~ 
with both of these properties: 

(i) If (Aj) is a sequence in N: and A1 C_ A2 C_ A3 c_ . . .  then Un%l An 6 J~. 

(ii) If (Aj) is a sequence in 5I and A1 _D A2 _D A3 _D... then 0n%l An E 2~. 

It is easy to see tha t  the monotone classes form a Moore collection i.e., any intersection 
of monotone classes is a monotone class. Hence, given any collection A of subsets of ft, 
there exists a smallest monotone class containing o4; we shall call it the m o n o t o n e  c lass  
g e n e r a t e d  by  o4. 
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M o n o t o n e  Class  T h e o r e m .  Let A be an algebra of subsets of Ft. Then the monotone 
class generated by ,4 is equal to the a-algebra generated by A. 

Proof. Let 2V[ and S be, respectively, the monotone class and the a-algebra generated by A. 
Thus A C_ :Jr[ N $. Temporarily fix any M C 2V[, and let 

NM -- { N E ~  �9 M N N ,  C M A N ,  M N C N a l l b e l o n g t o 2 V [ } .  

Verify that  

a .  ~q'M is & monotone class. 

b. If A c A, then A C NA; hence NA -- ~ (by the minimality of 3Vl: among monotone 
classes that  contain A). 

c. If A c A and M c 2V[, then M c NA; hence A c NM. Thus A C_ NM. Therefore 
?tiM -- 3V[ (by the minimality of :M: again). 

d. :M: is an algebra of sets. (Indeed, if L, M c :M:, use the fact that  L c 2V[ - NM.) 

e. ~ is a a-algebra. 

f. 2V[ _D $, by minimality of 8 among a-algebras containing A. 

g. 8 is a monotone class containing A; hence 8 _D ?vl: by minimality of 2Vl:. 

5.30. Remarks. Measurable spaces will be studied a little more in Chapter  9. Algebras of 
sets will be related to Boolean algebras in Chapter  13. Algebras of sets and a-algebras will 
be used in measure theory in several later chapters. 

UNIFORMITIES 

5.31. Definitions. Let X be a set; its diagonal is the set I - {(x,x) �9 x E X}. Define 
inverses and compositions as in 3.2. Then a p r e u n i f o r m i t y  on X is a collection 11 of 
subsets of X x X that  satisfies: 

(i) 

(ii) 

U ~ II ~ U _D I (i.e., each U c l~ is reflexive); 

for each U c II, there is some V c ~[ with V C_ U - l ;  and 

(iii) for each U C II, there is some V E 11 with V o V c_ U. 

We say II is a u n i f o r m i t y  on X if, in addition, 

(iv) ~[ is a filter on X x X. 

(It is necessarily a proper filter since each U E II contains I and is therefore nonempty.) 
An element of II is called an e n t o u r a g e  (or a vicinity). A u n i f o r m  space  is a pair 

(X, ll) consisting of a set X and a uniformity II c [P(X x X).  We may refer to X itself as 
a uniform space if II does not need to be mentioned explicitly. 

Caution" The definitions of "uniformity" and "uniform space" vary slightly in the liter- 
ature. (See 16.17.) Also, the "preuniformity" defined above is related to, but not the same 
as, the "subbase for a uniformity" defined in some books. 
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5.32. Uniformities constructed from distances. Let d be a pseudometric on a set X (defined 
as in 2.11). For each number r > 0, let 

= { ( x ,  x')  �9 x x x �9 d(x ,  x ' )  < 

Then let lid - {V c_ X x X �9 V _D Ur for some r > 0}. Then (exercise) lid is a uniformity 
on X. We shall call it the u n i f o r m i t y  on  X d e t e r m i n e d  by  d. A uniformity that  can be 
determined by a pseudometric (or a metric) in this fashion is called a p s e u d o m e t r i z a b l e  
u n i f o r m i t y  (or a m e t r i z a b l e  u n i f o r m i t y ) .  Some uniformities are not pseudometrizable; 
an example of this is given in 18.20. 

More generally, let D be a gauge on a set X. Let lID be the collection of all sets 
U c_ X x X that  have this property: 

There is some number r > 0 and some finite set F C_ D such that  {(x,x ' )  C 
X x X ' m a x a e F d ( x , x ' )  < r} C_ U. 

(The set F can be taken to be a singleton, if D is directed, as in 4.4.c.) Then (exercise) 
l l o  is a uniformity on X. We shall call it the u n i f o r m i t y  for X d e t e r m i n e d  by  D.  Any 
gauge space (X, D) will be understood to be equipped with this uniformity unless some 
other arrangement is specified. 

Two different gauges D and E on a set X may determine different uniformities 11D, lfE 
or the same uniformity. We say D and E are u n i f o r m l y  e q u i v a l e n t  if they determine 
the same uniformity. This is an equivalence relation on the set of all gauges on X; the 
terminology is discussed further in 9.4. We say that  a uniformity II and a gauge D are 
c o m p a t i b l e  if I I -  lID; this term also applies to uniformities and pseudometrics. 

Exercise. If D is a gauge and E is its max closure or its sum closure (as defined in 4.4.c), 
then D and E determine the same uniformity. 

It would be natural  to say that  a uniformity II is "gaugeable" if 11 = 11D for some gauge 
D. However, it turns out that  every uniformity is gaugeable; see 16.16. 

5.33. Topologies constructed from uniformities. Let (X, 11) be a uniform space, and let 
x E X. Then 

U[x] = {y �9 (x, y ) c  u }  
= { U [ x ]  �9 u 

is a subset of X, for each U E 11, 
is a filter on X. 

and 

It is an easy exercise to verify that  the system of filters {ll[x] : x  E X} satisfies condition 
5.22(C), and hence it is the system of neighborhood filters for a topology 9- on X. That  
topology is called the u n i f o r m  t o p o l o g y  determined by II. We may sometimes denote it 

by 9"ll. 
A topology that  can be represented in this fashion is said to be u n i f o r m i z a b l e .  Most 

topologies in applications are uniformizable. Some examples of nonuniformizable topologies 
admittedly, rather artificial are given in 16.18. 
Different uniformities may determine different topologies or the same topology; we do 

not necessarily have a particular uniformity in mind when we say that  a topology 9- is 
uniformizable. We say that  a topology 9- and a uniformity 11 are c o m p a t i b l e  if 9 - -  9"ll. 
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Exercise�9 Let D be a gauge on X. Then the gauge topology 9"D determined by D as 
in 5.15.h is the same as the uniform topology 9"ti determined as above from the uniformity 

- -  ~ ]~D defined from the gauge D as in 5.32. 

5.34. Examples. 

a. {U C_X x X  

b. 

C. 

�9 U _D I} is the largest uniformity on X; we shall call it the d i s c r e t e  
u n i f o r m i t y .  The topology that  it determines is the discrete topology. The discrete 
uniformity is determined by some discrete metrics for instance, by the Kronecker 
metric 1 -  8 (see 2.12.b). 

Any discrete metric (defined in 2.12.b) yields the discrete topology (defined in 
5.15.b). However, not every discrete metric yields the discrete uniformity; an example 
is given in 19.11.e. 

Let d �9 X x X ~ N be the constant function 0. Then d is a pseudometric. The 
uniformity it determines is the singleton {X x X}. This is the smallest uniformity on 
X; we shall call it the i n d i s c r e t e  u n i f o r m i t y .  It determines the indiscrete topology 
(defined in 5.15.a). 

Let X be a nonempty set, and let ~ be some particular specified element of X; we may 
refer to ~ as the "knob" of X. Let S - X \ {~}. Define a pseudometric on X by 

( 0 d(u, v) - 
1 ( 

if both or neither of u, v are equal to 
if exactly one of u, v is equal to 

for u, v C X. A set X equipped with this pseudometric will be called a k n o b  space .  
The resulting uniformity is 

11 -- { U C _ X x X  �9 U _ D S x S a n d ( ~ , ~ ) E U }  

and the resulting topology is {0,  {~}, S, X}. Knob spaces will be important  in 
certain arguments concerning the Axiom of Choice, in 17.20 and 19.13, using "Kelley's 
choice" (see 6.24). 

5.35. Some basic properties of uniformities. Let (X, ll;) be a uniform space. Show that  

a. U c li  =~ U -1 c II. (This property is not always satisfied by a preuniformity.) 

b. If U is an entourage, then V - U M U -1 is a symmetric entourage (i.e., an entourage 
satisfying V = V - i )  contained in U. 

c. If U is an entourage and k is a positive integer, then there exists an entourage V 
satisfying 

V k = V o V o V o . . . o V  C U. 

k of the V's 

.Moreover, we may choose V symmetric. 
In particular, if U is an entourage then there exists a symmetric entourage V such 

that  V 3 - V o V o V C_ U. We shall use that  fact in our proof of 16.16. 
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5.36.  Pathological example. An intersection of uniformities is not necessarily a uniformity. 
(In this respect, uniformities are not like a-algebras or topologies.) 

For instance, take X = R • R. Let 7rl, 7r2 : X ~ R be the coordinate projections - -  tha t  
is, 71"l(X1,X2) = Xl and 7r2(xl,x2) = x2. Define pseudometrics dl ,d2 on X by 

d~(x, y) - lTrl(x) - -  71" l ( y ) [ ,  d2(x, y) - - ~ ( y ) l ,  

for x and y in X. Let l/1 and 112 be the resulting pseudometric uniformities on X,  and 
let W = l l l  N l/2. Show that  W is not a uniformity. Use that  fact to show also that ,  al- 
though there do exist uniformities that  contain W, there does not exist a smallest uniformity 
containing W. 

5.37.  It will sometimes be useful to "generate" a uniformity ~ / f rom a smaller collection 
8 of sets. However, we saw in 5.36 tha t  an intersection of uniformities is not necessarily a 
uniformity. Given a collection 8 of sets, we cannot simply look for the "smallest uniformity 
1 / t ha t  contains S;" such a uniformity 1/need not exist. The smaller, "generating" collection 
8 cannot be chosen arbitrarily, but preuniformities (defined in 5.31) will serve quite well for 
this purpose. 

Suppose tha t  S is a preuniformity on X. Then 8 is a filter subbase on X • X,  by 5.31(i). 
Hence 8 generates a proper filter on X • X; that  filter is 

11 - { U  c_ X •  �9 U ~ $ 1 N S 2 N - . . N S n  

for some finite set {S1 ,S2 , . . . ,Sn}  C ~}. 

It is easy to show that  l / i s  a uniformity on X,  and in fact ] / i s  the smallest uniformity 
containing 8. We shall call l / t h e  uniformity g e n e r a t e d  b y  8. Caution: Despite the similar 
language, this is not a special case of a Moore closure. 

5.38.  Here are some further noteworthy properties of a preuniformity S on X and the 
uniformity 1 / i t  generates" 

a. The union of any family of preuniformities on X is a preuniformity on X. 

b. In many cases of interest, the preuniformity 8 has the property tha t  it is closed under 
finite intersection i.e., S1, $2 c ~ ~ $1 n $2 C ~. In this case, we can simplify our 
formula for the uniformity II generated by 8; the formula becomes 

II = {U _c X •  �9 U _ D S f o r s o m e S E S } .  

Moreover, in this case let us denote 

S[x] - {y �9 (x ,y )  E S}  and g[x] - {S[x] �9 S E g } ;  

then g[x] is a neighborhood base at x for the uniform topology. 

Most of these ideas are from Kelley [1955/1975], al though tha t  book does not use the term 
"preuniformity." 

5.39.  Remarks.  The theory of uniform spaces will be developed a little further in Chapter  9 
and in 16.16. It will be continued in much greater detail in Chapter  18 and thereafter. 
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IMAGES AND PREIMAGES OF SETS OF SETS 

5.40 .  Let g" X ~ Y be some function. Show that  

a. Forward image of a filter subbase. If $ is a filter subbase or a filterbase on X, then 

g(s) - { g ( s ) . s e s }  

is a filter subbase or a filterbase, respectively, on Y. 

b. Sets with suitable inverse images. Let S be a collection of subsets of X, and let 

~T - {T C Y �9 g - l ( T )  e S}. 

If 8 is closed under complementation in X,  under finite or countable or arbi trary union, 
or under finite or countable or arbi trary intersection, then 9" is closed under the same 
operation in Y. If 8 is a filter subbase, a filter, an ultrafilter, a fixed ultrafilter, or a 
collection of nonempty subsets of X,  a topology, or a a-algebra on X, then 9- has the 
same property on Y. 

If 8 is a filter generated by a filterbase ~B on X, then g(8) and g(~B) (defined as in 
5.40.a) are filterbases on Y, both of which generate the filter 9- (defined as above). 

c. Inverse image of a collection. Let q" be a collection of subsets of Y, and let 

g- l (9-)  __ ( g - I ( T )  �9 T e 9-}. 

If 9" is closed under complementation in Y, under finite or countable or arbi trary union, 
or under finite or countable or arbi trary intersection, then g-l(0") is closed under the 
same operation in X. If 9- is a topology or a (a-)algebra, then g - l ( ~  is, too. 

If g is surjective and 9" is a filter subbase or filterbase on Y, then g-l(~y) has the 
same property on X. 

d. Define g • g �9 X 2 ~ y2  by (g • g)(x l ,x2)  - (g(xl) ,g(x2)) .  If 11: c Y • Y is a 
preuniformity on Y, then 

(g • g ) - l ( ~ )  __ {(g  • g ) - l ( v  ) . U C ~[} 

is a preuniformity on X (regardless of whether g is surjective). 

TRANSITIVE SETS AND ORDINALS 

5.41. Remark. The ideas in the remainder of this chapter are mainly needed for set theory 
and logic; they can be skipped if one is only concerned with the traditional topics of analysis. 

5.42. Definitions and remarks. Let X be a set. Then the following conditions are 
equivalent. If one (hence all) are satisfied, we say X is t r a n s i t i v e  (or more precisely, 
E - t r a n s i t i v e ) .  
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(A) Whenever A E S and S E X, then A E X. 

(B) Each member of X is also a subset of X that  is, A E X =~ A c X. 
That  can also be restated as X C ~P(X). 

(C) Un(X)  C_ X, where Un(X)  is the union of the members of X,  as defined with 
the Axiom of Unions in 1.47. 

Remarks. As Doets [1983] points out, the notion of transitive sets is slightly alien to 
most mathematicians i.e., those not actively involved in set theory. After all, for most 
mathematicians,  it is enough to consider sets of sets and occasionally sets of sets of sets. 
But if X is transitive, then each member of X is a subset of X,  and so each member of each 
member of X is a subset of X,  and so on. For some purposes in set theory, this process 
must be continued to an infinite depth; see 5.44. 

5.43. Basic properties of transitive sets. 
a. Examples. The sets o and {0} and {0,  {0}} are transitive; the set {{0}} is not. 

b. The intersection of any nonempty collection of transitive sets is a transitive set. 

c. If S is any set, then S is a subset of some transitive set. For instance, 

cl(S) - S U Un(S) U Un(Un(S))  U Un(Un(Un(S)))  U . . .  

is a transitive set with cl(S) _D S. In fact, cl(S) is the smallest transitive superset of S; 
it is the intersection of all the transitive supersets of S. We shall call it the t r a n s i t i v e  
c lo su re  of S. It is a special case of Moore closures (discussed in 4.3), except that  in 
this case the domain of el is a proper class, not a set. 

d. If S is any set, then S is a member of some transitive set. For instance, one such set 
is the transitive closure of the singleton {S}. 

5.44. Preview/examples. Because the definition of ordinals is somewhat abstract and 
complicated, we shall precede that  definition with a few examples. Of course, the assertions 
that  we now make about these examples cannot be proved until a few pages later. 

The first few ordinals are the finite ordinals. Set theorists find it convenient to at tach 
the labels "0," "1," "2," etc. to these sets. (See the related discussions in 1.16 and 1.46.) 
The nonnegative integers are thus defined to be the sets 

0 - -  0 ,  

1 - {0},  

2 - { o , { o } } ,  

and so on. Thus the set n - {0, 1, 2 , . . . ,  n -  1} contains exactly n elements, and n + 1 - 
n U {n} is the successor of n. 
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After the finite ordinals come the countably infinite ordinals. The first few of these are 

02 - {0 ,1 ,2 ,3 , . . . } ,  

02+1  - {0 ,1 ,2 ,3 , . . . , 02} ,  

02+2  - {0 ,1 ,2 ,3 , . . . , 02 ,02+1} ,  

202 

202+ 1 

202+ 2 

- {0, 1,2,3, . . . ,02,02 + 1,02 + 2 , . . . } ,  

- {0, 1,2,3, . . . ,02,02 + 1,02 + 2 , . . . ,  202} 

- {0,1,2,3, . . . ,02,02+1,02+2,. . . ,202,202+1} 

3 0 2  m {0, 1, 2, 3, . . . , 02, 02 + 1,02 + 2,... ,202,202 + 1,202 + 2 , . . . }  

and so on. Again, note that  the successor of any ordinal S is the ordinal S U {S}. The 
ordinal 02 is an ordered version of the unordered set N U {0}. 

After the countable ordinals come the uncountable ordinals. They are a bit harder to 
visualize, but we can easily sketch a proof of their existence. Consider any uncountable 
set for instance, 2 TM and give it a well ordering (see (AC4) in 6.20). Then find the 
ordinal that  is order isomorphic to it (see 5.46.f). Among the uncountable ordinals that  are 
isomorphic to subsets of 2 N, there is a first one, by 5.46.g. The first uncountable ordinal is 
equal to the set of all countable ordinals. 

5.45. Before proceeding further, the reader may find it helpful to briefly review the theory 
of well ordered sets developed in Chapter  3. 

Definitions. In the discussion below, the expression A e_ B will mean "A E B or A = B." 
Let X be a set. Then the following conditions are equivalent. If one (hence all) are 

satisfied, we say X is an o rd ina l .  

(A) X is a transitive set, and the relation ~ is a chain ordering of X. 

(B) X is a transitive set, and the relation e " - is a well ordering of X. 

(C) X is a transitive set, and all the members of X are transitive sets. 

Proof of equivalence of conditions. The implication (B) =~ (A) is trivial, and the implica- 
tion (A) ~ (C) is a fairly easy exercise. For (A) =~ (B) use the Axiom of Regularity in 
1.47" If S is a nonempty subset of X, it is easy to show that  any @minimal element of S 

is also a =-minimum element of S. 
It remains to prove (C) ~ (A). Suppose (A) is false; thus there exist sets A, B c X 

that  are not ~-comparable.  Using the Axiom of Regularity, let A0 be a @minimal element 

of the nonempty set 

So = {A c X �9 some B E X exists such that  A, B are not e---comparable}. 

Then let B0 be some @minimal element of the nonempty set 

E 
To - {B C X �9 A0 and B are not =-comparable}.  
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Then Ao and Bo are not ~-comparable.  Both Ao and Bo are members of X, hence they 
are transitive sets. 

We first show that  Bo G Ao. Indeed, let Co E Bo; we shall show Co E Ao. Since Bo is 
an E-minimal element of To, it follows that  Co is not a member of To. Since Co E Bo E X 

and X is transitive, we have Co r X. If A0 K Co E Bo, it would contradict the fact that  Ao 
E 

and Bo are not =-comparable; thus we do not have Ao c_ Co. Since Co E X \ To, it follows 
e 

that  Ao and Co are =-comparable; thus we must have Co E Ao. This proves Bo C_ Ao. 
E 

Since Ao and Bo are not =-comparable,  they are not equal; thus Ao \ Bo is nonempty. 
Let Do be some member of Ao \ Bo. Since Ao is a E-minimal element of So and Do E Ao, it 

follows that  Do r So. Thus Do is ~-comparable  with every member of X, and in particular 

Do is ~-comparable  with Bo. By our choice of Do we know that  Do r Bo; thus we must 

have Bo _c Do. But then Bo K Do E Ao, contradicting the fact that  A0 and Bo are not 

~-comparable.  (This argument follows Shoenfield [1967].) 

Remarks.  In recent years the definitions above (due to von Neumann) have become stan- 
dard. However, some of the earlier literature used slightly different definitions of "ordinal." 
To some mathematicians an ordinal meant any well ordered set. To others it meant any 
equivalence class of well ordered sets, where two well ordered sets are considered to be 
equivalent if there exists an order isomorphism between them. The latter definition may 
cause some difficulties, since that  equivalence class is a proper class, not a set. The von 
Neumann definition removes these difficulties by specifying a natural  representative from 
that  equivalence class, as we shall see in 5.46.f. 

5.46. Basic properties of ordinals. 

a. If X is an ordinal, then we understand X to be equipped with the ordering given by 

~=, which makes X a well ordered set. Note that  with this ordering, if c~ c X, then the 
set of predecessors of c~ is Pre(c~) - {x E X ' x  E c~} - c~. 

b. If X is an ordinal, then X - {proper lower sets of X}. Hint" 3.39.c. 

c. All the members of an ordinal are ordinals. 

d. I f X  and Y are ordinals , t h e n Y C X  ~ Y E X .  
Hints" Y E X ~ Y C X since X is transitive. Conversely, suppose Y c X. Let 

c~ be the first member of X \ Y. Show that  Pre(c~) - Y. 

e .  The only order isomorphism from an ordinal onto an ordinal is the identity map from 
an ordinal to itself. Hint" Induction on lower sets. 

f. If (X, 4)  is a well ordered set, then there is one and only one mapping that  is an order 
isomorphism from X onto an ordinal. (Hint" Induction on lower sets.) That  ordinal 
is sometimes referred to as the o r d i n a l  t y p e  of X. 

g. If e is any nonempty subclass of the class of ordinals, then the intersection of all the 
members of e is an ordinal, and furthermore that  ordinal is a member of e -  in fact, 
it is the smallest member of e. 

I f X  and Y are ordinals, t h e n X  E Y or X Y or Y E X. Thus, E . - - is a chain 
ordering on the class of all ordinals. 
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In fact, it is a well ordering: If e is any nonempty subclass of the class of all ordinals, 
then e has a smallest member  namely, the intersection of all the members  of e. 

(Later we shall show that  the class of all ordinals is a proper class i.e., it is not 
a set.) 

h. The union of any set of ordinals is an ordinal. 

i. If X is an ordinal, then so is X U {X}. It is called the s u c c e s s o r  of X; it is sometimes 
writ ten X + or X + 1. It is the smallest ordinal greater than X i.e., it is the first 
ordinal after X.  Any ordinal that  can be writ ten in the form X + for some X is called 
a s u c c e s s o r  o rd ina l .  

Note tha t  any successor ordinal X + has a largest element - -  namely, X. Conversely, 
show that  any ordinal with a largest element is a successor ordinal. Thus, we may 
equivalently define a successor ordinal to be an ordinal that  has a largest element. 

j .  A l imi t  o r d i n a l  is an ordinal tha t  does not have a largest element. 

Show tha t  if X is a limit ordinal, then Us~x S = x .  
Examples. Refer to 5.44. The ordinals co,2co,3co,.., and the first uncountable 

ordinal are limit ordinals. The ordinals 1, 2, 3, . . .  and co + 1, co + 2, co + 3, . . .  and 
2co + 1, 2co + 2, 2co + 3, . . . ,  etc. are successor ordinals. By our definition, the empty 
set is a limit ordinal - -  but some mathemat ic ians  use a slightly different definition for 
limit ordinal tha t  excludes the empty set. 

5.47.  Note tha t  different ordinals may have the same cardinality. For instance, it is easy 
(exercise) to give bijections between the ordinals w and w + 1 and 2w. (Of course, such 
bijections cannot be order preserving.) 

An in i t i a l  o r d i n a l ,  also known as a c a r d i n a l  or a c a r d i n a l  n u m b e r ,  is an ordinal 
X with the property that  no earlier ordinal has the same cardinality as X. (Note: Some 
mathemat ic ians  add the restriction tha t  the set be infinite as part  of the definition of initial 
ordinal, but  we shall not impose tha t  restriction.) 

It follows from 3.42.b tha t  any infinite cardinal must be a limit ordinal. 
Examples. Refer to 5.44. All the finite ordinals are cardinals; w is a cardinal; the first 

uncountable ordinal is a cardinal. The ordinals w + 1 and 2co are not cardinals, since they 
have the same cardinality as co. 

Preview. It will follow from (AC4) in 6.20 tha t  any set S can be well ordered, and hence 
we can assign a cardinal number to each set. See further remarks in 6.23. 

5.48.  (Optional.) The infinite cardinals are also called a l ephs ;  they are wri t ten 

RO, R1, R2, R3, . . . ,  Rw, Rw+l, Rco+2, . . . ,  R2w, . . . ,  etc. 

"Aleph" is the name of R, the first letter of the Hebrew alphabet.  
The first infinite ordinal is w = R0; it is countable. The first uncountable ordinal is R1. 

The Cont inuum Hypothesis is One s ta tement  tha t  2 ~~ = R1. 
We have these inclusions: 

{alephs} c {ordinals} C {sets}. 
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We saw in 1.45 that  {sets} is a proper class, not a set; likewise we shall show in 5.50 that  
{ordinals} is a proper class. The class of all alephs is also a proper class, but we shall not 
prove that; a proof is given by Krivine [1971]. 

THE CLASS OF ORDINALS 

5.49. Definition. For any set X, the H a r t o g s  n u m b e r  of X is defined to be the smallest 
ordinal a that  satisfies card(a)  ~ card(X) i.e., the smallest ordinal a that  does not 
satisfy card(a) _< card(X).  (It is a cardinal number.) 

We do not require that  card(a)  > card(X).  That  slightly stronger statement will follow 
as a consequence only if we assume the Axiom of Choice see 6.22. The Hartogs number 
is mainly useful if one wishes to avoid using the Axiom of Choice e.g., to study its 
alternatives, as we shall do briefly in this book. 

Exercise. Prove that  the definition of the Hartogs number makes sense i.e., prove that  
there do exist ordinals a satisfying card(a)  ~ card(X),  and among such ordinals there is a 
smallest. 

tBnt: Let a = {fl: fl is an ordinal with card(fl) _< card(X)}.  The only hard part  is showing 
that  a is actually a set. (After all, the collection of all ordinals is not a set; we shall prove 
this below.) First use the Axiom of Comprehension in 1.47 to show that  

- { (S ,R)  �9 S c x ,  R c S •  and R is a well ordering of S } 

is a set. Then use 3.41, 5.46.f, and the Axiom of Replacement to prove a is a set. Finally, 
show that  a is an ordinal, and a is the Hartogs number of X. 

5.50. T h e o r e m .  Let 0 = {ordinals}. Then 0 is a proper class, not a set. 

We offer two slightly different proofs, because both are interesting. The first proof is more 
elementary in that  it does not use the Hartogs number; the second proof may be preferable 
to some readers because it does not use the Axiom of Regularity. 

First proof. Suppose that  0 is a set. Show that  0 is then an ordinal and hence a member 
of itself, contradicting 1.49. (This is the Burali-Forti Paradox.) 

Second proof. Suppose 0 is a set. Let/3 be the Hartogs number of 0. Then/3  is an ordinal, 
hence/3 c_ 0, hence card(~) _< card(0),  contradicting the definition of the Hartogs number. 

5.51. The collection of all ordinals is a proper class i.e., a "very big" collection, much 
like the collection of all sets. Nevertheless, the ordinals have some interesting structure; 

they are well ordered by ~ =, as we noted in 5.46.g. Consequently we have the following two 
principles: 

I n d u c t i o n  on  t h e  O r d i n a l s .  Suppose e is a class of ordinals, such that  
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whenever X is an ordinal whose members all belong to e, then X also belongs 
to e. Then e contains all the ordinals. 

R e c u r s i o n  on  t h e  O r d i n a l s .  By an ordinal-based map we shall mean a func- 
tion from some ordinal into some set. Let 2MZ be the class of all ordinal-based 
maps. Let p be some function of classes, from/lV[ into {sets}. Then there exists 

unique function F �9 {ordinals} --+ {sets} that  satisfies F(X) - P ( F I x  ) _ _  for a 

each ordinal X. 

In the last line above, FIx. is the function F restricted to X. The members of its domain 

are the members of X i.e., the preceding ordinals and not X itself. Note tha t  any 
ordinal X is equal to its own set of predecessors. 

Proofs. If the induction principle does not hold, then there is some ordinal M ~ e. Let X 
be the first member  of M + that  does not belong to e; then X is the first ordinal tha t  does 
not belong to e, a contradiction. The recursion principle can be proved by an argument  
similar to 3.40; we omit the details. 

5.52.  Z e r m e l o ' s  F i x e d  P o i n t  T h e o r e m .  Let (X, ~)  be a nonempty poset, with the 
property tha t  each 4-chain in X has a 4 - supremum in X. Suppose f : X -+ X is a function 
tha t  satisfies f (z)  ~ z for all x. Then f has at least one fixed point. 

Proof. Suppose not 
a function 

i.e. suppose f(x) >- z for all z E X. Then u(C) = f ( s u p C )  defines 

u :  {chains in X} --+ X, satisfying u(C) ~- c for all c E C. 

We shall show that  such a function yields a contradiction. Let 9{ be either the Hartogs 
number  of X or the class of all ordinals, according to the reader's taste the rest of 
the argument  will work with either 9{. Recursively define a strictly increasing mapping 
~b : 9s --+ X by 

To see tha t  this definition makes sense, note that  if ~b is strictly increasing on some ordinal 
S E 9{, then C(S) = {tb(T) :  T E S} is a chain, and so u(C(S)) exists and is an upper 
bound for C(S). Hence f(u(C(S))) exists and is strictly greater than every member  of 
C(S) hence tb is defined and strictly increasing on S + = S U {S}. This completes the 
definition of ,p. However, since ~b : 9{ --+ X is strictly increasing, it is injective, and therefore 
ca rd (~ )  _< card(X),  a contradiction. 

Remarks. The proof above is from Howard [1992]. Slightly longer proofs that  avoid the use 
of ordinals are given by Fuchssteiner [1986] and Mafika [1988]. None of these proofs requires 
the Aziom of Choice or any of its consequences. Thus Zermelo's Fixed Point Theorem is 
occasionally useful in the study of set theory without the Axiom of Choice, as in 19.45. If 
we permit  the use of the Axiom of Choice and its equivalents, then Zermelo's Fixed Point 
Theorem is a trivial corollary of Zorn's Lemma, which is (AC7) in 6.20. 
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5.53.  The class of all sets specified by the ZF axioms is often denoted by V, because an 
interesting and useful description of it was given by von Neumann.  This scheme is also 
known as the c u m u l a t i v e  h i e r a r c h y .  Using recursion on the ordinals (in 5.51), we define 
a function of classes 

Stage : {ordinals} ---, {sets} 

by this rule: 

Stage(a)  - U ~P(Stage(/3)). 
r 

In other words, the c~th stage is the collection of all subsets of all sets that  have already been 
formed in previous stages. (The li terature contains minor variants on this definition. Some 
mathemat ic ians  prefer to define Stage(a)  by two slightly different formulas when a is a limit 
ordinal or when c~ is a successor ordinal. However, the ul t imate effect is the same. Also, 
some mathemat ic ians  use the term "rank" instead of "stage.") Von Neumann's  universe is 
the class 

V = U Stage(c~) . 

~E{ordinals} 

Although each Stage(a)  is a set, V is a proper class. 
In 1.44 we stated, somewhat imprecisely and intuitively, that  a set is a collection of 

"already fixed" sets. We have not used that  s ta tement  in our formal development of ZF 
set theory; instead we have simply assumed that  the class of all sets is some collection of 
objects that  satisfies the ZF axioms. However, we are now ready to use the ZF axioms to 
prove a precise version of that  earlier intuitive statement.  

T h e o r e m .  In ZF set theory, every set is in some stage that  is, the von Neumann class 
V is the class of all sets. 

Proof (following Shoenfield [1967]). Let X be any given set; we wish to show X E V. 
By 5.43.d, let T be a transitive set with X E T. If T C_ V, then we are done. Assume, 
then, that  T \ V is nonempty. Note that  the class T \ V is actually a set, by the Axiom 
of Comprehension. By the Axiom of Regularity, let M be a E-minimal member  of the set 
T \v .  

Let A be any member  of the set M. Then A E T by transi t ivi ty of T, but A ~t (T \ V) 
by minimali ty of M. Thus A E V. Therefore A E Stage(aA) for some ordinal c~. 

Now, {aA " A E M} is a set of ordinals. Its union is an ordinal /3, which has some 

successor/3 +. For every A E M,  we have a a  E/3; hence A E Stage(~). Thus M C_ Stage(~), 
so M E Stage(~ +) contradicting our choice of M as a set tha t  does not belong to V. 

5.54.  By a slight modification of von Neumann 's  cumulative construction, we shall obtain 
GSdel's constructible universe, L. This will appear  briefly in our discussions in Chapter  14. 
The idea is that  instead of taking arbitrary subsets of V~ to get V~+I, we shall use describable 
subsets. 

Define ordered pairs and ordered triples in terms of sets, as in 1.46; define the product 
of two sets as a set of ordered pairs. Then the G S d e l  o p e r a t i o n s  are defined as follows. 
First, for any sets X and Y, let 
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9", (X, Y) - {X, Y}, 

~'2(X, Y) = X \ Y ,  

~ ( x ,  Y) - x • Y - {(x, y ) . x  e x ,  v e Y}. 

Also, for any set X, let 

9"4(X) - Dom(X) - {u "(u, v) e X for some v } ,  

�9 ~ ( x )  - ( (~ ,  v) e x • x . ~  e v},  

5~(x)  - ((~, v, ~ ) .  (v, ~, ~) e x} ,  

~r  - {(~, v, ~ ) .  (~, ~, ~) e x} ,  

~ ( x )  - ((~, ~, ~ ) .  (~, ~, ~) e x} .  

Now, for any set X, define 

~(X) - X U { 9 ~ i ( u , v ) ' u ,  v E X ,  l<_i<_3}U{9"i (u) 'ueX,  4_<i___8}. 

Let c}2 (X) - ~(~(X)) ,  etc., and define 

cl(X) - x u 9 ( x ) u  9 2 ( x ) u  ~}3(x) u . . . .  

Then cl(X) is the smallest set that  contains X and is closed under the Ghdel operations. 
We flow recursively define 

(i) L0 = O, 

(ii) L~+I = T(L~)n cl(L~ U {L~}) for ordinals c~, 

(iii) L~ - Uz<~ Lz when a is a limit ordinal, 

and finally L - U~eordinals La. Of course, L is a proper class, since Ord is not a set. The 
members of L are said to be G h d e l  c o n s t r u c t i b l e ,  or c o n s t r u c t i b l e  r e l a t i ve  to  t h e  
o rd ina l s .  For further discussion we refer to Jech [1973], Manin [1977], or other books on 
logic and set theory. 

Is every set in von Neumann's universe "constructed" at some stage of Ghdel's hierarchy? 
Or are there some other sets in V that  cannot be so "constructed?" In other words, is L 
equal to V, or are these classes different? This question cannot be answered either way 
except by making additional assumptions beyond those of conventional set theory. The., 
statement V = L is called the A x i o m  of C o n s t r u c t i b i l i t y ;  it is discussed further in 14.7. 

Ghdel's constructions may take uncountably many steps. They are quite different from, 
and should not be confused with, Bishop's constructions, introduced in 6.2, which permit 
only countably many steps. 



Chapter  6 

C o n s t r u c t i v i s m  and Choice  

6.1. Preview. Conventional set theory is ZF + AC; that is, Zermelo-Fraenkel set theory plus 
the Axiom of Choice. ZF was introduced in 1.47; for the most part, it is just a formalization 
of our intuition about sets. 

This chapter introduces the Axiom of Choice (AC) and a few weakened forms of Choice. 
Some relations between these principles are summarized in the chart below, which is based 

AXIOM OF CHOICE (AC) 
Vector Basis Theorem, DC + BP + LM (Solovay) 
Tychonov's Theorem 

I 
/ ~ ~ DC + BP (Shelah) 

n G rnir-Wright 
ACR / | ~  \ ~ ( .  Continuity Theorem 
(Choice ~ l ~  I \ \ ~ i 

Hahn- forR) / I 
, / ACF Banach ~... I ~ ~ ~Banach s Closed 
[ / tneorems Graph Theorem 

\ ~ ~ / \ I CC Uniform Boundedness 
\ ~  ~ /  \ I \ Theorems 

\ (e~)* r el gana~h ~ ] ~ I 
Tarski \ - :: ~ [ Uniform Boundedness ~ n o t B P ~ D e c o m p  ~ [  - ~ " Theorems for Norms 

~ HB for separable spaces 
not-LM 

partly on a chart of Pincus [1974]. All assertions in the chart are understood to be in 
conjunction with ZF. Implications in the chart are downward, and we shall prove most of 
these implications. For instance, in this chapter we include proofs of AC =~ DC =~ CC 
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and AC =~ UF =~ ACF. That DC + BP implies the Garnir-Wright Theorem is proved in 
27.45; a proof of ( t~)* ~: t~l =~ not-BP is given in 29.38. The proof of WUF =~ not-LM 
is somewhat complicated and is not included in this book; it was given by Sierpifiski [1938]. 

Most of the implications are known to be irreversible for instance, it is known that 
HB ~ UF and UF ~ AC but proofs of these irreversibility results are beyond the scope 
of this book. Most of them can be found in Jech [1973] or Pincus [1974] or in references 
cited therein. An enormous survey of the weak forms of Choice, including implications and 
irreversibility results, is given by [Howard and Rubin, in preparation]. 

For our purposes, the most important principles are AC (the Axiom of Choice), DC 
(Dependent Choice), UF (the Ultrafilter Principle), and HB (the Hahn-Banach Theorem). 
These four principles appear in many equivalent forms in later chapters. 

Most interesting consequences of AC actually follow from either DC or UF. One might 
almost think of those principles as the "constructive component" and the "nonconstructive 
component" of AC. However, that description would be slightly misleading, for it is known 
that ZF + DC + UF does not imply AC; see Pincus [1977]. 

Particular attention will also be devoted to the principles 

BP = "every subset of lt~ has the Baire property," and 

not-BP = "there exists a subset of I~ that lacks the Baire property." 

The topological meaning of the Baire property will be discussed in Chapter 20, but its 
foundational significance must be mentioned now. The statement not-BP is the weakest 
nonconstructive consequence of AC that we shall consider as such in this book; thus BP is 
our strongest negation of the Axiom of Choice. Shelah~s T h e o r e m ,  

Con(ZF) =~ Con(ZF + DC + BP), 

is a remarkable accomplishment; it gives us a unified method of proving the intangibility of 
many of the pathological objects that arise in analysis - -  i.e., of proving that those objects 
have no explicitly constructible examples. This is discussed in greater detail in 14.76 and 
14.77. 

EXAMPLES OF NONCONSTRUCTIVE MATHEMATICS 

6.2. Most of this book follows mainstream mathematics, which is not constructivist. How- 
ever, a brief discussion of constructivism will be helpful. 

The terms "construct" and "construction" are used loosely by most mathematicians; 
these terms may be applied to any argument that builds something complicated from seem- 
ingly simpler things. However, the terms "constructive" and "constructivist" are used more 
narrowly. An existence proof is cons t ruc t ive  if the proof actually finds the object in ques- 
tioIl by a procedure involving just finitely many steps or, in some cases, if the proof 
approximates the object arbitrarily closely by a procedure involving just countably many 
steps. C o n s t r u c t i v i s t s  are mathematicians who study such proofs and/or who prefer such 
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proofs; c o n s t r u c t i v i s m  is the study of such proofs. To be more specific, we might call this 
constructivism in the sense of Errett Bishop. Actually, the literature now contains many 
schools of constructivism that  differ slightly from Bishop's view. The survey given in the 
next few pages is too superficial to distinguish between these different schools; Bridges and 
Richman [1987] give a much more detailed survey. (Bishop's constructibility should not be 
confused with GSdel constructibility, indicated in 5.54, which permits uncountably many 
steps and is very different in nature.) 

Most mathematicians are part-time informal constructivists, in this respect: In teaching 
or learning mathematics, we try to follow any abstract idea with one or more concrete 
examples. Indeed, new teachers of mathematics probably hear that  pedagogical practice 
recommended more often than any other. We follow that  pedagogical practice i.e., of 
giving examples whenever possible, but we must depart from that practice at times, 
for some mathematical  ideas are inherently nonconstructive. Indeed, some of the objects 
studied in this book are in tang ib le :  We shall see that  the objects "exist," but that  explicitly 
constructible examples of these objects do not exist. By this we do not mean merely 
that  no examples have been found yet; rather, we mean that  it can be proven that no 
explicit examples can ever be given. We shall see that  this peculiar status is shared by 
free ultrafilters, nontrivial universal nets, subsets of IR that  lack the Baire property, well 
orderings of R, finitely additive probabilities that  are not countably additive, certain kinds 
of linear maps, and diverse other objects. Although intangibles can be avoided in applied 
mathematics, they are conceptually useful in pure mathematics and appear frequently in the 
literature (usually without much explanation). The lack of examples may be disconcerting 
to students. We shall give some explanation of the lack of examples, here and later; see 
especially 14.77. 

6.3. Some ezamples of nonconstructive mathematics. Two of the axioms of conventional set 
theory are nonconstructive. The Axioms of Regularity and Choice postulate the existence of 
certain sets without giving any indication of how to find those sets. The Axiom of Regularity 
(introduced in 1.47) is largely a formality, included in set theory for convenience; it has little 
effect on mathematics outside of set theory. Indeed, for most purposes it can be replaced by 
the Principle of E-Induction (in 1.50), which is in some sense constructive or, perhaps 
more precisely, it is not nonconstructive. In contrast, the Axiom of Choice (introduced 
later in this chapter) has enormous effects on many branches of mathematics, and cannot 
be replaced so easily with a constructive variant. 

Different mathematicians have different interpretations for the term "constructive," and 
attach different degrees of importance to that  notion as well. It is ironic that  Baire~ Borel, 
and Lebesgue, three of the founders of this century's analysis, were philosophically opposed 
to any uses of arbitrary choices, and yet Countable Choice a mildly nonconstructive 
principle involving a sequence of arbitrary choices (introduced in 6.25) was crucial to 
their work. They used it without noticing it; only later was this use pointed out explicitly 
by Sierpiiiski. See Moore [1983]. 

6.4. The Axiom of Choice is a highly visible form of nonconstructive reasoning. Some 
mathematicians are not aware of other kinds of nonconstructive reasoning, and consequently 
they use the term "constructive" simply to mean "not using the Axiom of Choice." However, 
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t h a t  is an erroneous usage. There  are o ther  kinds of noncons t ruc t ive  existence proofs, one 
of which we shall now describe. 

P r o o f  b y  c o n t r a d i c t i o n  was in t roduced  in 1.9; it can be s t a t ed  as ~ P  => P ,  where  

--1 means  "not." In some const ruct ive  f rameworks (e.g., in intui t ionis t  logic see 14.35), 

the  principle of proof  by cont radic t ion  is equivalent  to the  L a w  o f  t h e  E x c l u d e d  M i d d l e :  

For every proposi t ion  P, ei ther  P holds or no t -P  holds 

(or more  briefly, P V -~P). For example,  we don ' t  yet know whether  G o l d b a c h ~ s  C o n -  

j e c t u r e  1 is t rue  or false, but  most  ma thema t i c i ans  would agree t ha t  surely it is one or 

the  other.  Thus,  most  ma thema t i c i ans  are in wholehear ted  agreement  with the  Law of the  

Excluded  Middle and  might  have t rouble  seeing how the  const ruct iv is ts  could reject it. 
However, formal  cons t ruct iv is ts  use language a bit differently from m a i n s t r e a m  ma th -  

ematicians.  For construct ivis ts ,  Goldbach ' s  Conjec ture  is not  yet  t rue  or false, a l though  
someday  it may  a t t a in  one of those states.  In t e rp re ted  in the  language of construct ivis ts ,  

the  expression "P or Q" means  "we have a const ruct ive  proof  of P, or we have a cons t ruct ive  

proof  of Q, or both ."  W i t h  this convention,  the  Law of the  Excluded  Middle becomes:  

For every p ropos i t ion  P, ei ther  P holds or no t -P  holds, and we can determine 
which one. 

Of course, wi th  this in te rpre ta t ion ,  the  Law of the  Excluded  Middle is b l a t an t ly  false; 

cons t ruct iv is ts  and  m a i n s t r e a m  ma thema t i c i ans  agree on tha t .  But  why do const ruct iv is ts  
use language in this fashion? The  example  below may  help us to u n d e r s t a n d  why; ano ther  

exp lana t ion  will be given in 14.36. 

6 .5 .  An  example with irrationals. The  following example  is taken  from Troels t ra  and  Dalen 
[1988]. We shall prove the  following proposi t ion.  

(P) There  exist positive, i r ra t ional  numbers  a and b such tha t  a b is rat ional .  

A quick, easy, noncons t ruc t ive  proof  is as follows: E i ther  

(i) v/2 v~ is ra t ional  then  take a - b - x/~; or 

(ii) V~ v~ is i r ra t ional  then  take a -  v/2 v~ and b -  v/2. 

l In 1742, Goldbach conjectured that every even integer greater than 2 can be written as the sum of 
two prime numbers. This is one of the most famous unsolved problems of mathematics: As of the time 
of this writing, no one has yet proved or disproved Goldbach's Conjecture, though many mathematicians 
have spent much time trying and have proved slightly weakened versions of the conjecture. Goldbach's 
Conjecture was part of Problem 8 in Hilbert's famous list of 23 problems for the twentieth century. See 
Yuan [1984] for a survey of Goldbach's Conjecture. 

For the purposes of this book, Goldbach's Conjecture is of interest not because of what it would tell us 
about prime numbers, but rather because it is a simple example of an unsolved problem that could be solved 
if we could carry out a countable infinity of steps. Any other unsolved problem that can be solved in that 
fashion will do as well for the discussions in this section and in 10.46 and 15.48. If Goldbach's Conjecture 
gets proved or disproved between the time this book is written and the time this book is read, simply replace 
it with some other such problem. (An earlier draft of this book used Fermat~s Last Theorem,  a more 
famous problem that went unsolved for 300 years. However, shortly before this book was finished, a proof 
of Fermat's Last Theorem was finally completed by Taylor and Wiles [1995].) 
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However, this proof does not tell us which of the two possibilities (i) or (ii) is valid, so we 
have not found a part icular explicit example of a pair (a, b) satisfying (P). This proof could 
not be used as a subroutine in a numerical computer  program: It yields not one answer, 
but two possible answers with no method of choosing between them. 

Actually, (ii) is true and can be proved constructively, by a much longer argument.  By 
a theorem of Gelfond and Schneider, if a and b are positive algebraic numbers, a :/= 1, and 
b is irrational, then a b is transcendental.  See page 106 of Gelfond [1960]; related results are 
surveyed by Ti jdeman [1976]. 

FURTHER COMMENTS ON CONSTRUCTIVISM 

6.6. Making mathematics constructive. Nonconstructive arguments  often can be replaced 
by constructive ones. Sometimes this is only with difficulty, as in the preceding example with 

v/~ v~. Sometimes it is easier. For instance, the T r i c h o t o m y  L a w  for R e a l  N u m b e r s :  

for all real numbers x and y, either x < y or x = y or x > y 

is not constructively provable; there is no algorithm that  takes constructive descriptions of 
x and y and yields the assertion of one of those three relations. We shall illustrate and 
demonstra te  this unprovability in two ways in 14.9 and 10.46. However, Bishop [1973/1985] 
points out that  in most applications, the Trichotomy Law is not needed in its full strength; 
it can be replaced by the following weaker law. 

C o m p a r i s o n  Law.  For any real numbers u, v, and y, if u < v then at least 
one of u < y or y < v must hold. 

This law is constructively provable. 
The alterations one makes while t ranslat ing classical mathemat ics  to constructive math-  

ematics generally have little or no effect on the ul t imate applications. For instance, one 
of the fundamental  theorems of classical functional analysis is the Hahn-Banach Theorem; 
we shall s tudy several versions of this theorem in later chapters. Some versions assert the 
existence of a certain type of linear functional on a normed space X. The theorem is inher- 
ently nonconstructive, but a constructive proof can be given for a variant involving normed 
spaces X that  are separable i.e., normed spaces tha t  have a countable dense subset; see 
Bridges [1979]. Little is lost in restricting one's a t tent ion to separable spaces, for in applied 
math  most or all normed spaces of interest are separable. The constructive version of the 
Hahn-Banach Theorem is more complicated, but it has the advantage that  it actually finds 
the linear functional in question. 

6.7. Constructivists  and mains t ream mathemat ic ians  use the same words in different ways; 
in fact, different schools of constructivists use the same words in different ways. 

A basic example is in the meaning of "real number." Mainst ream mathemat ic ians  have 
several different equivalent definitions of real numbers (see Chapter  10). One way to define 
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a real number is as an equivalence class of Cauchy sequences of rational numbers (see 
19.33.c). But constructivists prefer to indicate a real number by a Cauchy sequence that  is 
accompanied by some estimate of the rate of convergence-  e.g., a sequence (rn) of rational 

1 1 numbers that  satisfies Irm - rn I _< max{ ~ ,  ~}. Of course, in mainstream mathematics,  
every real number can be represented as the limit of such a sequence, but such sequences 
are not essential to our way of thinking about real numbers. In constructivist mathematics, 
all computations about real numbers are expressed, either directly or indirectly, in terms of 
such sequences. (Constructivist "real numbers" are discussed further in 10.46.) 

Here is a more complicated example of the differences in language: 
In constructive analysis, the continuous functions that  are of chief interest are the uni- 

formly continuous ones. Indeed, it is hard to constructively establish that  a function is 
continuous except by giving a modulus of uniform continuity and thus establishing that  
the function is indeed uniformly continuous. Of course, in mainstream mathematics, any 
continuous function on a compact interval is uniformly continuous, but that  fact is not 
provable in constructive mathematics. 

In the terminology of Bishop and Bridges [1985], a function on a compact interval 
is continuous if it has a modulus of uniform continuity i.e., that  book's definition of 
"continuity" is the usual definition of uniform continuity, but the context is one where the 
two notions are classically equivalent anyway. 

Among some constructivists, the only functions that  can really be called "functions" are 
the representable ones. Moreover, it is a theorem (in certain axiom systems of constructive 
mathematics) that  every representable function is continuous. Thus, under certain uses of 
the language, the following is true: 

C e i t i n ' s  T h e o r e m .  Every function is continuous. 

A proof of this startling result can be found on page 69 of Bridges and Richman [1987]. The 
result is slightly less startling when we consider that,  even in mainstream mathematics, any 
function with certain "good" properties is continuous; theorems to this effect are given in 
24.42, 27.28.c, and 27.45. 

The introduction to constructivism given by Bridges and Mines [1984] also discusses the 
importance of language. 

6.8. Constructivism versus mainstream mathematics. This book, which is intended to intro- 
duce the reader to the literature, is frequently nonconstructive, since much of the literature 
is nonconstructive. Indeed, the constructivist viewpoint is foreign to most mathematicians 
today; we are so used to nonconstructive proofs that  we tend to believe one cannot do 
much interesting mathematics constructively. And, until a few decades ago, we would have 
been right. Brouwer's intuitionism was more a matter  of philosophy than mathematics, 
and Heyting extended the matter  from philosophy to formal logic. But then, finally, Bish0~) 
[1967] showed how to develop a large portion of analysis constructively. (See also the re- 
vised version, Bishop and Bridges [1985].) Since then, several other mathematicians have 
extended Bishop's style of reasoning and written constructive versions of many other parts 
of mathematics. In particular, the reader may refer to Bridges [1979] for functional analysis, 
to Beeson [1985] for foundations (i.e., logic and set theory), and to Bridges and Richman 
[1987] for a recent survey of the several different schools of constructivism. 
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Despite its growing literature, constructivism remains separated from the mainstream 
of mathematics.  This may be largely because constructivism's finer distinctions necessitate 
a use of language quite different from, and more complicated than, that  of the mainstream 
mathematician.  For instance, among some constructive analysts, x % y simply means 
the negation of x = y, while x # y means 2 the slightly stronger condition of a p a r t n e s s :  
We can find a positive lower bound for the distance between approximations to x and 
y. Thus, constructivists distinguish between notions that  the classical mathematician is 
accustomed to viewing as identical. Consequently, a mainstream mathematician can only 
learn constructivism by relearning his or her entire language a sizable undertaking. 

Some philosophical questions deserve at least a brief mention here, although we shall not 
address them in any depth. Bishop [1973//1985] suggested that  mainstream mathematicians,  
in pursuit of form, have lost track of content; Bishop exhorted mathematicians to return to 
a more meaningful mathematics.  Perhaps the contentless mathematics that  he condemned 
would include the intangibles studied elsewhere in this book (free ultrafilters, etc.), which 
lack examples and do not seem to be a direct reflection of anything in the "real world." 
However, an argument can be made for the conceptual usefulness of such objects. For 
instance, free ultrafilters provide a basis for nonstandard analysis, which yields new insights 
into calculus and other limit arguments. Moreover, we may be surprised by just what kinds 
of mathematics can reflect the real world; for instance, Augenstein [1994] suggests that  
the Banach-Tarski Decomposition may be a useful model of some interactions of subatomic 
particles. 

Both constructive and nonconstructive thinking have their advantages. A constructive 

proof may be more informative (e.g., it tells us that  v/2 v~ is irrational see 6.5), but a 
nonconstructive proof is often quicker and simpler. Extending a metaphor of Urabe: To 
feed one's family, it is not enough to prove that  a certain pond contains a fish; ultimately 
one must catch the fish. On the other hand, it would be helpful to have an inexpensive 
device that  quickly and easily determines which ponds contain fish. 

6.9. Much of this book is concerned with nonconstructive mathematics.  Moreover, to better 
understand some of the nonconstructible objects studied in this book, we shall sometimes 
find it helpful to vary the amount and kind of nonconstructiveness that  we are willing to 
accept. In particular, we may compare results requiring the Axiom of Choice with results 
that  only require a weakened form of the Axiom of Choice. At first glance, that  looks like 
a rather strange notion; after all, either we can find a certain mathematical  object, or we 
can't. How we can say that  one object is harder to find than another object, when in fact 
we can't  find either of them? 

The metaphor of "oracles" was introduced in recursion theory by Turing [1939] (see 
the discussion by Enderton [1977 recursion theory]); a similar metaphor may be helpful in 
the present context. Imagine we have access to an oracle ,  who has frequent conversations 
with some deity. We present the oracle with various questions that  we have been unable to 
answer by merely mortal, human methods. The oracle is able and willing to answer some, 
but not all, of these questions. For instance, the oracle might tell us whether Goldbach's 

2Caution: Some constructive analysts use x ~ y to denote apartness and use -~(x = y) to denote 
inequality. 
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conjecture is true, but refuse to comment on the Riemann Hypothesis. In some of the 
literature, such an oracle is referred to as a "limited principle of omniscience." 

Now, in some cases, if the oracle gives us an answer to question A, we may use that  
information to deduce an answer to question B even if the oracle has not given us an 
answer to B. Thus, one answer may be stronger than another. Similarly, two answers may 
be considered equivalent to each other if each is stronger than the other i.e., if either 
answer would enable us to deduce the other. 

It must be emphasized that  when we use the oracle's answer to A to deduce an answer 
to B, then we are using human, mortal reasoning i.e., the oracle is not helping in such 
deductions. Thus, our relation of one answer being stronger than another is deter- 
mined without the aid of the oracle; this relation does not depend on our actually having 
answers to either of the questions A or B. It is these relations between the answers, not the 
actual answers themselves, that  will concern us later, when we compare different levels of 
nonconstructiveness. Since the oracle is not actually used to determine and compare those 
different levels, we may now dispense with the oracle altogether. 

6.10. Proposition. The Axiom of Regularity implies the Law of the Excluded Middle, if 
interpreted in the language of constructivism. (Hence the Axiom of Regularity is noncon- 
structive.) 

Proof. The following proof is modified from Beeson [1985]. Since most readers of this book 
probably are not familiar with constructivist language, we shall restate the proof in terms 
of the oracle metaphor of 6.9. 

Interpreted in constructivist terms, the Axiom of Regularity says that  we have an oracle 
of the following type: 

We may describe to the oracle some nonempty set S, in terms that  do not 
necessarily give a clear understanding of the set but that  do at least uniquely 
determine the set. Then the oracle will specify to us some element x E S such 
that  x N S = 0.  

Let P be a proposition (such as Goldbach's conjecture) that we can state precisely, but that  
we do not necessarily know to be true or false. Now define 

S - [ {O'{O}} i f P i s t r u e  
t { {0  } } if P is false. 

Then S is nonempty, since {0} E S. The oracle will tell us either "0 is a member of S that 
does not meet S" in which case P is obviously true or "{0} is a member of S that  
does not meet S" in which case we can deduce that  P is false. Thus, the oracle can be 
used 15o deduce the t ruth  or falsehood of any proposition P. 

Remark. The Axiom of Choice, if interpreted in constructivist terms, can also be shown 
to imply the Law of the Excluded Middle. The proof of this implication, though short, 
depends on a deeper understanding of constructivist language; it does not translate readily 
into the language of mainstream mathematicians. We omit it here; it is given by Beeson 
[1985] and Bridges and Richman [1987]. 
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6.11. Constructivism (in the sense of Errett  Bishop) will be discussed further in 6.13, 
10.46, and 15.48. 

Logicians have another notion that  is similar to constructibility. An object x0 is said to 
be definable if there exists a proposition P(x) in first-order logic for which x = x0 is the 
unique element for which P(x) is true. See L6vy [1965]. 

Constructibility in the sense of Bishop, constructibility in the sense of GSdel, and defin- 
ability in the sense of L6vy are far outside the mainstream of thinking of most analysts. In 
14.76 we shall introduce "quasiconstructibility," which is (in this author's opinion) closer 
to the way that  most analysts think. 

THE MEANING OF CHOICE 

6.12. Conventional set theory is Zermelo-Fraenkel set theory plus the Axiom of Choice, 
abbreviated ZF + AC. We described Zermelo-Fraenkel set theory in 1.47. 

The A x i o m  of Cho ice  has many equivalent forms; we shall study several in this and 
later chapters. (A much longer list of equivalents is given by Rubin and Rubin [1985].) We 
shall denote our equivalents of Choice by (AC1), (AC2), (AC3), (AC4), etc.; collectively 
we shall refer to them as AC. Most of these equivalents are discussed in next few pages. A 
few more equivalents are the Vector Basis Theorem in 11.29, and Tychonov's Theorem and 
similar results on product topologies in 15.29, 17.16, and 19.13. 

Here are three of the simplest forms of Choice: 

(AC1)  Cho ice  F u n c t i o n  for Subse t s .  Let X be a nonempty set. Then for 
each nonempty subset S C_ X it is possible to choose some element s c S. That  
is, there exists a function f that  assigns to each nonempty set S c_ X some 
representative element f (S)  E S. 

(AC2)  Set  of  R e p r e s e n t a t i v e s .  Let {X~ �9 A E A} be a nonempty set of 
nonempty sets that  are pairwise disjoint. Then there exists a set C containing 
exactly one element from each X~. 

(AC3) N o n e m p t y  P r o d u c t s .  If {X~ �9 A c A} is a nonempty set of non- 
empty sets, then the Cartesian product YI)~CA XA is nonempty. That  is, there 
exists a function f "  A -~ U~e i  X~ satisfying f ( s  c X~ for each A. 

A function f that  specifies choices, in this or similar contexts, is called a choice  fdnc t ion .  
We postpone until 6.19 the proof of equivalence of these three principles. 

The Axiom of Choice is "obviously true," in that  it agrees with the intuition of most 
mathematicians. For instance, consider (AC1). Each nonempty set S c_ X certainly con- 
tains some element s, and thus to define f (S)  it suffices to "just pick any such s." It 
requires only a small stretch of the imagination to make all such choices simultaneously and 
thus to define the function f.  

In fact, AC is so much a part of the way of thinking of most mathematicians that  it 
can easily sneak into a proof unnoticed; then we say AC is used unconsciously or implicitly. 
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Cantor and other mathematicians used Choice implicitly in their early work in set theory 
in the late 19th century; only in 1908 did Zermelo become aware of this assumption in their 
work and explicitly formulate it as an axiom. (See Moore [1982].) 

AC is so very "obviously true" that  the reader may wonder why it is considered to be 
an axiom, rather than just a consequence of definitions. To see why, let us consider the 
choice function f in (AC1). If a choice function can be given explicitly, by some completely 
describable procedure or rule, then the choices are said to be canonica l ;  otherwise the 
choices are said to be a r b i t r a r y .  Canonical choice functions are sometimes available. For 
instance, if X - N - {1 ,2 ,3 , . . . } ,  then we can satisfy (AC1) by taking f (S )  to be the 
smallest (i.e., first) element of S. 

However, in other cases we cannot find f explicitly. For instance, one specialization of 
AC is this principle" 

( A C R )  A x i o m  of Cho ice  for t h e  Rea l s .  There exists a function f that  
assigns to each nonempty set S C_ I~ some element f (S )  c S. 

Such a function is, for analysts, perhaps the simplest i n t a n g i b l e  i.e., the simplest 
instance of an object that  exists but that  we cannot illustrate with a specific example. 
The reader is urged to try for a moment to think of an explicit choice function f for IR. 
Some partial solutions suggest themselves e.g., when S is a bounded nonempty interval, 
then let f (S) be the midpoint of that  interval. More complicated answers will choose points 
from larger collections of sets; for instance, let (r~) be an enumeration of the rationals; then 
every set S with nonempty interior contains some rational number and so we may take f (S) 
to be the first rational number in S. But what about a choice function that  works for all 
nonempty subsets of I~? No explicit choice function has ever been found 3 for I~, and, in 
fact, it can be proved that  no explicit choice function ever will be found for R (see 14.77 
and 6.34). Hence we need to assume a principle such as AC or ACR to tell us that  such a 
function f exists. 

The Axiom of Choice makes selections for us that  we do not know how to make for our- 
selves; Sah [1990] calls it a "mathematicians'  Maxwell demon." Bertrand Russell illustrated 
it with this example: 

To select one sock from each of infinitely many pairs of socks requires the Axiom 
of Choice; but for shoes the Axiom is not needed. 

For instance, one way to choose shoes canonically would be to take all the left shoes. 
(Actually, socks do not require the full strength of the Axiom of Choice; we can choose the 
socks using a slightly weakened form of Choice discussed in 6.15.) 

In situations where we need the Axiom of Choice, usually there are infinitely many 
choices available. However, we cannot establish the existence of infinitely many choices, or 
even the existence of one choice, except by giving an example or applying some noncon- 
structive principle such as AC. This is discussed further in 14.77. 

3Logicians and set theorists  may have a slightly different view of this mat ter ,  for they are more com- 
fortable with the Axiom of Construct ibi l i ty  V = L (introduced in 5.54). Wi thou t  assuming V -- L or the 
Axiom of Choice or any of its relatives such as DC, CC, UF, etc., we can write down a formula ~ tha t  has 
the following property:  When  we assume V = L, then ~ becomes a well ordering of ]~. Thus, ~ provides 
an "explicit example" of a well ordering of R and hence an "explicit example" of a choice function for R.  
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6.13. A defective "proof" of Choice. The reader may find it instructive to consider the 
following "proof" of (AC3). If each Xa contains exactly one element xa, then we can con- 
clude 1-IaeA Xa is nonempty without using any existential axiom: We know that  1-IacA Xa 
contains the function x that  assigns to each coordinate A the value xa. If we make all the 
Xa's  larger, then this could only make 1-IaeA Xa larger, and so it would still be nonempty; 
thus the Axiom of Choice is "proved." 

The flaw in this reasoning is a subtle one: By what method do we "make all the Xa's  
larger?" If the enlarged set Xa still contains the original member xa, and if we still know 
which of the elements of Xa is that  original member xa, then indeed the original function 
x would still be available to us; we can make a canonical choice. But if we lose track of 
the xa's when we enlarge the Xa's  and all we know about the enlarged sets is that  they 
are nonempty, then we no longer have an explicit formula or rule for choosing one element 
from each Xa. We have no way to "construct" the function x except via some additional 
assumption such as (AC3). 

Of course, intuitively it is obvious that  1-IaeA Xa is nonempty in fact, in most cases 
of interest, I-Ia~A Xa contains infinitely many elements. But we may be unable to find any 
particular element of 1-IaeA Xa. 

VARIANTS AND CONSEQUENCES OF CHOICE 

6.14. To understand better what the Axiom of Choice is really assuming, let us contrast 
AC with several related principles, some of which are much weaker. The weakest of these 
is: 

F i n i t e  " A x i o m "  of Choice .  If n is a positive integer and $1, $2, . . . ,  Sn are 
nonempty sets, then $1 x $2 x . . .  x Sn is nonempty. 

Although this principle is sometimes called an axiom, it really is not an axiom, for it follows 
"for free" from conventional logic and the axioms of ZF set theory without any additional 
assumptions. Indeed, ordinary mathematical  logic permits us to apply an operation finitely 
many times. Each Si is nonempty, hence it contains (and we can choose from it) some 
element si. Repeat this operation n times; then (Sl, s2,. . .  ,sn) is a member of the product. 

We only need the Axiom of Choice, or some form of the Axiom of Choice, when we need 
to make infinitely many arbitrary choices. 

6.15. Following are two variants of Choice that  do not follow "for free" from logic and ZF 
set theory: 

( A C F )  A x i o m  of C h o i c e  for F i n i t e  Sets .  Let C be a set whose members are 
nonempty finite sets. Then it is possible to choose some member s from each 
set S c C .  

( M C )  M u l t i p l e  C h o i c e  A x i o m .  Let C be a set whose members are nonempty 
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sets. Then it is possible to choose some nonempty finite subset F from each set 
S E e .  

The Axiom of Choice for Finite Sets must not be confused with the Finite Axiom of Choice, 
although the names are similar. 

It can be shown that  ACF implies the Law of the Excluded Middle (introduced in 6.4). 
A short proof of this implication is given by Goodman and Myhill [1978], but we shall not 
reproduce it here because it does not translate readily into the language of mainstream 
mathematics (see 6.8). 

ACF, though weaker than the Axiom of Choice, is still strong enough to act as a math- 
ematical "Maxwell's demon," making choices for us that  we cannot make for ourselves. For 
instance, ACF is strong enough to choose Bertrand Russell's socks (see 6.12). 

Obviously AC is equivalent to ACF + MC. Actually, it can be proved that  the Multiple 
Choice Axiom by itself is equivalent to the Axiom of Choice. However, the proof is too long 
to include here; it can be found in Jech [1973] or in Rubin and Rubin [1985]. The proof 
requires the Axiom of Regularity, unlike most other proofs mentioned in this book. 

6.16. Pathological consequences of A C. The Axiom of Choice is a nonconstructive assertion 
of existence: It postulates the existence of certain objects without giving any indication of 
how to find those objects. There may not even be a way to find those objects. We shall see 
in 14.77 that  many of the objects generated by AC are intangibles - -  i.e., objects for which 
no constructive examples can ever be given. 

Moreover, some of the intangible consequences of the Axiom of Choice are p a t h o l o g i c a l  
- -  i.e., they are so very different from familiar, constructible examples that  they are contrary 
to our intuition. Perhaps the most dramatic of these pathologies is: 

B a n a c h - T a r s k i  D e c o m p o s i t i o n .  The closed unit ball in three dimensions, 

B = { (x , y , z )  EI~3 : x 2 + y 2 + z 2 < _ l } ,  

can be partitioned into finitely many pieces, which can be rearranged by rigid 
motions (i.e., rotations and translations) and recombined to form two closed 
unit balls, each identical to the original ball B. 

At first glance, the Banach-Tarski Decomposition seems preposterous. It blatantly contra- 
dicts our intuition about the conservation of mass or volume. In fact, the theorem above 
is often called the "Banach-Tarski Paradox." In mathematics, the term "paradox" usually 
refers to an impossibility. 

However, the Banach-Tarski Decomposition only appears impossible at first; its para- 
doxical appearance can be explained away. The ordinary "volume" of a subset of I~ n is its 
n-dimensional Lebesgue measure. That  number is defined if the set is Lebesgue measurable, 
but as we shall see later in this b o o k -  not all subsets of IRn are Lebesgue measurable. 
In particular, the pieces in the Banach-Tarski Decomposition are not Lebesgue measurable. 

Thus, the Banach-Tarski Decomposition does not actually violate any rules concern- 
ing volume. It simply tells us that,  if we accept the Axiom of Choice, then the rules of 
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volume are more complicated than we might like. The intuition about volumes that we 
have obtained from our experience with everyday macroscopic objects in the real, physical 
world is only applicable to some, not all, subsets of the mathematical world R 3. (In fact, 
that intuition is not even applicable to submicroscopic objects in the real world; Augen- 
stein [1994] suggests that the Banach-Tarski Decomposition is a possible model for some 
kinds of interactions of subatomic particles.) Most mathematicians have learned to live 
with such pathological consequences of the Axiom of Choice, feeling that the pathological 
consequences are outweighed by the advantages of AC. 

We shall not prove the Banach-Tarski Decomposition Theorem in this book a proof 
and much related material are given by Wagon [1985] but in 21.22 we shall give Vitali's 
classical short proof of the existence of a Lebesgue nonmeasurable set. The existence of 
Lebesgue nonmeasurable sets is the chief reason that measure theory is generally developed 
for an algebra or or-algebra g of subsets of a set X, rather than in the simpler setting of 

Actually, the Banach-Tarski Decomposition does not require the full strength of AC. A 
recent proof of Pawlikowski [1991] shows that the Banach-Tarski Theorem is implied by the 
Hahn-Banach Theorem, a weakened form of Choice that will be studied extensively later in 
this book. We shall not give Pawlikowski's proof, but a crucial ingredient of that proof is 
Luxemberg's Boolean reformulation of the Hahn-Banach Theorem, which we shall prove in 
23.19. 

6.17. What makes A C true or false? When we accept the Axiom of Choice, we declare 
that we intend to treat certain mathematical objects as if they exist, regardless of whether 
we can find examples of those objects. This implies a particular interpretation of some 
words, such as "choose, .. . .  exist, . . . .  set," and "function." 

Constructivist mathematics and classical (mainstream) mathematics give us two intu- 
itive interpretations of language, which make the Axiom of Choice either false or true. 
Axiomatic set theory takes a more rigorous approach that does not rely on intuitive in- 
terpretations. Axiomatic set theory divests symbols and words such as E, C_, and "set" of 
their usual meanings and investigates how certain relations between the meaningless sym- 
bols and words imply certain other relations. In axiomatic set theory, one is not concerned 
with "true" or "false" (because ultimately these things are unknowable), but only with 
"implies." With this viewpoint, AC is simply another axiom that we may accept or reject. 

Alternative axiom systems are also possible, and some of them are just as consistent as 
conventional set theory. Although we shall use AC freely throughout most of this book, 
in a few brief discussions we shall also consider some of its alternatives, which have im- 
portant consequences in functional analysis. Even if the reader is a "firm believer" in the 
Axiom of Choice, nevertheless there are strong reasons for considering its alternatives: Such 
considerations will improve our understanding of the consequences of Choice. Some of the 
alternatives to Choice, though not compatible with AC itself, are at least compatible with 
weakened forms of AC; thus we shall also study such weakened forms. 
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SOME EQUIVALENTS OF CHOICE 

6.18. To clarify the role played by Choice, we shall keep track of its uses in some parts 
of this book. A proof is effective if it does not use AC or consequences of AC except as 
explicitly stated hypotheses. Two statements are equiva len t  (or effectively equivalent) if 
each can be proved effectively from the other. The oracle metaphor in 6.9 may be helpful 
in understanding these "effective" proofs. 

6.19. The preceding discussions may have made clear just what the rules are that govern 
proofs of equivalence. The reader may now try to prove the equivalence of (AC1), (AC2), 
and (AC3). 

Hint for (AC2) ~ (AC1): See 1.10. Relabel copies of the subsets of X so that they are 
all disjoint. For instance, S x {S} is a bijective copy of S, since {S} is a singleton and the 
sets S x {S} are disjoint subsets of X x T(X). 

6.20. Maximal principles. The following statements are equivalent to the Axiom of Choice. 

(AC4)  Well  O r d e r i n g  P r inc ip l e  (Zermelo) .  Every set can be well ordered. 

(AC5)  F in i t e  C h a r a c t e r  P r inc ip l e  (Tukey,  Te ichmul le r ) .  Let X be a 
set, and let 9" be a collection of subsets of X; suppose that 9" has finite character 
(as defined in 3.46). Then any member of 9 ~ is a subset of some C_-maximal 
member of 9". 

(AC6) Maximal Chain Principle (Hausdorff). Let (X, ~) be a poset. 
Then any ~-chain in X is included in a C_-maximal ~-chain. 

(ACT) Zorn ' s  Lemma (Hausdorff, Kuratowski, Zorn, o the r s ) .  Let 
(X, ~) be a poset. Assume every ~-chain in X has a ~-upper bound in X. 
Then X has a ~-maximal element. 

(ACS) W e a k e n e d  Zorn  L e m m a .  Let (X, 4) be a poset. Assume every 
subset of X that is directed by 4 has a 4-upper bound in X. Then X has a 
4-maximal element. 

Hint for 

Hint for 

Hint for 

Hint for 

Hint for 

Proof of 
for ft we 

(ACI) 

(AC4) 

(AC5) 

(AC6) 

(AC7) 

(AC8) 

=~ (AC4)" Use 3.43, with ? ( S ) -  f (X \S) .  

=~ (ACb)" Use the theorem in 3.46. 

=~ (AC6)" The 4-chains form a collection of finite character. 

=~ (AC7): Use the upper bound of the maximal chain. 

=~ (AC8): Any chain is a directed set. 

=~ (AC1). Let f~ be a nonempty set. By a "partial choice function" 
shall mean a function f whose domain is some collection of nonempty subsets of 
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~t, satisfying f (S)  E S for each S E Dom(f) .  Let X be the collection of partial choice 
functions; partially order X by taking f ~ g if Graph(f)  c_ Graph(g). It follows from the 
Finite Axiom of Choice (see 6.14) that  X is nonempty and that  any maximal element of 
X must be a function f with domain [P(~t) \ {~}; thus it suffices to show that  X has a 
maximal element. Verify that  the hypotheses of (AC8) are satisfied. 

6.21. We ask again: Is the Axiom of Choice "true?" According to Bona [1977], 

The Axiom of Choice is obviously true; the Well Ordering Principle is obviously 
false; and who can tell about Zorn's Lemma? 

The joke is that  the three principles are equivalent, as we have just seen. Still, there is a 
point to the jest: Our intuition isn't reliable here. 

In fact, Bona's aphorism does agree with most mathematicians '  intuition. The Axiom 
of Choice seems true, because the Axiom of Choice is worded in such a way that  the 
simultaneity of the choices has little psychological impact. Indeed, as we noted in 6.12, 
(AC1) seems true because we can "just pick any s E S." In contrast, the Well Ordering 
Principle seems false, since the simultaneity of choices is built into the well ordering. Well 
orderings are quite difficult to find. Indeed, a partial ordering chosen "at random" generally 
is not a well ordering, and we are altogether unable to find an explicit well ordering for I~. 
Finally, Zorn's Lemma is too complicated to seem "obviously true" or "obviously false" to 
most mathematicians, although of course those who use it repeatedly become accustomed 
to it and begin to think of it as "true." 

6.22. Choice and cardinality. For this section, let [A] denote the cardinality of a set A. 
The Axiom of Choice and its equivalents deal with infinite sets. We understand finite 

sets fairly well, but it is difficult to extrapolate from finite sets and describe how infinite sets 
should behave; several different descriptions seem equally plausible. Our first few results 
about cardinality the Schr6der-Bernstein Theorem, Cantor's Theorem, etc. did not 
depend on the Axiom of Choice and may have given the impression that  every set has some 
definite "size," definable in some absolute way. Thus it may be surprising that  some basic 
properties of cardinality are actually equivalent to the Axiom of Choice. 

(AC9)  Wel l  O r d e r i n g  of C a r d i n a l s .  Comparison of cardinalities is a well 
ordering. That  is, if S is a set whose elements are sets, then there is some So E g 
that  satisfies IS0[ < IT[ for all T E S. 

(AC10)  T r i c h o t o m y  of C a r d i n a l s .  Comparison of cardinalities is a chain 
ordering. That  is, for any two sets S and T, precisely one of these three condi- 
tions holds: IS[ < IT[; IS[ = IT[; IS[ > IT I. 

( A C l l )  C o m p a r a b i l i t y  of  t h e  H a r t o g s  N u m b e r .  If H(S) is the Hartogs 
number of a set S, then ]H(S)] and I S] are comparable i.e., one is bigger 
than or equal to the other (and hence ]H(S)] > ]S]). 

(AC12)  S q u a r i n g  of C a r d i n a l s .  If X is an infinite set, then I x • X I = Ixl. 



146 Chapter 6: Constructivism and Choice 

( A C 1 3 )  M u l t i p l i c a t i o n  of  Card ina l s .  If X is an infinite set, Y is a 
nonempty set, and IXI _> IYI, then IX x Y I -  IXI �9 

(AC14)  If X and Y are disjoint sets, IXI > INI, and Y is nonempty, then 
Ix u Y ] -  Ix • YI. 

(AC15)  If X is an infinite set, then the cardinality of X is equal to the 
cardinality of Un%l x n  - -  {finite sequences in X}. 

Proofs. We shall first prove that  (AC4), (AC9), (AC10), and (ACll )  are equivalent. For 
a proof of (AC4) =~ (AC9), use 5.46.g. The implication (AC9) =~ (AC10) is obvious. 
The proof of (AC10) =~ (AC11) is immediate from the definition of the Hartogs number. 
Finally, for a proof of (ACll)  ~ (AC4), note that  we have an injection from any set X 
into a well ordered set H(X);  use 3.39.b. 

Next we shall prove that (AC12), (AC13), and (AC15) are equivalent. For a proof of 
(AC12) ~ (AC13), use relabeling; thus we may assume X and Y are disjoint. Choose any 
y0 c Y. Then 

I X l -  IX x {y0}l <_ IX x YI _< Ix x X l -  IXl. 

For a proof of (AC13) =~ (AC15), show by induction that  IXnl = IXl for ~ll positive 
integers n. Hence Un~ X n has the same cardinality as the union of N disjoint copies of X 

i.e., the same cardinality as X x N. Finally, (AC15) ~ (AC12) is obvious. 
A proof of (AC4) ~ (AC12) is immediate from 3.45. 
To prove (AC13) ~ (AC14), pick any y0 c Y and any object v that  is not in X. Then 

I X] = ]X U {v}l by 2.20.g. Hence 

IXuY! - I ( X x { y 0 } ) U ( { v } x Y ) l  

_< I(Xu{v}) xYI  - IXxYI  - I (XuY)  x YI - IXuYI ,  

where the last equation follows from (AC13) since IX U YI ~ IYl. 
Finally, we shall show that (AC14) ~ (ACll) ;  this proof takes a bit longer but it will 

complete our cycle of equivalences. Let any set S be given; let H = H ( S )  be its Hartogs 
number; we wish to show that IHI and ISI are comparable. We may assume S is not finite. 
It follows easily that  H is infinite also. Since H is an infinite ordinal, we have IHI _ INI by 
3.42.b. By relabeling, let Y be a copy of S (i.e., a set with the same cardinality as that  of 
S) that  is disjoint from H. By (AC14), we have I H U YI = ]H x YI. Therefore there exists 
a bi ject ion/3:  H U Y ~ H x Y. Thus H1 = /3 (H)  and Y1 =/3(Y)  are disjoint sets whose 
union equals H x Y and such that IH l l - - IHI  and IYll = IYI . 

We now consider two cases. In the first case, there exists some y r Y such that  H x {y} c_ 
Y1. In that  case, the mapping h H (h, y) is an injection from H into Y1, proving that  
IHI __ IYll- IYI- ISI. 

In the second case, there is no such y. Hence for every y c Y there exists at least one 
h r H such that  (h, y) r Y1 i.e., such that  (h, y) c H1. Since H is well ordered, let a(y) 
be the f irst  such h. Thus y H (a(y), y) is an injection from Y into H1, and therefore 
I s l -  IYI < ]HI I = IHI. 
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6.23.  In 2.16, we defined the cardinal number of a finite set, but for infinite sets we merely 
indicated how to compare cardinalities. How can we define the "cardinal number" of an 
infinite set? We would like to define an object "card(S)" separately for every set S in such 
a way tha t  our definition of "card(S) _< card(T)" in 2.16 remains valid. 

One naive approach would be to observe that  equality of cardinality is an equivalence 
relation; thus it would seem that  we can define the "cardinal number" of a set to be the 
equivalence class to which tha t  set belongs. However, this approach involves an equivalence 
relation on the class of all sets, which is a very large proper class perhaps too large for 
some purposes. 

If we assume the Axiom of Choice, then we can make a canonical selection from each 
equivalence class, as follows: Every set can be well ordered, and hence has the same car- 
dinality as some ordinal; see 5.46.f. There may be many such ordinals for instance, w, 
co + 1, co + 2, . . .  all have the same cardinality - -  but we can choose canonically among such 
ordinals, by taking the first such ordinal. It is a cardinal number, as defined in 5.47. Thus, 
for any set S, let card(S) be the first ordinal that  has the same cardinality as S. Wi th  this 
definition, "card" is a function of classes, from the collection of all sets (a proper class) to 
the collection of all ordinals (another proper class). Note in particular tha t  if S is a cardinal 
number (i.e., an initial ordinal), then c a r d ( S ) =  S. 

The preceding definition uses the Axiom of Choice but not the Axiom of Regularity. 
Some mathemat ic ians  may prefer the following al ternate definition, which uses Regularity 
but not Choice; it follows Ender ton [1977 set theory]. Given any set S, there is some stage 
in which S occurs, as defined in 5.53. Say S E Stage(a) .  Recall that  each stage is a set, 
not a proper class. Let /3 be the first ordinal with the property tha t  some set T E Stage(fl) 
satisfies card(T) = card(S) i.e., the first ordinal with the property tha t  there exists a 
bijection between S and some member  of Stage(/3). Now let 

kard(S) - {T E Stage(fl) �9 c a r d ( T ) -  card(S)}.  

Then kard(S) is a set (not a proper class), uniquely determined by S, and two sets have 
the same "kardinality" if and only if they have the same cardinality. However, when S is 
an initial ordinal, it is not equal to kard(S).  

6.24.  K e l l e y ' s  C h o i c e .  In later chapters, the Axiom of Choice will be used to prove 
certain important  topological principles. Some of these principles also imply AC and thus 
are equivalent to it. We shall now sketch a general argument,  which will be used several 
times in later chapters to prove tha t  certain topological principles imply (AC3). This type 
of argument  apparently was first used by Kelley [1950], in a proof we present in 17.16. 

Let {S~ �9 A E A} be a nonempty set of nonempty sets; we wish to show that  I-I~EA S~ 
is nonempty. 

For each A, let ~ be some object that  is not an element of S~. (For instance, we could 
take ~ - S~, since S~ ~ S~. Thus, the ~ ' s  can be selected without  making any arbi t rary 
choices. However, it is probably bet ter  not to think of {~ as being equal to S~, for such an 
assignment is an irrelevant distraction. It does not really mat te r  what  we choose for {~, so 
long as it is not a member  of S~.) 

Let Y~ - S~ U {{~}, let X - I-I~EA Y~, and let r~ �9 X --+ Y~ be the Ath coordinate 
projection. Obviously the function { defined by 7r~({) - {(A) - {~ is an element of X = 
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1-[xea Yx, which is therefore nonempty. 
Now let M be any finite subset of A. By the Finite Axiom of Choice (see 6.14), I-I,kcM S,k 

is nonempty. Then the set 

is a nonempty subset of X, as it includes (I-I,XeM S,x) x (I-I,kcA\M{~)~})" Observe that  

TM N TN = TMuN; hence the collection of sets 9 ~ = {TM : M is a finite subset of A} is a 
filterbase on X. 

The remainder of the argument is topological and takes a different form for different 
topological principles. The details cannot be given here, but will be given in 15.29, 19.13, 
and 17.16. In brief: We equip each Yx with some simple topology e.g., the discrete 
topology, the indiscrete topology, or the "knob" topology and let X = l-I~cA Y~ be 
equipped with the product topology. Some assumed topological principle is then used to 
prove that  l--[),eA Sx = riM TM is a nonempty subset of X. 

COUNTABLE CHOICE 

6.25. An important  weakened form of Choice is: 

( C C )  A x i o m  of C o u n t a b l e  Choice .  We can choose representative elements 
from a sequence of nonempty sets. In other words, if S1, $2, $3, . . .  is a sequence 
of nonempty sets, then 1-I~__1 Sn is nonempty i.e., we can choose a sequence 
(Xl, x2, x3 , . . . )  with xn E S~ for each n. 

Countable Choice is strong enough for many a p p l i c a t i o n s -  for instance, Garnir, De Wilde, 
and Schmets [1968] develop a sizable portion of functional analysis using this axiom rather 
than the Axiom of Choice. However, Countable Choice is strictly weaker than the Axiom 
of Choice (see Jech [1973]). In fact, CC is so weak that  the reader may again ask why this 
is an axiom, rather than just an-"obviously true" statement or a consequence of definitions. 
To answer that  question, we shall contrast CC with countable recursion (see examples in 
2.23). Using either CC or recursion, one constructs a.sequence (Xn). A recursive definition 
only allows one possible value for each xn, and so no choices need to be made; the resulting 
sequence (xn) is uniquely determined. In contrast, the sequence described in CC is not 
uniquely determined (unless all the S~'s are singletons), and so some arbitrary choices must 
be made. Of course, if the Sn's have some sort of known structure e.g., if each S~ is a 
nonempty subset of N then it may be possible to make canonical choices. But when ~}~ 
do not know of any structure, the axiom of Countable Choice still permits us to make an 
infinite sequence of arbitrary choices. (Contrast this also with AC, which permits arbitrarily 
many arbitrary choices.) 

Countable Choice will now be used to prove two very basic properties of cardinality; our 
presentation follows that  of Jech [1973]. 
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6.26. (Assume CC. Then:) The union of countably many countable sets is countable. 

Discussion and hints. Let {Sa : A E A} be a countable collection of countable sets; we are 
to prove that  S = UacA Sx is countable. Since A is countable, by relabeling we may assume 
that  A = N or A = {1, 2 , . . . ,  N} for some positive integer N. To reflect this relabeling, let 
us replace the s with n's. We wish to show that  S = UnEA Sn is countable. 

For each n E A, the set Sn is countable, and so there exists at least one injection from 
Sn into N. For each n, let us choose some injection L~ : S~ --~ N. Since there are countably 
many n's, we are making countably many choices; it is at this step that  we need the Axiom 
of Countable Choice. (If the S~'s were given to us with some sort of listing already provided, 
so that  we could choose the ~ ' s  canonically, then CC would not be needed.) 

Now, for each x E S, let n(x) be the first integer n that  satisfies x E S~, and let 
p(x) = L~(x)(x). Then the mapping x H (n(x),p(x)) is an injection from S into N x N, 
which is countable by 2.20.e. 

6 . 2 7 .  (Assume CC. Then:) A set X is infinite (i.e., not finite) if and only if it contains a 
countably infinite set i.e., if and only if card(X) _> card(N). 

Proof. It is clear that  card(X) > card(N) implies X is not finite; that  implication does not 
require the Axiom of Countable Choice. 

Conversely, assume X is an infinite set. We claim that  

(,) for each nonnegative integer j ,  the set X contains a subset Aj having exactly 
j elements. 

Indeed, take A0 = 2~. If (,) is false for some j > 0, consider the smallest such j .  Then Aj-1 
is finite and X is not, so Aj_I C X. Thus X \ Aj-1 is nonempty; let x be any element of 

(X3 

X \ AS_l. Now take A 5 - AS_l U {x}. This contradiction proves (,). Then U3=0 Aj is a 
countably infinite subset of X. 

Remarks. A set is D e d e k i n d  inf in i te  if it has the same cardinality as some proper subset of 
itself; otherwise it is D e d e k i n d  finite.  Some mathematicians take Dedekind infiniteness, 
or the condition card(X) _> card(N), as a definition of X being infinite. If we assume 
Countable Choice, then the three notions of "infinite" coincide. 

DEPENDENT CHOICE 

6.28. Between the Axiom of Choice and Countable Choice lies an important  but more 
complicated principle, the P r i n c i p l e  of D e p e n d e n t  Cho ice  (DC) .  We shall give two 
versions of this principle now and a few more versions in Chapters 19 and 20. 

(DC1)  D e p e n d e n t  Cho ice  (ve r s ion  w i t h o u t  h i s t o r y ) .  Let any nonempty 
set S and any function f : S -~ {nonempty subsets of S} be given. Then there 
exists a sequence (x~) in S such that  xn+l E f(x~) for each n. 
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( D C 2 )  D e p e n d e n t  Cho ice  (ve rs ion  w i t h  h i s t o r y ) .  Let S1, $2, $3, . . .  be 
nonempty sets. For each n > 1, let fn be a mapping from $1 x $2 x . . .  x Sn 
into {nonempty subsets of Sn+I}. Then there exists a sequence (Xl,X2,X3,...) 
such that  Xn+l C fn(Xl,X2,... ,Xn) for each n. 

In either formulation, the idea is that  we can choose some x l; with it in mind we can then 
choose some x2; with Xl and x2 (or just x2) in mind we can then choose some x3, etc. 

Remarks. It is known that  AC is strictly stronger than DC, and DC is strictly stronger 
than CC. Recently, Howard and Rubin [1996] have shown that  UF + CC does not imply 
DC. (The Ultrafilter Principle, UF, is discussed in 6.32 and thereafter.) 

The Axiom of Dependent Choice (DC) should not be confused with the Axiom of Deter- 
.minacy (AD). Though the two names sound similar, the two axioms are entirely different. 
We shall not study AD in this book; a good introduction to it is given by Dalen, Doets, 
and Swart [1978]. 

6.29. Exercise. (DC1) ~ (DC2), and ( A C 4 ) = v  ( D C 2 ) = v  CC. 

S D 

Hint for ( D C 1 ) = v  (DC2)" Let 

O 0  

U (S l  X S2 X "'" X Sn) 
n=l 

and f (Xl ,X2, . . . ,Xn)-  {(Xl,X2,...,Xn)} • fn(Xl,X2,...,Xn). 

6.30. Optional exercise. Assume Dependent Choice. Let (X, _<) be a chain ordered set. 
Show that  <_ is a well ordering of X if and only if there does not exist an infinite sequence 
Xl > X2 > X3 > "'" in X. 

6.31. Optional exercise (from Johnstone [1987]). If we assume Dependent Choice, then 
the Axiom of Regularity is equivalent to the following principle. 

No  In f in i t e  Reg re s s .  There does not exist an infinite sequence of sets So, S1, 
$2, $3, . . .  that  sat isf ies. . ,  c $3 c $2 c S1 c So. 

Proof. In 1.49 we proved that  the Axiom of Regularity implies No Infinite Regress. Con- 
versely, suppose that  the Axiom of Regularity is false. Say So is a nonempty set that  meets 
each of its elements. If Sn meets So, then there is s o m e  Sn-I-1 C Sn A SO. Use DC to form a 
sequence (So, $1, $2 , . . . ) .  

THE ULTRAFILTER PRINCIPLE 

6.32. (We assume some familiarity with filters, which were introduced in Chapter 5.) 
Midway between the Axiom of Choice (AC) and the Axiom of Choice for Finite Sets (ACF) 
is a more complicated but very important principle, the Ultrafilter Principle (also known 
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as the Ultrafilter Theorem). Like the Axiom of Choice, the Ultrafilter Principle has many 
important equivalents in many branches of mathematics. The equivalents discussed in this 
book will be denoted (UF1), (UF2), (UF3), etc.; collectively we shall refer to them as UF. 
They can be found in the paragraph below, and in 6.35, 7.24, 9.54, 13.22, 14.57, 14.59, 
14.61, 17.4, 17.22, 17.42.f, 19.17, and 28.29. 

The version of greatest use for purposes of this book is 

(UF1) Ul t r a f i l t e r  P r i n c i p l e  ( C a r t a n ) .  Any proper filter is included in 
an ultrafilter. That  is, if 9" is a proper filter on a set X, then there exists an 
ultrafilter li on X with l~ D 9". 

This result follows easily from (AC5) or (ACT), in 6.20. The Ultrafilter Principle is strictly 
weaker than the Axiom of Choice; that was proved by Halpern and Ldvy [1971], but the 
proof is beyond the scope of this book. 

This book contains nearly two dozen equivalents of the Ultrafilter Principle; the wider 
literature contains many more. The equivalents have not all been collected into one source. 
A few more equivalents are given by Jech [1973], Morillon [1986], Rav [1977], and Rubin 
and Rubin [1985]. Mathematicians who wish to study equivalents of UF are urged to 
search not only under "ultrafilter" but also under "Compactness Principle," "Boolean Prime 
Ideal Theorem," and "Stone Representation Theorem;" those equivalents of UF (considered 
later in this book) are less essential to analysts but are more famous among logicians and 
algebraists. 

6.33. Existence of free ultrafilters. Recall that  an ultrafilter on an infinite set is free if and 
only if it contains the cofinite filter (see 5.5.d). Hence, using (UF1) to extend the cofinite 
filter is one method of "constructing" free ultrafilters. Thus we obtain this corollary of 
(UF1): 

On every infinite set there exists a free ultrafilter. (**) 

A special case of this result is important enough to have its own name: 

( W U F )  W e a k  U l t r a f i l t e r  T h e o r e m .  A free ultrafilter exists on N. 

Actually, WUF plus CC implies statement (**) above. (Proof. CC tells us that X contains a 
countably infinite set X0; see 6.27. Show that if 9" is a free ultrafilter on X0, then {S C_ X �9 S 
contains some member of if} is a free ultrafilter on X.) 

Neither of the implications AC =v UF =v WUF is reversible; this is proved in Jech 
[1973]. Thus, UF is strictly weaker than the Axiom of Choice, and WUF is weaker still. 

Free ultrafilters on N or on any infinite set are in tangib les ,  in the sense of 14.76 
and 14.77: They exist in conventional set theory, but we cannot prove their existence using 
just ZF + DC. This result was proved by Pincus and Solovay [1977]; see the discussion in 
14.74. It also follows from Shelah's result Con(ZF + DC + BP), via an argument of WUF 
=v not-BP given later in this book. 

Although the free ultrafilters are harder to illustrate or imagine than the fixed ones, 
they are also far more numerous. A theorem of Tarski states that if X is an infinite set, 
then card{free ultrafilters on X} - card{T(T(X))}. This is in contrast with card{fixed 
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ultrafilters on X} - card(X). The proof, which uses the Axiom of Choice, is too long to be 
included here. Proofs can be found in Tarski [1939], Bell and Slomson [1974], and Gghler 
[1977]. 

6.34. Show that  ACR (in 6.12) implies WUF. 
Hints: We may replace 1R with [P(N), by 10.44.f. By 3.43, the subsets of N can be well 

ordered. The collection e of filter subbases on N is a collection with finite character; hence 
by the theorem in 3.46 the cofinite filter can be extended to a maximal member of e. 

6.35. ( U F 2 )  C o w e n - E n g e l e r  L e m m a .  Let A and X be sets. Let (I) be a collection of 
functions from subsets of A, into X. Assume that  

(i) 

(ii) 

(iii) 

Then A 

(I)(A) - {f(A) �9 f E (I) with A E Dom(f)}  is a finite subset of X, for each 
A E A ;  

each finite set S c_ A is the domain of at least one element of (I); and 

(I) has finite character; i.e., a function f from some subset of A into X is a 
member of (I) if and only if each restriction of f to a finite subset of Domain(f)  
is a member of (I). 

is the domain of at least one element of (I). 

Remarks. The proof of (UP2) ~ (UP1) will be given via several other propositions in 13.22. 
Actually, (UP2) remains equivalent if we make the further stipulation that  X = {0, 1}; that  
will be evident from the argument in 13.22. 

The principle (UP2) is very similar to several principles that  are known as R a d o ' s  
Se l ec t ion  L e m m a ;  the reader is cautioned that  those principles are not all known to be 
equivalent to each another. For a few results on Rado's Lemma(s) see Howard [1984] and 
[1993], Jech [1977], Rav [1977], and Thomassen [1983]. 

The Cowen-Engeler Lemma, particularly with X = {0, 1}, is in many respects similar 
to the Compactness Principle of Propositional Logic, which is (UP16) in 14.61. In fact, as 
Rav [1977] points out, the Cowen-Engeler Lemma is a sort of combinatorial, non-logicians' 
version of (UFI6); the Cowen-Engeler Lemma can often be used in place of (UFI6) but 
does not require any knowledge of formal logic. 

Proof of (UP1) => (UP2). This proof is modified from arguments of Rav [1977] and 
Luxemburg [1962]. Let Fin(A) = {finite subsets of A}. For each S E Fin(A), let Ps = {f E 
�9 : Dom(f)  _D S}. Then Fs  is nonempty, by hypothesis (ii). Since Fs  N Pr = Ps~r, the 
collection of sets {Fs : S E Fin(A)} has the finite intersection property. By (UP1), there 
exists a (not necessarily unique) ultrafilter II on (I) that  includes { F s :  S E Fin(A)}. 

To define ~ :  A --+ X, temporarily fix any A E A. Note that  ~(A) = {f(A) : f E F{x}}. 
The sets {f  E F{a} : f(A) = x} (for x E ~(A)) are disjoint and their union is F{a}, which is 
a member of the ultrafilter II. By 5.7.b and 5.8(E), precisely one of the x's in ~(A) satisfies 
{f  E F{a} : I(A) = x} E 11. Let that  x be denoted by qa(A). 

Thus, we define a function p : A  --+ X, satisfying 

{f E r{x} �9 f(A) - qD(A)} E for all A E A .  
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It suffices to show that ~ E (I). Let any S E Fin(A) be given. Since (I) has finite character, 
it suffices to show that ~ agrees on S with some f E (I). The set 

{f  E r{~,} �9 f()~) -- ~(/~)} 
)~ES 

is also an element of l/, hence a nonempty subset of (I). Now any f E �9 will do. 

6.36. Exercise. Show that (UF2) implies the Axiom of Choice for Finite Sets, which was 
stated in 6.15 as (ACF). 

Hint: Use the Finite Axiom of Choice (6.14). 

6.37. M a r r i a g e  T h e o r e m s .  Let {S~ : -y E F} be a collection of sets. Assume either 

(i) F is finite (for P. Ha l l ' s  T h e o r e m ) ,  or 

(ii) each S~ is finite (for M. Hal l ' s  T h e o r e m ) .  

Then the following two conditions are equivalent: 

(A) there exists an injective function x E l-I~Er S~. 

(B) c a r d ( U ~  p S~) > card(F) for each finite set F C F. 

Remarks. In both cases, the implication (A) => (B) is obvious; it is (B) => (A) that we 
must prove. We cannot omit hypotheses (i) and (ii). For instance, the sets {1,2, 3 , . . .} ,  
{1}, {2}, {3}, . . .  satisfy (B) but not (A). 

The theorem above gives necessary and sufficient conditions for the solvability of the 
"marriage problem" of combinatorics: Let F be a collection of heterosexual people of one 
gender, and let S~ be the set of suitors (of the other gender) of person ~/; then condition 
(A) says that all the elements of F can be married simultaneously to suitors. 

We have attributed the two theorems above to Phillip Hall and Marshall Hall, respec- 
tively, because they were apparently the earliest publishers of those theorems see Hall 
[1935] and Hall [1948] but both theorems have been subsequently rediscovered many 
times. P. Hall's Theorem is also equivalent to several other important combinatorial match- 
ing theorems, including theorems of KSnig and Menger in graph theory, Dilworth's Theorem 
on partially ordered sets, and the Ford-Fulkerson Max-flow Min-cut Theorem of network 
theory. (By "equivalent" we mean in this instance that each theorem implies the others 
easily.) Surveys of related material are given by Mirsky [1971] and Reichmeider [1984]. 

Our proof of M. Hall's Theorem will use (UF2); later we shall use M. Hall's Theorem to 
prove LSwig's Theorem in 11.31. It is not yet known whether M. Hall's Theorem or LSwig's 
Theorem is equivalent to UF. 

Proof of P. Hall's Theorem i.e., assuming (i). This proof follows Halmos and Vaughan 
[1950]. Let F = { 1 , 2 , 3 , . . . , n } ;  we proceed by induction on n. For n = 1 the result is 
trivial. For larger n we consider two cases: 

�9 First, suppose that each union of k Si's (1 _< k _< n -  1) contains at least k + 1 
elements. In this case we may choose any xn E Sn and then apply the induction 
hypothesis to the n -  1 sets Sl\{X~}, S2\{x~}, . . . ,  S~-l\{Xn}.  
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�9 On the other hand, suppose that  some union of k of the Si's contains exactly k 
elements, for some k with 1 _< k _< n -  1. By relabeling we may assume that  these are 
the sets S1, $2, . . . ,  Sk. Let their union be T. Clearly the inductive hypothesis can 
be applied to the k sets S1, $2, . . . ,  Sk. It suffices for us to show that  the inductive 
hypothesis also can also be applied to the n -  k sets Sk+I \T,  Sk+2\T, . . . ,  Sn\T. To 
see that ,  note that  for 1 < r < n -  k, the union of any r of these n -  k sets contains a t  
least r elements, since the union of those r sets together with T is the union of k + r 
of the original Si's, and hence contains at least k + r elements. 

Proof of M. Hall's Theorem i.e., assuming (ii). This proof is modified from Mirsky 
[1971]. Let (I) be the collection of all injective functions f defined on subsets of F that  
satisfy f(~/) c S~ for each ? c Domain(f) .  It is easy to see that  (I) has finite character, 
in the sense of (VF2)(iii). Also, each set ~(~/) = {f(~) : f e ~, ~ e Domain(f)} is finite, 
since it is contained in the finite set S~. By P. Hall's Theorem, each finite subset of F is 
the domain of at least one member of ~. Thus, (UF2) is applicable, and F is the domain of 
at least one member of ~. 
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7.1. An elementary special case. 
c o n v e r g e  to a limit x E X if 

A sequence (x~) in a metric space (X, d) is said to 

for each number c > 0, there exists an integer N - N(e)  such tha t  n > N ::v 
d ( x , x ~ )  < c. 

We then write x,~ ~ x or x -  l i m n ~  xn. 

7.2. Chapter overview. Much of analysis can be formulated in terms of convergence of 
sequences in metric spaces, but occasionally we need greater generality. 

Nets are a generalization of sequences. A sequence is a function whose domain is N; a 
net (or "generalized sequence") is a function whose domain is any directed set D. Most of 
this chapter can be postponed; it will not be needed until much later in this book. 

A c o n v e r g e n c e  s p a c e  is a set X equipped with some rule tha t  specifies which nets 
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or equivalently, 1 which filters converge to which "limits" in X. Analysts who are 
already familiar with convergent sequences in metric spaces should have little dimculty 
with convergent nets, for as we shall see in this chapter nets and convergence spaces 
are natural generalizations of sequences in metric spaces. 

The chart at the beginning of this chapter shows the relations between some of the 
main types of convergences we shall consider in this book. In later chapters we shall be 
primarily concerned with topological convergences and, to a much smaller degree, order 
convergences. The other kinds of convergences - -  Hausdorff, pretopological, first countable, 
etc. are introduced here mainly to give a clearer understanding of the basic properties 
of topological and order convergences. 

Nets are particularly helpful for understanding topologies that are known to be non- 
metrizable e.g., the weak topology of an infinite-dimensional normed vector space or 
understanding topologies that are not known to be metrizable. But nets are also occasion- 
ally useful in metric spaces; two examples of this are the proof of Caristi's Theorem given 
in 19.45 and the explanation of Riemann integrals given in 24.7. 

One very important order convergence that is not topological is the convergence almost 
everywhere of [ - ~ ,  +~]-valued random variables over a positive measure; this topic is 
considered briefly in 21.43. Other nontopological order convergences are important in the 
study of vector lattices, but that  subject is not studied in great depth in this book. We 
are more concerned with order convergences that  are topological. For instance, the order 
convergence and the topological convergence in I~ are identical, but the order viewpoint and 
the topological viewpoint yield different kinds of information about that convergence. 

Nets are an aid to the intuition and to the process of discovery, but they are not always 
essential; many proofs involving nets can be rewritten so that nets are not mentioned. Some 
researchers prefer to rewrite their proofs in that  fashion: The original insight may thereby 
be obscured, but the result becomes readable by a wider audience since familiarity with 
nets is no longer required. 

Although nets are used mainly for convergences, it is conceptually simpler to first study 
nets without regard to convergences i.e., as devices for a modified sort of "counting," 
without any regard to limits. That is the subject of the first half of this chapter. 

7.3. Review of directed sets. Before reading this chapter, it may be helpful to briefly review 
the introduction to filters in Sections 5.1 through 5.11. 

Also, recall from 3.8 the definition of directed set: It is a set X equipped with a relation 
that  is reflexive (x ~ x for all x) and transitive (i.e., if x ~ y and y ~ z, then x ~ z) and 

that also satisfies this condition: 

for each x, y E X, there exists u C X such that  x, y ~ u. 

We review a few basic properties of directed sets from Chapter 3: 

�9 The universal ordering (x ~ x for all x c X) is a directed ordering that is not 
antisymmetric. 

1To make the convergence of nets equivalent to the convergence of filters simplifies our theory substan- 
ti~lly, but it imposes a mild restriction on the kinds of net convergences that we shall consider. This is 
discussed further in 7.31. 
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�9 Any product  of directed sets, with the product  ordering, is directed. 

�9 A subset of a directed set (when equipped with the restriction ordering) is not neces- 
sarily directed. 

Directed sets will be used as generalizations of N or R, so this book will often denote 
directed sets by A, B, C, II3, etc. (The reader must determine from context whether  C means 
a directed set or the complex numbers.) In accordance with much of the literature, we shall 
usually denote elements of a directed set by lowercase Greek letters (c~,/~, 3', . . . ) .  

7.4. Let ~B be a nonempty collection of nonempty subsets of a set X. Then (~, _D) is a 
directed set if and only if ~ is a filterbase on X. We refer to _D as the o r d e r i n g  by  r e v e r s e  
inc lus ion .  

Since every filter is also a filterbase, we see in particular that  reverse inclusion is a 
directed ordering on any filter. Reverse inclusion is the most common directed ordering 
used on filters. It will be understood to be in use whenever we use a filter as a directed 
set, except when some other ordering is specified. Note that ,  unfortunately, larger sets are 
"smaller" in this ordering, and smaller sets are "larger" i.e., S C T ~ S ~ T. 

Ordinary inclusion (C_) is also a directed ordering on any filter, but that  ordering is 
seldom useful. 

NETS 

7.5. Before turning to generalized sequences, let us first review the notation of sequences. 
Recall tha t  a sequence in a set X is a mapping from N into X, where N = {1, 2, 3 , . . . }  has 
its usual ordering. A sequence can be viewed as a function, with values x ( 1 ) , x ( 2 ) , x ( 3 ) , . . . ,  
and when it is helpful we shall adopt that  notation. However, it is more common to view 
a sequence as a set parametr ized by N; then a sequence is wri t ten as ( x l , x 2 ,  x 3 , . . . )  or 
(Xn : n E N) or (xn). Subscripts i, j, k, m, n generally will mean elements of N if no other 
index set is indicated. If we disregard the ordering of (xn), we obtain the countable set 
{Xn} = { X l , X 2 , X 3 , . . . } ,  which is the range of the sequence; note the use of braces instead 
of parentheses. 

7.6. Nets are a generalization of sequences in fact, they are also sometimes called 
g e n e r a l i z e d  s e q u e n c e s  or M o o r e - S m i t h  s e q u e n c e s .  

A n e t  in a set X is any function from a nonempty directed set into X. Thus, in the 
notat ion of Chapter  1, a net in X is any function x : ]I) ~ X,  where ]I} is any nonempty 
directed set; the values of a net may sometimes be wri t ten as x((~) ,x( /3) ,  . . . .  However, it 
is more common to view a net as a set parametr ized by a directed set D; thus we usually 
represent such a net by the expression (x~ : 5 E D). We may abbreviate this as (x~) if 
(]D, ~) does not need to be mentioned explicitly, but the set ]]} and its ordering ~ are still 
understood to be part  of the structure of the net. If we disregard the order on (x6), we 
obtain the set {x6 : ~ E D}, which is the range of the net (x6); again note the use of braces 



158 Chapter 7: Nets and Convergences 

instead of parentheses. 
Sequences are a special case of nets, and so most statements we shall make about  nets 

will apply to sequences as well. Of course, sequences are conceptually simpler than nets, 
and so whenever possible we prefer to use sequences. However, for some purposes (e.g., the 
study of convergence in nonmetrizable topological spaces) nets are a more natural  tool. 

Remark. The word "net" is perhaps unfortunate it does not have any intuitive 
justification, as far as this author knows. The alternate term "stream" was suggested by 
McShane [1952], for reasons indicated in 3.9.f, but "net" is the s tandard word. 

7.7. Let x"  D ~ X be a net, and let S c_ X. We shall say that  

S is a ta i l  se t  of the net if S is of the form {x5 " 5  ~ 50} for some 50 E D; 

S is an e v e n t u a l  (or residual) set of the net if S contains some tail set i.e., 
if there is some 50 E ID such that  {x~ : 5 ~ 50} c_ S. In this case we say that  
x5 c S happens e v e n t u a l l y ,  or that  x6 E S happens for all 6 suf f ic ien t ly  
large .  

S is a f r e q u e n t  (or cofinal) set of the net if S meets every tail set i.e., if for 
each 5o c D there is some 5 ~ 5o such that  x5 E S. In this case we say that  
x5 E S happens f r e q u e n t l y ,  or that  x5 c S happens for a r b i t r a r i l y  l a rge  
va lues  of  6. 

S is i n f r e q u e n t  if it is not frequent. 

Of course, these definitions all depend on the directed set (D, ~),  the codomain X, and the 
net (x5" 5 E D). 

These terms can also be applied to subsets of a directed set D, by viewing the identity 
map i �9 D ~ D as a D-valued net (with ie - 5). Thus, a subset ~ c_ ]I} is a tail set if 
S is of the form {5 c ]]3) �9 5 ~ 50}, an eventual set if S contains some set of the form 
{5 C ]I) �9 5 ~ 5o}, or a frequent set if S meets every set of the form {5 E D" 5 ~ 50}. 

Caution: The term "tail set" has another, unrelated meaning; see 20.31. 

7.8. Examples and basic properties. 
a. A set is eventual if and only if its complement is infrequent. 

b. Let N have its usual ordering, and consider the identity map i :N  ~ N as a net. Then 
i~ is eventually greater than 5, and i~ is frequently a multiple of 17. A subset of N is 
eventual if and only if it is cofinite (i.e., has finite complement), and frequent if and 
only if it is an infinite set. 

c. Let N be partially ordered by m ~ n if m is a factor of n. Then (N, ~) is a directed 
set. Let i :N  -~ N be the identity map; then i5 is eventually a multiple of 17. 

7.9. Correspondence between nets and filters. Let any net (x5 �9 5 ElI)) in a set X be given. 
Then ~ = {tail sets of the net (x~)} is a filterbase on X; the proper filter that  it generates 
is 9" = {eventual sets of the net (x~)}. We shall call these the f i l t e rbase  of  ta i l s  and the 
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e v e n t u a l i t y  f i l t e r  of (xe), respectively. (Some mathemat ic ians  call 9" the filter of tails of 

The proper ideal that  is dual to the filter 9" is the collection of all infrequent subsets 
of X . In other words, a set S c_ X is eventual if and only if X \ S is infrequent. Using 
this duality, we can convert s ta tements  about  frequent sets to s ta tements  about  eventual 
sets, and vice versa. Referring to the discussion in 5.3, the reader may find it helpful to 
think of "eventual" as meaning "large," "infrequent" as meaning "small," and "frequent" 
as meaning "not small." 

7.10. 
a .  

bo 

C. 

d. 

e. 

gQ 

Further properties and examples. 
The constant net at z i.e., the net satisfying x~ - z for all c~ has eventuality 
filter equal to the ultrafilter fixed at z. 

If X is a set directed by the universal ordering tha t  is, x 4 y for all x, y c X 
then the identity map i �9 X ~ X is a net whose eventuality filter is the singleton {X}. 

Any eventual set is frequent. 

Any superset of a frequent set is frequent; any superset of an eventual set is eventual. 

If n is a positive integer and S1 U $2 U " "  U Sn is frequent, then at least one of the Si's 
is frequent. 

Let (II3, 4)  be a directed set, and suppose S c_ II) is frequent. Then S is itself a directed 
set, when ordered by the restriction of the given ordering. 

Let p" X ~ Y be a mapping from one set into another. Let (xe �9 5 EII}) be a net in a 
set X; then (xe) has tail filterbase equal to ~B - {{x5 �9 5 ~ ~,} "~ ~ ]I}} and eventuality 
filter 9 " -  {S c_ X "  S _D B for some B c ~B}. Show that  

(i) p(~B) - {p(B) �9 B c ~B} is the tail filterbase for the net (p(x5)" ~ C D) 
in Y. 

(ii) p(9 r) - {p(F)"  F E 9"} is also a filterbase on Y. 

(iii) ~ - {S c_ Y �9 p - l ( S )  E ~:} is the eventuality filter of the net (p(x~)" 5 E 
113) in Y. 

(iv) p(N) c_ p(9 ~) C_ ~}, and S is the filter generated by both p(~B) and p(9"). 
(Refer to 5.40.b.) 

7.11. In 7.9 we saw how each net determines a proper filter, which we call the eventuality 
filter. Conversely, now let iB be a proper filter on a set X; we wish to construct a net (x5) 
in X whose eventuality filter is iB. Many such nets are available, but we shall describe one 
that  is canonical - -  i.e., one tha t  can be constructed from iB by a straightforward algorithm 
without any arbi t rary choices. This construction is taken from Bruns and Schmidt [1955]; 
it was independently rediscovered by Wilansky [1970]. 

Let ~ be any proper filter or more generally, any filterbase on a set X. 
Let X have the universal ordering (as in 3.9.g), let ~ be ordered by reverse 
inclusion (as in 7.4), and let X • ~ have the product ordering. Show that  
D = {(x ,S)  E X x ~B : x  E S} is a frequent subset of X x ~B, and hence is a 
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directed set by 7.10.f. Then show that  the map (x, S) ~ x, from D into X,  is a 
net whose filterbase of tails is ~; its eventuality filter is ~ if tha t  filterbase is a 
filter. 

We shall call this net the c a n o n i c a l  n e t  of ~.  
This canonical construction is admit tedly  a bit complicated. We shall use it occasionally, 

but more often we shall merely need to use the fact tha t  some canonical construction exists 
i.e., tha t  there is some canonical way to construct a net with a given eventuality filter; 

the specific details of the construction will not enter into most applications. 

7.12. (Optional.) If N is any filterbase on a set X,  then there also exists a net (x~ : a C A) 
whose filterbase of tails is N and such tha t  the directed set A is antisymmetric i.e., it 
is also a poset. (Consequently, our applications would not be greatly affected if we made 
an t i symmetry  a part  of our definition of directed set.) 

Construction: Let 

A = e XxNx  :  eB} 

Order it as follows: (u, n, B) -~ (u', n',  B ')  if and only if either (i) B D B'  or (ii) B - B '  
and n < n'. Define x(~,n,B) = u. Verify tha t  (A, 4)  is a directed poset and tha t  {x~ : a 
(uo, no, Bo)} = Bo for each (uo, no, Bo) c A -  hence ~B is the filterbase of tails for the net. 
This construction is also from Bruns and Schmidt [1955]. 

7.13.  Remarks: nets versus filters. Filters have many other uses in set theory, logic, 
algebra, etc. but filters can also be used to study convergences. In fact, nets and filters 
yield essentially the same results about convergences. Some mathemat ic ians  prefer nets or 
prefer filters, and use only one system or the other. It is this author 's  opinion tha t  the 
ideas of nets and filters complement each other; they should not be viewed as two separate 
systems of ideas. In 7.9 we showed how to switch back and forth between nets and filters, so 
tha t  each system can be used to its best advantage. Tha t  interchangeability is s trengthened 
by the ideas of Aarnes and Andenms; see especially 7.15(C). This book will make frequent 
use of nets and filters and of their interchangeability. 

For any proper filter 9-, the eventuality filter of the canonical net of 9" is 9". This gives us 
a bijection between the proper filters on X and a certain collection of nets in X. However, 
this bijection is not onto the class of all nets in X. "Most" nets are not canonical nets. In 
fact, the class of all nets in X is a proper class (see 1.44) it is far too big to be a set, 
since we make no restriction on the choice of the underlying directed set. In contrast,  the 
collection of all filters on X is a set of ordinary size clearly, {filters on X} c_ T(T(X)) .  

Nevertheless, the correspondence between filters and nets is quite good, and so we may 
use the two tools interchangeably, thereby gaining the advantages of each. Nets are a 
natural  generalization of sequences, so they may be intuitively appealing to analysts, who 
are already familiar with sequences. On the other hand, many proofs are easier in terms of 
filters, since filters are always "canonical." For instance, the filter N(x) of all neighborhgods 
of a point studied in 15.2 and 15.7 and t h e r e a f t e r -  plays a useful special role in many 
proofs, since it is the smallest filter that  converges to the point x. It can be replaced by a 
net, as in 7.11, but that  replacement is somewhat complicated and artificial, and removes 
much of the available intuition; we may prefer to work with N(x). 



Subnets  161 

SUBNETS 

7.14. Preview and historical remarks. In the following pages we shall compare several 
types of subnets. In order of increasing generality, they are 

frequent } 
{subsequences} c_ subnets C_ 

Willard 
subnets } C { Kelley subnets } C_ { a a  - subnets }" 

The last three types Willard, Kelley, and AA are our main types of subnets. Any 
one of these by itself would make a good definition of "subnet," and has been used as 
such elsewhere in the literature. Although the three definitions require slightly different 
proofs of theorems, they yield essentially the same statements of theorems; their near- 
interchangeability will follow from results in 7.19 and 15.38. The Kelley definition is oldest 
and is most widely used in the literature, but the other two definitions are simpler. The AA 
definition is the most general and yields the simplest proofs. For those reasons and other 
reasons indicated below, this book will use the term "subnet" to mean "AA subnet" except 
where noted explicitly. For an abridged treatment, the reader may skip over Willard and 
Kelley subnets. 

Frequent subnets (introduced in 7.16.c) are important enough to deserve mention, but 
they are much more specialized. In general, they cannot be used interchangeably with the 
other three kinds of subnets; this will be shown in 17.29. 

Subnets are a generalization of subsequences. Recall that (yp : p E N) is a s u b s e q u e n c e  
of (xn : n E N) if we can write yp = x~(p) or yp = x~p for some positive integers ~(1) < 
~(2) < p(3) < . . . .  Analogous ideas for nets were gradually developed by Moore, Smith, 
Birkhoff, Tukey, and Kelley. The theory was popularized by Kelley's textbook [1955/1975]. 
We shall say that (y~ : fl E ItS) is a Kelley subnet of (x~ :c~ c A) if we can write y;~ = x~(~) 
or y~ = x~, for a function ~ : It~ - ,  A satisfying certain technical conditions discussed in 
7.15.b below. A slight variant on Kelley's definition was given by Willard [1970]; we present 
it in 7.15.c. 

While Kelley et al. were investigating nets, several other mathematicians notably 
Cartan and Bourbaki were developing an analogous theory of filters. Soon it became 
clear that the two systems of ideas yielded the same kinds of conclusions about uniform 
convergence, compactness, weak topologies, etc. Each system offered certain advantages: 
Nets look more like sequences and thus appeal more to the intuition of analysts; filters are 
amenable to arguments involving elementary set-theoretic operations and the Ultrafilter 
Principle. However, the two systems were not easily interchangeable; there was some awk- 
wardness in the translation. Most mathematicians in convergence theory ended up using 
either nets or filters, but not both. 

The difficulty is removed by a more general approach to subnets that has been suggested 
independently by several mathematicians (Smiley [1957], Aarnes and Andenaes [1972], Mur- 
deshwar [1983], and perhaps others) but which, nevertheless, seems not to be widely known 
yet. We shall name this approach after Aarnes and Anden~es, because they investigated 
it in greatest depth. The Aarnes and Anden~es (AA) approach moved further away from 
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the original notion of subsequence, and dispensed altogether with the connecting function 
:IB ~ A. Kelley's definition related two nets x : A ~ X and y : ~  ~ X by their behavior 

in the domains A and ~, but the AA approach relates the nets by their behavior in the 
codomain X. This approach makes nets and filters easily interchangeable, thus offering 
mathematicians the advantages of both systems. 

7.15. Definitions. Let (x~ �9 a c A) and (yz �9 c ~) be nets in a set X, with eventuality 
filters 9" and 9, respectively. Then: 

a. The following conditions are equivalent. If any (hence all) of them are satisfied, we 
shall say that  (yz) is a s u b n e t  of (x~) (or more precisely, an A A  su b n e t ,  or a s u b n e t  
in t h e  sense  of  A a r n e s  a n d  Anden~es).  

(A) Every (yz)-frequent subset of X is also (x~)-frequent. That is, if yz E S 
for arbitrarily large values of ~, then x~ c S for arbitrarily large values 
of a. 

(B) Every (x~)-eventual subset of X is also (yz)-eventual. That is, if x~ c S 
for all sufficiently large values of a, then y~ c S for all sufficiently large 

(C) 9 _D 9". (In other words, an AA subnet corresponds to a superfilter.) 

(D) Each (x~)-tail set contains some (y~)-tail set. In other words, for each 
ao E A there is some/30 c ~ such that  {yz �9 ~/30} C_ {x~ "a  ~ ao}. 

(E) For each eventual set S C_ A, the set y- l (x (S) )  is eventual in ItS. 

b. We shall say (yz) is a Ke l l ey  s u b n e t  of (x~) if there exists a function ~" ~ -~ A such 
that  

( i )  y = x o that  is, yz = x~(~) for all/~ E ]~ and 

(ii) for each eventual set S c_ A, the set ~-1 (S) is eventual in It~. 

Condition (ii) can be restated in either of these equivalent forms" 

(ii') For each a0 c A, there is some/30 c I~ such that  ~ ~/~0 =~ ~p(/3) ~ a0. 

(ii ') The A-valued net ~ : ~ --+ A is an Aarnes-Andenms subnet of the 
identity map iA :A ~ A. 

c. Willard [1970] modified Kelley's definition slightly, adding a requirement of monotonic- 
ity; this may make the definition more palatable to many readers. We shall say (yz) 
is a W i l l a r d  s u b n e t  of (x~) if there exists a function ~ : ~  --. A such that 

(i) y = x o ~ that  is, y~ = x~(~) for all/3 c ~; 

(ii) ~ is monotone; that  is, ~1 ~ /~2 ::~ ~(~1) ~ r and 

(iii) for each a0 C A there is some/30 c ~ such that ~(/3o) ~ a0. 
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7.16. Comparison of the definitions. 
a. Show that  any Kelley subnet is also an Aarnes-Andenms subnet. 

The converse is not valid. For instance, each of the sequences (0, 5, 6, 7, 8 , . . . )  and 
(1,5, 6, 7 ,8 , . . . )  is an AA subnet of the other, but neither is a Kelley subnet of the 
other. 

b. Show that  any Willard subnet is also a Kelley subnet. 
The converse is not valid. For instance, each of the sequences (2, 1, 4, 3, 6, 5 , . . . )  

and (1, 2, 3, 4, 5, 6 , . . . )  is a Kelley subnet of the other, but neither is a Willard subnet 
of the other. 

c. Suppose (x~ : a c A) is a net in a set X and F is a frequent subset of the directed set 
A. Then F is a directed set (see 7.10.0, and so (x~ : a E F) is a net. We shall say 
that  it is a f r e q u e n t  s u b n e t  of the net (x~ : a E A). (In some of the literature, this 
is called a cof inal  s u b n e t . )  

Show that  any frequent subnet is a Willard subnet (by using the inclusion map 
i F c �9 -~ A for the map ~ in definition 7.15.c). 

The converse is not valid. For instance, show that  (1, 1, 2, 2, 3, 3 , . . . )  is a Willard 
subnet, but not a frequent subnet, of the sequence (1, 2, 3 , . . . ) .  

Frequent subnets cannot be used interchangeably with Willard, Kelley, or AA sub- 
nets; see 17.29. 

d. Frequent subnets are a generalization of subsequences. 
Let (xm : m c H) and (Yn : n C H) be two sequences. Show that  (yn) is a 

subsequence of (Xm) if and only if (Yn) is a frequent subnet of (Yn). 

7.17. Furtherelementaryproperties. 
a. Composition of subnets. If (z~) is a subnet of (yz), and (yz) is a subnet of (x~), then 

(z~) is a subnet of (x~). 
If the two given subnets are Kelley subnets, Willard subnets, or frequent subnets, 

then then (z.y) is the same type of subnet of (x~). 

b. Suppose that  (xa �9 a c A) is a net in a set X and (x~) is eventually in some set of 
the form E = E1 U E2 U . . .  U En C_ X. Then there is at least one j such that  (x~) is 
frequently in Ej.  Thus (x~) has a frequent subnet that  takes all its values in Ej. 

c. Definition. Two nets have the same eventuality filter if and only if each net is a subnet 
of the other. We shall then say the nets are A A - e q u i v a l e n t ,  or simply equ iva l en t .  

7.18. L e m m a  o n  C o m m o n  S u b n e t s .  Let ( u ~ ' a  c A), (v3 �9 E ~), and (w 7 "7 E C) 
be three nets taking values in a set X. Say the nets have eventuality filters 9=, 9, and 9{, 
respectively. Then the following conditions are equivalent" 

(A) F N G N H is nonempty, for every F E 9 =, G E 9, H c 9{. 

(B) 3 ~ - { S C X  �9 S _ ~ F N G A H f o r s o m e F c g = , G c g ,  H c g { } i s a p r o p e r  
filter. 

(C) The three filters have a common proper s u p e r f i l t e r -  
filter which contains all three given filters. 

i.e., there exists a proper 
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(D) 

(E) 

The three nets have a common AA subnet 
is an AA subnet of each of the given nets. 

- -  i.e., there exists a net (pa) which 

The three given nets have a common Willard subnet i.e., there exists a net 
(pa : A c L) which is a Willard subnet of each of the three given nets. (It is 
understood that three different functions are used for the monotone mappings 

from L into A, B, and C.) Furthermore, that net can be chosen so that it 
is a m a x i m a l  c o m m o n  A A  s u b n e t  of the three given nets i.e., so that 
if (q,) is any common AA subnet of the three given nets, then (q,) is also an 
AA subnet of (px). 

Note. We have stated the lemma in terms of three nets and three filters to display a typical 
case. The number 3 may be replaced by any positive integer. 

Proof of lemma. The equivalence of (C) and (D) is immediate from our correspondence 
between AA subnets and superfilters. The implications ( C ) = ~  ( A ) = ~  (B) =~ (C)a re  
easy; the implication (E) =~ (D) is trivial. It suffices to show that (A)-(D) together imply 
(E). Note that the filter 5I in condition (B) is a a minimum common superfilter i.e., 
it is the smallest filter containing all of the given filters. Any net corresponding to it is a 
maximal common AA subnet of the three given nets. It suffices to exhibit a net (px : )~ E L) 
whose eventuality filter is :M:, such that (px : ,k E L) is a Willard subnet of each of the three 
given nets. 

For each (a, b, c) c A x B x C, define 

ra,b,c -- {u~" o~ ~ a} n {vz" fl ~ b} n {w, -,-y ~ c} 
= { x E X  �9 x - u s - v ~ - w . y f o r s o m e c ~ a , # ~ b ,  3 ' ~ c } .  

Then Ta,b,c is nonempty, by condition (A). Hence 

is a frequent subset of A x B x C, when A x B x C is given the product ordering. For each 
A - (a, fl, "7) in L, define px - us - vz - w~; the remaining verifications are easy. For the 
monotone mappings ~ from A x B x C into A, B, C, use the coordinate projections. 

7.19. Corollary on equ iva len t  s u b n e t s .  If (yz) is an AA subnet of (x~), then (yz) is 
equivalent (in the sense of 7.17.c) to a Willard subnet of (x~). 

Hints: The two given nets have a common AA subnet namely, (yz). As in 7.18(E), let 
(px) be a common Willard subnet and also a maximal common AA subnet of the two given 
nets. Since (y#) has the property for which (px) is maximal, (yz) is an AA subnet of (px). 
Thus (yz) and (px) are subnets of each other. 

Remarks. A similar result is given by G~hler [1977]. 
We have seen that every Willard subnet is a Kelley subnet, every Kelley subnet is an 

AA subnet, and every AA subnet is equivalent to a Willard subnet. Consequently, the three 
types of subnets can be used interchangeably in many contexts. See especially 15.38. 
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7.20. Though AA subnets are simpler than Kelley subnets in most respects, Kelley subnets 
do have at least one advantage, which we now present in two formulations: 

(1) Suppose that  f : X ~ V is some function, (xs : c~ E A) is some net in X, and 
(yz : /3  E B) is some Kelley subnet of the net ( f (x s )  : c~ E A) in V. Then ( x s :  c~ E A) 
has a Kelley subnet (sz : ~ E B) in X such that  f ( sz )  = yz for each/3. (Indeed, if 

yz = f(x~(9)), take s 9 = x~(9). ) 

(2) Suppose that  ((us,  vs) : c~ E A) is a net in some product of sets U x V; then (vs : 
c~ E A) is some net in V. Suppose that  (yz :/3 E B) is some Kelley subnet of the net 
(vs :c~ E A) in V. Then ( ( u s , v s ) : c ~  E A) has a Kelley subnet ((pz, q~) :  /3 E B) 
such that  qz = yz for each/3. (Indeed, if qz = yz = v~(z), take pz = u~(z).) 

These are actually two formulations of the same principle. To see this, observe that  if 
f, (xs), (y~) are given as in (1), then we can reformulate the problem as in (2) by taking 
X = U and (us, vs) - (xs, f (xs) ) .  Conversely, if we are given (us, vs) as in (2), then we 
can reformulate the problem as in (1) by taking X = U x V and xs = (us, vs), and letting 
f : X  --~ V be the projection onto the second coordinate. 

7.21. Some properties of nets are s u b n e t  h e r e d i t a r y ,  in the sense that  if a net has the 
property, then so does every subnet. For instance, we shall see in later chapters that  in a 
topological space, every subnet of a convergent net is convergent. 

Likewise, some properties are s u p e r n e t  h e r e d i t a r y ,  in the sense that  if a net has the 
property, then so does every supernet. For instance, in a topological space, the property of 
not being convergent is supernet hereditary. 

Many proofs with nets involve such hereditary properties. Consequently, in many proofs 
it is possible to replace a given net with any convenient subnet, or with any convenient 
supernet. 

Some proofs use the phrase "we m a y  a s s u m e , "  particularly in connection with hered- 
itary properties. In many cases, what this means is that  by relabeling, we may replace the 
given net with some subnet or supernet that  has an additional property of interest. See the 
related discussion in 1.10. 

UNIVERSAL NETS 

7.22. Definition. A u n i v e r s a l  ne t  (also occasionally known as an ultranet) in a set X is 
a net (x~) with the property that  for each set S C X, either (i) eventually x6 E S or (ii) 
eventually x6 E X \ S .  

7.23. Example. Let (x6) be a net in X. Assume (x6) is e v e n t u a l l y  c o n s t a n t ;  i.e., assume 
there exists some z E X such that  eventually x6 = z. Then (x6) is a universal net. 

Although other universal nets exist, other explicit examples of universal nets do not 
exist! That  is explained below. 
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7.24. Observations. A net (xs) is universal if and only if its eventuality filter is an ultrafilter. 
If a net is universal, then any AA-equivalent net is also universal; by 7.19, therefore, in the 
discussions below it does not mat te r  whether we use Willard subnets, Kelley subnets, or 
AA subnets. A net (xs) is eventually equal to some constant x if and only if its eventuality 
filter is the fixed ultrafilter at x. 

Thus, the theory of universal nets is simply a reformulation of the theory of ultrafilters. 
The Ultrafilter Principle, introduced in 6.32, can be reformulated as 

(UF3) Universal Subnet Theorem (Tukey, Kelley). 
subnet tha t  is universal. 

Every net has a 

Likewise, the Weak Ultrafilter Theorem, presented in 6.33, can be reformulated as 

( W U F  ~) W e a k  Universal Subnet Theorem. There exists a universal net 
in N that  is not eventually constant. 

As we remarked in 6.33, free ultrafilters are intangibles. The same is therefore also true 
of universal nets tha t  are not eventually constant. Though we have no explicit examples of 
these peculiar nets, nevertheless they are useful conceptual tools for some kinds of reasoning. 

7.25.  Further properties of universal nets. 

a .  If (x~) is a universal net, then any subnet of (x~) is AA-equivalent to (x~) and is also 
universal. 

b. If (x~) is a universal net in X and x~ is frequently in some set S c_ X, then x~ is 
eventually in S. 

c. If a net (x~ �9 a c A) is not universal, then A has two disjoint frequent sets A1, A2 such 
that  the resulting frequent subnets (x~ �9 c~ E Aj) have disjoint ranges. 

d. If (xs) is a universal net in a set X - S1 U $2 U . . .  U Sn, then there is at least one j 
such that  eventually x5 c Sj. Hint" 5.8(E). 

e. If (xs) is a universal net in a finite set X,  then (x~) is eventually constant. 

f. If (xn) is a universal net that  is a sequence, then it is eventually constant.  Hint: If 
(xn) has infinite range, then tha t  range can be part i t ioned into two disjoint infinite 
sets. Then what? 

g. If (x~) is a universal net in a set X and f "  X ~ Y is any function, then (f(x~)) is a 
universal net in Y. 

h. Let (x~ �9 5 c D) be a net in some set X,  and consider its range R - {x~ �9 5 E D}. 
Show that  (xs) is a universal net in X if and only if (x~) is a universal net in R. Thus, 
the universality of a net (x~) in a set X does not depend on the choice of X,  as long 
as X is large enough to contain all the points of that  net. 
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MORE ABOUT SUBSEQUENCES 

7.26. L e m m a .  Let (vm) and (Ym) be sequences in a set X. Then v is an AA subnet of y 
if and only if these two conditions are satisfied: 

(i) Range(v) \ Range(y) is a finite subset of X,  and 

(ii) for each r c X,  if y - l ( r )  is a finite subset of N, then v - l ( r )  is also a finite 
subset of N. 

Proof. This argument  is from Aarnes and Anden~es [1972]. First, suppose that  v is an AA 
subnet of y. Then y is eventually in the set Range(y),  hence v is eventually in that  set, 
hence vj ~ Range(y) for only finitely many values of j ;  this implies (i). For condition (ii), 
suppose that  y-l(r) is a finite set; then y is eventually in X \ {r}; then v is also eventually 
in that  set; hence v - l ( r )  is also a finite set. 

Conversely, suppose conditions (i) and (ii) are satisfied. Let S be a subset of X such tha t  
eventually y E S; we are to show that  eventually v c S. For each r c X \ S, the set y - l ( r )  
is finite; hence the set v - l ( r )  is finite. The sets Range(y) \ S and Range(v) \ Range(y) are 
finite; hence the set Range(v) \ S is finite, and it is a subset of X \ S. Therefore the set 
F - [-J~Range(v)\s v - l ( r )  is finite. For k sufficiently large, we have k ~ F.  For all such 
k, we have vk E S. 

7.27. T h e o r e m  on e q u i v a l e n t  s u b s e q u e n c e s .  Let ( x i ) a n d  (yj) be sequences in a set 
X,  and assume that  (yj) is an AA subnet of (xi). Then (yj) is AA-equivalent to some 
subsequence of (xi). 

Proof. This argument  is from Aarnes and Anden~es [1972]. Since Range(x) is an eventual set 
for y(-), by discarding the first few terms of (yj) we may assume without loss of generality 
that  y(N) C_ x(H). For each r E y(N), the set y - l ( r )  is nonempty; hence the set x - l ( r )  is 
nonempty. For such r, define a set A~ C N as follows: 

�9 If  y - l ( r )  is an infinite set, then x 
x-i(~). 

- l ( r )  is also an infinite set; in this case let Ar = 

�9 If y - l ( r )  is a finite set, let A~ be some nonempty finite subset of x-l(r). (Any such 
set will do for the purposes of this proof. If the reader desires a canonical choice of 
A~, let A~ be the singleton whose sole member  is the first member  of x - l ( r ) . )  

In either case we obtain x(Ar) - {r}. Now let A - [-Jrcy(N) A~; then A is an infinite subset 
of N. Say its members are, in increasing order, 

al  < a2 < a3 < " "  . 

Define vk - X a  k ; then (vk) is a subsequence of (xi). It is clear from the definitions above 
that  v(N) - x(A) - y(N). Also, for each r c y(N), the sets v - l ( r )  and y - l ( r )  are both 
finite or both infinite. By 7.26, v and y are AA subnets of each other. 
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7.28. (Optional.) There are a few minor differences between Aarnes-Andenms subnets and 
Kelley subnets; here is one of them. Let X be a given nonempty set. Does every net in X 
have at least one subnet that  is a sequence? 

a. No, if we use Kelley subnets. Indeed, take A = H TM with the product ordering, and 
take x to be any function from A into X; then no Kelley subnet of (x~ : a E A) is a 
sequence. 

Hint: If (OL1,OL2,O~3,...) is a sequence in A, then each O~j is itself a sequence of 
positive integers. Say (~j = (mlj,m2j,m3j,...). Then there is no j for which c~j 
( ro l l  -+- 1, m22 qt_ 1, m33 q- 1 , . . . ) .  

b. Yes, if we use Aarnes-Andena~s subnets and X is a finite set. Indeed, by 7.10.e there 
is at least one x0 c X such that  frequently x~ = x0. Then the constant sequence 
(x0, x0, x 0 , . . . )  is an AA subnet of (x~). 

c. No, if X is an infinite set, regardless of which type of subnets we use. Indeed, let II be 
any free ultrafilter on X. (The existence of such an ultrafilter was established in 6.33.) 
Let (x~) be a corresponding net; thus (x~) is a universal net that  is not eventually 
constant.  If some sequence (ym) is a subnet of (x~), then (Ym) has the same eventuality 
filter II, hence (Ym) is universal and not eventually constant contradicting 7.25.f. 

7.29. T h e o r e m .  Let X be a chain ordered set (e.g., the real line). Then any sequence in 
X has a monotone subsequence. 

Proof (Thurston [1994]). By a maximal  element of a sequence we shall mean a maximal  
element of the range of tha t  sequence. It is easy to see that  if s is a sequence that  has no 
maximal  element, then s has an increasing subsequence. 

Now let s = (Xl,X2,X3,...) be a given sequence; we may assume tha t  every subse- 
quence of s has a maximal  element. Let Xn(1) be a maximal  element of s. Let xn(2) 
be a maximal  element of (Xn(1)+l,Xn(1)+2,Xn(1)+3,...). Let xn(3) be a maximal  element 
of (Xn(2)+l,Xn(2)+2,xn(2)+3,...). Continuing in this fashion, we obtain positive integers 
n(1) < n(2) < n(3) < . . .  satisfying xn(1) >_ xn(2) >_ xn(3) _>'" ". 

CONVERGENCE SPACES 

7.30. By a c o n v e r g e n c e  s p a c e  (or limit space) we shall mean a set X equipped with a 
function 

lim : {proper filters on X} , {subsets of X}. 

Any function can be used fo~ lim in this definition, but in most cases of interest the function 
is determined by some structure already given on X - -  a topology, an ordering, a measure, 

etc. 
We emphasize tha t  the value of lim is a subset of X. In some convergence spaces (e.g., 

the one used in college calculus), the set l im9 ~ contains at most one point of X; such 
convergence spaces are discussed further in 7.36. 
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7.31. Whenever (X, lim) is a convergence space, then we shall extend the function lim in 
the following ways: 

(a) If ~B is a filterbase on X, then lim iB - lim 9".where 9" is the filter generated by iB. 

(b) If (x~) is a net in X, then lim(x~) - l i r a  g" where 9- is the eventuality filter of (x~). 

Note that  the resulting "function" lim �9 {nets in X} ---, {subsets of X} is not a function 
strictly in the sense of 1.31, since {nets in X} is a proper class, not a set. Note, also, that  
this function satisfies the following condition: 

(*) if (x~) and (y~) are nets with the same eventuality filter (i.e., if (x~) and (y~) are 
AA-equivalent), then the set of limits of (x~) is equal to the set of limits of (yz). 

Conversely, we have this alternate definition: 

A c o n v e r g e n c e  space  is a set X that  is equipped with some function 
lim �9 {nets in X} ~ {subsets of X} that  satisfies (*). 

Indeed, if (*) is satisfied, then (b) defines a corresponding limit function on the collection of 
all proper filters on X. (In many applications, we verify (*) by verifying a stronger property 
described below in 7.34.b.) 

Thus, in convergence spaces we may use nets and their eventuality filters interchangeably 
(and use AA subnets and superfilters interchangeably, as well). Each type of object has its 
advantages, as we noted in 7.13. 

Remarks. For more general theories of convergences than those considered in this book, 
see" Bentley, Herrlich, and Lowen-Colebunders [1970] for categories of convergence spaces; 
Dolecki and Greco [1986] for algebraic properties of collections of convergence structures; 
and G/ihler [1984] for "convergence spaces" that  are more general than "filter convergence 
spaces." In Kelley's [1955/1975] book, net convergences are considered in great generality, 
without condition (*) being imposed a priori; see the remarks in 15.10. 

7.32. More notations. If 9- is a proper filter or a net, the expression z E lim 9" will be read 
as "z is a l i m i t  of 9"." It may also be writ ten as 9- ~ z and read as "9- c o n v e r g e s  to z." 
The statement "9" does not converge to z" may be writ ten as z ~ lim 9", or as 9" 74 z. 

Many variants on these notations can be used for clarification. For instance, for a net 
(x~ : c~ E A), the expression x~ ~ z may also be writ ten as "x~ ---, z in X as ~ increases in 
A." When two or more convergences are being considered, we may use a prefix or subscript 
or superscript to distinguish them; for instance, we may write 

z E %l im x~ or z E l i m x ~  or x~ > z 

to indicate that  z is a limit of the net (x~) when we use the convergence function determined 
by some structure ~', rather  than some other structure g. Other variants on the notation 
should be clear from the context; we shall not a t tempt  to list them all here. 

7.33. Let p" X --, Y be a mapping from one convergence space into another. We shall say 
p is c o n v e r g e n c e  p r e s e r v i n g  if it has this property: 
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whenever (x~) is a net converging to a limit x in X,  then the net (p(x~)) 
converges to p(x) in Y 

or, equivalently, 

whenever 9" is a filter converging to a limit x in X,  then the filter {S c_ Y �9 
p - l ( S )  E 9"} converges to p(x) in Y. 

(Exercise. Prove the equivalence.) Observe that  the composition of two convergence pre- 
serving maps is convergence preserving; this is discussed further in 9.7. 

7.34. Definitions. Most convergence spaces of interest satisfy both of the properties below; 
in fact, these properties are satisfied by all the convergence spaces that  we shall consider 
in this book. (Some mathemat ic ians  make one or both of these properties a part  of their 
definition of convergence space.) 

a. A convergence space is c e n t e r e d  if it has the property tha t  

if llz is the ultrafilter fixed at z, then lIz ~ z, 

or, equivalently, 

if (x~) is a net such tha t  eventually x~ = z, then x~ ~ z. 

b. A convergence space is i s o t o n e  if it has this property: 

if ~} is a superfilter of 9", and 9" ~ z, then ~} ~ z 

or, equivalently, 

if (yZ) is a subnet of (x~), and x~ ~ z, then yz ~ z. 

In the last sentence, it does not mat te r  which type of subnet we use Willard, Kelley, or 
AA since we have built condition (*) of 7.31 into our definition of convergence space. 
On the other hand, for AA subnets the isotonicity condition above implies condition (*) of 
7.31. 

7.35.  Exercise. Let X be an isotone convergence space. If (x~) is a universal net and some 
subnet of (x~) converges to z, then x~ ~ z also. 

7.36.  A convergence space (X, lim) is H a u s d o r f f  if each net or proper filter F has at most 
one limit i.e., if each set of the form lim F contains at most one member.  

When (X, lim) is a Hausdorff convergence space, then z c l i m F  may be rewrit ten as 
z - lim F; we say tha t  z is the limit of F.  (Now the notat ion should begin to look more 
like tha t  of college calculus.) In effect, our original limit function which took values in 
{subsets of X} - -  is replaced by a new function, again denoted by "lim," which takes values 
in X. Thus, we are not asserting that  z = {z}. The distinction between the two different 
lim functions should be clear in most contexts and should not cause any confusion. 

Most convergence spaces or topological spaces in applications are Hausdorff, and so 
some mathemat ic ians  incorporate the Hausdorff condition into other definitions e.g., 
they make it a part  of their definition of convergence space, compact space, gauge space, 
completely regular space, topological linear space, or locally convex space. We shall not 
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follow that  practice, for many of the concepts in this book are revealed more clearly if 
Hausdorffness is treated as a separate property. It is often helpful to analyze Hausdorff 
spaces in terms of other, simpler spaces that  are not Hausdorff (see 15.25.d). Throughout 
this text, Hausdorffness will be assumed only when stated explicitly. 

More notation. If X and Y are convergence spaces and Y is Hausdorff, then the equation 

lim f(x)  - Y0 
X-'-"~ X o  

is a condition on x0, yo, and f ,  with the following meaning: Whenever (x~) is a net in 
X \ {x0} that  converges in X to xo, then f ( x~ )  ---, Yo in Y. Most limits in college calculus 
are of this form in some cases with x0 or y0 equal to oc. Making oc a member of our 
convergence space is not particularly difficult; see the discussions in 5.15.f, 5.15.g, 18.24. 

CONVERGENCE IN POSETS 

7.37. Remarks. The two most important  kinds of convergences are the topological con- 
vergences, studied in Chapter 15, and the order convergences, studied in the remainder 
of this chapter. The most important  type of order convergence needed by analysts is the 
order convergence in IR; that  special case should be kept in mind by the reader at all times 
throughout the remainder of this chapter. However, many of the basic properties of order 
convergence in IR generalize readily to other settings that  are occasionally useful. Thus, we 
begin our study of order convergence in a setting that  has as few hypotheses as possible: 
the setting of partially ordered sets. 

7.38. The literature contains several different, inequivalent definitions of convergence in 
partially ordered sets. The following one works best for our purposes, despite its complexity. 
It can be restated in other ways that  are sometimes more convenient; see 7.40.d and, in 
special contexts, 7.41 and 7.45. 

Definition. Let (X, 4) be a poset. Let z E X, and let (x~ : a E A) be a net in X. We 

shall say that  (x~) is o r d e r  c o n v e r g e n t  to z (sometimes written x~ o z) if 

there exist nonempty sets S , T  c_ X such that  (S, ~) and (T, ~) are directed 
sets, sup(S) and inf(T) both exist in X and are equal to z, and for each fixed 
s E S and t E T we have eventually s ~ x~ ~ t. 

(We emphasize that  T is to be a directed set when we reverse the restriction of the given 
ordering. Thus, each finite subset of S must have an upper bound in S, and each finite 
subset of T must have a lower bound in T.) 

7.39. Definitions. Let (x~ �9 a E A) be a net taking values in a partially ordered set (X, ~). 
We say that  (x~) is i n c r e a s i n g  if 

a ~ B ~ x~ ~ xs. 
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This may  be abbrev ia ted  x~ T. We say tha t  (x~) i n c r e a s e s  t o  a l i m i t  z, denoted x~ T z, 
if in addi t ion z = sup{x~ : a E A}. 

Analogously, a net (x~ : a c A) is d e c r e a s i n g  (wri t ten x~ l)  if a ~ ~ ~ x~ ~ xz; the 
net d e c r e a s e s  t o  a l i m i t  z (wri t ten x~ I z) if in addi t ion z = inf{x~ : a ~ A}. 

A net is m o n o t o n e  if it is increasing or decreasing. 

7 .40.  Exercises .  Let (x~ �9 c~ E A) be a net in a poset (X, ~) ,  and let z c X.  Then:  

a. x~ T z if and only if (xa) is increasing and xa o z (in the sense of 7.38). 

b. x~ I z if and only if (x~) is decreasing and x~ o z (in the sense of 7.38). 

c. In a complete  lattice, any monotone  net converges. 

d.  Order  convergence in t e rms  of  m o n o t o n e  convergence: x~ o z (defined as in 7.38) if 
and only if 

there  exist nets (uz �9 e I~) and (v~ "'7 e C) such tha t  uz T z and v~ $ z, 
and for each fixed ~ and ~ we have a-eventual ly  x~ E {x �9 uz ~ x ~ v~}. 

Hints" For the "if" part ,  let S and T be the ranges of those nets (uz) and (v~). For 
the "only if" part ,  let (uz) and (v~) be given by the identi ty maps  on the sets ~ - S 
and C -  T. 

e. Order  convergence is centered and isotone. 

f. Convergence  preserves  inequalit ies.  Suppose (x~ "c~ E A) and (y~ "c~ E A) are nets 
O 

based on the same directed set, satisfying x~ ~ y~ for all ~. If x~ ) x ~  and 
o then  x ~  ~ y ~  y~ ~ y ~ ,  

Hint" Let S x and T x be two sets tha t  satisfy the conditions in 7.38 tha t  define the 
O 

convergence x~ ~ x ~ .  Also, let S ~ and T y be two sets tha t  satisfy the conditions 
in 7.38 tha t  define the convergence y~ o Y~- Fix any s x E S x and t y c TY; then  
we have eventually s x ~ x~ ~ y~ ~ t y, and thus s ~ ~ t y. Use tha t  fact to prove tha t  
sup(S  x) ~ inf(TY). 

O 
g. Order  convergence is Hausdorff. Thus,  the s t a t emen t  x~ ~ z may be rewri t ten  as 

z - o- l im x~.  Hint" Apply the preceding result wi th  x~ - y~. 

h. Let (X, ~)  and (Y, ~)  be posets. (Here we use the same symbol ~ for two different 
par t ia l  orderings.) Let f �9 X -~ Y be some function tha t  is sup-preserving and inf- 
preserving (see 3.22). Then  f is also convergence-preserving (see 7.33), if X and Y are 
equipped with  their  order convergences. ~, 

Hint" First  show tha t  f preserves the convergence of monotone  sequences i.e., 
the  convergences described in 7.39; then  use 7.40.d. Remark"  The assumpt ions  cannot  
be weakened substantial ly;  in 15.45 we give a par t ia l  converse. 

i. T h e  " s q u e e z e  t h e o r e m . "  Suppose (x~ �9 (~ c A), (y~ �9 (~ c A), ( z ~ ' ~  c A) are nets 
O 

based on the same directed set, satisfying x~ ~ y~ ~ z~ for all a .  If x~ ~ w a n d  
O O 

z~ > w, then  also y ~  ~w. (Remark .  Compare  with  26.52(E).) 
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7.41.  T h e o r e m  o n  c o n v e r g e n c e  in c h a i n s .  Let (X, <)  be a chain. Let (x~ �9 a E A) be 
o 

a net in X,  and let z E X.  Then  x~ ) z ( that  is, order convergence, as defined in 7.38 or 
character ized in 7.40.d) if and only if these two conditions are satisfied for all a and r in X: 

(i) if z > or, then  eventual ly x~ > o, and 

(ii) if z < r ,  then  eventually x~ < r .  

Remarks. Note tha t  condit ion (i) is satisfied vacuously (i.e., for free) if z happens  to be the 
largest element of X,  for then  there is no element r tha t  satisfies z < r .  Likewise; condit ion 
(ii) is satisfied vacuously if z happens  to be the smallest  element of X.  Considering the 
examples  of [ -oc ,  +co],  [0, +oc) ,  R, we see tha t  some chains have bo th  a largest and smallest  
element,  some chains have one or the other,  and some chains have neither. 

Proof of equivalence. It is an easy exercise tha t  order convergence implies condit ions (i) and 
(ii); we omit  the details. Conversely, assume tha t  (x~) and z satisfy condit ion (i) above; we 
shall find a set T satisfying the conditions of 7.38. (Forming S from (ii) is similar.) If the 
net (x~) satisfies eventual ly x~ _< z, then  the singleton T = {z} satisfies the requi rements  
for 7.38, and we are done. Assume,  therefore, tha t  the net (x~) does not satisfy eventual ly 
x~ < z. Let T = {t E X : t > z}; we shall show tha t  this set satisfies the requirements .  
We have frequently x~ E T, and so T is nonempty.  From condit ion (i) we see tha t  for each 
t E T, eventual ly x~ < t. It suffices to show tha t  z = inf(T).  Clearly z is a lower bound for 
T; we must  show tha t  it is larger than  any other  lower bound.  Suppose, on the contrary, 
tha t  z' is a lower bound for T and z' > z. Then  z' is actual ly  a member  of T, and thus z' 
is the smallest  element of T. T h a t  is, z and z' are adjacent  in the ordering i.e., there 
is no other  element of X between z and z'. Since z' E T, we have eventually x~ < z' and 
thus eventually x~ < z, a contradict ion.  This  completes the proof. 

7 .42.  Proposition (optional). Suppose X is an infinitely dis t r ibut ive latt ice (as defined in 
4.23). Then  the latt ice operat ions  V, A are "jointly continuous," in the following sense: If 

o / o X l  o ' A) is net i n X x X w i t h x ~  x a n d x ~  , x~ ~ x V  ( (x~,x~) 'a  E a , , then  x~ V ' x'  
, o X l "  and xa A x~ , x A 

/ o X l  Proof. This a rgument  follows Vulikh [1967]. We shall show x~ V x~ > x V ; the result for 
meets  is proved analogously. By assumption,  there  exist nets (ua �9 A E L), (v,  �9 p E M) ,  
( u ' ' a  C S), ( v ' ' r  E T) such tha t  

! X /  , l u ~ t x ,  v . & x ,  u~T  , v . ; x ,  

and for each fixed A, #, o, r we have a-eventual ly  

u a g x ~  4 v .  and u ' g x ~  4 % .  

Let L x S and M x T have the product  orderings. Define 

I .  A , 
U A , a  - -  t t A  V tt~t V p , r  - -  V p  V V T .  
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A Furthermore, Then for each fixed A, p, a, 7 we have a-eventually uh,~ ~ x~ V x~ ~ vit,~. 
the net (uh,~ "(A, a) e L x S) is increasing and (~it,~ "(p, T) e M x T) is decreasing. Then 

sup uh,~ sup (uhVu~)  - supuh V supu  - x V x '  
(h,a)E L x S hE L,aE S k, hE L k, aES 

by 3.21.m. Use the infinite distributivity of the lattice to prove the middle equality in this 
string of equations: 

inf vA~,, = inf ( v i t V v ~ ) -  ( i n f v i t )  V ( i n f  ' ) - x V x ' .  
( i t , ~ - ) e M  x T  IteM,TeT <item \TCT v'r 

~'- t o X/"  Thus uh,o T (x v x') and vit,~ I (x v x'), so x~ v x~ > x v 

CONVERGENCE IN COMPLETE LATTICES 

7.43. Remarks on applicability of the theory. When (X, ~) is a complete lattice, then 
the preceding characterizations of order convergence can be restated in other forms that  
are sometimes more convenient. ~Examples of complete lattices to keep in mind are the 
extended real line [-cx~, +c~] and the space [0, 1] S - {functions from S into [0, 1]} with the 
product ordering (for any set S). 

In applications, one may wish to apply the following results to other posets (X, %) 
that  are not order complete - -  e.g., the real line R or a space such as C[0, 1] = {continuous 
functions from [0,1] into ~}. Here are two commonly used methods for extending the theory 
to such spaces: (i) We may work in some larger set Y _~ X that  is order complete. For 
instance, ~ can be embedded in [ - ~ ,  +c~], and C[0, 1] can be embedded in [-c~,--~-CO] [0'1]. 

(ii) Alternatively, we may find some subset of X that  is order complete and arrange our 
applications so that  everything of interest stays in that  subset. For instance, although R is 
not order complete, the interval [a, b] is, for any real numbers a, b with a < b. More generally, 
if (X, ~ ) i s  Dedekind complete, then any set of the form [a, b ] -  {x E X �9 a ~ x ~ b} is 
order complete. Thus, the theory of convergences in order complete sets is applicable to a 
Dedekind complete poset, provided that  we restrict our attention to nets that  are eventually 
bounded. 

7.44. Definitions. Let (x~ �9 a c A) be a net in a complete lattice (X, ~). Then we may 
define the related objects 

s~ = inf xz and t~ = sup xz. 

Observe that  s~ ~ x~ ~ t~. 
The net (s~ : c~ C A) is increasing; hence it increases to a limit. That  limit is called the 

l im in f  of the given net (x~), since it is the limit of the infs; it is also called the lower limit 
of the net (x~). The liminf of the x~'s is denoted liminf x~, or sometimes lim x~. Note 
that  if the given net (x~) i s  a sequence, then (s~) is  also a sequence. 
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The net (ts : a E A) is decreasing; hence it decreases to a limit. Tha t  limit is called 
the l i m s u p  of the given net (xs) ,  since it is the limit of the sups; it is also called the upper 
limit of the net (xs).  The limsup of the xs ' s  is denoted l imsup xs ,  or sometimes lim xs.  
Note tha t  if the given net (xs)  is a sequence, then (ts) is also a sequence. 

Also note tha t  lim inf xs  ~ lim sup xs.  

7.45. T h e o r e m  on  c o n v e r g e n c e  in l a t t i c e s .  Let (X, ~) be a complete lattice. Let 
z E X, and let (xs :c~ E A) be a net in X. Then the following conditions are equivalent. 9 

(A) xs o z (as defined in 7.38 or as equivalently characterized in 7.40.d). 

(B) The net 's  eventuality filter 9 ~ contains a family of intervals {[s~, t~] : /~  E A} 
such that  [~,EA[S~,, t~,] = {z}. 

(C) l iminf  xs  = z = l imsup xs.  

(D) There exist nets (ss : a  E A) and (ts : a  E A) (based on the given directed 
set A) such that  ss  1" z and ts  $ z, and ss ~ xs  ~ ts  for all c~. 

Proof. For (C) =~ (D), define ss and ts  as in 7.44. It is obvious tha t  (D) impl ies  the 
condition given in 7.40.d; thus (D) =~ (A). To prove (A) =~ (B), suppose (xs) and z 
satisfy the conditions in 7.38; then take A = S • T tha t  is, consider the collection of 
order intervals {Is, t] : s E S, t E T}. 

To prove (B) ~ (C), let us  = infz~s xz and vs = supzv s xz for each a E A. Then 
us  ~ xs ~ vs. Let U = l i m i n f x s  and V = l i m s u p x z ;  then us T U and vs I V. 
Temporari ly fix any A E A. Since [s~, t~] E 9", we have xz E [s~, t~] for all ~ sufficiently 
large. Therefore us,  vs E [s~, t~] for all a sufficiently large. It follows tha t  U, V E [s~, t~]. 
This is valid for every A. Hence V and V both lie in ~EA[S~, t~]  = {z}. 

7.46. Remarks. In a complete lattice, when a net has a limit, tha t  limit is equal to the 
liminf and limsup. However, the liminf and limsup exist in any case, whether the limit 
exists or not. In cases where the limit does not exist or is not known to exist, the liminf and 
limsup serve as "almost limits," or "pseudo-limits." They possess many of the properties 
one associates with a limit, and they can be used in place of a limit in many arguments.  

For a very different sort of generalized limit, see 12.33. 

7.47. Further properties. Let (X, ~) be a complete lattice. 

a. Suppose (yz : /3  E IB) is a subnet of ( x s : a  E A) in X. Then 

lim inf xs  ~ lim inf yz @ l imsup yz ~ lim sup xs.  

Hints: Fix any a E A, and let ta - sups~ a xs.  Show that  eventually xs ~ ta; hence 
eventually yz ~ ta; hence l imsup yz ~ ta. Then what? 

2Some of these conditions make sense in a more general setting - -  e.g., if we merely assume that (X, ~) 
is a poset and the literature sometimes uses one of these conditions as a definition of order convergence 
in such a setting. However, in such a setting the several conditions listed here are not all equivalent. 



176 Chapter 7: Nets and Convergences 

b. Suppose (x~ -o~ E A) and (y~ " ~  E A) are nets based on the same directed set A, and 
x~ 4 y~ for all c~ (or for all c~ sufficiently large). Then 

lim inf x~ ~ lim inf y~ and l imsup x~ ~ l imsup y~, 

and if both  nets possess limits then lim x~ ~ lim y~. 

7.48. Convergence of sets. Let (S~) be a net whose elements are subsets of a set f~, 
and let S c_ ft also. What  does S~ ~ S mean? There are many different definitions in 
the literature, not all equivalent. The simplest of these, and perhaps the most frequently 
useful, is in terms of the ordering in which S ~ T means that  S c_ T. That  ordering makes 
~P(f~) a complete lattice. Then for any net (S~), we have 

lim sup S ~  = N U so = {w E f~ �9 frequently w E S~ }, 

lim inf S~ - U N s o  - {w E f~ �9 eventually w E S~ }. 

Then it is always true that  lim inf S~ c_ lim sup S~, and we define S~ --~ S to mean that  

lim inf S~ = S - lim sup S~, 

or equivalently that  

S c_ l i m i n f S ~  and l i m s u p S ~  c_ S. 

That  convergence can also be restated in terms of the characteristic functions of the sets; 
it says 

for each w Ef t ,  eventually ls~ (w) - Is(w).  

See also the related result in 15.26.e. 
Note that  if g is a a-algebra of subsets of f~, and (Sn) is a sequence in S, then lim sup Sn 

and lim inf Sn both lie in g. 

7.49. Remarks. Although convergence of nets of sets is most often defined as in 7.48 (or 
equivalently, as in 15.26.e), other definitions are occasionally useful, particularly when the 
sets have some additional structure" 

�9 A positive charge determines a pseudometric on an algebra of sets, as in 21.9. That  
pseudometric determines a convergence. 

The Hausdorff metric, defined in 5.18.d, determines a convergence for the nonempty, 
closed, metrically bounded subsets of a metric space. 

�9 Several different topologies on the collection of closed subsets of a metric space are 
surveyed by Beer and Lucchetti [1993]. Each topology determines a convergence. 



P a r t  B 

A L G E B R A  



This Page Intentionally Left Blank



Chapter 8 

Elementary Algebraic Systems 

MONOID$ 

8.1. Definitions. A m o n o i d  is a triple (X, [], i) consisting of a set X, a binary operation 
•, and a special element i E X (called the identity element of X),  satisfying these rules: 

( x ~ y ) ~ z  - x ~ ( y ~ z )  

x[]i - x -- i[:]x 
(associative law) 

(identity law) 

for all x, y, z E X. The f u n d a m e n t a l  o p e r a t i o n s  of the monoid are E] (binary) and i 
(nullary). We may refer to X itself as a monoid if i and [] do not need to be mentioned 
explicitly. When we disregard i and [], and just consider X as a set, it is called the 
u n d e r l y i n g  set  of the monoid. 

Different monoids X and Y generally have different identity elements and different binary 
operations, but we may use the same symbols i and [] in different monoids if no confusion 
will result; we may use subscripts ( ix ,  iy, []X, FlY) for clarification if necessary. 

If (X, [], i x )  and (Y, o, i y )  are monoids, a h o m o m o r p h i s m  from X to Y is a mapping 
f : X --~ Y that  preserves the fundamental  operations i.e., a mapping such that  

f ( i x )  - i y ,  f (xCVx') - f (x) o f (x') 

for all x, x' E X. If f "  X ~ Y is a bijective homomorphism, we call f an i s o m o r p h i s m  of 
monoids; it is easy to see that  f - 1  . y __~ X is then a homomorphism as well. 

In a monoid (X,  [] , ix) ,  a s u b m o n o i d  is a subset S c_ X that  is closed under the 
fundamental  operations of X i.e., that  satisfies i x  c S and also satisfies s, t c S 
s[]t E S. Thus, it is a subset S that  becomes a monoid in its own right when the monoid 
operations of X are restricted to S. 

8.2. Exercise. The identity element i in a monoid is uniquely determined. In fact, we 
don' t  even need the associative law for that  result; if [] is a binary operation on a set X 
and il,  i2 E X both satisfy the identity law in 8.1, then il - i2. 

8.3. More definitions. A monoid (X, 0,  i) is c o m m u t a t i v e  (or Abelian) if it also satisfies 

x[]y - y n x  (commutative law) 

179 
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for all x, y E X. 
For many commutative monoids, in place of [] we use the symbol +, known as a d d i t i o n .  

Then we say that  the operation is written additively, and X is an a d d i t i v e  m o n o i d .  In that  
case the identity element is denoted by "0" and known as ze ro  or the a d d i t i v e  i d e n t i t y .  
For nonempty subsets S, T of an additive monoid, we write x + S = {x + s : s E S} and 
S + T = {s + t : s E S, t E T}, as in 2.7. The definition of homomorphism can be restated 
for additive monoids thus: 

f (x 4- x') = f (x) 4- f (x'), f(0)  = 0 .  

When these conditions are met we shall say f is an a d d i t i v e  m a p .  The last equation 
can be writ ten f (Ox)  = 0y if some clarification is needed, but usually it is not. Caution: 
Algebraists occasionally use 4- for a noncommutat ive operation, but analysts generally do 
not. In this book addition will always represent a commutative operation. 

For some monoids not necessarily commutative the symbol used in place of [] 
is a raised dot (.), known as m u l t i p l i c a t i o n .  Then we say that  the operation is written 
multiplicatively, and the monoid is a m u l t i p l i c a t i v e  m o n o i d .  In that  case the identity 
element is denoted by "1" and known as one  or the m u l t i p l i c a t i v e  i d e n t i t y .  The symbol 
for multiplication may also be omitted altogether; i.e., we may write x . y  instead as xy. 
Although this looks just like multiplication of real numbers, the reader is cautioned not to 
assume that  it is c o m m u t a t i v e -  see 8.4.e. 

8.4. Examples of monoids. 
a. ((P(X), 0 ,  U) and (~P(X), X, M) are commutative monoids for any set X. 

b. IR is an additive monoid, as are certain subsets of ~ for instance, 

[0, + ~ ) ,  Z, NU {0}. 

c. Measure theory will be introduced briefly in 11.37 and studied in much greater depth 
in Chapter  21. A measure, or more generally a charge, is a particular type of mapping 
taking values in a monoid X. In most cases of interest, that  monoid X is either [0, 4-00] 
or a vector space. The choice of X is discussed further in 11.38. 

d. Arithmetic in the extended real number system [-oo,  4-00] was defined in 1.17. The 
set [-c~, +oc] is not an additive monoid, for there is no suitable way to define ( - c o )  4- 
(+oc).  However, any other sum of two elements in [ -co,  4-cc] is defined. Consequently, 
certain subsets of the extended real line are additive monoids for instance, 

[0, N u {0} u 

In [0, +oc] we can define not only finite sums xl + x2 + - - "  + xn, but also infinite sums 
Xl 4- x2 4- x3 4- . . - ;  see 10.39. 

e. Let X be a set. Then X x = {functions from X into X} is a monoid, with the binary 
operation being the composition of functions, defined as in 2.3. The identity element 
of X x is the identity map ix  : X ~ X defined in 2.5.a. Composition of functions 
is often writ ten "multiplicatively" i.e., f o g is often writ ten simply as fg  but 
composition of functions generally is not commutative. 
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g" 

Actually, if (X, •, i) is any monoid, then X is isomorphic to a submonoid of X x 
via the mapping u ~ f~, where f~ : X ~ X is the mapping defined by f~ (x) = u[]x.  

Let X be a set. Then ~P(X x X) = {subsets of X x X} is a monoid, with the binary 
operation being the composition of relations, defined as in 3.3.e. The identity of this 
monoid is the diagonal set I = {(x,x)  : x E X}. Identifying functions with their 
graphs, we find tha t  X x (discussed in 8.4.e) is a submonoid of T (X x X).  

Let A be an alphabet  i.e., a collection of symbols that  can be distinguished from 
one another. Let X be the set of all finite strings of symbols made from members  
of tha t  alphabet  for instance, if a, b, c E A, then abc and abac and cab are three 
different members  of X. For a binary operation we use c o n c a t e n a t i o n  - -  for instance, 
abc o abac = abcabac. The empty string i.e., the string containing no symbols 
will also be considered as a member  of X; then it is the identity element and X is a 
monoid. More complicated algebraic systems tha t  are similar to this one are the basis 
of f o r m a l  logic, studied in Chapter  14. 

GRoups 

8.5. Let (X, i, []) be a monoid, with identity element i. If x[]y  = i, we say that  x is a 
left  i n v e r s e  for y and tha t  y is a right inverse for x; these are one-sided inverses. 
If x[]y  = y[]x  = i, we say tha t  x and y are inverses of each other (or, for emphasis, 
two-sided inverses). 

Exerc i ses  and  examples .  

a. A monoid element may have many left inverses (or just one, or none). Similarly for 
right inverses. 

For instance, let ~ = {sequences of real numbers}, and let X = ~t ~ = {functions 
from ~ into ~t}, with composition for the binary operation. Define x ( r l , r 2 , r 3 , . . . )  = 
(r2, r3, r4 , . . . ) .  Also, for each real number p, define y p ( r l ,  r2, r 3 , . . . )  = (p, r l ,  r2, r 3 , . . . ) .  
Then x o yp = i, so x has many right inverses. The element x has no left inverses; this 
can be proved directly or using 8.5.b. To reverse this example, use the same set X, 
but use binary operation [] defined by u[]v = v o u. 

b. Suppose tha t  (X, i, •) is a monoid, x E X, ul is a left inverse of x, and u~ is a right 
inverse of x. Then ul = u~, and x has no other left or right inverses. 

P r o @  u~ = u l o i  = u l o ( x o u ~ )  = ( u t o x ) o u ~  = i o u ~  = u~. The same reasoning can 
be applied if u~ is repla~ed by any other right inverse of x; thus all the right inverses 
of x are equal to ut. Similarly, all the left inverses of x are equal to u~. 

c. Any element of a monoid has at most one inverse. If x has an inverse, that  inverse 
may be denoted x -1. In an additive monoid, tha t  inverse may be denoted - x .  

8.6. Def in i t ions .  A g r o u p  is a monoid in which each element has an inverse. We shall 
restate this definition more directly: 
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A group is a quadruple (X, [3,-1,i)  consisting of a set X and three f u n d a m e n t a l  
o p e r a t i o n s  that obey certain axioms. The three fundamental operations are a binary 
operation (x, y) H x[3y, a unary operation x H x - I ,  and a nullary operation i that  is, 
a specially selected element i E X. The axioms are 

(x[3y)[3z - x[3(y[3z)  (associative law) 

x[3i - x = i[3x (identity law) 

X [ 3 X -  1 - -  i - x -  1 [3X  (law of inverses) 

for all x, y, z c X. The group is c o m m u t a t i v e  (or Abe l i an )  if it also satisfies 

x[3y - y[3x (commutative law) 

for all x, y C X. 
A s u b g r o u p  of a group (X, [3,-1, i) is a set S C_ X that is closed under the group's 

fundamental operations i.e., that  includes the identity element and also satisfies 

x , y  C S ~ x[3y, x -1 c S. 

Thus, it is a subset S that becomes a group in its own right when the fundamental operations 
of X are restricted to S. 

The s u b g r o u p  g e n e r a t e d  by a set B c X is the smallest subgroup that includes B 
i.e., the intersection of all the subgroups that include B; it is the closure of B (in the sense 
of 4.6) under the fundamental operations of the group. 

8.7. Exercise  (opt ional) .  There is some redundancy in our list of axioms for a g r o u p -  a 
shorter list would suffice: 

Suppose X is a set equipped with a binary operation [3, a unary operation x H x -1, 
and a special element (i.e., a nullary operation) i, satisfying these axioms: 

[3 is associative, i[3x = x, and x-1 [3x - - -  i 

for all x E X .  Show that the set and operations must also satisfy 

X [ 3 X  - 1  = i, x[3i -- x, ( x - 1 ) - 1  --X 

for all x. 
Hint: [ (x - l ) - i [3x  -1] [-](X[--]X -1) - - (x-- l )  -1[-] [(X-IDx)F-]X-1]. 

8.8. More notat ion.  An a d d i t i v e  g r o u p  or m u l t i p l i c a t i v e  g r o u p  is a group in which 
the binary operation is written as + or . ,  respectively. 

In a multiplicative, commutative group, the product x .  (y - i )  is also written x / y  or y. 
In this book + will only be used for a commutative operation. In an additive group, 

the inverse of an element x is written as - x ,  and the sum x + ( - y )  is abbreviated x -  y. 
For a nonempty subsets S , T  of an additive group we write - S  = { - s  : s E S} and 
S - T = { s - t  : s E S ,  t c T}, as in 2.7. 

8.9. More  definit ions.  A h o m o m o r p h i s m  between groups (X, [3,-1, i x )  and (Y, <>, 
is a mapping f "  X ~ Y satisfying 

f ( x [ 3 x ' )  - f ( x )  <> / ( x ' ) ,  / ( x  -1) - / ( x )  -1, f ( i x )  - i y ,  

- 1 , i y )  
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for all x , x  I c X.  Actually, the second and third equations can be omit ted from this 
definition, for they follow as consequences of the first equation; the proof of this is an easy 
exercise. Thus, if X and Y are groups, then a mapping f : X ~ Y is a homomorphism of 
groups if and only if it is a homomorphism of monoids. An i s o m o r p h i s m  of groups is a 
bijective homomorphism. 

When X and Y are additive groups, the last two equations can be rewrit ten as f ( - x )  = 
- f ( x )  and f(0)  = 0. a mapping f :  X ~ Y between additive groups is a homomorphism 
if and only if it satisfies f ( x l  + x2) = f ( x l )  + f(x2) for all xx, x2 E X; we may then call it 
an a d d i t i v e  m a p p i n g .  

8.10.  Elementary properties and examples of groups. 
a. Degenerate examples. The smallest group is a singleton, with obvious operations. All 

one-element groups are isomorphic to each other. In any group, the subgroup generated 
by the empty set is the singleton consisting of just  the identity element. 

The next smallest group contains just  two elements, again with obvious operations. 
All two-element groups are isomorphic to each other. One convenient representation 
is this: { 1 , - 1 }  is a multiplicative group. 

b. Let ( X , D , i )  be a monoid, and let G -  {x E X "  x has an inverse}. Then G is a 
submonoid of X,  and in fact G is a group. A particular example of this is given in 
8.10.i. 

c. In any group (X, D, -1  , i), we have 

i - 1  - - i ,  ( X - - 1 ) - I  __ X, ( x F l y )  - 1  - -  y-l[~x-1. 

d. The singleton {0}, the integers Z, the rational numbers Q, the real numbers R, and 
the complex numbers C are additive groups, when equipped with their usual addition 
operation. In fact, {0} c_ Z c_ Q c_ R c_ C; each is a subgroup of the next. The set Z 
is the subgroup of Q, R, or C generated by the set {1}. 

e. Let r be a positive number.  (The values of r most commonly used here are 1 and 
27r.) The interval [0, r) can be viewed as an additive group, referred to as t h e  rea l s  
m o d u l o  r.  The addition operation for this group is a d d i t i o n  m o d u l o  r ,  defined as 
follows" Give x + y its usual meaning when x + y E [0, r), and let x + y be replaced by 
x + y -  r when x + y E [r, 2r). The identity element is 0. This group is isomorphic to 
the circle group, discussed in 10.32; consequently [0, r) itself is sometimes referred to 
as the circle group. 

f. The positive reals, (0, +oc) ,  may be viewed as a commutat ive  group whose binary 
operation is ordinary multiplication (.) and whose identity element is the number 1. 
Some subgroups are the positive rational numbers and the set {2 k �9 k E Z}. The 
multiplicative group of positive real numbers is isomorphic to the additive group of 
real numbers,  by the mapping x ~ In x. 

g. Let X be a set. Then (~P(X), A, i~p(x), ;g) is a commutat ive  group, where ~P(X) denotes 

the power set of X and A denotes symmetr ic  difference. Note that  in this group, the 
inverse operation is the identity map - -  that  is, each member  of ~P(X) is its own inverse. 
Hence (A A C) A (B A C) - A A B. 
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Any algebra of subsets of X (defined in 5.25) is a subgroup of T(X). 

h. Let X be an additive group. For x E X we define 

Ox = O, lx = x, 2x = x + x, 3x = x + x + x, . . . ,  

and for n C N we also define ( - n ) x  = - ( n x ) .  In this fashion we define a "multiplica- 
tion" operation (n, x) H nx,  from Z x X into X. By induction or any other convincing 
argument, show that 

= m ( n x ) .  + y) = ( r e x ) +  (my). + n)x = (rex) + (nx) 

for all m, n C Z and x, y C X. Also show that Zx = {nx  : n E Z} is a subgroup of X; 
it is the subgroup generated by the singleton {x}. 

i. A bijection from a set X onto itself is a p e r m u t a t i o n  of X. If X is any nonempty 
set, then Perm(X) = {permutations of X} is a group, with the binary group operation 
given by the composition of functions and with the identity element of the group being 
the identity function of X. In fact, this is the group of invertible elements obtained from 
the monoid X X (see 8.4.e and 8.10.b). If X contains more than two elements, then the 
group Perm(X) is not commutative. If n is a positive integer, then the permutation 
group on a set X containing n elements is also called the s y m m e t r i c  g r o u p  of  o r d e r  
n; it is written Sn. 

If X is the underlying set of a group (X, i, 71), then an isomorphism from X onto a 
subgroup of Perm(X) is given by u ~-, fu, where the permutation fu : X ~ X is given 
by fu (x) = ur-lx. 

SUMS AND QUOTIENTS OF GROUPS 

8.11. Let $1, $2,..., Sn be finitely many subgroups of an additive group X. Then the 
s u m  of the Sj 's  is the set 

S l  na ~2 nt_ . . .  _.~._ S n  --  {81__~ 82 _.~_ . . .  ..~_ 8n : 8 1 C  $ 1 ,  82 C $ 2 ,  . . . ,  8n C S n } .  

More generally, let {S~ : A E A} be a collection of subgroups of an additive group 
X. Their sum, }--~eA S~, is defined to be the set of all sums of finitely many elements of 
U~eA S~. In other words, it is the set of all sums of the form 

8 --  81 + 82 + 83 -Jr- ' ' '  Jr- 8n ,  

where n is a nonnegative integer and each sj is a member of some S~. Show that 

(i) Y~'-~eA S~ is the union of sums of finitely many of the S~'s. 

(ii) }--2~eA S~ is the subgroup of X generated by the set U~eA S~. 
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8.12.  Let S = $1 -t- $2 -n t - ' ' "  ~- Srt be a sum of finitely many subgroups. The set S is called 
the i n t e r n a l  d i r e c t  s u m  of the Sj ' s  if it has this further  property:  Each s E S can be 
expressed in one and only one way as s = Sl n t- 82 -Jr-'''-n t- 8n, where sj E Sj. We then write 

n 
S - $1 | $2 |  | S ,  or S - (~ j= l  Sj. Such a decomposit ion may be helpful, because it 
may express a complicated object S in terms of simpler Sj 's.  

More generally, let S = ~XEA Sx be a sum of arbitrari ly many subgroups. We say S is 
the i n t e r n a l  d i r e c t  s u m  of the Sx's, and write S = (~XEA Sx, if each s E S can be wri t ten 
in one and only one way as a sum s = }-'~XEA sx, where each sx is a member  of Sx and only 
finitely many of the sx's are nonzero. (The internal direct sum is often called the "direct 
sum," but  it should not be confused with the external direct sum described in 9.30.) 

If S = ( ~ a  S~, then we can define mappings ~ : S --, S~ by the rule tha t  s = 
~--~,kEA 99,k(S); we may call px the p r o j e c t i o n  o n t o  Sx. (The te rm "projection" also has 
other meanings; see 1.34 and 22.45.) 

Some basic propert ies of direct sum decomposit ions are 

a. S is an internal direct sum of the subgroups {Sx : ,k E A} if and only if S = ~ a ~ A  Sx 
and S ,  N X ~ r  s~ - {0} for each # E A. 

b. Each mapping p x, considered as a map from S into itself, is idempotent  (defined in 
2.4); it has range Sx. 

c. Each px, considered as a map from S into either S or Sx, is additive. 

8 .13.  An impor tan t  special case is tha t  in which an additive group X itself is the internal 
direct sum of two subgroups - -  say S and T. Then  we write X = S | T. This means tha t  

each x E X can be wri t ten in one and only one way in the form s + t, where 
s E S and t E T, 

or, equivalently, tha t  

S + T = X  a n d S n T = { 0 } .  

We shall then say tha t  the subgroups S and T are a d d i t i v e l y  c o m p l e m e n t a r y ,  or tha t  
they are a d d i t i v e  c o m p l e m e n t s  of each other. (Some mathemat ic ians  would simply call 
these sets "complements" of each other, but  in this book we have too many other uses for 
tha t  term.) 

Exercises. Suppose X = S | T. Let ~ s  : X  --~ S and ~T : X --~ T be the projections, 
defined as in 8.12 tha t  is, x = ~s (x )  + ~T(X) for each x. Show tha t  

a. ~s  + ~T = i x  (where i x  is the identity map of X)  

b. R a n g e ( ~ s ) =  K e r ( ~ T ) =  S and R a n g e ( ~ T ) =  K e r ( ~ s ) =  T. 

C.  ( ~ S ( ~ T  - -  ( ~ T ( ~ S  = O. 

d. Conversely, suppose X is an additive group and p : X ~ X is an idempotent  homomor-  
phism. Let q -- i x - p .  Show tha t  q is also idempotent ,  and X = Range(p) |  Range(q). 
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8.14.  Let G be an additive group, and let H be a subgroup. Define sums of sets as in 8.3. 
The cosets of H are the sets x + H = {x + h �9 h E H}. Note that  any two cosets are either 
identical or disjoint; thus they form a parti t ion of G. Show that  

( x + H ) + ( y + H )  - ( x + y ) + H ,  - ( x + H )  - ( - x ) + H .  

Let G/H be the set of all cosets of H; show that  G/H is an additive group with identity 
element 0 + H and with other operations defined as above. 

Since the cosets of H form a parti t ion of G, they define an equivalence relation on G by: 

gl ~ g2 *: :" gl, g2 belong to the same coset ~, '- gl - g2 c H. 

The cosets of H are the equivalence classes for this equivalence relation, and G/H is the 
quotient set (as in 3.11). Consequently, the group G/H is called the q u o t i e n t  g r o u p .  The 
quotient map 7r" G ~ G/H (defined as in 3.11) is given by 7r(g) - g + H. It is a group 
homomorphism from G onto G/H. Note that  it satisfies 

7 r (T r - l (B ) ) -  B for any B C G/H, whereas 

~r-l(Tr(A)) - A + H for any A _C G. 

Algebra books contain a more general theory of quotients, applicable to groups that  are 
not necessarily commutative. However, that  theory is more complicated and will not be 
needed for our purposes. 

8.15.  Not every quotient group G/H is isomorphic to a subgroup of G. 
Example. The circle group [0, 1), introduced in 8.10.e, can also be described as the 

quotient of the additive group I1~ by the subgroup Z. The circle group is not isomorphic to 
1 

a subgroup of IR. One easy way to show this is to note that  0 and ~ are distinct solutions 
of x + x = 0 in [0, 1). In the group ]R, the equation x + x = 0 has only one solution. 

8.16.  Not every subgroup of every group has an additive complement. (Contrast 11.30.f.) 
Example. Z is a subgroup of JR, but there is no subgroup G c_ ]R satisfying ]R - Z | G. 

Indeed, show that  if G were such a group, it would be isomorphic to ]R/Z, and hence 
isomorphic to [0, 1), contradicting the result in 8.15. 

8.17.  Let f : X ~ Y be an additive mapping i.e., a homomorphism of additive groups. 
Then the k e r n e l  of f is the set 

Ker( f )  = f - l ( 0 )  = { x e X : f ( x ) = 0 } .  

A few of its basic properties are: 

a. Ker ( f )  is a subgroup of X; hence 0 c Ker(f ) .  

b. Ker( f )  = {0} if and only if f is injective. 

c. ( I s o m o r p h i s m  T h e o r e m . )  Let 7r : X ~ X/Ker(f)  be the quotient map. Then 
F(Tr(x)) = f(x)  defines a group isomorphism F :  X/Ker(f)  ~ Ran(f ) .  

d. Degenerate examples. Let X be any additive group. Then the identity map i : X ~ X 
has kernel {0}, and the constant map x H 0 (from X into any additive group) has 
kernel X. 
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RINGS AND FIELDS 

8.18. Definitions. A r ing  is an additive group (R, 0, +) equipped with another associative 
binary operation (.), called mu l t i p l i ca t i on ,  which distributes over addition on both the 
left and right: 

w.  (x + y) = (w. x) + (w. y) and 

= 

for all w, x, y c R. 
A r ing  w i t h  un i t  also has a special element 1 (one), such that (R, 1, .) is a monoid. 

Caution: Some mathematicians work only with rings with unit, and then they may refer to 
those objects simply as "rings." For a trivial example of a ring without unit, consider the 
even integers, with the usual operations of addition and multiplication. For a less trivial 
example of considerable interest to analysts, see l l.4.e. 

(Most of the rings used by analysts have additional structure: They are linear algebras, 
as explained in 11.3. However, Z is an important commutative ring that is not a linear 
algebra.) 

By our definitions, the addition operation in any ring is commutative. A c o m m u t a t i v e  
r ing  is a ring in which the multiplication operation is also commutative. 

A field is a commutative ring with unit, in which 0 =/= 1 and in which every nonzero 
element has a multiplicative inverse. Consequently, in fields we are able to perform "ordinary 
arithmetic" computations. For instance, the student should prove (and explain) that in a 
field, 

w y wz + x y  
+ ~ ~ _  

X Z X Z  

Examples. Some fields with which most readers are informally acquainted are Q and IR; 
these are introduced formally in 8.22, 10.10, 10.8, and 10.15. 

The f u n d a m e n t a l  o p e r a t i o n s  of a ring with unit or a field are those of its additive 
group (the binary operation +, the unary operation - ,  and the nullary operation 0) and 
those of its multiplicative monoid (the binary operation �9 and the nullary operation 1). 
When we talk about fundamental operations and related concepts, then a field will simply 
be viewed as a particular type of ring with unit. (See the related remarks in 8.54.) 

A h o m o m o r p h i s m  of rings with unit is a mapping f : R ~ S from one ring into 
another; which preserves the fundamental operations i.e., which satisfies 

f (x~  + x2) -- f ( x l ) +  f(x2), f ( - x )  - - f ( x ) ,  
f(O) - O, f ( x l x 2 )  - f ( x l ) f ( x 2 ) ,  f ( 1 ) -  1 

for all X, Xl,X2 E R. All of these conditions are conceptually relevant, but some of them 
are redundant, i.e., implied by some of the other conditions. A homomorphism of fields will 
simply mean a homomorphism f �9 R ~ S of rings with unit, where R and S happen to 
be fields; no additional requirement is imposed on f for this case. However, (exercise) it 
follows from our definition that if f �9 R ~ S is a homomorphism of fields, then f is injective 
and f ( x  -1) - f ( x )  -~ for all x ~= 0. 
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8.19.  S o m e  e lemen tary  properties. For all w, x, y, z in a ring R with unit, we have 

a. 0 . x = 0 = x . 0 .  

b.  ( - x )  . y = x .  ( - y )  = - ( x .  y).  

c. ( - 1 ) .  x = - x .  Tha t  is, the additive inverse of 1 times any ring element x is the additive 
inverse of x. 

d. There is a unique homomorphism from Z into the ring R. 

e. If 0 = 1, then R = {0}. This is the smallest ring. 

8.20.  Example:  f in i te  rings and fields. Let m be an integer greater than 1. For integers 
x, y E Z, write x - y (mod m) if x - y is a multiple of m - -  that  is, if x - y = k m  for some 
integer k. We then say that  x and y are c o n g r u e n t  m o d u l o  m .  It is easy to verify that  = 
is an equivalence relation on Z. The ari thmetic operations make sense on the equivalence 
classes, since 

Xl - -  Yl, x2 -- Y2 =V Xl + x2 -- Yl -~- Y2, XlX2 -- YlY2. 

The equivalence classes are most often represented by their smallest nonnegative mem- 
bers i.e., the numbers 0, 1, 2 , . . . ,  m -  1. Thus we obtain ari thmetic operations on the 
set 

Zm = { 0 , 1 , 2 , 3 , . . . , m -  1}, 

which can be described more directly as follows: to add or multiply two numbers x, y in 
Zm, take their ordinary sum or product in Z, and then subtract  a suitable multiple of m 
to obtain an element of {0, 1, 2 , . . . ,  m -  1}. With  these operations, Zm is a commutat ive 
ring with unit, called t h e  i n t e g e r s  m o d u l o  m .  As an illustrative example, below are the 
addition and multiplication tables for Z6. Note that ,  considered as an additive group, %m is 
the subgroup generated by { 1 } in the group [0, m) of reals modulo m, introduced in 8.10.e. 

+ 

0 
1 
2 
3 
4 
5 

0 1 2 3 4 5 
0 1 2 3 4 5 
1 2 3 4 5 0 
2 3 4 5 0 1 
3 4 5 0 1 2 
4 5 0 1 2 3 
5 0 1 2 3 4 

0 1 2 3 4 5 
0 0 0 0 0 0 
0 1 2 3 4 5 
0 2 4 0 2 4 
0 3 0 3 0 3 
0 4 2 0 4 2 

0 5 4 3 2 l 

Recall tha t  a p r i m e  n u m b e r  is one of the numbers 2, 3, 5, 7, 11, etc. tha t  is, an 
integer greater than 1 that  can only be wri t ten as a product of two positive integers if one 
of those factors is 1. It is an easy exercise to show that  the finite ring %m is a f ield if and 
only if m is a prime number. In particular,  Z2 = {0, 1} is the smallest field; it will be of 
some importance in the study of Boolean algebras. 



Rings and Fields 189 

Related exercises. 
a. In the ring Z6, we have 2 . 3  = 0; thus the product  of two nonzero elements is zero. In 

the ring Z4, we have 2 2 = 0. 

b. The ring Z4 is not a field, but there does exist a field F4 containing exactly 4 elements; 
it is unique up to isomorphism. Find its addition and multiplication tables. 

C.  In the field Z5, the squares of the numbers 0, 1, 2, 3, 4 are the numbers 0, 1, 4, 4, 
1. More generally, show that  if m is an odd prime number,  then exactly half of the 
nonzero members of Zm are squares of members of Era. 

Remarks. Finite fields are not often useful in analysis; we have mentioned them only because 
they offer very easily understood illustrations of the concept of "field." We shall now state 
without proof a few more results about  finite fields; the proofs of these additional results 
are beyond the scope of this book, but can be found in more specialized books see for 
instance, Lidl and Niederreiter [1983]. Let q be an integer greater than 1. Then there exists 
a field Fq containing exactly q elements if and only if q is of the form q = pn for some 
prime number p and some positive integer n in which case the field Fq is unique (up 
to isomorphism). Considered as a linear space over Zp (see Chapter  11), the field Fq is 
isomorphic to (Zp) n. The multiplicative group ]Fq\{0} is isomorphic (as a group) to the 
additive group Zq_l. The explicit formation of such finite fields i.e., the computat ion 
of their addition and multiplication tables is a somewhat complicated matter .  However, 
when p is an odd prime, then it is fairly easy to form a field with p2 elements; a simple 
method is given in 10.23.b. 

8.21.  Example: products. Suppose that  (Rx : A c A) is a collection of rings. Then 
we can make the Cartesian product  P = l-IacA Rx into a ring, by defining operations 
coordinatewise: 

( f  + g)(A) = f(A) + g(A), ( f  g)(A) = f(A) g(A), 

etc. The additive identity 0p is the function tha t  takes the value 0a at the ~th coordinate. 
If the Ra 's  are rings with unit, then so is P,  with multiplicative identity 1p equal to the 
function that  takes the value l a on the ~th coordinate. 

The product  of two or more fields is not a field, when operations are defined in this 
fashion, since any element of P with a 0 in at least one component  has no multiplicative 
inverse. However, a different method can sometimes be used to make a product  of fields 
into a field; see 10.22. 

8.22.  The reader is undoubtedly quite familiar with the field of rational numbers, Q = 
{m/n  : m, n E Z, n r 0}. Nevertheless, we shall give a formal construction of it; the same 
method of construction will subsequently be used to form another,  less familiar field. 

An i n t e g r a l  d o m a i n  is a commutat ive  ring D with the property tha t  

whenever x, y E D with xy = 0, then at least one of x, y is 0. 
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Of course, any field is an integral domain. The ring Z = {integers} is an example of an 
integral domain that  is not a field; another example will be given in 8.24. The finite rings 
Z4 and Z6 are not integral domains. 

Let D be an integral domain. For pairs (x, m) and (y, n) in D x (D\{0}),  define (x, m) 
(y,n) to mean that  xn = ym. Verify that  this is an equivalence relation on D x (D\{0}).  
Define F to be the set of equivalence classes. Addition and multiplication in F are defined 
by 

(x, m ) +  (y, n) = (xn + (x. m ) ( y ,  n) = (xy, ran). 

The reader should verify that  these operations are well-defined i.e., that  the definitions 
above do not depend on the particular choice of representations for the equivalence classes. 
That  is, if (Xl, ml)  ~ (x2, m2) and (Yl, nl)  ~ (Y2, n2), verify that  

(Xlnl -~- y lml ,  m i n i )  ~ (x2n2 + y2m2, m2n2), (XlYl, mln l )  ~ (x2y:, m2n2). 

With operations so defined, verify that  F is a field. It is called the field of  f r ac t ions  of 
D, or field of  quo t i en t s .  The mapping x H (x, 1) is an embedding of D in F that  is, 
an injective ring homomorphism - -  and so we may view the ring D as a subset of the field 
F. 

Having completed our construction of F, we now switch to conventional notation: The 
x Of course, the representa- equivalence class containing (x, m) is represented by x /m or ~ .  

tion is not unique, since any pair in the equivalence class can be used to form this expression. 
We urge the reader not to switch to this notation until after completing the construction of 
F and the verifications that  it requires. The artificiality of the unfamiliar notation (x, m) 
will make it less likely that  we will inadvertently assume some familiar property of F that  
has not yet been proved. 

In the particular case where the integral domain D is the ring Z, the resulting field of 
quotients is the field of  r a t i o n a l  n u m b e r s ;  it is denoted by Q. 

8.23. Exercises about Q. 
a. Show that  card(Q) = card(N). Hint: 2.20.e. 

b. There is no x E Q satisfying x 2 = 2. Hint: If x = p/q, consider how many factors of 
2 there are in p or in q. (We assume familiarity with basic properties of the integers, 
e.g., the uniqueness of prime factorization.) 

c. If F is a field, there is a unique ring homomorphism from Q into F. 

d. Example. There is a unique ring homomorphism h : Q  --. Z5. With that  ring homo- 
2 morphism, evaluate h(5 ). Explain. (Thus we obtain a member of {0, 1,2, 3, 4} which 

is in a sense "congruent modulo 5" to the fraction 2/3.) 

8.24. Example: the ring of polynomials and the field of rational functions. Let K be any 
integral domain (for instance, the integers or the rationals or the reals). Let S = {s, t, u , . . . }  
be a nonempty (finite or infinite) set of distinct symbols not already used in our description 
of K or elsewhere in our language. We write S as {s, t, u , . . . }  to display a few typical 
elements, but we do not require that  S be countable or ordered in any fashion. (For the 



R i n g s  and  Fields  191 

simplest examples, take S to be just a singleton: S - {s}. However, later we shall have 
some uses for much larger collections S as well.) 

A m o n o r n i a l  with variables in S and coefficients in K is any expression such as as3t2uv ,  
where a E K and s , t ,  u, v E S that  is, an element of K multiplied by finitely many 
members of S. If the coefficient a is not zero, then the d e g r e e  of the monomial is the sum 
of the exponents of the variables for instance, the monomial as3 t2uv  - a s 3 t 2 u l v  1 has 
degree 3 + 2 + 1 + 1 - 7. 

A p o l y n o m i a l  with variables in S and coefficients in K is a sum of finitely many 
monomials - -  i.e., any expression such as as 3 + b s t  2 + c t  2 + d u v + e ,  where a, b, c, d, e c K and 
s, t, u, v E S. The d e g r e e  of the polynomial is the highest degree of any of its monomials; for 
instance, as 3 + bst 2 + ct 2 + duv  + e has degree 3. A h o m o g e n e o u s  p o l y n o m i a l  of  d e g r e e  
k is a sum of several monomials of degree k; for instance, as 3 + bs2t + c s tu  + d tu  2 + ev 3 is 
a homogeneous polynomial of degree 3. 

Addition, multiplication, and equality of polynomials are defined by the usual algebraic 
rules; we omit the details. The set of all polynomials with variables in S and coefficients in 
K is easily seen to form a commutative ring with unit, which we shall denote by K[S]. 

Note that  each a c K may be viewed as a constant polynomial i.e., a polynomial of 
degree 0; thus each member of K may be viewed as a member of K[S]. This mapping from 
K into K[S] is an injective ring homomorphism; thus we may view K as a subset of K[S]. 

When S consists of just one variable say s then the ring K [ S ] -  K[{s}] may be 
writ ten more briefly as K[s]. Then any polynomial may be writ ten in the form 

p( s )  - a n S  n -4- a n - i S  n - 1  + " " -4- a l s  + ao 

where the coefficients aj are members of K. If p( s )  is not the constant function 0, then by 
dropping any leading zero terms we can choose the representation so that  an # O. Then n 
is the degree of the polynomial, and an is called the l e a d i n g  coeff icient .  

If the ring K is an integral domain, then so is the ring K[S]. Hence we can form its field 
of quotients, as in 8.22. That  field is called the field of  r a t i o n a l  f u n c t i o n s  with variables 
in S and coefficients in F; we shall denote it by K(S).  A member of that  field is a r a t i o n a l  
f u n c t i o n  with variables in S and coefficients in F - -  i.e., a quotient of two polynomials. A 
typical rational function is 

as 3 + bst 2 + ct 2 + duv  + e 

bt 3 + ds t  + f u r  3 + g " 

Equality between such rational functions and arithmetic operations with such functions are 
defined in the usual fashion; we omit the details. If S consists of just a single variable s, 
then the field K(S) - K({s}) may be writ ten more briefly as K(s). 

8.25. Blass ' s  Subfield (op t iona l ) .  Define K(S) as above. Let 23 = { p / q  e K(S) : p and 
q are homogeneous polynomials of the same degree}. (For instance, if S = {s, t, u} a~d 
K = ~, then 

1 383 + X / f 2 s 2 t  -4- [ s t u  + 7rsu 2 

17s tu  - ~/-5st 2 + 6.179t 3 

is a typical member of ~B.) Show that  23 is a subfield of K(S).  This field will be mentioned 
again in 11.29. 
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MATRICES 

8.26.  M a t r i x  no ta t ion .  Let IK be a ring, and let m and n be positive integers. An m - b y - n  
m a t r i x  over IK is a rec tangular  array 

A 

a l l  a12 �9 �9 �9 a ln  
a21 a22 �9 �9 �9 a2n 

�9 . 

aml  am2 " " " amn 

with m rows and n columns, where each aij  is an element of IK. We say aij  is the e l e m e n t  
(or c o m p o n e n t )  in row i and column j .  The  mat r ix  A given above may  be represented  
more  briefly as A - (a~j �9 1 < i < m;  1 < j < n) ,  or still more briefly as (a~j) if no confusion 
will result.  

The  t r a n s p o s e  of an m - b y - n  matr ix  A is the n - b y - m  mat r ix  A ~- obta ined by flipping 
A over diagonally, so tha t  the kth  row becomes the kth  column and vice versa. Obviously, 
(AT) T - -  A. An m - b y - n  mat r ix  is called a c o l u m n  m a t r i x  if n - 1 (i.e., if it consists 

of jus t  one column),  a r o w  m a t r i x  if m - 1 (i.e., if it consists of just  one row), and a 
s q u a r e  m a t r i x  if rn - n. Note tha t  the t ranspose  of a row mat r ix  is a column matr ix ,  
and vice versa. For any positive integer p, it is cus tomary  I to consider e lements  of Kp as 
column matr ices  when matr ices  are to be used at all, but  to save space on the pr in ted  page 
they  are often represented  as the  t ransposes  of row matrices.  Thus  the ordered p- tuple  
(b l , b2 , . . .  ,bp) can also be wr i t ten  as [bl b2 .�9 bp]T; we emphasize  tha t  the representa t ion  
with parentheses  requires commas  while the representa t ion  with brackets  requires tha t  the 
commas  be omit ted .  

8 .27.  M a t r i x  m u l t i p l i c a t i o n  has slightly complicated dimensional  requirements�9 If A is 
an m-by-n  ma t r ix  and B is an n-by-p matr ix ,  then  we can form their  product  A B  = R, an 
m-by-p matr ix:  

a l l  a12 -'" aln  bll b12 "�9 blp r l l  r12 �9149 rip 
a21 a22 . "  a2n b21 b22 "'" b2p _ r21 r22 . . .  r2p 

. . . . .  n �9 �9 arnl am2 "�9149 arnn bnl bn2 " � 9  b p r m l  rrn2 � 9 1 4 9  r m p  

m-by-n n-by-p m-by-p 

defined by this formula: rik = a i lb l k  + ai2b2k + ' "  + ainbnk.  
In general,  mul t ipl icat ion of matr ices  is not commuta t ive .  In fact, when the product  

A B  is defined, the  product  B A  is not necessarily defined. For instance, for the matr ices  

above, we can only define B A  if m = p, and in tha t  case A B  is an m-by-m mat r ix  while 
B A  is an n-by-n matr ix .  Thus, A B  = B A  can only  hold if A and B are square matr ices  of 

1Some older algebra books represent members of Kp as row matrices, but column matrices seem to be 
the prevailing convention since sometime around 1960. 
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the same dimension. Even then, A B  - B A  only holds in an occasional coincidence; it does 
not hold in general, even if the underlying ring IK is commutat ive.  For instance, if 

A [ 1 0 ]  and [11 
- 1  0 0 0 

then A B  ~ BA ,  provided K is a ring with unit  in which 0 =/= 1. However, we do have 
(AB) T = B TAT if the ring K is commutat ive.  

It is an easy exercise to show tha t  multiplication of matrices is associative: ( A B ) C  = 
A ( B C )  whenever the dimensions of the matrices match up i.e., A is an m-by-n matrix,  
B is an n-by-p matrix,  and C is a p-by-q matrix.  Hence we may omit the parentheses and 
write the product  simply as A B C .  The element in row h, column k of tha t  product  is 
E i n _ =  P a h i b i j c j  k 1 E j - - 1  

8 .28.  Matrices as functions on columns. An impor tan t  special case of matr ix  multiplication 
is the following: Let A be an m-by-n matrix.  Represent  elements of K m and tK n by column 
m a t r i c e s -  i.e., by m-by-1 matrices and by n-by-1 matrices, respectively. Then  the mapping 
v ~ Av is an additive map from K n into Km. This type of map plays an impor tan t  role 
in the theory of finite-dimensional vector spaces, discussed further  in Chapter  11. It is so 
impor tan t  tha t  we shall write it out more explicitly here: 

a l l  a12  �9 �9 �9 a l n  V l  

a21 a22 �9 �9 �9 a 2 n  v 2  
If A -  . . . . and v - . 

�9 . 

�9 . 

a m l  a m 2  �9 " " a m n  V n  

then A v -  

a l l Y 1  -~- a 1 2 v 2  n a . - -  ~- a l n V n  

a 2 1 v 1  -~- a 2 2 v 2  + �9149149  + a 2 n V n  

a r n l V l  -~- a r n 2 V 2  Jr- ' ' '  n t- a m n V n  

In particular,  the n-by-n matrices act as mappings from ]K n into itself�9 If IK is a ring with 
unit, then the n-by-n matrices form a monoid, under  the operat ion of matr ix  multiplication�9 
The invertible elements of tha t  monoid form a group�9 An interesting subgroup consists of 
the p e r m u t a t i o n  m a t r i c e s  o f  o r d e r  n; these are the n-by-n matrices A tha t  have the 
following property:  Each row contains n -  1 zeros and 1 one; each column also contains 
n -  1 zeros and 1 one. For example, there are six permuta t ion  matrices of order 3: 

[ ] [ ] [ ] 1 0 0 0 1 0 0 0 1 
0 1 0 0 0 1 1 0 0 
0 0 1 1 0 0 0 1 0 [100] [010] [001] 
0 0 1 1 0 0 0 1 0 
0 1 0 0 0 1 1 0 0 
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Such a matr ix is called a p e r m u t a t i o n  m a t r i x  for the following reason �9 If n distinct 
members of the ring K are arranged in a column matrix v, then the mapping v H A v  
p e r m u t e s  those n members - -  i.e., the column matr ix A v  consists of the same n members, 
arranged in some other order (or in the same order, if A = I).  The group of permutat ion 
matrices of order n is isomorphic (as a group) to the symmetric group of order n, introduced 
in 8.10.i. 

8.29.  The ring o f  matrices .  Addition of m - b y - n  matrices is defined componentwise: 

a l l  �9 �9 �9 aln  
�9 

am1 �9 �9 �9 amn 

I bll " "  bin [ a l l  + b l l  �9149 aln-~-b ln  

bml �9 bmn am1 + bml . ' '  amn + bmn 

Thus, we can only add two matrices if they have the same dimensions. 
With  multiplication and addition defined as above, the set Mat(n; K) - {n-by-n matrices 

over K} is a ring; it has additive and multiplicative identities given by 

0 0 . . .  0 1 0 . . .  0 
0 0 -. .  0 0 1 . . .  0 

0 = 0 n =  . . . and I = / ~ =  . . . 

0 0 . . .  0 0 0 -. .  1 

Here In is an n - b y - n  matrix that  has ls along its main diagonal and 0s elsewhere; it may be 
wri t ten more briefly as (Sij), where 5 is the Kronecker delta. In general the ring Mat(n; K) 
is not commutative. 

ORDERED GROUPS 

8.30.  In this book an o r d e r e d  m o n o i d  will mean an additive monoid X that  is equipped 
with a partial ordering ~ that  is t r a n s l a t i o n - i n v a r i a n t  i.e., that  satisfies 

x ~ y  ~ x + u ~ y + u  

for all x, y, u c X. If X is also a group, we shall call it an o r d e r e d  g r o u p .  
Most of the ordered monoids used by analysts have a great deal more structure in 

fact, most of them are Riesz spaces. However, [0, +c~] is an important  ordered monoid that  
is not even a group. 

8.31.  A r i t h m e t i c  in ordered monoids .  Let S and T be nonempty subsets of an ordered 
monoid (X, ~).  For each of the following equations, show that  if the left side exists, then 
the right side also exists and the two sides are equal: 

max(S)  + max(T)  - max(S  + T), min(S) + min(T) - min(S + T). 
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Also show that  each of the following inequalities holds if both sides exist: 

sup(S) + sup(T) > sup(S + T), inf(S) + inf(T) ~ inf(S + T). 

(Compare with 8.33.a.) 

8.32.  Proposition. The sup of a directed family of additive maps is additive. More precisely: 
Let M be an additive monoid, and let (Y, 4)  be an ordered monoid. Let �9 be a collection 

of additive maps from M into Y. Assume �9 is directed by the product  ordering on yM 
that  is, for each f l ,  f2 E �9 there exists f E �9 such tha t  

f (x )  ~ f l (x )  and f (x)  ~ f2(x) for all x E M. 

Assume that  h(x) = suPfE~ f (x )  exists in Y for each x E M. Then the function h : M -+ Y 
is also additive. (This result will be used in 11.57.) 

Hints: The proof of h(x + x') ~ h(x)+ h(x') is easy it does not require �9 to be directed; 
we leave the details as an exercise. For the reverse inequality, show that  

h(x) + h(x') = sup [fl(x) + f2(x')] < sup [f(x) + f(x ' )]  = h(x + x'). 
fl ,f2E~ IE~ 

8.33.  Arithmetic in ordered groups. Let (X, 4)  be an ordered group. Let S and T be 
nonempty subsets of X,  and let x, y E X. Show that  

a. For each of the following equations, if the left side exists, then the right side exists and 
the two sides are equal: 

sup(S) + sup(T) = sup(S + T), inf(S) + inf(T) = inf(S + T). 

b. x 4 y  ~ - x > - y .  
c. Duality in ordered groups. For each of the following equations, the left side exists if 

and only if the right side exists, in which case they are equal: 

max(x + S) = x + max(S) ,  sup(x + S) = x + sup(S),  

min(x + S) = x + min(S),  inf(x + S) = x + inf(S), 

- max(S)  = m i n ( - S ) ,  - sup(S) = i n f ( - S ) .  

When S contains just  two elements, the last equation becomes 

- ( u V  v) = ( - u )  A ( - v )  or, equivalently, - (pAq)  = ( - p )  V ( -q ) .  

From all of these equations it follows tha t  any s ta tements  about  maxima or suprema can 
be translated into s ta tements  about minima or infima, and vice versa. Such s ta tements  
occur in pairs; the members of such a pair are said to be d u a l  to each other. For brevity, 
in many cases we mention only one of the two statements.  See also 1.7. 

d. Let D be a subgroup of X. Then D is sup-dense in X if and only if D is inf-dense in 
X. Hint: - sup(S) = i n f ( - S ) ,  etc. 
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e. Let f "  X ~ Y be a group homomorphism, where Y is another ordered group. Then 
f is sup-preserving if and only if f is inf-preserving. 

Hint for the "if" part" If a - sup(S) for some S c_ X,  then 

- f ( a )  - - f ( s u p ( S ) )  - f ( - s u p ( S ) )  

= f ( i n f ( - S ) )  - i n f ( f ( - S ) ) -  i n f ( - f ( S ) )  - - s u p ( f ( S ) ) .  

8.34.  More definitions. If X is an ordered group, then the p o s i t i v e  cone  of X is the set 

X +  = { x  c X " x ~ O}. 

Note that  the ordering can be recovered from the positive cone" We have x ~ y .'. ;. 
x - y E X + .  

Caution: Elements of the positive cone are not necessarily called "positive." In particu- 
lar, when X - R, then X+ is the set of all nonnegative real numbers. Thus, 0 is a member 
of the "positive cone" but it is not a positive number. 

8.35.  Exercise (optional). Let (X, 4)  be an ordered group. Then the following conditions 
are equivalent: 

(A) (X, ~) is a directed set. 

(B) X+ generates the group - -  that  is, X+ - X+ = X. 

(C) For each x E X, there is some p E X+ with p ~ x. 

8.36.  In an ordered group, we use the notat ion [a, b ] -  {x E X ' a  ~ x ~ b}. Note that  

[Xl,  Yl] n t- Ix2,  Y2] C [Xl dr- X2, Yl n t- Y21 

in any ordered group. For some examples of the property described below, see 8.37 and 
8.38. 

T h e o r e m .  Let (X, ~) be an ordered group. The following conditions are then equivalent. 
If one, hence all, are satisfied, we say X has the Riesz  D e c o m p o s i t i o n  P r o p e r t y .  

(A) [0, u] + [0, v] - [0, u + v] whenever u, v E X+. 

(B) If Pl, P 2 , . . . ,  Pm C X and ql, q2 , . . . ,  qn C X with Pi ~ qj for all i, j ,  then there 
exists some r E X with pi ~ r ~ qj for all i, j .  

( C )  [ X l , Y l ] - ~ - [ x 2 , Y 2 ] - ~ - " ' "  n t- [ X n ,  Yn]  - -  [Xl -~- X2 n t- " ' "  n t- X n ,  Y l  -3 t- Y2 n t- " ' "  n t- Y n ]  

whenever n is a positive integer and the xi's and yi's are members of X with 
xi g yi for all i. 

(D) If X l , X 2 , . . . , X m  C X+ and Yl ,Y2 , . . . , Yn  C X+ with Xl + x2 + "'" + Xm = 
Yl +Y2 + ' ' "  + Yn, then there exist some zij E X+ for 1 < i _< m and 1 ~ j < n, 
such that  

n m 

x i -  E zij for a l l /  and YJ - E zij for all j. 
j = l  i=1 
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Proof of (A) =~ (B). It suffices to prove (B) for m = n = 2; then  higher values of m, n 
follow by induction.  Assume, then,  tha t  p i ~  qj for i, j = 1, 2. We know tha t  q 2 -  pl 

lies in [0, (ql - P l )  -~- (q2  - P 2 ) ]  ~- [0 ,  q l  - P l ]  -Jr- [0 ,  q2 - P 2 ] .  Hence q2 - P l  z aa + a2 for 
some aj C [0, q j -  pj]. Let r = a l -~-Pl = --a2-Jr-q2. Then  r = a l + Pl C [Pl,  ql] and 
r = q 2 - a 2 E  [p2,q2]. 

Proof of (B) ~ (C). It sumces to prove this for n = 2; higher values of n then follow by 
induction. Let z E [xl + x2, Yl -[-Y2]. We know z -  Yl 4 Y2 and x2 4 y2 and z -  Yl ~ z -  X 1 

and x2 4 Z - X l .  Hence there is some r with z - y 1  4 r and x2 4 r and r 4 y2 and 
r 4 z -  Xl. Hence z - r  c [xl,Yl] and r E [x2,y2]. 

Proof of (C) =~ (D). It suffices to prove (D) for m = 2; then  higher values follow by 
induction. I f x l + x 2  = Yl +" " + Y n  = s, then  Xl C [O, y l ]+"  "+[O, yn], SO Xl = Z l l  AY" " " - ~ - Z l n  

with Zlj E [0, yj]. Now let z2j = yj - Zlj. 

Proof of (D) =~ (A). L e t p E  [0, u + v ] .  T h e n p + q = u + v f o r s o m e q ~ 0 .  Decompose 
bo th  sides of tha t  equat ion as in (D). 

8 .37.  A degenerate example. Any group X can be ordered by this relation: x 4 y if and 
only if x - y. We shall refer to this as the t r i v i a l  o r d e r i n g .  Despite its simplicity, this 
ordering will play an impor tan t  role in our theory; see 12.32 and 26.53. 

Here are a few of its basic properties:  

a. It is not a latt ice ordering, if X contains more than  one element.  

b. The  positive cone X+ is just  {0}. 

c. The  set [a, b] is a singleton if a = b, or empty  if a =/= b. 

d. The  trivial ordering has the Riesz Decomposi t ion Property.  

LATTICE GROUPS 

8.38.  A l a t t i c e  g r o u p  is an ordered group whose ordering is a lat t ice o r d e r i n g -  i.e., an 
ordered group X tha t  satisfies bo th  of the following conditions: 

(i) x V y exists for all x , y  E X.  

(ii) x A y exists for all x, y C X.  

Actually, in an ordered group, these s t a t ements  are dual  to each other,  and so either implies 
the other; hence either one of these implies X is a latt ice group. Since the ordering of an 
ordered group is t ransla t ion- invar iant ,  an even weaker hypothesis  is sufficient: 

If X is an ordered group and sup{x, 0} exists for each x E X ,  then X is a latt ice 
group. 

Some examples of latt ice groups are given in 11.45 and 11.46. 
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It is easy to see that  any lattice group has the Riesz Decomposition Property indeed 
if pi's and qj's satisfy the hypotheses of 8.36(B), then pl V P2 V . . .  V Pm ~ ql A q2 A ' . .  A qn. 
However, we note that  the Riesz Decomposition Property is also enjoyed by some other 
ordered groups that  are not lattice groups; for instance, see 8.37. 

8.39. If (X, ~) is a lattice group, then for any x E X we can define 

x + - x v o, x -  - ( - x )  v o, / x / -  x + + x - .  

These three objects are elements of the nonnegative cone X+. They are called the pos i t i ve  
p a r t  of x, the n e g a t i v e  p a r t  of x, and the a b s o l u t e  va lue  of x, respectively. 

Caution: We have two notions of "absolute value" the group element / x /  defined 
above, and the nonnegative real number Ix I defined in 10.31. Neither of these is a special 
case of the other. However, the two notions coincide when X - R. 

Here our notation is slightly unconventional. In the wider literature, it is customary 
to represent both kinds of absolute values by the expression Ixl. However, that  convention 
causes some difficulties for some beginners who are already familiar with the real-valued 
absolute value of real or complex numbers; they may accidentally at tr ibute some of its 
properties to this new, unfamiliar "absolute value" of members of a lattice group e.g., 
they may inadvertently assume that  any two absolute values / x / , / y /  are comparable in 
order. (Those absolute values are not necessarily comparable; a simple counterexample is 
given in 8.41.) Our use of the notation Ix~ will serve as a constant visual reminder that  the 
"absolute value" being considered is, like x + and x - ,  a member of some lattice group, not 
necessarily a member of R. This book will reserve the notation Ix[ for real-valued absolute 
values and norms, which are discussed in 10.31 and in Chapter 22. This book's unusual 
practice may prevent confusion in contexts where both types of absolute values are needed 

e.g., in 26.55. 

8.40. Examples. When X is the real line with its usual ordering, then x + - max{x, 0} 
and x -  - m a x { - x ,  0}, a n d / x / i s  just the usual absolute value Ixl. 

More generally, let A be any set. Then the product 

~h  = {functions from A into I~} 

is a Dedekind complete lattice group (actually a vector lattice), when given the product 
o r d e r i n g -  that  is, when ordered by 

x ~ y  if x(A) _~ y(A) for every A E A. 

The nonnegative cone is then 

( R A )  § = 

The lattice operations V,A are defined pointwise on A, as in 11.45. 
functions 

We also have the 

x + (A) = max{x(fl), 0}, x-(A) - max{-x(A) ,  0}, Ixl( ) - Ix( )l, 
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where the last expression is the usual (real-valued) absolute  value of the real number  x(A). 
We emphasize  tha t  /x / /  = Ix(.)l is an element  of IRA tha t  is, a f u n c t i o n  from A into IR 

whereas Ix(A)l is a real number .  The  pointwise formulas given above for x V y, x A y, 
sup(S) ,  inf(S) ,  x +, x - ,  //x// remain  valid in many impor t an t  subsets  of ~A; some of these 

are given in 11.46. 
However, the pointwise formulas for the lat t ice opera t ions  are not  valid in some other  

subsets of I~ A. Some vector lat t ices have appreciably more complicated formulas for the 
sup, inf, absolute value, etc. See for instance 4.21 and 11.47. 

8 .41.  If x and y are members  of a lat t ice group X,  we do not  necessarily h a v e / x / ~ / y /  

o r / y / ~ / x / .  
Example .  Let X - R ~, with the product  ordering. Then  for any function x, the 

f u n c t i o n / x / i s  defined b y / x / ( t )  - x(t)l .  Observe tha t  if x ( t )  - t and y( t )  - t -  1, then  
/ x / ( O )  < / y / ( O )  and / x / ( 1 )  > / y / ( 1 ) .  Thus,  nei ther  / x /  ~ / y /  nor / y /  ~ / x /  is valid. 
(Here we use ~ to compare  members  of X and _< to compare  members  of R.) 

8 .42.  A r i t h m e t i c  in lattice groups. Let X be a lat t ice group, and let x, y, z E X.  Show 
tha t  

a. V and A are t ransla t ion- invar iant .  T h a t  is, 

(x + z)V (y+ z ) -  (xVy) +z, 
( x + z ) A ( y + z )  - ( x A y ) + z .  

This can also be described as: Addi t ion dis t r ibutes  over V and A. 

b.  S u m  decomposi t ion,  x + y - (x V y) + (x A y).  Hint:  Use t ransla t ion- invar iance and 

8.33.c. 

c. x -  - ( - x )  + - - ( x  A 0) and x + - ( - x ) - .  

d.  x ~ O  ~ x + - x  ~ x - - O  ~ / x / - x .  

e. / x /  - x + + x -  - / - x /  - x + v x -  - x v ( - x )  v O. 
Remark .  In 11.50 we'll see tha t  if Z is a vector  lattice, then  I x~  - x V ( - x ) .  

f. J o r d a n  D e c o m p o s i t i o n .  x -  x + - x - .  Hint" Sum decomposi t ion and 8.33.c. 

g. x + A x - - - O .  Hint:  By t rans la t ion  invariance, 

x + A x -  - [(x + - x - ) +  x - ]  A x -  - [(x + - x - )  A 0l + x -  - (x  A 0) - ( x  A 0).  

h.  Uniqueness  of  the Jordan  Decomposi t ion .  If x - u - v where u A v -- 0, then  u - x + 
and v - x - .  

Hints" Show u - x + v  ~ x and u ~ 0, hence u ~ x +. Then  p - u - x  + - v - x -  ~ O. 
On the other  hand,  u - 7 ~ + x +  ~ p a n d v - p + x -  ~ p ,  h e n c e 0 - - u A v ~ p .  

i. / x / - O  ~ x - O .  

j .  - I x ~  ~ - ( x - )  ~ x ~ x + ~ / x / .  

k .  / x /  ~ y if and only  if b o t h  - y  ~ x ~ y and  y ~ O. 
Remark .  In 11.50 we'll see tha t  if X is a vector lattice,  t h e n / x / ~  y < > - y  

x ~ y .  
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I. 2 ( x V y ) = x + y + / x - y / a n d 2 ( x A y ) = x + y - / x - y / .  
Hint: Immediate from 8.42.b. Remark. In a vector lattice, it follows immediately 

that  x V y - ~l(x § y) § -~l/x - y / a n d  x A y -- ~l(x § y ) -  - ~ l / x  - -  y/ .  
m. ( x + y ) + ~ x  + + y+ and (x + y ) -  d x - + y - .  

n. T r i a n g l e  I n e q u a l i t y .  / x  + y~ ~ / x /  + /y / .  
o. /u  + - v+/ ~ / u -  v~ a n d / u -  - v - /  ~ / u -  v/ ,  and likewise 

/ l~ l -  lv// ~ I~- ~1. 
Hint" Let f ( t )  be any of the functions t +, t - ,  or / t / .  By the preceding exercises, 
f ( x  + y) - f ( x )  ~ f (y) .  Apply this once with x - v, y - u -  v and once with x - u, 
y - v -  u, to p r o v e / f ( u ) -  f ( v ) / ~ / u -  v/.  

p. If x c X and n is a positive integer, then 

0 v x v (2x)  v (3x)  v . . .  v (~x )  = x + + x  + + . . . + x  + . 

n summands 

(Here it is understood that  0x - x and nx = x + x + x + . . .  + x is the sum of n x's, 
as in 8.10.h.) Hint: Use induction on n, with 

n+l n n ( ? )  
V (Jx) - V [ ( J  + l ) x V j x ] -  V [Jx + (x V O)] - (jx) + (x V O). 
j--O j=O j--O j--O 

Remark. In a Riesz space this formula simplifies to n(x +) - (nx)+; see 11.50. 

q. A set S C_ X is said to be sol id if it satisfies" 

/ x / ~ / y /  and y E S  ~ x E S .  

(In particular, the empty set is solid.) Note that  the union of any collection of solid 
sets is solid. Thus solid sets are "Moore open sets," i.e., their complements form a 
collection of Moore closed sets in the sense of 4.3. 

For any set T C_ X, let sk(T) be the union of all the solid subsets of T. Show that  
sk(T) is solid; it is called the sol id  k e r n e l  of T. It is the largest solid set contained in 
T; thus it is a sort of "Moore interior" (dual to a Moore closure). Show also that  

( 
- x E - / x / , / x / l  = U sk(T) 

% 

[-u,u]C_T 

8 .43 .  
that  is, 

T h e o r e m  on  d i s t r i b u t i v i t y .  Let X be a lattice group. Then X is distributive; 

x A (y v z) - (x A y) v (x A z) and x v (y A z) - (x v y) A (x v z) 

for every x, y, z E X. In fact, we can make a stronger assertion: X is infinitely distributive. 
That  is, for any x E X and any nonempty set S C X, 
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(i) x A sup(S)  = sup{x A s :  s E S} and 

(ii) x V i n f ( S ) - - i n f { x V s : s E S }  

where each equat ion is in te rpre ted  in this sense: Whenever  the left side of the equat ion 
exists, then  the right side also exists and the two sides are equal. 

Proof. It suffices to prove (i); then  (ii) will follow by duality. To prove (i), assume a = sup(S)  

exists, and let T = {x A s : s E S}; we are to show tha t  x A cr is the sup remum of T. It is 
certainly an upper  bound  for T, since x A s 4 x A a for each s E S. To show tha t  it is the 
least upper  bound,  let r be any upper  bound for T; we are to show r > x A or. For each 
s E S we know r > x A s = (x + s) - (x V s), hence 

Take the sup remum on the right; thus r + (x V or) - x > or. Add x - (x V or) to bo th  sides 
to prove r > x A or. 

8 .44 .  Convergence in lattice groups. Let (X, 4 )  be a lat t ice group. Since X is infinitely 
distr ibutive,  the conclusions of 7.42 are applicable. Show also tha t  

a. x~ o x (as defined in 7.38 and 7.40.d) if and only if there  exists a set S C_ X with 
these three  propert ies:  

(i) S is directed d o w n w a r d -  i.e., for each 81,82 E S there  exists s E S with 

8 ~ S l A S 2 .  

(ii) 0 -  inf(S).  

(iii) For each s E S, we have eventua l ly / /x~  - x / ~  s. 

b. The lat t ice group opera t ions  are continuous,  in the following sense" Suppose (x~, y~) 
o O 

is a net in X • X,  with x~ ~ x and y~ ~ y. Then  

o 
XoL ) - - X ,  /XoL / o .Jr- o X.. ~ o - , / x / ,  x ~  , , x ~  + y ~  , x + y .  

o 
If X is a vector lattice,  then  we can also conclude cx~ ~ cx for every real number  c. 

8 .45.  Proposition. Let X and Y be lat t ice groups, and let f : X + Y be a group 
homomorph i sm i.e., an addit ive map.  Then  the following condit ions are equivalent: 

(A) f is a lat t ice homomorph i sm - -  tha t  is, f (u V v) = f (u) V f (v) and f (u A v) - 
f (u )  A f ( v )  for all u, v e X.  

(B) f ( x  +) - ( f ( x ) )  + for all x E X.  

Proof. For (A) => (B), note tha t  x + - x  V 0 and f ( 0 ) -  0. For (B) => (A), compute  

f ( u  V v) -- f ((u - v) V O + v) - f ((u - v) + ) + f ( v )  

= ( f ( u - v ) )  + + f ( v )  - ( f ( u ) - f ( v ) ) V O + f ( v )  -- f (u) V f (v). 

Thus f preserves sups. 
preserves infs. 

By dual i ty (8.33.c), since f is a group homomorph i sm,  it also 
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8.46. Observation. Any lattice homomorphism is order-preserving. (Hint: 3.21.f.) 
However, an order-preserving group homomorphism between lattice groups is not nec- 

essarily a lattice homomorphism. Example. Let X = C[0, 27r] = {continuous functions from 

[0, 27r] into I~}, and let Y - R. Define f "  X ~ Y by f (x)  - f:~ x(t)dt. Now consider the 
function u(t) = sin(t). We have f(u) = 0, hence (f(u)) + = 0. On the other hand, 

sin(t) when0_<t_<Tr 
u +(t) - max{0, u(t)} - 0 whenTr_<t_<27r, 

hence f (u +) - fo  s i n ( t ) d t -  2. 

UNIVERSAL ALGEBRAS 

8.47. We shall now study certain ideas that can be applied simultaneously to lattices, 
monoids, groups, Abelian groups, rings, lattice groups, etc. This material is taken from 
McKenzie, McNulty, and Taylor [1987] and other books on varieties or universal algebras. 

An a r i t y  func t ion ,  or type ,  for algebraic systems is a function w, defined on any 
nonempty set J ,  taking values in {0, 1, 2, 3 , . . .} .  That function's domain, J ,  may be finite 
or infinite; both cases will be important in our applications. 

Concerning the range of T: In most examples in the literature and in all examples in this 
book, the arity function ~- actually maps the set J into the set {0, 1, 2}, but that  restriction is 
not required for the theory; in principle other values are possible. (Some algebraists permit 
T to also take infinite values; an algebraic system is then called inf in i ta ry .  However, we 
shall only consider f in i t a ry  algebraic systems i.e., those in which each w(j) is finite. 
Some of our results will use this assumption.) 

Let ~- be an arity function. An a lgebra ic  s y s t e m  of a r i t y  7" is a set X equipped with a 
collection of functions ~j �9 X ~(j) ~ X (for j E J). Thus the j t h  function, ~j, is a w(j)-ary 
operation on X (see 1.40). The functions ~j are called the f u n d a m e n t a l  o p e r a t i o n s  of 
X. Another term for "algebraic system" is un ive r sa l  a lgebra .  

To be precise, we should denote the system by an expression such as (X, J, w, {~j }) 
% 

\ / 

i.e., the fundamental operations are part of the definition of the algebraic system; different 
algebraic systems may be built from the same underlying set X by attaching different 
fundamental operations. However, in practice we often refer to X itself as the algebraic 
system, with the choices of J, T, {~j} understood. The notation involving 7, ~j 's, etc., is 
helpful for our present purposes i.e., developing an abstract theory of algebraic systems 

but it is seldom used in the context of individual algebraic systems; see the remarks at 
the end of 8.53. 

If X and X'  are algebraic systems with the same arity function 7, then their j t h  funda- 
1 mental operations ~j and ~j may be quite different, but at least they have the same a r i t y -  

i.e., they are both T(j)-ary operations; thus they behave alike in certain important respects. 
When no confusion will result, we may drop the primes, and use one symbol for both ~j and 

for instance, we commonly use the same symbol + in different commutative groups. ~j 
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On the other hand, in some introductory discussions such as this one it will be helpful to use 
t different symbols (such as ~j ,  ~j or -~-, ~) to distinguish between the operations of different 

algebraic systems. 

8.48.  (For examples see 8.52.) Let X and X ~ be algebraic systems with the same arity 
~. A h o m o m o r p h i s m  from function 7- and corresponding fundamental  operations ~aj and ~j 

X into X ~ is a mapping f : X --~ X ~ tha t  preserves the fundamental  operations - -  i.e., tha t  
satisfies ( ) '( ) f ~j (Xl ,X2, . . . ,x~( j ) )  - ~ j  / (Xl) ,  / (x2) ,  . . . ,  f(x~(j)) 

for all j E J and all Xl,X2, . . .  E X.  We may call this a h o m o m o r p h i s m  of  a r i t y  v 
to emphasize the particular arity being used. This generalizes the definitions of lattice 
homomorphism, monoid homomorphism, group homomorphism, and ring homomorphism, 
given in 4.26, 8.1, 8.9, and 8.18. 

Note that  this definition does not involve any additional properties tha t  may be enjoyed 
by the algebraic systems X and X ~. For instance, ~1 is commutative if it is a binary opera- 
tion satisfying ~1 (Xl, x2) = ~1(x2, Xl), but this additional information is not relevant in de- 
termining whether f is a homomorphism. A function f : X ~ Y, from one monoid into an- 
other, is a monoid homomorphism if and only if it satisfies f ( x l  [hx x2) = f ( x l )  []y f(x2),  
regardless of whether one or both monoids are commutative.  

8.49.  Exercise. If f : X ~ Y is an isomorphism (i.e., a bijective homomorphism) from 
one algebraic system of arity ~- onto another, then f - 1  : y ~ X is also a homomorphism. 

8.50.  Let T be an arity function. Our main interest lies not in all algebraic systems of 
type -/-, but just in those algebraic systems that  satisfy a given collection of identities, as 
explained below. 

Let X be an algebraic system of arity T. A t e r m  in X is an n-ary operation on X that  
is formed by composing finitely many of the fundamental  operations, finitely many times. 
For instance, if ~1 is a 1-ary operation and ~2 is a 2-ary operation, then the function 

is a term in the algebraic system. Note that  the right side does not depend on w; this 
illustrates that  a term is not required to depend on all of its arguments.  The identity map 
x H x will be considered a term; it is the composition of no fundamental  operations. 

Note that  our method of specifying a term depends only on the arities of the ~aj's (i.e., 
the values of T(j)) and on the order of composition of the ~j 's ,  not on other information 
about  X or the ~j'S. For instance, if w(1) = 1 and 7(2) = 2, then we can define a term 
by ~2(x, ~l(Z)) but not by ~2(x, ~al(Z), w) regardless of other properties tha t  may or 
may not be enjoyed by the functions Pl and p2. Hence corresponding compositions of 
fundamental  operations can be used to define corresponding terms in different algebr~nic 
systems, provided they are of the same arity 7-. By a "term of arity 7" we shall mean a 
method of specifying a term. The method does not refer to any particular algebraic system 
X; it specifies a corresponding term for each algebraic system of arity 7. 
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An equational  axiom, or identity,  for algebras X of arity T is a condition on X of 
the form 

p ( X l , X 2 , . . . , X n )  --- q ( X l , X 2 , . . . , X n  ) for all x l , x2 , . . . , xn  E X, 

where p and q are terms of arity T. Such a condition is satisfied by some algebraic systems 
of arity T and not by others. 

For instance, let 7 be an arity function such that  7(1) = 2 i.e., such that  ~1 is a 
binary operation. Then the c o m m u t a t i v e  law for ~1 is the equational axiom ~1 ( X l , X 2 )  - -  

~ l (X: ,Xl) .  This equational axiom is satisfied by the binary operation of a commutative 
group such as (~, +),  but not by the binary operation of a noncommutative group such as 
Perm(X)  see 8.10.i. 

Let 7 be an arity, and let ~ be a collection of identities compatible with T. By an 
a l g e b r a i c  s y s t e m  of  v a r i e t y  (~-, ~J) we shall mean a algebraic system X of arity T that  
satisfies all the identities in :J. Examples will be given starting in 8.52. 

8.51. Proposition (optional). The equational variety (7, J) is a complete theory, in the 
following sense: Let n be a nonnegative integer, and let p and q be any terms of arity ~-, 
each taking n arguments. Consider the equation 

p ( X l , X 2 , . . . , X n )  -- q ( X l , X 2 , . . . , X n )  

(not necessarily belonging to J). Then 

for all X l ,X2 , . . .  ,Xn E X ($) 

equation (.) is a s e m a n t i c  t h e o r e m  in (T, iJ), in the sense that  it is satisfied 
by every algebraic system of type (7, J), 

if and only if 

equation (.)  is a s y n t a c t i c  t h e o r e m  in (T, J), in the sense that  i t can  be deduced 
from the identities that  belong to J by using finitely many substitutions. 

Remarks. Thus, for any equation (.),  we can find either a proof (as in 8.7) or a counterex- 
ample (as in 8.27, which shows by example that  not every ring is commutative). 

Sketch of proof. We shall omit most of the proof, since it is not needed later in this book; 
it can be found in more detail in Johnstone [1987] and in other textbooks. Obviously, any 
syntactic theorem is also a semantic theorem. To prove any semantic theorem is a syntactic 
theorem, the main idea is this: Call two terms (~ and/3 "equivalent" if the equation a = /3  
is a syntactic theorem in (r,•); this is an equivalence relation on terms. The quotient set 

i.e., the set of all equivalence classes - -  can be made into an algebraic system -Z of type 
(T, J) in a natural  way. Since p = q is a semantic theorem, it is satisfied by E; hence p = q 
is a semantic theorem. 

Optional exercise. Carry out this argument in detail for some particularly simple variety 
e.g., the variety of monoids, described in 8.53. Related discussion: see 14.58. 
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EXAMPLES OF EQUATIONAL VARIETIES 

8.52.  Let 7 be defined on the set J = {1,2} by the values T(1) = 7(2) = 2. Then an 
algebraic system of arity T means a set X equipped with two binary fundamental  operations. 

Let X and Y be two such algebraic systems, with fundamental  operations denoted by V 
and A. Then a mapping f : X ~ Y is a homomorphism (of arity T) if and only if it satisfies 

f (x l  V x2) ---- f ( x l )  V f(x2), f ( x l  A x 2 ) =  f ( x l ) A  f(x2) 

for all Xl,X2 E X .  
A lattice is an algebraic system with this arity function 7, which also satisfies the equa- 

tional axioms L1-L3 of 4.20. Thus, lattices make up the equational variety (~-, {L1, L2, L3}). 
Some algebraic systems of arity 7 are lattices, and some are not. A lattice homomorphism 
is a homomorphism of arity 7- between two lattices. 

In many contexts we describe a lattice in terms of its ordering ~, but for purposes of 
this chapter we must instead describe a lattice in terms of its fundamental  operations V, A. 
Most other kinds of ordered sets - -  posets, chains, directed sets, etc. - -  cannot be described 
in an analogous fashion, and so they do not form equational varieties. 

8.53.  Let 7- be the function defined on J = {0, 1} by the values 7(0) = 0 and 7-(1) = 2. 
Then an algebraic system of arity 7- is a set X equipped with one nullary operation ~0 (i.e., 
a specially selected constant member  of X) and one binary operation ~1. A homomorphism 
from one algebraic system of this arity to another is a mapping f : X ~ X '  that  satisfies 

f (~0)  - ~ and f<~l(Xl~X2)) - ~ ' l ( f (xl) ,  f (x2) )  

for all x l, x2 E X. 
A monoid is an algebraic system with this arity T whose two fundamental  operations 

~0, ~1 satisfy these three axioms: 

~1 (X, ~1 (Y, Z)) -- ~1 (~1 (X, y), z), (associative law) 

~ l (~0 ,x )  = x, ~l(X, p0) = x. (identity laws) 

A group is an algebraic system of arity a defined on {0, 1,2} by 7-(0) = 0, w(1) = 2, 
7(2) = 1 tha t  is, with the same fundamental  operations as monoids, plus a unary 
operation P2 - -  and tha t  satisfies the equational axioms above and also these two equations: 

~ l (X,~2(X))  -- ~0 -- ~ I (~2(X) ,X) .  (inverse laws) 

A homomorphism of arity a means a homomorphism f : X ~ X '  of arity T that  also 
satisfies f(p2(x)) -- ~ ( f ( x ) ) ,  regardless of whether X , X '  satisfy the equational axioms 
for a group. A monoid or group is commutat ive if it satisfies the equational axioms listed 
above plus this axiom: 

~I(Xl,X2) = ~1(X2,X1). (commutat ive law) 
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Of course, the various properties of monoids and groups take a simpler appearance if we 
use the notations introduced earlier in this chapter" 

~0 -- i, ~ 1 ( X l ,  X2) --  XlEJX2, ~2 (X)  -- X - 1 .  

Thus, we prefer those notations when we are working solely with monoids or groups. The 
notation ~0, g)l, V)2 is advantageous only when we are trying to see how monoids and groups 
fit into a more general theory of algebraic systems. 

8.54.  Rings with unit were introduced in 8.18. A ring with unit is an algebraic system 
with arity function given by the table below and satisfying certain identities that  we shall 
not list here. Rings with unit form an equational variety. Attaching one more equational 
axiom, we obtain commutat ive rings with unit, another equational variety. 

j 0 1 2 3 4 
~-(j) 0 2 1 0 2 
~j 0 t 1 �9 

Boolean rings will be studied in 13.13 and thereafter. A Boolean ring is a ring with 
unit, in which each element satisfies x 2 = x. Thus, Boolean rings form an equational 
variety; we simply add one more identity to the list of identities for rings with unit. The 
fundamental  operations of a Boolean ring are the fundamental  operations of a ring with 
unit: (0, 1 , - , . ,  +) .  

Boolean lattices are another equational variety, described in 13.1, with rather different 
fundamental  operations 0, 1, C, V, A, satisfying rather different equational axioms. However, 
in a certain sense, Boolean rings and Boolean lattices are different views of the same ob- 
jects: Boolean rings and Boolean lattices can be transformed into each other, as described 
in 13.14. The terms "Boolean ring," "Boolean lattice," and "Boolean algebra" are used 
interchangeably in some of the literature, but in this book we distinguish between the ring 
and lattice viewpoints. 

A field X has a multiplicative inverse operation x H x -1, but that  operation is only 
defined on X \ {0}, not on all of X. Consequently we cannot view fields as an equational 
variety (unless we replace our definitions with much more complicated definitions, as some 
mathemat ic ians  do). Instead we shall simply view a field as a particularly interesting 
member  of the variety of commutat ive rings with unit. 

8.55.  Let F be a field. In Chapter  11 we shall introduce F-linear spaces. These form an 
equational variety, but their arity is a little more complicated to describe. The operations 
of an F-linear space X are the operations of an additive group, together with the operation 
of scalar multiplication. In most contexts, scalar multiplication is thought  of as a mapping 
rn : (c,x) H cx, from F x X into X. However, to fit scalar multiplication into our theory 
of universal algebras, we prefer to think of scalar multiplication as a collection of many 
unary operations rnc : x  ~ cx. We have one mapping from X into X for each c E F. If F 
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is an infinite field (such as the real numbers R or the complex numbers C), then we have 
infinitely many of these unary operations. 

We obtain the equational variety of F-linear algebras (defined as in 11.3) by adding one 
more fundamental  operation (vector multiplication) governed by a few more identities. 

8.56. Lattice groups were introduced in 8.38. They are an equational variety, with the 
fundamental operations of additive groups plus the fundamental  operations of a lattice, and 
with appropriate equational axioms. 

Part  of our definition of a lattice group was the translation-invariance of the ordering, 
z 4 y =~ z + z 4 y + z, introduced in 8.30. However, an implication is not an equational 
axiom, and a partial ordering is not a binary operator; the condition z 4 y =~ x + z 4 y + z 
is not permit ted as an ingredient in our theory of universal algebras. How can the condition 
be reformulated? We can dispense with 4,  replacing statements of the form z 4 y with 
corresponding statements of the form z V y = y. Thus, the translation-invariance of the 
ordering can be restated as the equational axiom (x + z) V (y + z) = (z V y) + z (introduced 
in 8.42.a). 

Vector lattices and lattice algebras will be introduced in 11.44. They are equational 
varieties, with the fundamental  operations of vector spaces or algebras together with V, A. 

Ordered monoids, ordered groups, and ordered vector spaces, introduced in 8.30 and 
11.44, are not equational varieties, since their orderings cannot be described in terms of 
fundamental operations. 
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Concrete Categories 

posets 
(increasing) 

I sets (functions)i 

monoids 
(monoid 
homom.) I topological spaces (continuous)[ 

additive groups uniform spaces metric sp. 
(additive maps) (unif. contin.) (contin.) 

lattices 
(lattice homom.) 

lattice groups 
(additive lattice 

homomorphisms) 

I 
vector lattices 

(linear lattice homom.) 

linear spaces 
(linear maps) 

J 
I TVS (contin. linear)] 

\ 
F-normed 

TAG 
(contin. metric spaces 

additive) (unif. contin.) 

G-normed spaces 
(contin. additive) 

J 
spaces (contin. linear) I 

9.1. Preview. The chart above shows some of the most basic categories that we shall 
consider in this book. (An additional chart at the beginning of Chapter 22 shows some more 
advanced categories.) The components of a category are (i) its objects - -  sets with additional 
structure and (ii) its morphisms mappings between those sets, which (in most cases 
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of interest) preserve that additional structure in at least one direction. Morphisms are 
indicated in parentheses in the chart; for instance, "topological spaces (continuous)" is 
included in the chart to indicate the category whose objects are topological spaces and 
whose morphisms are continuous maps between those spaces. 

Precise definitions will be given in 9.3, and examples will be given in some detail starting 
in 9.6. Some of the categories mentioned in this chapter are not introduced formally until 
later; this chapter may be considered as a preview of those categories. The line segments 
in the chart indicate natural relations between categories via forgetful functors (discussed 
in 9.34). Some, but not all, of these forgetful functors are given by the inclusion of a 
subcategory in a category (discussed in 9.5). 

The category theory being introduced here is based loosely on the theory of Eilenberg 
and Mac Lane. It should not be confused with Baire category theory, an unrelated topic 
introduced elsewhere in this book. The Eilenberg-Mac Lane theory was originally developed 
mainly for applications in algebraic topology (discussed briefly in 9.33); recently it has also 
been useful in the abstract theory of computer programs. However, most theorems of 
Eilenberg-Mac Lane category theory are irrelevant to the purposes of this book and will 
be omitted. The language of the Eilenberg-Mac Lane theory is useful to us, but we shall 
take the liberty of modifying that language slightly to make it more useful for the purposes 
of analysts; thus some of our definitions differ slightly from the definitions to be found in 
books on category theory. 

Some other introductions to category theory can be found in Herrlich and Strecker 
[1979], Mac Lane [1971], and Mac Lane and Birkhoff [1967]. 

9.2. Introductory discussion. We say that two objects X and Y are i s o m o r p h i c  if there is a 
correspondence between them that preserves (in both directions) all the structure currently 
of interest. Such a mapping is then called an i s o m o r p h i s m .  Different branches of mathe- 
matics, being concerned with different kinds of structures order, algebraic, topological, 
uniform, etc. have different meanings for the terms "isomorphic" and "isomorphism." 
(This multiplicity of meanings may confuse some beginners.) However, most meanings of 
isomorphic and isomorphism can be subsumed by one abstract meaning developed in this 
chapter; see particularly 9.14. 

If two objects A and B are isomorphic, then they differ only in their labeling and are 
essentially two different representations of the same object. They can be used interchange- 
ably, provided that we are willing to relabel everything else that they interact with. The 
"essence" of the objects is the part of them that does not depend on the particular choice 
of representation. This interchangeability is the heart of mathematics (and, indeed, of all 
abstract thinking); for instance, the "essence" of the number 4 does not depend on whether 
we are dealing with four apples or four airplanes. 

When two objects X and Y are isomorphic, we may sometimes identify X and Y, and 
treat them as equal, because for most practical purposes they are the "same" set. We ~ a y  
even write X - Y,  if this will not cause confusion. More generally, suppose X is isomorphic 
to a subset of a set Y; then we may identify X with that subset and write X c_ Y. A 
structure-preserving map from one set into another is sometimes called an e m b e d d i n g ,  
although this term has more specific meanings in some contexts. 

Different categories groups, topological spaces, etc. have different properties, so 
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ultimately they must be studied separately. However, there are analogies between the 
most elementary properties of these different categories e.g., between subgroups and 
topological subspaces, or between products of groups and products of topological spaces. 
These analogies may help the beginner through the unavoidable plethora of definitions and 
elementary propositions. 

DEFINITIONS AND AXIOMS 

9.3. Following are precise definitions. Some readers will find it helpful to glance ahead to 
the examples, which begin in 9.6. 

A c o n c r e t e  c a t e g o r y  consists of a collection of objects and a collection of morphisms. 
An o b j e c t  is a pair (X, S) consisting of a set X and some additional structure S on X 

(such as a preordering or a a-algebra); then X is called the u n d e r l y i n g  set  of the object 
(X, S). The nature of the "additional structure" will vary from one category to another, 
but the meaning of this term will be clear in particular categories. We will often refer to 
X itself as the object if the choice of S is clear or does not need to be mentioned explicitly, 
but it is understood that  S is still part of the object. One set X may give rise to several 
different objects, by being equipped with several different structures for instance, two 
different preordered sets may contain the same points. Two objects (X, S) and (Y, 9") are 
considered equal (as objects) if X = Y and S = 9". 

To define morphisms, consider triples 

f (x,s) 

consisting of two objects of the given category and a function f : X ~ Y whose domain 
and codomain are the underlying sets X and Y of those two objects. The collection of all 
such triples forms a class that  is usually larger than what we want. Some subclass will 
be specified as the collection of m o r p h i s m s  for the category; the specified subclass must 
satisfy two axioms noted below. When f :  (X, S) ~ (Y, 9") is a morphism, we call (X, S) 
and (Y, 9") its d o m a i n  and c o d o m a i n ,  respectively. A morphism is also sometimes known 
as an arrow. 

The collection of morphisms must satisfy these two axioms: 

(i) ( C o m p o s i t i o n s )  Any composition of two morphisms is a morphism. In other words, 
if A, B, C are objects and f : A ~ B and g : B ~ C are morphisms, then go f  : A ---. C 
is a morphism. 

(ii) ( I d e n t i t y )  For each object A = (X, g), the identity map i x  on the underlying set X 
is a morphism from A to A. 

In most categories of interest, the class of morphisms is chosen so that  the morphisms 
preserve the structure of the objects in at least one direction, but that  preservation is not 
explicitly built into the two axioms listed above. In principle, it is possible to create a 
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category in which the morphisms are entirely unrelated to the additional structure but 
that would not be a particularly interesting category. 

The literature of category theory sometimes refers to categories by their objects. For 
instance, when topological spaces are used for objects, continuous maps are almost invari- 
ably used for morphisms, so we may refer to the "category of topological spaces." However, 
in general, a particular choice of objects does not force upon us a particular description of 
morphisms, nor vice versa. Thus, we may refer to the "category of metric spaces with con- 
tinuous maps," or the "category of metric spaces with uniformly continuous maps;" these 
are two different categories. 

Whenever we discuss two or more objects and/or  morphisms together, it should be 
understood that all the objects and/or  morphisms being considered are in the same category, 
unless specified otherwise. 

9.4. A set X may be made into an object in more than one way, by equipping it with dif- 
ferent structures S1, $2 - -  for instance, different topologies or different orderings. Whether 
or not a function f : X ~ Y is a morphism depends on what structures S, '3" we attach to X 
and Y; the function f may be a morphism for one choice of structures but not for another 
choice. 

If the identity map i x  is a morphism from (X, S) into (X, 9"), we say that S is s t r o n g e r  
(or f iner)  than 9 ~, or that ~ is weake r  (or coarser) than S. Thus any structure is stronger 
than itself. Here mathematical language differs from everyday English, which would prohibit 
anything from being stronger than itself; see 1.4. 

Clearly, the relation "stronger than" is a preordering (i.e., transitive and reflexive) on 
the collection of all structures on X. In many categories of interest (but not all), this 
preordering is also antisymmetric and thus a partial ordering i.e., in many categories of 
interest, if the identity map i x  : X ~ X is a morphism in both directions between (X, S) 
and (X, ~'), then S -- 9 ~. For instance, if two topologies are both stronger than each other, 
then they are equal; see the last paragraph of 9.8. In some categories, if either structure is 
stronger than the other, then they are equal; see the last paragraph of 9.11. 

This terminology "stronger," "weaker," etc. will also be applied to any devices 
(metrics, gauges, etc.) that  are used to define the structure of a category. For instance, let 
d and e be metrics that determine topologies ~d and ~e and uniformities ~[d and ~e on a set 
X. We shall say that d is t opo log i ca l l y  s t r o n g e r  than e if ~d is stronger than 9~ (that 
is, if ~'d _~ ~'e); we shall say that d is u n i f o r m l y  s t r o n g e r  than e if ~d is stronger than ~/r 
Two metrics are t opo log i ca l l y  equ iva len t  or u n i f o r m l y  equ iva len t  if they determine 
the same topology or the same uniformity. 

This syntactic convention also applies to other devices than metrics - -  e.g., it also applies 
to gauges. It even applies to uniformities: one uniformity l / i s  topologically stronger than 
another uniformity 1/~ if it determines a stronger topology i.e., if 9"ll _D ~Y~/,, where the 
topologies are defined as in 5.33. 

If the context is understood, then we may omit mentioning the category - -  e.g., we may 
simply say d is s t r o n g e r  than e or d is equ iva l en t  to e. This omission is made most often 
for topological structure i.e., if no other meaning is evident, then "stronger" usually 
means "topologically stronger." 
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9.5. Let | and J~ be categories. 
conditions are satisfied: 

We say that | is a s u b c a t e g o r y  of ~ if these two 

(i) {G-objects} c_ {~-objects}. More precisely, every G-object can also be viewed 
as a J~-object perhaps via some change of description, as in 9.10 and 
the mapping from G-objects to J~-objects is injective. 

(ii) Whenever A and B are objects of | (and hence also objects of ~), then every 
|  from A into B is also a J~-morphism from A into B. 

We say | is a full s u b c a t e g o r y  of ~ if condition (i) is satisfied, as well as the following 
strengthened version of condition (ii): 

(ii') Whenever A and B are objects of | (and hence also objects of ~), then the | 
morphisms from A into B are the same as the J~-morphisms from A into B. 

Examples will be given below; see particularly 9.10. 

EXAMPLES OF CATEGORIES 

9.6. The simplest category is the c a t e g o r y  of sets,  in which the objects are sets (without 
any additional structure specified) and the morphisms are functions. 

For an isomorphism in this category, we might use a bijection between two sets. Then 
two sets are isomorphic if they have the same cardinality. 

9.7. A category can be formed by taking c o n v e r g e n c e  spaces  for objects and convergence 
preserving maps for morphisms; see 7.33. 

9.8. I nve r se  image  ca tegor ies .  The categories of measurable spaces, topological spaces, 
and uniform spaces differ in their deeper properties, but they are quite similar in their most 
elementary properties. In each of these categories, an object is a pair (X, S) consisting of a 
set X and a collection $ of specially designated sets a a-algebra or topology S c_ [P(X), 
or a uniformity S C_ [P(X x X). In each of these categories, a morphism is a mapping with 
respect to which the inverse image of a specially designated set is also a specially designated 
set. This is explained in greater detail below. 

Topological spaces form the objects of a category. In this category, a morphism f �9 
(X,S) ~ (Y,~') i s a m a p  f : X - ~ Y w i t h t h e p r o p e r t y t h a t  T E ~ "  =~ f - l ( T )  E S 
i.e., for which the inverse image of an open set is an open set. Such functions are called 
c o n t i n u o u s  maps. Some elementary examples of continuous maps are given in 15.17. 

Measurable spaces form the objects of a category. In this category, a morphism f : 
(X, 8) ~ (]I, 9") is a mapping f :  X ~ Y with the property that T E ~ =~ f - l ( T )  E S 

i.e., for which the inverse image of a measurable set is a measurable set. Such functions 
are called m e a s u r a b l e  mappings. In some contexts the choices of 8 and 9" are understood 
and do not need to be m e n t i o n e d -  one may refer to a measurable mapping from X to Y 

but we emphasize that the meaning of "measurable mapping" does nevertheless depend 
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very much on the choices of 8 and ~Y. In most of the theory developed in later chapters, 
the codomain Y is a topological space and g~ is the a-algebra of Borel subsets of Y, but no 
such restriction will be imposed in the more general theory developed in this chapter. (We 
remark that  even greater restrictions are imposed in applied mathematics.  In that  context, 
a "measurable mapping" usually means a measurable mapping from an open subset of R TM 

equipped with its Lebesgue measurable subsets to an open subset of IR n equipped with its 
Borel subsets. This class of mappings is not closed under composition; thus, the "measurable 
mappings" of applied mathematics do not form the morphisms of a category.) 

Uniform spaces form the objects of a category. In this category, a morphism f : (X, 8) --, 
(Y, g~) is a mapping f : X  ---, Y with the property that  

T E ~  {(Xl,X2) E X " ( f (Xl ) , f (x2) )  E T} E S 

i.e., for which the inverse image of a vicinity is a vicinity. Such functions are called 
u n i f o r m l y  c o n t i n u o u s  mappings. Such functions are studied further, and examples are 
given, in Chapter 18. 

It will sometimes be convenient to adopt a notation that  makes these three categories 
look more alike. For any set X, let us define 

A { x 
X - X x X  

for measurable or topological spaces 
if we are working with uniform spaces. 

A A A 

For any mapping f "  X --, Y, define a mapping f "  X --, Y by taking 

f - f x f  
for measurable or topological spaces 
if we are working with uniform spaces, 

where (f  x f ) "  (X x X) + (Y x Y) is defined by (f  x f ) (x l ,  x2) - ( f (x l ) ,  f ( x2 ) ) .  With these 
conventions, an object (in any of the three categories) consists of a pair (X, 8) where 8 is a 

collection of subsets of X satisfying certain axioms, and a m o r p h i s m  f �9 (X, 8) --* (Y, 7) 
is a mapping f -  X + Y with the property that  

T E ~" ==~ f~-l(T) E 8. 

It is easy to verify that  if a mapping f "  X + Y satisfies 

T E ~ ~ ? - I ( T )  E S 

for some generating collection of sets ~ c_ ~, then f is a morphism; here "generating 
collection" is defined as in 5.23.b, 5.26.e, and 5.37. 

For each of our inverse image categories, a structure 8 on a set X is s t r o n g e r  than 
another structure '/r on the same set X precisely when 8 _D ~r. Thus, the stronger structure 
is represented by the larger set. 

We note a few important examples of subcategories that  will be studied in later chap- 
ters" Use metric spaces for objects, and use uniformly continuous maps for morphisms; the 
resulting category is a subcategory of either the topological spaces or the uniform spaces. 
Further subcategories are obtained by further restricting the choice of morphisms: Use 
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H61der continuous maps, Lipschitzian maps, or nonexpansive maps; we shall see in later 
chapters that these classes of maps are closed under composition. 

Some functional analysis books gloss over the distinction between topological spaces and 
uniform spaces, because in the setting of topological vector spaces or more generally, in 
the setting of topological Abelian groups the two kinds of structures are nearly inter- 
changeable: There is a one-to-one correspondence between topologies and "nice" uniformi- 
ties, as shown in 26.37. However, we shall maintain a distinction between topological and 
uniform spaces, because this facilitates understanding and because occasionally one wants 
to apply these concepts in some context other than that of topological Abelian groups. 

9.9. A p o i n t e d  topologica l  space  is a topological space X with a particular point 
x0 E X selected; that point is called the base  po in t  of the space. A category can be 
formed with objects consisting of pointed topological spaces, and with morphisms consisting 
of continuous maps that preserve the base points. This category will be important in 9.33. 

9.10. C a t e g o r i e s  of o r d e r e d  sets  can be formed in many ways. Perhaps the simplest 
way is to use preordered sets for objects and to use increasing mappings for morphisms. 
Many important subcategories of this category can be obtained by using a smaller collection 
of objects e.g., chains or complete lattices and/or by using some smaller collection of 
morphisms e.g., sup-preserving maps. 

In the category of preordered sets with increasing mappings, the statement "~ is stronger 
than __" (as defined in 9.4) means that x ~ y =~ x _ y; equivalently, it means 
Graph(4)  C_ Graph(_E). Thus the stronger preordering is represented by the smaller set, 
in contrast with the situation described in the last paragraph of 9.8. 

Exercise (optional). Let X and Y be preordered sets, equipped with their lower set 
topologies (defined as in 5.15.d). Show that a function f "  X --~ Y is increasing if and only 
if it is continuous (defined in 9.8). Conclude that preordered sets (with increasing mappings 
for morphisms) are a full subcategory of topological spaces (with continuous mappings for 
morphisms). 

Caution" Although we may view each preordered set (X, 4) as a topological space (X, g), 
note that the ordering is not equal to the topology. Indeed, the ordering 4 (or its graph) 
is a subset of X x X, whereas the topology g is a subset of ~P(X). Thus, we change our 
description of the object when we go from (X, 4) to (X, g). 

9.11. A lgebra ic  ca tegor ies .  Let ~- be an arity function (defined in 8.47). The universal 
algebras of type 7 can be used for the objects of a category, with the homomorphisms of 
type T (defined in 8.48) for the morphisms. 

However, generally we are interested in a full subcategory of that category, obtained as 
follows: Let :J be a collection of identities compatible with T; then the algebraic systems 
of variety (~-, J) (defined in 8.50) can be used as the objects for a category. Examples are 
the category of lattices, the category of monoids, the category of groups, the category of 
Abelian groups, the category of lattice groups, and the category of rings. 

In an algebraic category, 

(.) if f "  X ~ Y is a bijection and a morphism, then f -1  . y ~ X is also a morphism. 
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This invertibility property is not shared by most other kinds of categories studied in this 
book. 

In an algebraic category, it is not particularly meaningful to discuss whether one struc- 
ture on a set is "stronger" than another. Indeed, if g and ~r are two structures on a set X, 
and the identity map ix is a morphism in either direction between (X, g) and (X, ~ ,  then 
in fact g = 9 ~. (That follows from (.).) Thus, if one structure is stronger than another, then 
they are equal. 

9.12. Remarks: overview of categories. There is some overlap between our general classes 
of categories; for instance, lattices may be viewed as algebraic systems (X, V, A) or as 
preordered sets (X, 4). Each viewpoint has its advantages, depending on what properties 
and structures we wish to study. 

Early chapters of this book are devoted to the simplest categories. Later chapters will 
introduce more complicated and specialized categories. Many of these are "hybrid cate- 
gories," combining structures of two simpler categories and also imposing some condition 
of compatibility between the two structures. For instance, a topological linear space has 
both a topology and a linear structure, which must be compatible in that the vector space 
operations are jointly continuous. 

Viewing an object in different categories may yield different kinds of information about 
that object. Following are a few examples. 

Every metric determines a topology (see 5.15.g), but there are also some topologies that 
are not determined by any metric. The topologies that can be determined by a metric are 
called rnetrizable topologies. Thus, metrizable topological spaces form a full subcategory of 
topological spaces (both equipped with continuous maps for morphisms). 

On the other hand, one topology 9" may be determined by two different metrics d, 
d ~. Thus the category of metrizable topological spaces (X, '3) is slightly different from the 
category of metric spaces (X, d) (both equipped with continuous maps), since (X, d) and 
(X, d') are different objects in the latter category. 

Different questions arise naturally in these slightly different categories. For instance: 

�9 A theorem of Banach states that any strict contraction self-mapping of a complete 
metric space has a fixed point. This is a statement about metric spaces. If we replace 
the metric with another metric that yields the same topology, the self-mapping may 
no longer be a strict contraction. (Meyers' converse in 19.47 considers the effects of 
such a replacement.) 

�9 A theorem of Baire states that in a topologically complete space (i.e., a topological 
space (X, 9") whose topology can be given by various metrics, at least one of which 
is complete), the intersection of countably many open dense sets is dense. This is a 
statement about metrizable spaces. If we replace a metric with an equivalent metric, 
the open sets and the dense sets are unaffected. 

This kind of distinction is also displayed in a chart in 18.1. 

9.13. Nonconcrete categories (optional). Concrete categories will suffice for the purposes 
of this book, but the reader should be aware that the Eilenberg-Mac Lane theory deals with 
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other kinds of categories as well. A c a t e g o r y  consists of certain collections of mathematical  
devices called o b j e c t s  (not necessarily sets) and m o r p h i s m s  (not necessarily functions), 
satisfying certain rules listed below. Each morphism is represented in the form f : A -~ B, 
where f is the name of the morphism and A and B are objects called the d o m a i n  and 
c o d o m a i n  of the morphism, respectively. Morphisms must satisfy these rules: 

(i) If f : A ---, B and g : B ~ C are morphisms, then there exists a morphism 
g o f :A  ---, C, called the c o m p o s i t i o n  of f and g. 

(ii) Composition of morphisms is a ssoc ia t ive :  f o (g o h) = ( f  o g) o h. 

(iii) For each object A, there exists a morphism iA, called the i d e n t i t y  m o r p h i s m  
of A, satisfying 

g o iA = g for any morphism g with domain A, and 

iA o f = f for any morphism f with codomain A. 

It is an easy exercise to show that  the identity morphism is unique - -  i.e., if iA and i5, both 
satisfy condition (iii), then iA - - i '  A. 

We mention two examples of nonconcrete categories: 

a. Let (S, 4)  be any preordered set; for objects take elements of S; for morphisms take 
ordered pairs (z, y) satisfying z 4 y. Note that  in this category, for any two objects z 
and y there is at most one morphism from z to y. 

b. Let X and Y be topological spaces. Let [0, 1] have its usual topology, and let [0, 1] x X 
have the product topology (discussed elsewhere in this chapter and in Chapter  15). 

Let f, g : X -+ Y be continuous mappings. A h o m o t o p y  from f to g is a continuous 
mapping h : [ 0 ,  1] x X --+ Y such that  

h(O,x) = f ( x ) ,  h(1,x) = g(x) for all x E X. 

If such a mapping exists, we say f and g are h o m o t o p y - e q u i v a l e n t .  The reader 
should verify that  this is an equivalence relation on the collection of all continuous 
mappings from X into Y. 

A category can be formed by taking topological spaces for objects and homotopy 
equivalence classes for morphisms. This category is typical of the ones used in algebraic 
topology. See also 9.33. 

9.14. More definitions. In any category concrete or not an isomorphism between 
two objects A and B is a morphism f : A ~ B for which there exists another morphism 
g : B ~ A such that  g o f = iA and f o g = iB. This makes precise the definition given in 
9.2. 

In a concrete category, this definition can also be restated as follows: An isomorphism 
between two objects A = (X, g) and B = (Y, 9") is a bijection f : X --~ Y such that  both 
f : A  ~ B and f - 1  : B  --~ A are morphisms. 

In any category, an a u t o m o r p h i s m  of an object A is an isomorphism from A onto A. 
Clearly the identity map of A is an automorphism, but there may be others as well. For 
instance, the translation mapping ~ : x H x + 3, from IR into R, is an automorphism of 
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metric spaces (but it is not an automorphism, or even a morphism, of additive groups, since 
it does not preserve the identity). 

The inverse of any automorphism is another automorphism. It is easy to see that  the 
automorphisms of A form a (not necessarily Abelian) group, with composition of morphisms 
for the group's binary operation. The automorphism group of A is often denoted by Aut(A). 
This notation does not indicate what category is being used. We could indicate it with 
subscripts. For instance, let ~ be the translation map mentioned in the previous paragraph; 

then p E Autmetric spaces(R) but ~ ~ AUtadditive groups(R). However, usually the choice 
of category is clear from the context, and so the subscripts are not needed. 

INITIAL STRUCTURES AND OTHER CATEGORICAL 
CONSTRUCTIONS 

9.15. Definition. Let X be a set, let {(Yx, 9"~) : A c A} be a collection of objects in 
some category, and for each A let ~ : X ~ Yx be some given mapping. Then an in i t ia l  
s t r u c t u r e  determined by the ~x's and 7~'s is a structure g that  makes (X, g) into an object 
with this property: 

Let (W, J~) be any object in the category, and let f : W ~ X be any func- 
tion. Then f is a morphism from (W, J~) into (X, g) if and only if each of the 
compositions ~ o f is a morphism from (W, ~) into (Yx, 7~) 

or, equivalently, an object with these two properties: 

(i) Each of the mappings ~a : X + Ya is a morphism. (ii) Let (W, ~R) be any 
object in the category, and let f : W + X be any function. Suppose that  each 
of the compositions ~ o f is a morphism from (W, J~) into (Ya, Tx). Then f is 
a morphism from (W, J~) into (X, g). 

Ezercises. 
a. Prove the equivalence stated above. 

b. If g is an initial structure on X determined by the ~a's  and 7x's, then g is weaker than 
any other structure on X that  makes the ~x's into morphisms. (For this reason it is 
sometimes called the w e a k  s t r u c t u r e . )  

c. If ~1 and g2 are two initial structures on X determined by the ~ ' s  and 7~'s, then each 
of S1, g2 is weaker than ~he other. 

Hence there is at most one initial structure determined by the ~ ' s  and 7~'s, in 
many categories of interest to us particularly, in our inverse image categories and 
algebraic categories. It is the weakest structure that  makes the p~'s into morphisms. 

Further remarks. Let any X and (Y~, 7~)'s and ~ ' s  be given. Then the initial structure 
does not always exist; in our algebraic categories, this will be evident from our discussion 
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in 9.20. However, the initial structure does always exist in our inverse image categories; we 
shall prove that  in 9.16. 

The definition of initial structure given above is admittedly rather complicated. Simpler, 
equivalent definitions are available in some categories e.g., for topological spaces (see 
15.24) and for uniform spaces (see 18.9.f). 

9.16. Proposition. Initial structures exist in the categories of measurable spaces, topological 
spaces, and uniform spaces. 

More precisely: Let { (Y~, ~r~). A E A} be a collection of objects in one of those categories. 
Let X be a set, and let some mappings ~ �9 X ~ Y~ be given. Then there exists an initial 
structure S on X, determined by those spaces and mappings. In fact, S is the structure 
generated by the collection of sets 

-- U ~'~-1 (~A) -- { ~ - I ( T )  �9 A C A and r C ~'x}, 
AEA 

h h 

where mappings ~'~ �9 X ~ Yx are defined as in 9.8. 

Proof. In the category of measurable spaces or topological spaces, ~1 can be used to generate 
a structure, since any collection of sets can be used to generate a structure. In the category 
of uniform spaces, each ~'~-1(9"~) is a preuniformity, by 5.40.c; hence ~} is a preuniformity, 
by 5.38.a; hence ~} can be used to generate a structure. 

Let g be the structure on X generated by ~}. We shall show that  g is an initial structure. 
It is clear that  each ~a is a morphism from (X,g)  into (Ya, q'a), since g _D 9 _D ~-~-1(9"a). 
Now suppose that  (W, J~) is some object and g �9 W ~ X is some mapping such that  
each composition ~x o g is a morphism; we must show that  g itself is a morphism. Let 
E -- {S  C X "  ~ - 1 ( S )  E J~}; it suffices to show that  E _D g. 

We first show that  E _D c}. Fix any A E A and fix any T E 9"~. Then ~px o g �9 (W, J~) 
(Y,~r~) is a morphism; h e n c e  g - I ( ~ - I ( T ) )  - ( ~  o ~ ) - I ( T )  is a member of J~; hence 

~ (T) is a member of E. Thus E _D (}. 
In the category of measurable spaces or topological spaces, E is a structure on X, by 

5.40.b. Since it is a structure containing ~}, it also contains the structure generated by 9; 
thus E D g. 

m 

For the category of uniform spaces, we know :2 is a uniformity on W, hence a filter on 
W x W, hence E is a filter on X x X by 5.40.b. Also E contains 9, which is a preuniformity. 
Hence E contains the smallest filter that  contains ~} that  is, E contains g. 

9.17. An important special case. Let {S~ �9 A E A} be a collection of structures on a set 
X, in the category of measurable spaces, topological spaces, or uniform spaces. Then the 
s u p r e m u m  of the S~'s is the smallest structure that  contains U~ch S~; it is equal to the 
initial structure determined by the identity mappings i~ �9 X ---, (X, S~). 

9.18.  P r o d u c t s .  Let {(YA,9"~)" A c A} be a collection of objects in some category, and 
let X - H~eh Y~ be the product of the underlying sets. By a p r o d u c t  s t r u c t u r e  on X we 
shall mean an initial structure (defined as in 9.15) determined by the coordinate projections 
7r ~, " X---+ Y~. 
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Products  always exist in our inverse image categories; this is just  a special case of 9.16. 
As we noted in 9.10, preordered sets (with increasing maps for morphisms) may be viewed 
as a full subcategory of topological spaces; hence products also exist in the category of 
preordered sets. Exercise (optional): Show that  the product of preordered sets, defined in 
this fashion, is the same as the product defined in 3.9.j. 

Although initial structures do not always exist in our algebraic categories (as we shall see 
in 9.20), nevertheless product  structures always exist. Fundamenta l  operations are defined 
coordinatewise. For instance, if U, V, W are lattices, then lattice operations are defined on 
U x V x W b y  [.1] [..] [.iv..] [.1] [..] [.1...] 

?21 V v2 - -  Vl V v 2 , V l  A v2 - -  Vl A v 2 . 

Wl  W2 Wl  V W2 Wl  W2 Wl  A w 2  

This construction generalizes readily to products of any number of factors in any equational 
variety. Say X = Y~ x YZ x Y~ x . . .  is a product of algebraic systems of type (~-, J); suppose 
T(j) = n; we shall now describe the action of the n-ary operation (I)j of X in terms of the 
n-ary operations p~j,  pZj, p ~ j , . . ,  of the factor spaces. The function Oj acts on n-tuples 
(Xl,X2,.. .  ,Xn) E yn. Say xi = (yi~, yiz, y i~ , . . . )  where yi~ c Y~, yiz E YZ, etc. Then 

Yl~ Y2~ Y,~ q~od(Ylc~, Y2c~, . . . ,  Yno~) 
Y l ~  y2z ynz yg/3j(Yl~,  Y2~, . . . ,  YnZ)  

~ J  Yl~, ' Y2~ ' " " '  Yn~ --  qP',/j(Yl~, Y2~, . . . ,  Yn~,) " 

We leave it to the ambitious reader to unwind all the notat ion and verify that  this formula 
does indeed satisfy the definition given in 9.15, and verify that  X is an algebraic system of 
type (T, :J). It is sometimes called the d i r e c t  p r o d u c t .  

Some of our "hybrid" categories also have product objects. For instance, if ((Y~, ~ )  : 
A E A) is a collection of topological vector spaces, then the product  topological s tructure 
and the product  vector space structure on the product  set X = 1-[~A Y~ are compatible 
with each other and thus yield a product  topological vector space; see 26.20.a. 

This does not work in some other categories. For instance, a product  of finitely many 
normed spaces is a normed space, but a product of infinitely many normed spaces is a 
topological vector space that  cannot be equipped with a norm; see 27.7.c. 

9.19.  Exercise. A product of morphisms is a morphism. 
More precisely: For each A, suppose that  f~ : X~ ~ Y~ is a morphism. Define a mapping 

f from P = I-I ~ ~ A X~ into Q = 1-[ ~ ~ A Y~ by taking 

:((,~ ,,, ,,, ...>) - (:,<,~ :,(,,>, :,(x,>, ...) 
if A = {c~,/3, ~/,. . .}. Assume that  P and Q are equipped with product  structures. Then f 
is a morphism. 

9.20.  Discussion of codomains. Let X be a subset of a set Y; let i X c �9 -~ Y b e  
the inclusion map. Then any function f : W -~ X is the "same" as the composition 



220 Chapter 9: Concrete Categories 

i o f :  W ~ Y, insofar as it has the same domain and the same values f (w)  = i(f(w)); it 
differs only in our designation of the codomain. See 2.5.c. 

Of course, if we attach structures :R, g, 9" to the sets W, X, Y, making them into different 
objects in a category, then the difference between f and i o f may be more substantial: 
perhaps one is a morphism while the other is not. That  depends on our choices of the 
additional structures :R, g, 7. 

Definition. Let (X, g) and (Y, ~r) be objects in some category. We say that (X, g) is a 
s u b o b j e c t  of (II, 9") if these two objects are related by this condition: 

Let (W, J~) be any object in the category, and let f �9 W --~ X be any func- 

tion. Then (W, :R) f ,  (X, g) is a morphism if and only if the composition 

(W, ~) iof> (y, ~j~) is a morphism. 

In other words, S is the initial structure on X determined by the inclusion map i �9 X 
and the structure ft. 

C - > y  

Further remarks. In our inverse image categories, if (IT, 9") is any object, then every subset 
X c_ Y has a unique subobject structure g; that is just a special case of 9.16. In fact, 
it follows easily from 9.16 that the subobject structure is S - {X A T �9 T E 7}. It is 
sometimes called the t r a c e  of g" on X. In the category of topological spaces, S is the same 
as the relative topology, which we introduced in 5.15.e. 

Subobjects in algebraic categories are studied in more detail below. 

9.21. Basic properties of subalgebras. We consider the category consisting of the algebraic 
systems of some type (~-,J), with homomorphisms of type T. (For examples, think of the 
category of lattices, the category of rings, or the category of lattice groups.) In this category, 
a subobject is called a suba lgeb ra .  Let X be an object. Show that 

a. Y is a subalgebra of X if and only if Y is a subset of X that is closed under the 
fundamental operations of X. It then follows that Y itself is also an algebraic system of 
type (~-, :J), whose fundamental operations are the restrictions to Y of the fundamental 
operations of X. 

Except in degenerate cases, not every subset of X is closed under the fundamental 
operations. Thus, in an algebraic category, initial structures do not always exist. 

b. X is a subalgebra of itself. 

c. The intersection of any collection of subalgebras of X is a subalgebra of X. Thus, the 
subobjects of an algebraic system Y form a Moore collection. (We mentioned this for 
sublattices in 4.21.) 

d. The intersection of all the subalgebras containing some given set T C_ X is the smallest 
subalgebra containing T; it is called the subalgebra g e n e r a t e d  by T. It is the closure 
of T under the fundamental operations; all of those operations are finitary. Hence 
the closure operator is an algebraic closure operator, as defined in 4.8(A). Thus, the 
operator S H cl(S) is an algebraic closure, if cl(S) is the submonoid, subgroup, subring, 
etc., generated by a set S c_ X, where X is a given monoid, group, ring, etc. 
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e. The empty set is a subalgebra of X if and only if none of the fundamental operations 
of X is nullary. Thus, the empty set is a subalgebra when we consider lattices, but 
that  category is atypical. Most of the algebraic systems considered in this book have a 
nullary operation - -  i.e., a special element, usually denoted 0 or 1 - -  and so the empty 
set is not a subalgebra in most algebraic systems considered in this book. 

f. Suppose f "  X ~ Y is a homomorphism of arity r.  Then: 

(i) The set f ( X )  - Range(f)  is a subalgebra of Y. 

(ii) More generally, if S c_ X is a subalgebra of X, then f ( S ) i s  a subalgebra 
of Y. 

(iii) f is uniquely determined by its values on any subset S c_ X that  generates 
X. 

(iv) If T is a subalgebra of Y, then f - l ( T )  is a subalgebra of X. 

(v) If X satisfies identities ~1, then so does the subalgebra f ( X )  c_ Y (regard- 
less of whether Y satisfies those identities). 

g. The product of subalgebras is a subalgebra. That  is: Let 1-Idea Ya be the direct product 
of some algebraic systems Yx of some variety, and let Wa be a subalgebra of Ya for 
each ,~; then the set rlxeA wa is a subalgebra of X. 

Hint" It is closed under the fundamental operations, since those act separately on 
each coordinate. 

h. Let f �9 X --+ Y be a function from one algebraic system to another of the same arity. 
Then f is a homomorphism if and only if Graph( f )  is a subalgebra of X x Y. 

VARIETIES WITH IDEALS 

9.22. Remarks. Among the algebraic categories studied in this book, the category of 
lattices is atypical. Most equational varieties of interest to us have an addition operation 
(+), which plays a special role among the various fundamental operations. It is the basis 
for a theory of ideals and quotients developed below. 

Our presentation is based on Kurosh [1965]; what we call an object in a "ideal-supporting 
variety" is what Kurosh calls an "f~-group." However, we assume that "addition" is com- 
mutative. Kurosh and other algebraists do not make that  assumption; consequently they 
have a slightly more general and more complicated theory of ideals and quotients. 

9.23. Definitions. Let (r, 3) be a variety. We shall say that  (r, :J) is an i d e a l - s u p p o r t i n g  
v a r i e t y  if the following two further conditions are satisfied: 

(i) Included among the fundamental operations of the category are operations 
of addition (+), minus ( - ) ,  and zero (0) (respectively binary, unary, and 
nullary), satisfying identities that  make (X, + , - ,  O) into an additive group. 
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(There may or may not also be other fundamental operations and other iden- 
tities.) 

(ii) Whenever 9~ is one of the fundamental operations of the algebraic system and 
9~ is not nullary, then ~(0, 0, 0 , . . . ,  0) = 0. (This is an identity. It may be 
included as a member of J. However, in many cases of interest it does not 
have to be assumed explicitly, because it follows as a consequence from other 
identities in :J.) 

Some examples: the varieties of additive groups, rings, commutative rings, lattice groups, 
vector lattices, and ]F-linear spaces (for any field F) are all ideal-supporting. The varieties 
of monoids and lattices are not ideal-supporting. 

In an ideal-supporting variety (z,J), when clarification is needed, we may distinguish 
between group h o m o m o r p h i s m s  (which preserve 0, + , -  but not necessarily any other funda- 
mental operations) and z-homomorphisms (which preserve all the fundamental operations). 

9.24. E l e m e n t a r y  observations.  Suppose (z, [J) is an ideal-supporting variety, and X is an 
object in this variety. Then: 

a. {0} is an object in this category i.e., an algebraic system of type (z, J). (However, 
although {0} is a subgroup of X, we do not assert that  {0} is a subalgebra.) 

b. The mapping x H 0, from X into {0}, is a T-homomorphism. 

c. If 0 is the only nullary operation, then the constant mapping 0 : X ---, Y defined by 
x H 0 is a T-homomorphism from any object X into any object Y. 

d. If f : X ~ Y is a T-homomorphism, then f is also a group homomorphism. Hence 
we may define the subgroup Ker(f )  = f - l ( 0 )  and the quotient group X / K e r ( f )  as in 
8.14 and 8.17. (However, we do not assert that  these additive groups are objects of 
the category ( t a t ,  J).) 

9.25. Def in i t ion  and proposit ion.  Let (T, [J) be an ideal-supporting variety. Let X be an 
algebraic system of the variety (z, J). Let S c_ X be an additive subgroup of X. Then the 
following conditions are equivalent. If any (hence all) of them is satisfied, we say S is an 
ideal  in X.  

(A) 

(B) 

S is the kernel of some T-homomorphism f �9 X ---. Y, for some object Y in 
the category. 

For each integer n _> 0, for each fundamental operation 9~ that  is n-ary, and 
for each X l ,X2, . . .  ,xn C X, the set S is closed under the n-ary operation 

�9 X n ~/)r ..... Xn ~ X d e f i n e d  by 

r  ..... xn (Sl, S2, " " " , Sn) 
- -  99(Xl n t -81 ,  X2 -n t -82 ,  . . . ,  X n  q - S n )  - -  ~ ( X l , X 2 , . . . , X n ) .  

(This condition is trivially satisfied for n - 0, since then ~ is a constant and 
9~ 9~ - 0 is a member of the subgroup S.) 
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(C) The quotient group X / S  can be made into an object of the variety (T,:J) 
(called the q u o t i e n t  ob jec t ) ,  and the quotient map 7r : X ~ X / S  can be 
made into a T-homomorphism, with the fundamental operations ~ on X / S  
defined in terms of the given fundamental operations SO on X, as follows: 

~(71"(Xl),71"(X2),...,Tr(Xn)) -- 71"(SO(XI,X2,...,Xn)), 
if So is n-ary. (The quotient object has different names in different categories 
--quotient group, quotient ring, quotient vector space, quotient algebra, etc.) 

Remarks. In these conditions we do not assert that  S is necessarily an object in the category. 
We might say S is an ideal in the algebra X,  to distinguish this from the "ideal of sets" 

introduced in 5.2. The two notions of "ideal" coincide in the context of the Boolean algebra 
T(ft); see 13.17.d. 

The last equation in (C) is admittedly complicated. It may be easier to understand if 
we mention a typical example: In the category of rings, addition and multiplication in X / S  
are operations [ -~  and [-7] defined by 

7r(Xl)[-@--]Tr(z2) -- 7r(xl  -~-x2), 7 r (x l )F - ]T r (x2 )  -- 7r(xl  "x2) .  

For both of these equations, some verification is needed: One must show that  7r(Xl +x2) and 
7r(Xl. x2) do not depend on the particular choice of representatives Xl, x2 from equivalence 
classes i.e., one must show that  

7r(Xl) -- 7r(x~), 7r(x2) -- 7r(x; )  ==~ 

 (Xl + - + x ; ) ,  -  (xl. x ; ) .  

Verifications of this sort follow from the proof of (B) ~ (C), below. 

Proof of (B) =~ (C). We must verify that  the functions ~ are well-defined by the formula 
in (C) i.e., we must show that  

( ) ( ' )  7r(xi) - 7r(x'i) for all i =~ 7r SO(x1,... ,xn) - -  7r S O ( X I I , . . .  , X n )  . 

But that  is just a restatement of (B). Obviously ~ is n-ary, and thus X / S  is an algebraic 
system of arity ~-. By our definition of the ~'s, it follows that  7r is a homomorphism of 
algebraic systems. By 9.21.f(v), it now follows that  X / S  satisfies all the identities ~J. 

Proof of (C) ~ (A). If the quotient map 7r: X ~ X / S  is a homomorphism, then S is its 
kernel. 

Proof of (A) =~ (B). Assume S = Ker(f) .  Under the hypotheses of (B) we have (xi + 
si) - x~ E S, and therefore f(x~ + si) = f(x~). Now 

0 -- SO(f(Xl -~ Sl),...,f(Xn-J-Sn)) -- :(f(Xl),...,f(Xn)) 
-- f(SO(XI-J-Sl,...,Xn-J-Sn)) --f(,(Xl,...,Xn)) 

--f(SO(XI nVSI,...,Xn-J-Sn)--SO(XI,...,Xn)) 
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and therefore ~(Xl -~- 81 , . . .  ,Xn -~- 8 n ) -  ~ ( X l , . . .  ,Xn) is in Ker(f)  - S. 

9.26. Further examples. 
a. If X is an object in an ideal-supporting category, then {0} and X are ideals in X. 

Any ideal in X other than X itself is called a p r o p e r  ideal. A m a x i m a l  ideal  is 
a proper ideal that is not contained in any other proper ideal. 

b. Ideals, Subalgebras, and subgroups are all the same thing in the category of additive 
groups. 

c. Let X be a ring with unit. Then the same set X, with the same addition and 0 
and multiplication, may also be viewed as a ring "without unit" i.e., an object in 
the category of rings by forgetting that its member "1" has some special property. 
Observe that X has the same ideals in either category. This may not be entirely 
obvious from definitions 9.25(A) or 9.25(C), but it is easy to see from 9.25(B). 

d. In the category of rings or in the category of rings with unit, an ideal in a ring X is 
an additive subgroup S c_ X that satisfies 

s c S, x E X =:v sx, xs  c S. 

~e. 

In the category of rings with unit, note that a ring X is the only ideal in X that 
contains 1; hence it is the only ideal that is also a subring (i.e., subalgebra in the 
category of rings with unit). 

The ring Zm (introduced in 8.20) can also be described as the quotient of the ring Z 
by the ideal mZ = { m z  : z c Z}. 

Let R[x] be the ring of all polynomials in one variable x, with coefficients in 1R, with 
multiplication given pointwise that is, ( f g ) ( x ) =  f ( x ) .  g(x). Let IR R = {functions 
from ]R into ]R}; this is also a ring with unit. Then: 

(i) Nix] is an ideal in itself, but not in IR •, for the category of rings. The 

inclusion map i ]R[x] c IR ~ �9 -> is a homomorphism. Thus, the homomor- 
phic image of an ideal is not necessarily an ideal. Contrast this with the 
result for subalgebras noted in 9.21.f(i). 

(ii) The set of all polynomials of degree <_ 1 is not an ideal in R[x], for the 
category of rings. However, it is an additive subgroup, and thus it is an 
ideal when we consider the category of additive groups. Thus, whether 
a subset S is an ideal in an algebraic system X may depend on what 
category we use in considering S and X .  

g. Let 9.i = (7, :J) and ~ = (7, g) be two ideal-supporting varieties, with the same arity 
function T i.e., with the same fundamental operations, but possibly with different 
sets of equational axioms. Suppose X is an algebraic system that satisfies both sets 
of equational axioms i.e., X is an object in both categories. Then the 9.l-ideals in 
X are the same as the ~3-ideals in X. (This is may not be obvious from 9.25(A) or 
9.25(C), but it is immediately evident from 9.25(B), since that condition only involves 
the fundamental operations of X, not the other objects of the category.) 
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Example. A Boolean ring is a ring X with unit, which satisfies x 2 - x for all 
x E X. Show that we obtain the same ideals in a Boolean ring, whether we view it 
in the category of rings or the category of rings with unit or the category of Boolean 
rings. (Boolean rings will be studied further in Chapter 13 and thereafter.) 

9.27. Proposition on ideals in lattice groups. Let X be a lattice group, and let S c_ X be 
an additive subgroup. Then the following conditions are equivalent. 

(A) S is an ideal in X, as defined in 9.25. (Use 9.25(B) here.) 

(B) S i s s o l i d  that  is, s E S ,  / x / ~ / s /  => x E S .  

Whenever s, s' E S and x, x' E X, then [(x + s) V (x' + s')] - ( x  V x') E S. (c) 

(D) Whenever t E S and u E X, then (u V t) - (u V 0) E S. 

(E) Whenever s c S and u E X, then (u + s) + - u + E S. 

(F) s E S ,e---->, / s /  E S, and moreover, whenever s E S and x E X satisfy 
0 4 x 4 s, then x c S. 

Taking x - x' - 0 in condition (C), we note this corollary" In the category of lattice groups, 
any ideal is also a sublattice. 

Proof of equivalence. We begin by considering what 9.25(B) looks like in the category of 
lattice groups. Any additive subgroup is closed under the operation ~b determined by the 
mappings p(x) - 0 or p(x) - - x  or p(x,  x') - x + x'. The two remaining fundamental  
operations in a lattice group are V and A; taking these binary operations for ~ yields the 
functions 

~)1(8, 8 / ) [(. + v (.' + - (. v 

Thus, an additive subgroup S is an ideal if and only if it is closed under these two binary 
operations for every choice of x ,x '  E X.  But after some changes of sign, one of these 
functions is dual to the other, by 8.33.c. This proves (A) ,e---->, (C). 

Proofs of (C) ,e---->, (D) <---> (E) follow from translation-invariance of the lattice 
operations, plus the fact that  S is an additive group. Proofs of (F) ~ (B) follow from 
elementary considerations about the absolute value function. For (D) ~ (F), use u = s to 
show s E S <----> / s / E  S. For (F) => (E), use 8.42.0. 

9.28. Further properties of ideals. Let X be an object in an ideal-supporting variety. Then" 

a. ( I s o m o r p h i s m  T h e o r e m . )  If f "  X --+ Y is a homomorphism in that  category, then 

X / K e r ( f )  is isomorphic to Ran( f )  

by the mapping F ( r c ( x ) ) -  f ( x )  thus generalizing 8.17.c. 
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b. The ideals are the sets closed under the finitary operations r ..... xn defined in 
9.25(B). Hence our earlier results about  Moore closures in 4.6 and our earlier re- 
sults about  algebraic closures in 4.8 are applicable. Using those results or by a direct 
argument,  show that:  

(i) Any intersection of ideals in X is an ideal. 

(ii) For any set B C_ X,  there is a smallest ideal in X that  contains B. It 
is the intersection of the ideals that  contain B. It is called the idea l  
g e n e r a t e d  by  B .  

c. If S~ (A E A) are ideals in X, then the sum ~--]~EA S~ (defined in 8.11) is also an ideal; 
in fact, it is the ideal generated by U~sA S~. 

d. The intersection of a subalgebra and an ideal is an ideal. 

Proof. Let A be an algebraic system in some ideal-supporting variety; let S be a 
subalgebra of A, and let I be an ideal in A. We shall show S N I is an ideal in S. Let 
j S  c 

�9 - )  A be the inclusion homomorphism; let h"  A ~ B be a homomorphism with 

kernel equal to I. Then the composition S J ) A h B has kernel equal to S N I. 

e. If f "  X ~ Y is a homomorphism and T C_ Y is an ideal, then f - l ( T )  is an ideal in X. 

f. A product  of ideals is an ideal. In other words, if E~ is an ideal in X~ for each A, then 

1-[~eh E), is an ideal in 1-[~Ei X),. 
Hint: E~ is the kernel of some homomorphism f~ �9 X~ - .  Y~. Show that YIAEA E~ 

is the kernel of the homomorphism f = 1-[~Ei f~ " 1-I~Ei X~ -~ Vi~eh Y~ defined as 
in 9.19. 

9.29.  Let X = 1-IAEA YA be a product  of algebraic systems in some ideal-supporting variety 
(~-, :3); let X be equipped with the product  structure. Let ~} be a filter of sets on the set A. 
Then F = {g E X :  g - i ( 0 )  E 9} is an ideal in the algebra X. 

Proof. It is easy to verify that  F is an additive subgroup of X. We shall show that  F also 
satisfies 9.25(B). Let ~a~ : Y~ -~ Y~ (A E A) and (I) : X n --~ X be corresponding n-ary 
fundamental  operations. Let any functions g l , g 2 , . . . ,  gn E I ~ and f l ,  f : , . . . ,  fn E X be 
given; we are to show that  the function 

h -- (I)(fl + gl ,  - - . ,  fn  "Jr gn) - (P(f~,..., f~) 

belongs to F. Unwind the notation, as in 9.18; then the function h" A -~ Y is defined by 

h()~) - : x ( f l ( ) ~ ) - ~ - g l ( ) ~ ) ,  . . . ,  fn()~)-~-gn()~))--~)~(fl()~),...,fn()~)). 

n From this it follows easily that  g ; l ( 0 )  C h - l (0 ) .  Now, each set  g ; l ( 0 )  belongs to 

the filter ~, hence h - l ( o )  belongs to ~. Thus h E F. 

9.30.  Corollary. Let X - 1-I~EA Y~ be a product of algebraic systems in some ideal- 
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supporting variety (r, 2), equipped with the product structure. Then the set 

= 

AEA AEA 

f (A) r 0 for only finitely many A's } 

is an ideal in the algebra X; this is immediate from 9.29 using the cofinite filter. We shall 
call this ideal the e x t e r n a l  d i r e c t  s u m  of the Ya's. (In some categories it coincides with 
the coproduc t . )  Of course, when A is finite, then the external direct sum is the same as the 
product. 

F u r t h e r  p r o p e r t i e s .  For each A E A, an injective homomorphism jx : Yx + X can be defined 
by jx(v) = (0, 0 , . . . ,  0, 0, v, 0, 0 , . . . ,  0, 0) that  is, put v in the Ath component and zeros 
elsewhere. Then ja (Yx) is a subgroup of X that  is isomorphic to Yx. Also note that  7ra o jx 
is the identity map of Ya and 7r, o ja : Yx -~ Y, is the zero map if # =/= A. Show that  

AEA AEA 

(where | represents an internal direct sum, as defined in 8.12). Thus, the external direct 
sum of the Ya's is the internal direct sum of a collection of groups that  are isomorphic to the 
Yx's. If we gloss over the distinction between isomorphism and equality, then the external 
direct sum of the Yx's is "the same as" the internal direct sum of the Yx's. 

C a u t i o n :  In the wider literature, internal direct sums and external direct sums are often 
used interchangeably; both are referred to simply as direct sums. 

F U N C T O R S  

9.31. Loosely speaking, a f u n c t o r  is a morphism in the category of categories. A little more 
precisely, a functor is a mapping from one category into another, sending objects to objects 
and morphisms to morphisms and preserving the "relevant structure." In this context the 
relevant structure involves such things as the compositions of morphisms. 

To be entirely precise, a cova r i an t  f u n c t o r  preserves compositions and arrow directions; 
a c o n t r a v a r i a n t  f u n c t o r  reverses compositions and arrow directions. Thus, suppose that  

p : X --+ Y and u = v o w 

are a typical morphism and a typical composition of morphisms in category 9.1. Then a 
covariant functor F :9.1 --+ ~3 yields 

F(p): F(X) ~ F(Y) and F(u) = F ( v ) o  F(w) 

in category ~ ,  whereas a contravariant functor G :9.1 --~ ~ yields 

G(p): c:(Y)--, c(x) and = o G(v) 
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in category f~. 
The r e d u c e d  p o w e r  f u n c t o r  S H *S will be discussed starting in 9.37; note particu- 

larly 9.50.a. This functor is covariant; it is usually represented with an asterisk on the left. 
Do not confuse it with the contravariant e x p o n e n t i a l  f u n c t o r  S H S*, described in 9.55 
below; this functor is usually represented with an asterisk on the right. 

9.32. Some elementary examples of functors. The c o v a r i a n t  p o w e r  se t  f u n c t o r  is a 
functor from the category of sets to itself. This functor sends each set X to the set [P(X) 
and sends each mapping f :  X ~ Y to the forward image map f :  [P(X) ~ [P(Y) defined in 
2.7. 

The c o n t r a v a r i a n t  p o w e r  set  f u n c t o r  is another functor from the category of sets 
to itself. This functor also sends each set X to the set [P(X), but it sends each mapping 
f :  X ~ Y to the inverse image map f - l :  [p(y) ___. [P(X) defined in 2.8. 

9.33. (Optional.) We now specialize slightly the notion developed in 9.13.b. Let (X, xo) 
be a pointed topological space (defined as in 9.9). Consider all paths in X that  begin and 
end at x0 that  is, all continuous functions 

f : [ 0 ,  1] ~ X that  satisfy f(0)  = f(1)  = x0. 

Call two such paths f,  g equivalent if there exists a homotopy from f to g that  preserves the 
endpoints - -  i.e., if there exists a continuous function h : [0, 1] x [0, 1] --~ X that  satisfies 

h(0, t) = f ( t ) ,  h(1, t) = g(t), h(s, O) = h(s, 1) = x0 

for all s, t E [0, 1]. It is easy to verify that  the equivalence classes form a group, under the 
operation of "composition" 

�9 to compose two paths, follow one and then the other; 

�9 the inverse any path is the same path run backward. 

This group, denoted 7t" 1 (X, x0), is called the Poincar@ f u n d a m e n t a l  g r o u p  of the pointed 
space (X, x0). 

If ~ :  (X, x0) ~ (Y, Y0) is a morphism of pointed topological spaces (defined as in 9.9), 
then we can define a mapping between the fundamental groups, 

71" 1 (~)  : 71" 1 (X ,  X0) ~ 71"1 (Y, Yo), 

as follows: If f : [0, 1] -~ X is a member of some equivalence class that  is, in turn, a member 
of 70 (X, x0), then ~a o f :  [0, 1] -~ Y is a member of some corresponding equivalence class 
that  is a member of 7r1(II, y0). It is not hard to verify that  this mapping is well defined 
i.e., that  it does indeed preserve equivalence and furthermore, this mapping is a group 
homomorphism. 

Thus ~rl is a covariant functor from the category of pointed topological spaces to the 
category of groups. Using this functor, we can transform some questions about topolog- 
ical spaces into corresponding questions about groups. That  is one of the basic ideas of 
a l g e b r a i c  t o p o l o g y .  It will not be pursued further in this book, however. 
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9.34. Many covariant functors can be described as forge t fu l  func to r s .  A forgetful functor 
is in use when we go from one category to another by forgetting part of the relevant structure. 
For instance, a lattice is a special type of preordered set, and a lattice homomorphism is 
a special type of increasing map. Any theorem about increasing maps between preordered 
sets can also be applied to the special case of lattice homomorphisms between lattices. 

In forgetting some structure, we permit some change in the description of the objects. 
For instance, we noted in 9.10 that any preordered set (X, 4) may be viewed as a topological 
space (X, 8), but ~ is not equal to 8. 

If Yt is a subcategory of N, then the inclusion A c -~ N is a forgetful functor. Not every 
forgetful functor is of this form, however; see the two examples below. 

9.35. Preview. We now describe two especially important forgetful functors that will be 
important in later chapters. 

Every uniform structure determines a topology (5.33), and any uniformly continuous 
map is also continuous (18.9.c). Thus there is a forgetful functor from uniform spaces (with 
uniformly continuous maps) to topological spaces (with continuous maps). This forgetful 
functor is not given by the inclusion of a subcategory, since different uniformities on a 
set may determine the same topology for instance, see 18.9.d and 19.11.e. However, 
this forgetful functor has the interesting property that it preserves the formation of initial 
objects. That is, if II is the initial uniformity determined on a set X by a collection of 
mappings ~x : X ~ (Yx, 11~), then the resulting uniform topology 9~(ll) is equal to the 
initial topology determined by the maps px : X ~ (Yx, g'(11~)). (The proof of that equality 
may be easier to prove in 18.9.g, after we have developed a few more tools.) 

Every topology determines a Borel or-algebra (see 5.26.e), and it is easy to verify that any 
continuous map is measurable when its domain and codomain are equipped with the Borel 
a-algebras (see 21.2.a). Thus we obtain a forgetful functor from topological spaces (with 
continuous maps) to measurable spaces (with measurable maps). This forgetful functor is 
not given by a subcategory inclusion, since different topologies may yield the same or-algebra 

for instance, the discrete topology on N and the two lower set topologies given in 5.15.d 
all yield the discrete or-algebra. The forgetful functor from topological spaces to measurable 
spaces sometimes does not preserve the formation of initial objects; an example of that fact 
is given in 21.8(iii). 

9.36. Other functors. The functors that take any poset to its sup completion, any Tychonov 
space to its Stone-(~ech compactification, or any separated uniform space to its separated 
uniform completion, are examples of inclusions of ref lect ive  s ubc a t e go r i e s .  That topic 
will not be discussed here; it can be found in Herrlich and Strecker [1979]. 

THE REDUCED POWER FUNCTOR 

9.37. Preview. In the next few pages we shall develop a "junior version" of nonstandard 
analysis. This simplified approach is less powerful than the customary treatment, but it 
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avoids the conceptual difficulties of sets of sets of sets and avoids the formal study of 
mathematical  languages a study that  is second nature to logicians but may seem quite 
foreign to many analysts. Our junior version, which may seem more natural to analysts, is 
adequate for a few minor applications including a "construction" of the hyperreal number 
system *II~ in 10.19 and an explanation of limits in terms of infinitesimals in 10.37; this 
will give the reader a quick taste of what nonstandard analysis is like. In Chapter 14 we 
shall sketch some of the remaining ingredients of the customary approaches to nonstandard 
analysis, but that  sketch will rely on some results and intuition developed in the next few 
pages. 

9.38. Preview of the Transfer Principle. In the next few pages we shall show how, given 
any set S, function f ,  or relation R, we can construct a corresponding set, function, or 
relation *S, *f, *R in a "larger universe." The T r a n s f e r  P r i n c i p l e  states that  any suitably 
worded statement without stars is true if and only if the corresponding statement with stars 
is true. For instance, 

S = T if and only if *S = *T, 

and therefore the mapping S H *S is injective. Likewise, we shall show in 9.45.h that  

T = S1 n $2 N . . .  n Sn if and only if *T = *S1 N 'S2  n . . .  n * S n  

for any positive integer n. However, the Transfer Principle only applies to "suitably worded" 
statements,  not to all statements. For instance, our observation about finite intersections 
does not extend to infinite intersections see 9.46.a. To make precise this notion of 
"suitably worded statements," we will need to analyze our language; that  logical analysis 
will be carried out in part in Chapter 14. 

In the next few pages we develop some basic properties of the star mapping by purely ad 
hoc methods, without use of the Transfer Principle. These ad hoc methods are sometimes 
a bit tedious; the Transfer Principle would be a helpful shortcut. Some readers may prefer 
to glance through a text on nonstandard analysis, master the Transfer Principle, and then 
proceed through the next few pages. 

9.39. Let A be a nonempty set. For the discussions below we may refer to A as the i n d e x  
set ,  or domain. We shall consider many functions from A to various sets. For simplicity, 
we shall disregard the codomains of these functions. Any two functions that  are defined on 
A and agree at every point of A will be viewed as the "same" function, as in 2.5.c. The 
particular choice of the codomain does not matter,  provided that  it is sufficiently large for 
our applications; any larger set will do just as well. Thus, we will be concerned with sets 
such as S A, T A, U A (the functions from A into S, T, or U) for various choices of sets S, T, U, 
but we will not be concerned with a larger set containing all of S, T, U. 

9.40. Let A be the index set, as indicated above. Let 9 ~ be a proper filter on A, and let 
J be the proper ideal that  is dual to 9 ~ that  is, • = {A \ F : F E 9"}. Our choices of 
A, 9 ~, J will be held fixed throughout the discussion. For our junior version of nonstandard 
analysis, 9" will usually be a free ultrafilter, but other choices of 9 ~ are also of some interest; 
see for instance 21.17. (The existence of free ultrafilters was discussed in 6.33.) 
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Two functions g, h defined on A will be said to be 9--equivalent ,  or to a g r e e  9--almost  
e v e r y w h e r e ,  if the statement g = h is satisfied 9--almost everywhere in the sense of 5.3 
i.e., if the set 

{ ~ c A  : g ( ~ ) = h ( ~ ) }  

is "large" in the sense that  it is an element of 9 - -  or, equivalently, if the set 

{A ~ A : g(A) =/= h(A)} 

is "small" in the sense that  it is a member of :J. It is easy to verify that  this is an equivalence 
relation on the set ft A = {functions from A into ft}, for any codomain ft. If we do not 
specify a codomain f~, then 9"-equivalence is an equivalence relation on the proper class of 
all functions that  are defined on A. 

For the present discussion, let 7r(g) denote the equivalence class containing a function g. 

9.41. Let A, 9-, :J be as above, and let S be any set. Then the set of equivalence classes 

*S = {Tr(g) : g E S  a} = {7r(f) : f(A) E S f o r a l m o s t a l l A }  

is called the r e d u c e d  p o w e r  of S. (Here "for almost all A" means for all ~ in some member 
of 9-, as in 9.40.) In other words, c~ E *S if and only if 

c~ is an equivalence class, at least one member of which is a function whose range 
is a subset of S. 

When the choices of A and 9" need to be mentioned explicitly, then the reduced power *S 
can be writ ten instead as sA/9- or as sA/J. Usually that  notation is not needed, however, 
for most interesting results are obtained when we hold A and 9: fixed and consider what 
happens as S is varied. 

When the filter 9- is a free ultrafilter, then the reduced power *S is called the u l t r a p o w e r  
of S. Remark. This notion of "ultrapower" should not be confused with the Banach space 
ultrapower, a related but slightly different object that  is often used when techniques of 
nonstandard analysis are applied in the study of Banach spaces. A brief introduction to 
Banach space ultrapowers can be found in Coleman [1987]. 

9.42.  For any point s E S, let c8 be the constant function taking the value s i.e. the 
function defined by cs(A) = s for all A E A. Then it is clear that  7r(c~) E *S. Moreover, 
it is easy to see that  the mapping s ~ 7r(c~) is injective i.e., if s :/- t, then the equiva- 
lence classes 7r(c~) and 7r(ct) are distinct. We may identify each point s with the resulting 
equivalence class 7r(c~); thus we may consider S as a subset of *S. 

We shall see, in exercises below, that  *S inherits many of the properties of S, and thus 
it is a sort of "enlarged copy" of S. The reduced power construction is a simplified version 
of the n o n s t a n d a r d  e n l a r g e m e n t  construction used in nonstandard analysis. 

9.43. Remarks. The reduced power construction is used in substantially different ways, 
with different intuition and syntactic conventions, in at least two parts of analysis: 
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(i) Nonstandard  analysis will be introduced briefly in 14.63. In that  context, 9" is usually 
a free ultrafilter, and elements of *S are discussed much as though they were elements of S 

i.e., points in some set slightly larger than S. For instance, elements of *IR are t reated 
as some sort of generalized "numbers." 

(ii) In the theory of measure and integration, reduced powers also arise naturally. Let 
:J be the collection of null sets for some complete positive measure p on a set A; this is 
discussed in 21.17. Then :J is a a-ideal, but it is generally not a maximal  ideal, since not 
every subset of A is necessarily a null set or the complement of a null set. Thus, the 
dual filter 9" is generally not an ultrafilter. In this context, members of "I~ are sometimes 
called r ea l  r a n d o m  va r i ab le s ;  more generally, members of *X may be called X - v a l u e d  
r a n d o m  v a r i a b l e s .  In this context, elements of *X are discussed much as though they 
were elements of X A - -  i.e., functions defined on A. For instance, elements of the Lebesgue 
spaces LP(A, g, p) are equivalence classes of functions, but they are often discussed as if they 
were functions. This is, admittedly, an abuse of notat ion the elements of LP(A, g, p) are 
not really functions. Occasionally the distinction between functions and their equivalence 
classes becomes important ;  then the distinction is pointed out. But the blurring of that  
distinction, quite common in the literature, is convenient and usually harmless because the 
quotient map 7r �9 X A ~ *X preserves most (not quite all) of the structures and operations 
tha t  are of interest; see particularly 9.53. 

9.44.  Exercise: When are S and *S different? We have seen that  S c_ *S; when do we 
have S ~: *S also? 

a. Suppose 9" is the fixed ultrafilter at some point A0 c A. Then *S - S for all sets S. 
Then the operation S ~-, *S brings us nothing new; this case is of little interest to us. 

b. Suppose 9" is a proper filter, but not an ultrafilter. Show that  *S - S if S is the empty 
set or a singleton, but *S ~ S if S contains two or more points. 

Hint" If A, CA are nonempty proper subsets of A that  do not belong to 9", and x, y 
are distinct members of S, show that  

f (u) - ~ x i f u E A  
y i f u ~ A  l 

defines a function f :A --~ S that  is not equivalent to a constant function. 

c. If 9= is a free ultrafilter and S is a finite set, then *S = S. Hint: 5.8(E). 

d. If 9"is a free ultrafilter and card(S) _> card(A), then *S ~ S. Hint: There exists an 
injective mapping i : A ---, S; then i is not equivalent to a constant mapping. 

e. Corollary. If A = N and 9" is a free ultrafilter on N, then *S ~ S for every infinite 
set S. Hint: Here we use the fact (established in 6.27) that  any infinite set S satisfies 
card(S) _> card(N). 

9.45.  Further properties of reduced powers of sets. The list of properties below, and much 
of the other material  in this subchapter,  is based on Robinson and Zakon [1969]. 

Assume 9= is a proper filter on A (not necessarily an ultrafilter). Let S, T, and S1, $2, 
$3, . . .  and S~ (c~ E A) be sets. Then: 
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a. * ~ - ~ .  

b. * S C * T  ~ S C T .  

c. The * mapping is injective" If S # T, then *S :/: *T. 

d. I f S C _ T ,  t h e n S - T  N * S .  

e. *(S \ T) c_ (*S) \  (*T). 
f. If 9" is an ultrafilter, then *(S \ T) - (*S) \ (*T). 

g. Intersections and unions satisfy these inclusions: 

h. For any positive finite integer n, 

*($1 N $2 N . . .  N Sn) = *S1 N *$2 N . . .  N *Sn. 

i. If 9" is an ultrafilter, then also 

*($1 U $2 U " "  U Srt) -- *$1 U'S2 U " "  U*S  n. 

9.46.  Examples .  For both of the examples below, let A = N; define f : N  --+ N by taking 
f ( n )  = n. A filter 9 ~ will be specified below; let rr(f) be the equivalence class containing 
the function f .  

a. Without  additional assumptions, the inclusions in 9.45.g cannot be strengthened to 
equalities; we now show this by examples. Let 9" be any filter on N that  includes the 
cofinite filter. Then 

rr(f) E * S l n  *S2 n *S3 n . . .  but Sl n S2 n S 3 . . . .  ~5, if Sj - N \ {j} for all j 

(compare with 9.54). Also, 

rr(f) E * (Sl U $2 U S3 U - - . ) ,  "a-(f) r *Sl U *S2 U *S3 U . - .  if Sj - {j} for all j. 

b. The conclusions of 9.45.f and 9.45.i may not be valid if we do not assume 9" is an 
ultrafilter; we now show this with examples. Let 9" be the cofinite filter. Then 

rr(f) E *(1%1)\ *(Sl),  rr(f) ~ *(1%1\ Sl) if Sl -- {1, 3, 5, 7 , . . .} ;  

~( f )  E *($1 US2), 71"(f) ~ *Sl U ' S 2  if $2 - {2, 4, 6, 8 , . . . } .  

9.47.  Reduced power  of  a f ini te  products  of  sets. Let 9"be a filter on A, and let f l ,  f2, . . . ~,fn 
be finitely many functions defined on A. Then an n-tuple of functions (f l ,  f 2 , . . . ,  f~) may 
also be viewed as an n-tuple-valued function. We shall use the two viewpoints interchange- 
ably. 

Observe that  two n-tuple-valued functions f = (f l ,  f 2 , . . . ,  fn) and g = (g l ,g2 , . . .  ,gn) 
are equivalent in the sense of 9.40 if and only if the set {~ E A :  f(/~) = g(A)} belongs to 
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n 9" tha t  is, if and only if the set Nj=I{/~ E A �9 fj(/~) - gj()~)} belongs to 9". Since 9" 
is a filter, this condition holds if and only if each of the n sets {A E A : fj(A) = gj(A)} 
belongs to 9". In other words, (f l ,  f 2 , . . . ,  fn) is equivalent to (gl, g 2 , . . . ,  g,,) if and only if 
f l  is equivalent to gl, f2 is equivalent to g2, . . . ,  and fn is equivalent to gn. Therefore, an 
equivalence class of n-tuples can be represented as an n-tuple of equivalence classes. It is 
easy to verify that  

*($1 X $2 X " ' "  X Sn) = *$1 X *$2 X ' ' '  X *Sn 

for any n sets $1, $2, . . . ,  Sn. 

9.48.  Wha t  about  an infinite product of sets? Not all of the reasoning in the preceding 
section generalizes readily. Let 's see what goes wrong. 

Let 9" be a filter on A, and let f l ,  f2, f 3 , . . ,  be infinitely many functions defined on 
A. Then a sequence of functions ( f  l, f2, f 3 , . . . )  may also be viewed as a sequence-valued 
function. We may use the two viewpoints interchangeably. 

Observe tha t  two sequence-valued functions f = (f l ,  f2, f3 , . . . )  and g = (gl, g2, g3 , . . . )  
are equivalent in the sense of 9.40 if and only if the set {A E A : f(A) = g(A)} belongs 
to 9" tha t  is, if and only if the set ~ j = l  {A E A �9 fj(A) - gj(A)} belongs to 9". Since 
5[ is a filter, this condition implies, but is not necessarily implied by, the condition that  
each of the sets {A E A :  fj()~) = gj(A)} belongs to 9.. In other words, if ( f l ,  f2, f 3 , . . . )  is 
equivalent to (gl, g2, g3 , . . . ) ,  then each f j  is equivalent to gj, but not necessarily conversely. 
An equivalence class of sequences is not the same thing as a sequence of equivalence classes. 

For instance, let A = H, and let 9" be the cofinite filter on H. Let f j  be the constant 
function 0, and let gj : N ~ N be defined by gj(k) = 8jk, where 8 is the Kronecker 
delta (defined in 2.2.d). Then for each j ,  We see that  f j  is equivalent to gj since they 
agree everywhere on H except at one point. But f = (f l ,  f2, f 3 , . . . )  is not equivalent to 
g = (gl, g2, g3 , . . . )  since they agree nowhere on H indeed, f (n)  and g(n) differ in their 
n th  coordinate. 

9.49.  Reduced powers of functions. How do we extend functions? For instance, we would 
like to extend the function sin : I~ ~ ~ to a function *sin : *I~ ---, *R; how is this 
accomplished? 

Let p : X ~ Y be a function from one set to another. There are a couple of natural  
methods for defining a reduced power *p : *X --~ *Y; fortunately they yield the same result. 

(A) One method is to identify a function with its graph. Then a function is a set 
of ordered pairs, no two of which have the same first element. Show that  if 
Gr(p) c X x Y  is the graph ofa  funct ionp"  X ~ Y, then *(Gr(p)) c_ *X x *Y 
is the graph of a function from *X into *Y, which we shall denote by *p. Thus 
*(Gr(p)) - Gr(*p). Note that ,  since Gr(p) c_ Gr(*p), the function *p is an 
extension of the function p -  that  is, we have X c_ *X, and *p(x) - p(x) for 
every x c X. 

(B) Another method is by this rule: If p �9 X ~ Y is some function, we wish to 
define a function (*p) �9 *X ~ *Y by specifying its value on each ~ E *X. Any 
~c E *X may be wri t ten in the form ~( f )  for some function f "  A ~ ~t (where 
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f~ is some sufficiently large codomain), and rr �9 ftA __+ , Q  is the quotient 
map taking functions to their equivalence classes, for some sufficiently large 
codomain ft. Show that  the mapping f H p o f respects the equivalence 
relation on X A that  is, rr(fl) - 7r(f2) => rr(po f l )  - rr(po f2) (see 3.12). 
Hence a function (*p) �9 *X --+ *Y is well defined by the rule 

(*p)(rr(f)) - r r ( p o f )  for f e X A. 

Show that  these two definitions yield the same function *p. 
When p is some familiar function, then it is customary to write *p without the star. 

For instance, the extension of sin, which would natural ly be wri t ten * sin, is customarily 
wri t ten sin instead. 

9 . 5 0  
a .  

b. 

Co 

. Further properties of reduced powers of functions. 
The taking of reduced powers preserves identity maps i.e., if i x  is the identity 
map of X, then *(ix) is equal to the identity map of the set *X. Also, the taking of 
reduced powers preserves composition of functions; that  is, *(poq) - (*p)o(*q) for any 
functions q" W --+ X and p" X --+ Y. From these two facts it follows that  the taking 
of reduced powers is a covariant functor from the category of sets to the category of 
sets; that  term was introduced in 9.31. 

The reduced power *p" *X --+ *Y is injective or surjective if and only if the mapping 
p" X --+ Y has that  property. 

Let f "  X --+ Y and let S c_ X and T c_ Y. If f ( S )  c T, then (*f ) (*S)  c *T. 
Hints" The hypothesis can be restated as: Gr ( f )  N (S x Y) c_ X x T. Using several 

results of the last few pages, we can show that  Gr (*f )  A (*S x *Y) c_ *X x *T. 

9.51.  Reduced powers of relations. How do we extend relations? For instance, we know 
3 < 5; we would like a corresponding notion for members of *IR. 

Let R be a binary relation on a set X. There are a couple of natural  methods for defining 
a binary relation *R on the set *X; fortunately they yield the same result. 

(A) 

(B) 

One method is to identify the relation with its graph i.e., to work with 
the set Gr(R) C_ X x X. Then we can take its reduced power, *(Gr(R))  C 
*(X x X) = (*X) x (*X). It is the graph of a binary relation on *X, which 
we natural ly call *R. Thus * ( G r ( R ) ) =  Gr(*R).  

For functions f,  g :  A --+ X,  say tha t  :r(f) *R rr(g) if and only if the s ta tement  
f R g is 9"-true in the sense of 5.3 i.e., if and only if the set {A E A : 
f(A) R g(A)} is a member  of 9". Show that  this makes *R well defined on *X 

i.e., show that  if 'rr(fl) = 7r(f2) and rr(gl) = rr(g2), then 

{/~ E n " f l ( )~)  n g l ( / ~ ) }  C ~ :, ',- {)~ C n " f2(/~) R g 2 ( / ~ ) }  C ~.  

Show that  these two definitions yield the same binary relation *R on the set *X. 

9.52.  Further properties of reduced powers of relations. 
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a. The restriction of *R to the set X C_ *X is precisely R. That  is" x R y if and only if 
x, y E X and x *R y. Hint" Use characterization (A), above, together with 9.45.d. 

If R has any of the following properties, then so does *R: reflexive, irreflexive, transi- 
tive, symmetric, antisymmetric, preorder, partial order, equivalence relation, lattice. 

c. If p" (X, 4)  ~ (]I, __u) is an order-preserving map from one preordered set into another, 
then so i s*p  �9 (*X, " 4 )  ~ (*Y, * E ) .  

Suppose a, b c X, and S -  {x c X"  aRx and xRb}. Then 

�9 S - { ~ E * X  �9 a * R ~  and ~ * R b } .  

In particular, the enlargement of an interval (a, b) in ]R is the corresponding interval 
(a, b ) in  *R. 

e. If 9" is an ultrafilter on A and (S, _<) is a chain, then (*S, * <) is a chain. 
Hint" If g, h E S A, then the three sets 

{A "g(A) < h(A)}, {/~ �9 g(A) = h(A)}, {/~ "g(A) > h(A)} 

form a parti t ion of A, so exactly one of them is a member of 9 ~. 

f. Example. In the preceding result, we cannot omit the assumption that  fl ~ be an ultra- 
filter. In fact, if S is a chain containing at least two elements and fl ~ is a proper filter 
on A but not an ultrafilter, then *X cannot be a chain. 

Proof. There exist sets A and B that  parti t ion A, such that  neither A nor B is a 
member of 9". By relabeling, we may assume that  two of the elements of S are called 
0 and 1, and that  0 < 1. Then the equivalence classes of the characteristic functions 
of the sets A and B are elements c~, ~ c *S such that  none of the conditions c~ *< 8, 
c~ - ~, or c~ *> ~ holds. 

g. Remark. The reduced power of a complete or Dedekind complete ordering may inherit 
that  completeness property (as in 21.42), or it may not (as in 10.19). 

bo 

dl 

9.53. Reduced powers of algebraic systems. Let X be an algebraic system of an ideal- 
supporting type (~-, 3), let A be a set, and let 9" be a filter of subsets of A. Then by 9.29, 

N --- {g E X A �9 g - l ( 0 )  c ~r} 

is an ideal in the product algebra X A = {functions from A into X}. Hence we can form 
the quotient X A / N  as in 9.25(C); it is another algebraic system of variety (r,:J). It is 
easy to verify (exercise) that  this quotient X A/N is the same thing as the reduced power 
*X - xA/9:  defined in 9.41, and the fundamental operations of the algebraic system X A / N  
(defined as in 9.25(C)) are the same as the reduced powers "7) of the fundamental operations 
7) of X (defined as in 9.49). 

We may embed X in *X, by the method described in 9.41. (That  is, any x E X is 
mapped to the equivalence class of the constant function from A into X whose constant 
value is x.) The embedding is an injective homomorphism, and so X is a subalgebra of *X. 
For instance, if X is a ring, then *X is a ring, X is a subring of *X, and the inclusion map 

X C * X  - ,  is a ring homomorphism. 
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Elements of *X are equivalence classes of functions from A into X. However, as we 
remarked in 9.43, elements of *X are sometimes discussed as if they were elements of X A 
or elements of X. These styles of discussion are feasible largely because each of these maps 
is a homomorphism: 

�9 the quotient map 7r" X A ~ X A / N ,  

�9 the coordinate projections 7rx" X A --, X,  and 

�9 the inc lus ionX C ~ , x  

Thus, each of these maps preserves the fundamental  operations, and therefore preserves a 
great deal of the relevant structure. 

9.54. The Ultrafilter Principle, introduced in 6.32, is equivalent to the following principle, 
which is similar to a principle of nonstandard analysis" 

( U F 4 )  E n l a r g e m e n t  ( C o n c u r r e n c e ,  I d e a l i z a t i o n )  P r i n c i p l e .  Let ft be 
a set. Then it is possible to choose an index set A and a free ultrafilter 9 ~ on A, 
such that  the resulting ultrapowers *S - s A / ~  " have this property: Whenever 

is a proper filter on a subset of ft, then ~EE~ *E is nonempty. 

We emphasize that  it is possible to make a single choice of A and 11 that  works for all 
choices of ~. It may be helpful to compare this principle with the following characterization 
of compact topological spaces: they are spaces in which, whenever ~ is a proper filter, then 
~ E ~  cl(E) is nonempty. The equivalence of (UF1) and (UF4) is similar to a result proved 
by Lutz and Goze [1981]. 

Proof of (UF1) ~ (UF4). We may assume ft is infinte, by replacing it with a larger set if 
necessary. 

Let �9 be the family of all proper filters on subsets of ft. We shall use A - ft~ = 
{functions from r into ft}. For each g E �9 and each E E ~, consider the set 

A,B,E = {,X+A �9 A(P:)EE}.  

It is easy to verify that  the collection g - {A~, E �9 ~ E ~, E E ~} is a filter subbase i.e., 
it has the finite intersection property. Hence, by Cartan 's  Ultrafilter Principle, there exists 
an ultrafilter fl: on A such that  Y _D g. We shall show that  this Y has the required property. 

Indeed, let any proper filter ~ E �9 be given. Define a function c �9 A --, ft by taking 
c(A) - A(~) for each A E A, and let ~ E *f~ be the equivalence class of the function e. We 
shall show that  ~ E ~'IEE~ *E. (The remainder of the proof is just a mat ter  of unwinding 
the notation; the reader may find it easier to proceed on his or her own instead of reading 
further.) For every E E ~, we have 

c E }  - (a A. a(z) E} - E 

Thus the condition c(.) E E is satisfied "almost everywhere," so { E *E. 

E fl ~. 
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If 9" is not a free ultrafilter, then it is fixed whence *S - S for every set S, by 
9.44.a. But since f~ is infinite, it has some free ultrafilter ~, by 6.33. Then O = ~ E ~  E = 
~ E ~  *E % O, a contradiction. Thus the ultrafilter 9" must be free. 

Proof of (UF4) ~ (UF1). Let ~ be a proper filter on a set f~; we wish to extend it 
to an ultrafilter. Let A and 9"be as in (UF4); let ~ E ~Est~*E;  let ~ �9 A ~ ~t be any 
function whose equivalence class is ~. Let �9 be the filter on f~ generated by the filterbase 
{e(F)"  F c 9"}. It is easy to verify that �9 is an ultrafilter on f~ and that �9 _D t~. 

EXPONENTIAL (DUAL) FUNCTORS 

9.55. A few categories that we shall consider in later chapters have functors that we shall 
now describe, called e x p o n e n t i a l  f u n c t o r s  or dua l  func tors .  These categories satisfy 
five hypotheses, listed below as (HI), (H2), (H3), (H4), and (H5). 

Let ~ be a given category, and let A be some particular object in that category. Some 
commonly used choices of ~ and A are listed in the table below. In the table, 2 stands 
for the set {0, 1}, F stands for a scalar field (generally I~ or C), and T stands for the circle 
group (see 10.32). 

Objects of ~ Morphisms A 
sets 
Boolean algebras 
Boolean spaces 
Tychonov spaces 
vector spaces 
Riesz spaces 
topological vector spaces 
Banach spaces 
Pontryagin groups 

functions 2 
Boolean homomorphisms 2 
continuous maps 2 
continuous maps [0, 1] 
linear maps F 
order bounded linear maps I~ 
continuous linear maps F 
continuous linear maps F 
continuous homomorphisms T 

For each object X in r define the set 

X* = {@morphisms from X into A}. 

For each morphism f "  X ~ Y in the category r define a mapping f* �9 Y* ~ X* by the 
rule f*(A) - A o f for all A c Y*, as in the diagram below. 

f 
X > Y 

Ao f - f*(A) c X* ~ J A c Y *  

A 
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We sometimes refer to X* and f*  as the d u a l s  or a d j o i n t s  of X and f .  For a simple, 
concrete example, see 11.22.d. 

In the categories where duals are useful, the following hypotheses are satisfied: 

(H1) For each object X in if, the elements of X* separate the points of X. Tha t  is, for any 
two distinct points Xl,X2 E X,  there exists at least one morphism f : X ~ A such 

that  f (x l )~=  f(x2). 

(H2) There is some natural  way to a t tach structures to the dual sets X*,  making them 
objects in another category ~*, and making the dual functions f*  : Y* ~ X* into 
morphisms in that  category. 

It is easy to verify that  the rules X H X* and f H f*  reverse arrows and compositions; 
thus they define a contravariant functor from ff into if*. We may refer to it as the ex-  
p o n e n t i a l  f u n c t o r ,  d u a l  f u n c t o r ,  or a d j o i n t  f u n c t o r ,  though each of those terms has 
other meanings as well. 

In the most interesting instances of this theory, the bidual category if** is identical to 
the original category if, and tha t  fact is very important  in the theory sketched below. 

Actually, in most cases of interest, ff and if* are the same category, but that  could 
be viewed as mere coincidence; it is actually irrelevant to the theory developed below. 
Moreover, we have ff ~ if* in at least one important  application: The categories of Boolean 
spaces and Boolean algebras are dual to each other. 

Elementary example. If ff and if* are both the category of sets and A = {0, 1}, then 
f H f*  is the inverse image functor defined in 9.32. 

9.56.  Much of the interest in exponential functors stems from the fact that  some properties 
of X and f correspond to dual properties of X* and f*.  We can switch back and forth 
between either setting and its dual, working with whichever properties are more convenient. 
For instance, show that  

if one of the functions f : X  ~ Y or f*  : Y* 
is injective. 

---, X*  is surjective, then the other 

(Hint: Use (H1).) In some categories, though not all, a converse can be proved: 

if one of the functions f : X ~ Y or f*  
is surjective. 

: y *  --~ X* is injective, then the other 

Exercise. Prove tha t  this converse is valid in the category of sets i.e., where any set is an 
object, and any function is a morphism; assume A is a set containing two or more points. 

9.57.  Assume ff is a category that  has a dual functor, mapping into some category if*. 
Suppose that  the category if* also has a dual functor, which maps into some category if**. 
Also assume that  

(H3) The categories ff and if* have special objects A with the same underlying set (perhaps 
with different structures at tached).  



240 Chapter  9: Concrete Categories 

We shall denote both of these special objects by the same symbol A. By composing the 
two contravariant,  dual functors, we obtain a covariant functor from ~ into ~**, called the 
b i d u a l  f u n c t o r :  

X ~ X* ~ X**, f ~ f*  ~ f**.  

This functor has some further properties of interest, which we now describe. 
Each A E X* was defined as a function with argument x E X and value {~, x} = A(x) c 

A. Let now us change our viewpoint, and instead view x as the function, with ~ for the 
argument. Then x acts as a mapping Tx = (., x) : X *  ~ A, called the e v a l u a t i o n  m a p  at 
x. In the categories of interest, this further hypothesis is satisfied: 

(H4) If X is an object in ~ and x c X,  then the mapping Tx = (.,x} : X* ~ A is a 
morphism in the category if*, and thus Tx is a member of the set X**. 

By (H1), if x r x ~ then the mappings Tx and Tx, are distinct. Thus x ~ Tx is an injective 
mapping from X into X**, which we may view as an inclusion i.e., we may view the 
underlying set of X as a subset of the underlying set of X** (without regard to the additional 

structures at tached to those sets). The inclusion map T X c �9 -~ X** is sometimes known 
as the c a n o n i c a l  e m b e d d i n g  of  X in i ts  b idua l .  In many categories, the bidual functor 
has this further property: 

(Hh) The categories ff and if** are the same, and X is a subobject of X** in that  category; 

thus the canonical embedding X c X** -~ is a morphism. 

9 . 5 8 .  Exercise. If f : X ~ Y i s  a morphism, then the function f * *  : X * *  - ~  Y * *  is an 
extension of f that  is, Graph(f**)  2 Graph(f ) .  

Hint  Let S X c X** c y * *  �9 �9 -> and T"  Y -~ be the canonical embeddings. What  must be 
verified is f * * ( S x )  = Tf(x) or more concretely, [f**(Sx)](i~) = Tf (x) (~)  for each A E Y*. 

9.59. For some objects X,  the canonical embedding x H Tx turns out to be surjective 
i.e., the inclusion morphism X c -~ X** is actually an isomorphism X > X**. Such an 
object X will be called ref lexive.  

In some categories if, every object is reflexive (and so the term "reflexive" is not com- 
monly used in those categories). In such a category we have X = X** and f = f** for all 
objects X and morphisms f.  The canonical embedding x ~ Tx, from X to X**,  is then 
called the c a n o n i c a l  i s o m o r p h i s m .  This isomorphism is established: 

�9 for the category of Hausdorff locally convex topological linear spaces with weak topolo- 
gies, by 28.12.e. 

�9 for the Banach spaces of type LP(#),  with 1 < p < ~ ,  by 28.50. 

�9 for the category of Pontryagin groups (i.e., locally compact Hausdorff Abelian groups), 
by the Pontryagin Duality Theorem 26.44. 

�9 for the categories of Boolean algebras and Boolean spaces, by the topological version 
of the Stone Representation Theorem (see 17.44 and the sections following it). 
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On the other hand, in some categories we can easily establish that no object is reflexive. 
For instance, in the category of sets (without additional structure) and in the category 
of infinite-dimensional vector spaces (without topology), we can prove that X* is strictly 
larger than X (see 2.20.1 and 11.36), and therefore X** cannot equal X. 

In still other categories, some objects are reflexive while others are not, and reflexivity 
may be linked to other, important properties. For instance, a Banach space is reflexive if 
and only if its closed unit ball is weakly compact; see 28.41. 



Chapter  10 

The  Real  N u m b e r s  

10.1. Preview. A significant part of the history of mathematics is the successive extension 
of number s y s t e m s -  especially, the inclusions N C_ Z C_ Q C_ R c C. 

Our language still reflects the resistance with which some of these extensions originally 
were met. The ancient Greeks were reluctant to admit that  the universe could not be 
explained in terms of ratios of whole numbers; even today, the word "irrational" means 
an element of I~\Q but also means "crazy." Other terms occasionally used for an irra- 
tional number are "radical" or "surd" (an abbreviation of "absurd"). Centuries later, when 
mathematicians began to use complex numbers to analyze polynomial equations, they were 
reluctant to admit that  - 1  could have a square root. A "real" number could not be such 
a square root; such a square root must be "imaginary," and this name stuck, too. Mathe- 
matical nomenclature was not so disparaging a few decades ago when nonstandard analysis 
gave a rigorous foundation for the use of infinitesimals; the new numbers in *R\R were 
simply called "nonstandard" - -  a rather neutral term, by comparison. 

Usually, a "number" means an element of a field. The two fields most commonly used in 
analysis are the real number system I~ and the complex number system C. We shall intro- 
duce both of these fields formally in this chapter, though we have assumed some informal 
familiarity with ~ in earlier chapters. 

DEDEKIND COMPLETIONS OF ORDERED GROUPS 

10.2. Remarks and definition. If X is an ordered group other than {0}, then X cannot 
have a greatest element (easy exercise). Hence X cannot be "complete," in the sense of 
3.23. The closest X can come to such a condition is Dedekind completeness. For this reason, 
in the context of ordered groups, a "complete ordered group" generally means a Dedekind 
complete ordered group. 

10.3. Let (X, ~) be an ordered group. For any x C X and K C_ Z, let K x  - {kx" k E K},  
where the multiplication is defined as in 8.10.h. Then the following two conditions are 
equivalent to each other. If one, hence both, of them are satisfied, we say X is i n t eg ra l l y  
closed.  

(A) Whenever the set Nx is bounded above, then x ~ 0. 

242 
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(B) Whenever the set Z+x = {0, x, 2x , . . .}  is bounded above, then x 4 0. 

Also, the following two conditions are equivalent to each other. If one, hence both, are 
satisfied, we say X is A r c h i m e d e a n .  

(C) Whenever the set Zx is bounded above, then x = 0. 

(D) {0} is the only subgroup of X that has an upper bound. 

Furthermore, conditions (A)(B) imply conditions (C)(D). If the ordering 4 on X is a lattice 
ordering, then all four conditions are equivalent. 

Proof. To show (a)  ,+--> (B), note that the set {x, 2x, 3x , . . .}  is bounded above by/3 if 
and only if the set {0, x, 2x , . . .}  is bounded above b y / 3 -  x. The proof of (C) ,z----5, (D) 
is easy; we omit the details. To show (B) ~ (C), note that if Zx is bounded above, then 
Z+x and Z + ( - x )  are both bounded above, hence x 4 0 and - x  4 0, hence x = 0. 

Finally, to prove (C) ~ (B) when X is lattice ordered, suppose Z+x is bounded above 
by /3. By 8.42.p show that Z+(x V 0) is bounded above by /3 v 0. On the other hand, 
- ( x  V 0) 4 0; by adding show that -n (x  V 0) 4 0 for n E N. Thus the subgroup Z(x V 0) is 
bounded above. By (C), then, x V 0 = 0; hence x 4 0. 

10.4. Some basic properties and examples. 
a. Any subgroup of an integrally closed group is integrally closed. 

b. Any Dedekind complete, ordered group is integrally closed. 
Hints: Suppose x E X with Z+x bounded above. Let/3 = sup(Z+x). Show that 

/ 3 -  x is also an upper bound for Z+x; hence/3 ~ / ~ -  x. 

c. Examples. The groups Z and IR are Dedekind complete; Q is not. All three of these 
groups are integrally closed. 

The group Z 2 with the lexicographical ordering (see 3.44.a) is an ordered group 
that is not integrally closed. 

Another example of an ordered group that is not integrally closed will be given in 
10.19. 

10.5. Theorem: Comple t ion  of a Group. Let (D, 4)  be an ordered group, and let X 
be a Dedekind completion of D (as in 4.33 and 4.34). Then 

X can be made into an ordered group in which D is a subgroup 

if and only if D is integrally closed. Furthermore, if those conditions are satisfied, then the 
group operations on X must satisfy 

~ + r  / -- s u p { x + y  �9 x, y E D ,  x 4 ~ ,  y4r l } ,  (al) 

-- inf{x + y �9 x ,y  E D, x ~ ~c, y ~ r/}, (a2) 

- ~  = s u p { - x  �9 x E D ,  x ~ } ,  (bl) 

= i n f{ -x  �9 x E D ,  x 4 ~ } .  (b2) 
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Remarks. Our proof is based on tha t  in Fuchs [1963]. However, we assume D is commu- 
tative, whereas Fuchs does not impose that  restriction. Fuchs mentions Krull, Lorenzen, 
Clifford, Everett ,  and Ulam as contributors to this theorem. 

Proof of theorem. If D has such a group completion X, then X is Dedekind complete, 
hence integrally closed (by 10.4.b); hence D is integrally closed (by 10.4.a). Equations (al)  
through (b2) follow from 8.33 and the fact that  D is sup- and inf-dense in X. 

Conversely, suppose D is integrally closed. Let X be a Dedekind completion of D. 
Define operations on X by (al)  and (bl); we shall show that  these make X into an ordered 
group tha t  has D as a subgroup. At the end of this proof we shall show the validity of (a2) 
and (b2) as well. 

Wi th  definition (al)  it is easy to see that  + extends the addition operation of D, and 
that  + is commutative.  The beginner is cautioned not to assume too much just  on the 
basis of notation: Although we use the symbol "+," our proof must not rely on any as-yet- 
unestablished properties of addition in X. In particular, we must not yet use associativity 
or subtract ion (the existence of additive inverses) in X. However, we can freely use asso- 
ciativity and subtract ion in the given group D. 

Our first step will be to show that  addition in X is associative. Let any ~, r/, ~ E X be 
given. Let p E D. Then each of the following s ta tements  is equivalent to the next: 

p + + r 

p ~ u + z whenever u , z  c D and u 4 ~ + r / and  z 4 

p - z ~ u w h e n e v e r u ,  z E D a n d u 4 s u p { x + y  : x, y E D ,  x 4 ~ ,  y 4 r / } a n d  
z 4 r  

p - z ~ s u p { x + y  : x, y E D ,  x 4 ~ ,  y 4 r / } w h e n e v e r z E D a n d z 4  

p -  z ~ x + y whenever x , y , z  E D and x 4 ~, y 4 r/, z 4 

p ~ x + y + z w h e n e v e r x ,  y, z E D a n d x 4 ~ , y 4 r l ,  z 4 < .  

The last s ta tement  is symmetric  in ~, r/, r hence the first s ta tement  is not affected by a 
permuting of those three terms. Thus addition in X (defined as in (al))  is associative. 
Since D is sup-dense in X, the addition in X also satisfies ~ + 0 = 0 + ~ = ~. Thus we have 
established that  (X, 0, +)  is an additive monoid. 

Define - ~  as in (bl);  the mapping x ~ - x  from D into D is thus extended to a 
mapping from X into X. To show that  (X, + , - ,  0) is an additive group, fix any ~ E X,  
and let -y = ~ + ( -~) ;  we must show that  ? = 0. Observe that  

v 4 - ~  4=~ - v ~ ,  f o r v E D ,  

and hence 
- y = ~ + ( - ~ )  = s u p { x - v :  x, v E D, x 4 ~ 4 v}. 

From this it follows immediately that  0 /4  0. To show that  3' ~ 0, we shall apply 3.21.g. Fix 
any u E D with u ~ "y; it suffices to show that  u ~ 0. From u ~ "y we conclude, successively, 
tha t  
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x ,v  E D, x 4 ~ 4 v implies u > x -  v; 

for e a c h v c D w i t h v > { , w e h a v e x c D ,  x4~C =~ x 4 u + v ;  

for e a c h v E D w i t h v >  C, w e h a v e ~ 4 u + v ;  

N(u) is bounded below; 

l%l(-u) is bounded above. 

By assumption D is integrally closed; hence u ~ 0. 
Thus X is an additive group, when equipped with the operations + and - defined as 

in (al)  and (bl).  The ordering is translation-invariant (as defined in 8.30); this follows 
trivially from our definition of addition in X. Hence X is in fact an ordered group, with D 
as a subgroup. Therefore i n f ( - S )  - - s u p ( S )  for any set S C_ X; now (a2) and (b2) follow 
from ( a l ) a n d  (bl).  

10.6. Suppose the conditions of the preceding theorem are satisfied. Suppose, also, that  
Q is another ordered group, and f : D --, Q is a sup-preserving group homomorphism, and 
F : X ~ Q is a sup-preserving extension of f .  Then F is also a group homomorphism. 

Proof. It suffices to show that  F preserves addition. Define sets Lr as in 4.31; then 
= sup(Lr Then for any ~, ~ C X we have 

{ x + y  : x, y E D ,  x 4 ~ ,  Y4~7} 
- { x E D  : x 4 ~ } + { y E D  : Y4~7} = Lr  

Hence 

F ( ~ + ~ )  - F(sup(L~ 4- Lv)) 
- sup(f(L~ 4- Lv) ) 
= sup(f(L~) 4- f(L,~)) 

sup(f(L~))  4- sup(f (Lv))  
= F(sup(L~))  4- F(sup(L~))  
= F(~) + F(~)  

by (al)  in 10.5 
since F is sup-preserving 
since f is additive on D 
by 8.33 
since F is sup-preserving 
since D is sup-dense in X. 

ORDERED FIELDS AND THE REALS 

10.7.  
that  

Definitions. A c h a i n  o r d e r e d  r i ng  is a ring R equipped with an ordering _< such 

(i) (R,_<) is a chain; 

(ii) the ordering is translation-invariant 
all x, y, u E X; and 

that  is, x _ < y  => x 4 - u _ < y 4 - u f o r  
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(iii) x , y  > O ~ x y  > O. 

If R is also a field, we shall call it a cha in  o r d e r e d  field. (Some mathematicians call these 
an ordered ring and an ordered field, respectively, but that  is not specific enough for the 
purposes of this book.) 

Some basic examples. The rational number system (~ (with its usual ordering) is clearly 
a chain ordered field; we shall assume informal familiarity with that  fact, but it also follows 
from a construction presented in 10.11. The real number system I~, introduced in the next 
paragraph, is a chain ordered field. Certain other subsets of I~ are also chain ordered fields 

for instance, {a + by/2: a, b E Q}, which is introduced in 10.23.a. In 10.12 we present a 
chain ordered field that  is not contained in •. 

10.8. We now define the real number system R to be a Dedekind complete, chain ordered 
field (or, in the terminology of some mathematicians, a complete ordered field). To make 
sense of this definition, we shall show that  (i) there exists a Dedekind complete, chain 
ordered field, and (ii) any two such fields are isomorphic; thus, there is only one real 
number system. We shall prove those facts in 10.15. 

Discussion. Intuitively, we usually think of the real number system as a model for 
the set of all points on a Euclidean straight line. However, that  description has certain 
drawbacks. It does not determine IR uniquely, for it also fits *lt~ quite well. Also, the 
geometric description does not translate readily into usable algebraic axioms. 

We also think of reals as "infinite decimal expansions" such as 3.14159265358979323.... 
In grade school we learn, informally, how to perform arithmetic operations with such ex- 
pansions. A formal theory of such expansions is sketched in 10.44 and 10.45. Perhaps this 
view of the real number system is the most concrete and the most useful for purposes of 
real-world applications in physics, engineering, etc. 

However, in advanced analysis we usually consider the decimal expansions to be just rep- 
resentations for numbers, not the numbers themselves. Those numbers have other represen- 
tations (in binary, in ternary, in hexadecimal, etc.). In the development of abstract theory, 
what we really need are not concrete representations such as 3.14159265358979323..., but 
the essential properties of the real numbers, which are used to prove theorems. That  IR is a 
field means that  we can do ordinary arithmetic; that  it is chain ordered means that  inequal- 
ities work the way they should; that  it is Dedekind complete means that  we can take sups, 
infs, and limits. Analysts often take these ideas for granted and forget how complicated a 
structure the real number system is. 

Actually, we shall prove the existence of IR in several different ways. The proof in 
10.15.d is fairly detailed; other proofs are sketched briefly in 10.45 and 19.33.c. All of the 
constructions are somewhat complicated and nonintuitive they represent a real number 
as a set of rational numbers, or a pair of sets of rational numbers, or a set of pairs of 
rational numbers, etc. The theorem on the uniqueness of the reals, in 10.15.e, tells us that  
these constructions of F~ from (~ all yield the same result. Any one of these constructions is 
sumcient, and it does not mat ter  which one we use. After we have proved the existence of a 
Dedekind complete, chain ordered field by representing it in terms of rational numbers, we 
may discard that  representation; we may return to thinking of real numbers as indivisible, 
primitive objects like the points on a line. 
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10.9. A few basic properties. 
1 1 

a. If F is a chain ordered field, then 0 < x < y =~ 0 < - < - .  
y x 

b. If F is a chain ordered field, then F has no greatest or least element. 

c. If F is a chain ordered field, then x 2 - - 1  has no solution x in F. 

d. If R is a chain ordered ring with unit, other than {0}, then the unique homomorphism 
from Z to R (noted in 8.19.d) is injective and order-preserving. Thus R contains an 
isomorphic copy of Z. 

Hint" Let 1R denote the multiplicative identity of R. Show that  1R > 0, and hence 
1R + 1R + ' ' '  + 1R (the sum of finitely many such terms) is also positive. 

e. If F is a chain ordered field, then the unique ring homomorphism from Q into F (noted 
in 8.23.c) is injective and order-preserving. Thus F contains a uniquely determined 
isomorphic copy of Q. Identifying various sets with their isomorphic copies when no 
confusion will result, we may write N C Z C_ Q c_ F; we shall follow this convention in 
results below. 

f. No finite field can be a chain ordered field. 

10.10.  An abstract construction of chain ordered fields. Let D be an integral domain, and 
let F be the resulting field of fractions, as in 8.22. Suppose that  some ordering _E is given on 
D, making it a chain ordered ring. Define an ordering ~ on F as follows: For rn, n, x, y E D 
with rn, n Z 0, define 

x y 
~ - to mean xn 3_ ym. 

m Tt 

(The reader should verify that  this ordering does not depend on the choice of the represen- 
tatives of the equivalence classes.) Show that  F is then a chain ordered field. Moreover, 
considering D as a subset of F, show that  the ordering on F is an extension of the ordering 
on D. 

Two important  particular cases of this construction are given in the next two sections. 

10.11.  Example. When the integral domain D is Z - {integers}, then the field of fractions 
is Q, the field of r a t i o n a l  n u m b e r s ;  the ordering given in 10.10 is just the usual ordering. 

10.12. A non-Archimedean example. Let (A, _<) be a chain ordered ring that  is also an 
integral domain. (An example to 'keep in mind for now is A = Z; later we may reconsider 
this construction with A = R.) Let x be a variable. Let D be A[x], the ring of polynomials 
in the one variable x with coefficients in A; then D is an integral domain (see 8.24). The 
resulting field F of fractions is A(x), the field of  r a t i o n a l  f u n c t i o n s  in the one variable x 
with coefficients in A. 

On D = A[x], we now define this ordering: p -1 q will mean that  the leading coefficient 
of the polynomial p - q  (defined in 8.24) is strictly greater than 0. Verify that  this makes 
(A[x], _E) into a chain ordered ring. Hence our construction in 10.10 makes (A(x), ~) into a 
chain ordered field. This example can be found in various algebra books; another source is 
Lightstone and Robinson [1975]. 

A few observations about this field will be useful later in this chapter: 
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a. If p and q are polynomials, the degree of p is greater than the degree of q, and the 
leading coefficient of p is positive, then p -1 q. 

b. If p and q are polynomials other than 0, the de g re e  of the rational function p/q will 
mean the difference deg(p) - deg(q), and the leading coefficient of p/q will mean the 
quotient of the leading coefficients of p and q. Show that if r, s are rational functions 
with positive leading coefficients, and deg(r) > deg(s), then r ~ s. 

c. The function p(x) = x is strictly greater than every constant function k. Thus, the 
sequence 1, 2, 3 , . . .  is bounded above. 

d. The sequence 1, x, x 2, x3 , . . ,  is not bounded a b o v e -  i.e., there does not exist a rational 
function r(x) that satisfies r(x) ~_ x n for all nonnegative integers n. (Contrast this 
result with 10.20.c.) 

10.13. Definition and exercise. Let IF be a chain ordered field (as defined in 1 0 . 7 -  hence 
F is also lattice ordered). Then N c_ Z c_ Q c_ F as noted in 10.9.e. 

Then the following conditions are equivalent; a chain ordered field IF possessing one 
(hence all) of these conditions is said to be an A r c h i m e d e a n  field. 

(A) F is Archimedean in the sense of 10.3; that is, {0} is the only additive subgroup 
of IF that is bounded above by an element of F. 

(B) N does not have an upper bound in F. 

1 N} has infimum (in F) equal to 0. (C) The set {Z "n C 

(D) For each c E F, the set {m E Z ' m  > c} has a lowest element. 

(E) Between any two elements of F there is an element of Q. (This is sometimes 
called the D e n s i t y  P r o p e r t y . )  

(F) Q is sup-dense and inf-dense in F (see 4.31). 

Hints for the equivalence proof: It is fairly easy to see that conditions (A) through (D) are 
equivalent. To show that those conditions imply (E), let c~,/3 c IF be given with c~ </3. By 
(C) and (D), there exist n C N w i t h / 3 -  ~ > 1/n, and m E Z with m > nc~ >_ m -  1. Show 
that m / n  lies between (~ and/3. 

It is easy to see that (E) implies (F). 
1 N} and T - E Q "  q > 0}. Since To see that (F) implies  (C), let S - {Z " n  c {q 

every element of either of these sets is less than some member of the other set, we have 
inf(S) - i n f ( T ) ;  but inf(T) - 0  since Q is inf-dense in F. 

This presentation is based partly on Davis [1977]. 

10.14. (Optional.) Let F be a chain ordered field. Say that a sequence (xn) is Cauchy in 
IF if for each ~ in IF with c > 0 there exists a positive integer M such that 

j, k >_ M ~ - c  < Xj  - - X  k < C. 

(Cauchy sequences will be studied in another setting in Chapter 19.) 



Ordered Fields and the Reals 249 

Proposition. Let F be a chain ordered field. Then (A) IF is Archimedean if and only if (B) 
each bounded, monotone sequence in IF is Cauchy. (Also see related results in 10.17.) 

1 1 1 Hints: For (B) ~ (A), it sumces to show that the set S - {1, 2, 5, ~, '" "} has infimum 
equal to 0. Suppose that some b > 0 is a lower bound for S. By the Cauchy criterion, there 
is some positive integer M such that 

1 1 
j , k > _ M  ~ <b. 

j k 

Since ~-~1 E S, we have b _< )-'-'M'I Use j -- M and k - 2M to obtain a contradiction. 
For (A) =~ (B), let (x~) be a bounded, monotone sequence. We may assume that (x~) 

is increasing (why?) and that Xl _> 0 (why?); thus0_< Xl _< x2 _< x3_< . . . _<  b f o r s o m e  
b E F. Suppose (x~) is not Cauchy. Then there exist some c > 0 in IF and some positive 
integers ft 1 < Pl < rt2 < P2 < "'" such that xpj - x~j > c for all j .  For any positive integer 
k, show that 

b ~ ~l~pk -- 0 ~ (~Cpk -- ~C~k ) + ' ' "  + (Xp2 --  XTt 2 ) + (Xpl -- XTt 1 ) > k~.  

Thus the set { 1, 2, 3 , . . .}  is bounded above by b/c. 

10.15. Examples and theorems about Archimedean fields. 
a. The field constructed in 10.12 is not Archimedean, by 10.12.c. 

b. Q is an Archimedean field. 

c. The multiplicative group {x E Q : x  > 0} is an Archimedean chain ordered group (as 
in 10.3). 

d. E x i s t e n c e  of t he  reals.  There exists a Dedekind complete, chain ordered field. In 
fact, if F is any Archimedean field, then the Dedekind completion of F is a Dedekind 
complete, chain ordered field. 

Hints: Let R denote the Dedekind completion of F. The completion is unique up to 
order isomorphism, by 4.38. Show that {{ E R : {  > 0} is the (also unique) Dedekind 
completion of the nmltiplicative group {z E IF : z > 0}. Use 10.5 to define addition 
and additive inverses in R and to define multiplication and multiplicative inverses in 
{~c E R : c > 0}; thus F and {z E F : z > 0} are subgroups of the groups (R,+)  
and ({{ C R : { > 0}, .) respectively. Extend the definition of multiplication to other 
products of real numbers by { ' r / =  [sgn({)][sgn(~)] I~11~l. Show that this makes R into 
a Dedekind complete, chain ordered field. 

The construction of the reals by cuts was published by Dedekind in 1872. 

e. U n i q u e n e s s  of t he  reals .  Let R1 and R2 be two Dedekind complete, chain ordered 
fields. Then R1 and R2 contain ring-isomorphic copies of Q, and there is an isomor- 
phism (of rings with unit) from R1 onto R2 that leaves elements of Q fixed and preserves 
order. 

Hints: By 10.13(E), Q is both sup-dense and inf-dense in R1. Hence R1 is a 
Dedekind completion of Q. Similarly for R2. By the uniqueness of completions (4.38), 
there is a unique order isomorphism from ]R1 onto R2 that leaves Q fixed. By 10.6, that 
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isomorphism preserves sums. Applying 10.6 to the multiplicative groups of positive 
elements, we see that  that  isomorphism also preserves products. 

f. (Optional.) Let IF be an ordered field. Show that  F is Archimedean if and only if (after 
relabeling by isomorphism) we have Q c_ IF c_ R, in which case Q is both sup-dense 
and inf-dense in F, and I~ is the Dedekind completion of IF. 

10.16. Remarks. Our proof of the uniqueness of ~ depends on our use of conventional 
language and logic. If we change our rules of inference - -  e.g., if we restrict ourselves to first 
order language and logic, as is common in nonstandard analysis - -  then there may be many 
different models of the real line (though they may be indistinguishable except through the 
use of higher-order language and logic). See 14.68. 

10.17. (Optional.) Let F be a chain ordered field. Let F be equipped with the order 
interval topology (see 5.15. 0 and the resulting convergence (see 7.41 and 15.41). Then it 
can be shown that  the following conditions are equivalent. 

(A) F is Dedekind complete and thus is the real line. 

(B) If (xn) is any monotone, bounded sequence in F, then (xn) has a limit in IF. 

(C) F is Archimedean, and every Catchy sequence in IF (defined as in 10.14) has 
a limit in F. 

(D) F is connected (defined as in 5.12). 

(E) For any a,b E F with a _< b, the set [a,b] - {x c F ' a  _< x _< b} is compact 
(defined as in 17.2). 

(F) For any a,b c F with a _< b, the set [a,b] - {x c F �9 a _< x _< b} is 
pseudocompact (defined as in 17.26.a). 

We shall not prove the equivalence. These conditions and others are proved equivalent by 
Artmann [1988]; that  exposition is based in part on Steiner [1966]. Artmann's  book also 
gives an example of a non-Archimedean field in which every Catchy sequence converges. 
Thus Dedekind completeness is not the same thing as Catchy completeness. 

THE HYPERREAL NUMBERS 

10.18. By the h y p e r r e a l  l ine (or the h y p e r r e a l  n u m b e r  s y s t e m )  we shall mean any 
non-Archimedean, chain ordered field ]HI that  contains R as a subfield; the members of H 
are called h y p e r r e a l  n u m b e r s .  

Strictly speaking, there are many hyperreal lines. We gave one construction in 10.12; 
two more constructions are given in 10.19 and 10.20. However, usually we work with just 
one such field at a time, and so it is convenient to call that  field "the" hyperreal number 
system while we are working with it. 

Let ]HI be a hyperreal line; thus Z ~ Q ~ IR c ]HI. Then: 
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a. Elements of IR are called rea l  n u m b e r s ,  or sometimes (for emphasis) s t a n d a r d  rea l  
n u m b e r s .  

b. A hyperreal number { is called b o u n d e d  i f - r  < { < r for some real number r; 
otherwise { is u n b o u n d e d .  (Other terms commonly used in place of "bounded" are 
limited and hyperfinite.) 

Clearly, any real number is bounded. Show that  some hyperreal number c~ is 
unbounded. Then +c~, +2c~, +3c~,. . .  are different unbounded hyperreal numbers, and 
c~. c~ is yet another one. The set of positive unbounded hyperreal numbers has no 
largest or smallest member. The set of bounded hyperreals is a commutative ring with 
unit. 

c. A hyperreal number { is called i n f i n i t e s i m a l  i f - r  < { < r for every positive real 
number r. Show that  0 is the only real infinitesimal. Show that  a nonzero hyper- 
real number { is infinitesimal if and only if 1/{ is unbounded. The set of positive 
infinitesimal numbers has no largest or smallest member. 

Every positive real number is an upper bound for the set of infinitesimals. Show 
that  the set of infinitesimals does not have a least upper bound in H. This illustrates 
the fact (which we already knew) that  H is not Dedekind complete. 

The set of all infinitesimals is an ordered ring (without unit). (Some mathematicians 
exclude 0 when they define infinitesimal, but that  definition has the disadvantage that  
the resulting set of infinitesimals does not have such a nice algebraic structure.) 

d. Two hyperreal numbers are said to be in f in i t e ly  close (or infinitesimally close) if 
their difference is an infinitesimal. 

Let { be a bounded hyperreal number. Show that  there is one and only one real 
number r that  is infinitely close to {. That  number r is called the s t a n d a r d  p a r t  of 
{; we may abbreviate it by std({). 

Hint: To show that  there is at least one such number, use the Dedekind complete- 
ness of IR to prove that  there is a real number r = inf{s 6 IR: s > {}; then show it has 
the required properties. 

e. Show that  

{bounded hyperreals} = {real numbers} | {infinitesimals} 

is an internal direct sum decomposition of one additive group into two subgroups. 
Show that  

std : {bounded hyperreals} -+ {real numbers} 

is an isotone map (for the ordering) and a ring homomorphism. 

Thus, nestled around each real number r there are infinitely many bounded hy- 
perreal numbers, all infinitely close to that  real number r. In some books, some of 
these hyperreal numbers are denoted by r + s, r - s, r + 5, r - 5, etc.; a picture of a 
microscope is sometimes used to suggest their closeness to r. 
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R e m a r k .  It can be shown that  the s m a l l e s t  hyperreal line is the field R(x), of rational 
functions in one variable with real coefficients, constructed as in 10.12. Indeed, if we 
take the real line and adjoin some element x that  is infinitely large, then x acts as a 
transcendental  over R and hence acts algebraically as an indeterminate i.e., as a 
variable. The resulting field generated by R U {x} must then be R(x). This is discussed 
by Fleischer [1967]. Fleischer also points out that,  although we may not be able to 
extend quite as many functions in the setting of this field as we did in 9.49, at least 
we can extend some functions c o n s t r u c t i v e l y .  See also the related remarks in 10.20.c. 

10.19. U l t r a p o w e r s  o f  the  reals. Let 9" be a proper filter on a set A. Define the reduced 
power *R = RA/9 " and its arithmetical operations and ordering as in 9.41, 9.49, and 9.51. 
Then *R is a ring with unit by 9.53 since R is a ring with unit. In fact, *R is a commutative 
lattice algebra since R is. (Similarly, the h y p e r n a t u r a l  n u m b e r s  *N inherit some of the 
properties of N.) 

Recall from 9.52.e and 9.52.f that  *R is chain ordered if and only if 9" is an ultrafilter. 
Show that  

a. *R is a field if and only if 9" is an ultrafilter. 

H i n t s :  If 9 ~ is not an ultrafilter, then A can be parti t ioned into sets A1 and A2, 
neither of which is an element of 9-. Let Ct I and c~2 be their characteristic functions. 
Show that  neither Oz I nor c~2 is equivalent to 0, but their product (~:1c~2 is 0. 

b. Suppose ft, A, 9" satisfy the conditions of the Enlargement Principle [9.54), and R C_ f~. 
Then * R -  IRA/9: is a non-Archimedean, chain ordered field. 

H i n t "  Let E - {S c_ IR" S _D (n ,+oc)  for some posit iv.~ integer 'n}. Then E is a 
proper filter on R. Show that  any member of ~Eet~ *E is ;m upper bound for N. 

10.20.  Assume that  9" is a free ultrafilter on the set A - N; hence *R - IRr~/9- is a chain 
ordered field. Show that  

a .  

b" 

C. 

*R is non-Archimedean. In fact, the equivalence class of the sequence (1, 2, 3 , . . . )  is an 
upper bound for N in *R. 

Different constructions may yield slightly different hyperreal number systems. For 
instance, one of the sequences c~ - (1,0, 1, 0, 1 , . . . )  or ~A - (0, 1,0, 1, 0 , . . . )  is equivalent 
to the real number 0 and the other is equivalent to the real number 1. We can choose 
which is which, if we want to, by specifying 9" in more detail. Let C - {cofinite 
subsets of N}, let E - {even numbers} - {2, 4, 6 , . . . } ,  and let F - {odd numbers} - 
{1, 3, 5 , . . .} .  Using 5.5.i and 6.33, we can obtain free ultrafilters ~, 9- on N that  satisfy 

_D {E} U e and 9" _D {F} U e. In the hyperreal line IRN/~ we have 7r(c~) - 0 and 
z r ( ~ ) -  1; in the hyperreal line RN/9" we have 7r(c t ) -  1 and 7r(Z)- o. 

Every countable set S c_ *R is order bounded. 

H/~t~" Let s - ~(f~), ~ ( f~) , . . . } ,  where each fn is a function from N into 
R. Define functions u, v" N ~ R by taking 

u ( k )  - min { f l ( k ) ,  f 2 ( k ) ,  . . . , fk(k)},  v ( k )  - m a x  { f l ( k ) ,  f 2 ( k ) , .  . . , f k ( k ) }  . 
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For each j E N, show that  Cj = {k E N : u(k) <_ f j (k )  <_ v(k)} is cofinite, hence a 
member of 9., and thus 7r(u) _< 7r(fj) <_ 7c(v). Therefore 7r(u) and 7r(v) are lower and 
upper bounds for S. This result can be found in Takeuchi [1984] and elsewhere. 

Further remark. Contrasting the result above with 10.12.d, we see that  IRA/9. is not 
isomorphic to the minimal hyperreal line R(x) discussed in 10.18.f. This observation 
is taken from Fleischer [1967]. 

10.21. (Optional.) Let 9" be a free ultrafilter on a set A, and define the ultrapower 
* R  - RA/9.. Does it follow that  *R is non-Archimedean? It does under certain additional 
hypotheses, as in 10.19.b and 10.20.a, but in general the answer is not clear. However, in 
general (i.e., for any free ultrafilter 90 the following conditions are equivalent" 

Whenever g - {S1, $2, $3,...} is a countably infinite part i t ion of A, then a 
unique member of g belongs to 9". 

(F) Whenever F1, F2, F3 , . . .  is a sequence in 9., then Nn%l Fn E 9.. In other words, 
the ideal of sets {A \ F �9 F E 9.} is a a-ideal. 

Proof of equivalence. For (A) =~ (B), observe that  R c_ *R in any case, and an ordered 
field F is Archimedean if and only if Q c_ F c_ R (see 10.15.f). For (B) ~ (C), use 9.45.d. 
Implication (C) =~ ( D ) i s  obvious. For (D) =~ (E), define a function f "  1 + N by 
taking f(A) - n when A E S~. Since f is equivalent to some constant k, the set Sk is a 
member of 9.. For (E) ~ (F), suppose that  no member of g belongs to 9". Then all the 
sets F~ - A \ S~ belong to 9.. Hence their intersection belongs to 9 " -  but that  intersection 
is empty, a contradiction. For (F) ~ (A), suppose *R is not Archimedean. Then N is 
bounded above by some ( c *R. Then ( is the equivalence class of some function f �9 A + R, 
such that  the set F~ - {A c A ' n  < / ( A ) }  is a member of 9" for each n E N. Then Mrt%l Frt 
is nonempty, a contradiction. 

Further remarks. Do there exist .any filters 9. satisfying those conditions (A)-(F)  above? 
That  is a famous problem in set theory. To discuss it we need a few definitions: 

An ultrafilter 9. on a set A is said to be c~-complete  if, whenever C C_ 9. with card(C) < c~, 
then A c c e  C is a member of 9.. A m e a s u r a b l e  c a r d i n a l  is a cardinal c~ with this property: 
c~ is uImountable and there exists a free ultrafilter 9. on some set with cardinality c~ such 
that  9" is/3-complete for every cardinality/3 < c~. A w - m e a s u r a b l e  c a r d i n a l  is a cardinal 
c~ with this property" c~ is uncountable and there exists a free ultrafilter 9. on some set A 
with cardinality c~ such that  9 ~ is card(N)-complete. 

Clearly, a filter satisfying condition (F) above exists if and only if an w-measurable 
cardinal exists; and it is shown by Bell and Slomson [1969] that  a w-measurable cardinal 
exists if and only if a measurable cardinal exists. 

(A) *R is Archimedean. 

(B) * R - R .  

(C) * S -  S for every set S c_ R. 

(D) * N - N .  

(E) 
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However, the existence or nonexistence of a measurable cardinal cannot be proved in 
conventional set theory. More precisely, the following results are known: (i) The consistency 
of ZF implies the consistency of ZF + AC + "there does not exist a measurable cardinal." 
(ii) The axiom system ZF + AC + "there exists a measurable cardinal" is empirically 
consistent, but  its consistency is not implied by Con(ZF). These results can be found in 
Kunen [1980] and other books on formal logic. 

QUADRATIC EXTENSIONS AND THE COMPLEX 
NUMBERS 

10.22.  Let F be a field, and suppose q is an element of F that  is not a square i.e., 
assume q c IF and suppose there is no solution x c IF for the equation x 2 = q. (Examples 
are given in 8.20.c, 8.23.b, and 10.9.c.) Let F (v~)  represent the set F x F, equipped with 
binary operations defined as follows: 

addition: (al,  bl) + (a2, b2) = (al + a2, bl + b2) 

multiplication: (a l , b l ) (a2 ,b2 )  = (ala2 + qblb2, alb2 Jr- a2bl) 

where the expressions ala2 + qblb2, etc., are computed using the ari thmetic rules of IF. 
Verify tha t  ]F(x~) is a field when equipped with these binary operations; the additive and 
multiplicative identities are (0, 0) and (1, 0) and 

( a the multiplicative inverse of (a, b) is a2 _ qb 2 , a2 _ qb 2 

when (a, b) =fi (0, 0). (This makes sense since (a, b) 7/= (0, O) =~ a 2 - q b  2 :/= 0.) 
Furthermore,  the mapping a ~ (a, 0) is an injective homomorphism from F into F ( ~ ) .  

Thus we may view F as a subset of F(~/-~). If we write (a, 0) as a and (0, b) as bx/~, then 
(a, b) may be writ ten as a + bv@ with all the usual rules of ari thmetic being preserved. 
Then F (v~)  has additive identity 0 and multiplicative identity 1. We have extended our 
original field to a larger field in which the equation x 2 = q does have a solution; the solution 
is the "number" (0, 1) = v/-~. 

Exercise. Show that  the only other solution of x 2 = q in F(x/q) is the "number" ( 0 , -  1) = 
-v/~.  (The beginner is urged to use the ordered pair notation (a, b) rather  than the more 
familiar notation a + bx/~, to reduce the likelihood of assuming something that  has not 
already been proved.) 

10.23.  Examples .  
a. Q(v/2) = {a + b y e :  a, b e Q} is a subfield of IR. 

b. Let m be an odd prime. As we noted in 8.20.c, there are elements q E ~m for which 
x 2 = q has no solution in Zm. Fix any such q. Then Zm(v/-~) is a field containing 
exactly m 2 elements. Exercise. Construct addition and multiplication tables for the 
field with 9 elements. 
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10.24. The c o m p l e x  n u m b e r s  are the quadratic extension field R ( ~ - I ) ,  formed from R 
by the construction of 10.22; this field is usually denoted by C. The complex number ~ - 1  
is usually writ ten as i. Thus complex numbers can be writ ten as x + iy  or x + yi ,  where 
x, y E R. The complex number c~ - x + iy  has rea l  p a r t ,  i m a g i n a r y  p a r t ,  and c o m p l e x  
c o n j u g a t e  defined by 

Re a - x, Im (~ - y, -d - x - iy.  

( C a u t i o n :  Some mathematicians use overlines for other purposes than complex conjugation 
e.g., set complementation or topological closure.) 

10.25.  The spaces C and R 2 are isomorphic, when considered as real vector spaces: They 
yield the same results for addition and for multiplication by a real number. 

Any complex-valued function of a complex variable can be rewrit ten as a R2-valued 
function o f a v a r i a b l e i n l R  2. I f w  = f ( z ) ,  we may write z = x + iy  a n d w  = u + iv  = 
f ( x  + iy ) ,  where u, v, x, y are real. The letters f, u, v, w, x, y, z are customarily used in the 
literature in precisely this arrangement. 

Example .  If w = f ( z )  = z 3, then 

u + iv  - (x  + iy)  3 = x 3 + 3 i x 2 y -  3 x y  2 - iy  3, 

y )  - x - 3 x y :  y )  - 3 x : y -  

f- 

10.26. Exercise .  The 2-by-2 matrices of the form / x y with x y E R, equipped with 
- y  x 

L. 

matr ix addition and multiplication, form a field that  is isomorphic to C; the matrix above 
corresponds to the complex number x + iy.  

More generally, let F be a field, and let q be an element of F that  has no square root in 

F. T h e n t h e 2 - b y - 2 m a t r i c e s ~ 1 7 6  [ /qy xY I w i t h x y E F '  , e q u i p p e d w i t h m a t r i x  

addition and multiplication, form a field that  is isomorphic to the quadratic extension field 
F(x/~), with the matrix above corresponding to x + yv/-~. 

10.27.  For many purposes it is convenient to represent complex numbers as points in the 
plane, with the real part  being the distance to the right of the origin, and the imaginary 
part being the distance up from the origin; then ~ is the reflection of c~ in the horizontal 
coordinate axis. This representation is sometimes known as an A r g a n d  d i a g r a m .  See the 
following illustration. This illustration also shows the polar coordinate representation: If r 
is the distance from 0 to c~ and 0 is the angle from the positive real axis to the line between 
0 and c~, then c~ = r cos 0 + ir  sin 0. The real number 0 is sometimes called the a r g u m e n t  of 
the complex number c~. 

His tor ica l  remarks .  Calculations with complex numbers were performed long before such 
numbers were properly understood or fully accepted. For instance, Cardan showed that  the 
quadratic equation x(10 - x) = 40 has the two solutions 5 + ~ - 1 5  and 5 - x/~-15, without 
any clear understanding of what such numbers could mean. Euler, around 1750, wrote 
that  such computations are a method for showing that  the equation x ( 1 0 -  x) = 40 has no 
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A r g a n d  d i a g r a m  

a - x + i y  
= r (cos 0 + i sin 0) 

Im 

J 

O~ 

I 
I 

v !  

. m 

Oz 

Re 

solutions. Some mathematicians took this attitude: Of course there is no square root of a 
negative number; but if there were such a thing, what algebraic properties should it have? 
Around 1800, writings of Argand and Gauss gave our present geometrical interpretation of 
complex numbers as points in the plane. Finally, in 1830, William R. Hamilton published a 
paper explaining complex numbers in terms of ordered pairs; probably that is the simplest 
starting point for mathematicians learning about complex numbers today. Some accounts 
of the history of this subject are given by Kline [1990] and Tietze [1965]. 

10.28. The rules for addition and multiplication of complex numbers are the same as the 
rules given in 10.22, with q taken to be -1 .  The rule for addition is fairly simple; it is the 
same as the addition of vectors in R 2 (see Chapter 11). The rule for multiplication, 

(a l  + i 5 1 ) ( a 2  n a i 52 )  - -  ( a l a 2  -- 5152) -~- i ( a 1 5 2  -~- a251),  (,) 

is more complicated, and may seem rather arbitrary to the beginner. However, it becomes 
much more natural when interpreted geometrically with polar coordinates. Let cis(0) denote 
cos(0) + / s in (0) .  Using (,) and some basic trigonometric identities, verify that the product 
of the complex numbers rlcis(01) and r2cis(02) is the complex number (rlr2)cis(01 -~-02). 
Thus, to multiply two complex numbers, we multiply the radii and add the angles. Arith- 
metic with complex numbers may be viewed as transformations of the plane: Addition is a 
translation, while multiplication is a rotation and stretching. 

It follows that 
[rcis(O)] n = rncis(nO) 

for integers n. This is known as De Moiv re ' s  formula.  

10.29. Reversing the process described above, we find that the nth roots of any complex 
number rcis(0) are 

rl/ncis 0 +n27rJ 1 (j - O, 1 , 2 , . . . , n -  1). 

These are points equally spaced along a circle centered at 0 with radius r 1/n. 
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The reader is cautioned that  familiar properties of v/-J or ~/z for positive real numbers 
z do not always extend to complex numbers z. Indeed, the notations vG and ~ are 
too ambiguous and imprecise for some computations with complex numbers. For instance, 
v/-~v/-0 = ~ is valid for p , q  > 0, but the computat ion - 1  = x/-Z-fv/-L-f = V / ( - 1 ) ( - 1 )  = 

x/~f = 1 is clearly incorrect. However, the reader who makes an error of this sort is in good 
company: Euler made some similar mistakes, in the years before complex numbers were 
well understood. 

10.30. P o l y n o m i a l  e q u a t i o n s .  The discussion in 10.29 shows that  for any complex number 
c~ other than 0, we have n distinct solutions z to the polynomial equation z n -  a = 0. 
What  about other polynomial equations? In 17.36 we shall prove that  every nonconstant 
polynomial (in a single complex variable, with complex coefficients) has at least one complex 
root; in fact, counting multiplicities of multiple roots, every polynomial of degree n has 
exactly n complex roots. Power series and analytic functions, which are like "polynomials 
of infinite degree," have a more complicated theory, which will be considered briefly in 22.23 
and 25.27. 

We can actually give f o r m u l a s  for the roots of the simplest polynomials: 

a. The quadratic equation a z  2 + bz  + c - 0 (with a =/= 0) has solutions given by the 
- b  + v /b  2 - 4 a c  

q u a d r a t i c  f o rmu la ,  z - . Every student learns this in high school 
2a 

at least, when a, b, c are real numbers and b 2 - 4 a c  >_ O. Actually, we can apply this 
formula with any complex numbers a, b, c (with a r 0), since 10.29 tells us how to find 
square roots of b 2 - 4ac .  The quadratic formula yields two distinct complex solutions 
z, or one solution repeated if b 2 - 4 a c  - O. 

b. An analogous formula, involving square roots and cube roots, can be given for the 
cub ic  equation a z  a + bz  2 + c z  + d - 0 (with a r 0), but it is a bit more complicated. 
It was published by Cardan in 1545. Divide through by a; thus we may assume a - 1. 

b 
Substi tute z - w Some cancellation occurs. The resulting equation can be 

3 
rewritten in the more convenient form w a + 3 e w  - 2 f  - O, with known constants 

1 lb2 f _ 1 ba + l b c  - l d .  
e - -  -~c 9 ' -2---7 6 -2 

Now make another substitution, taking w - ( -  e( -1. Again some cancellation occurs. 
The resulting equation (3 _ ( 7 3 ~ - 3  _ 2 f  - 0 can be rewrit ten as (6 _ 2f~3 _ (?3 _ 0. 
This is a quadratic in (3. Solve it as in 10.30.a; thus ~ 3  __ f -Jr- d f  2 -+- (?3. Then find ~, 
as in 10.29. This leads, finally, to 

+ _ _b. 
3 

This looks like six values, since each complex number other than. 0 has two square 
roots and three cube roots, but there is some repetition and we only end up with 
three distinct solutions. This complicated procedure is seldom used in applications; 
numerical approximation methods do not depend on the use of these formulas. 
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c. A still more complicated formula or method yields the solution of the q u a r t i c  equation 
z 4 + az  3 + bz 2 + cz + d = 0. This problem was solved by Cardan's student and published 
in Cardan's book in 1545. Here is one description of the method: By completing the 
square, we may rewrite the given equation as 

2 l a 2  _ b )  z 2 - laz) z + C Z  ~ d .  

For any constant r (to be specified), we have 

( 1 )  2 ( l a 2 - b + 2 r )  z2 z 2 + - ~ a z  + r - -4 + ( a r - c ) z  + (r 2 -  d), 

1 r) 2 which we shall rewrite as (z 2 + ~az  + - A z  2 -+- B z  -+-C. 
Now, an expression of the form A z  2 + B z  + C, with constants A, B, C is a perfect 

square i.e., an expression of the form A ( z  - D) 2 if the constants A, B, C satisfy 
C 

B 2 = 4 A C ,  and in that case we have D = - - - .  If we can choose a constant r to 
2B 

satisfy this condition, then we will have 

( 1 )2 
z 2 + -~az + r - A ( z -  D) 2, 

which can be rewritten as z 2 + l az  + r - + x / ~  ( z -  D)  that  is, two quadratic 
equations, which we can solve for z as in 10.30.a. 

It remains only to find a value of r that  satisfies B 2 = 4 A C .  This equation, written 
in more detail, is (a t  - c) 2 - 4 (1~a2 _ b + 2r) (r 2 - d) a third-degree equation for 
r, which we can solve as in 10.30.b. 

d. Some qu in t i c  (or fifth-degree) equations have solutions that  can be expressed in terms 
of fifth roots. For instance, one of the solutions of x 5 + 20x + 32 = 0 is the number 

1 ~/2500x/~+ 250150 - 10x/~_ 750V/50+ 10v/- ~ 
5 

1 ~/2500x/~_ 250150 + 10v/-~_ 750V/50_ 10v/~ 

1 ~ i V/5 + g 2500v/5 + 250 50 + 10v~ + 750 0 - 10v~ 

g 2500v/5-  250 50 - 10v/-5 + 750V/50 + 10x/5 

(taken from [Wolfram 1994]). Examples like this could lead one to expect that  the 
general fifth-degree equation, like the equations of lower degree, could be solved by a 
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e o  

formula in terms of radicals. Mathematicians sought such a formula for many years. 
But in 1826 Abel proved that  such a formula is impossible, and a few years later Galois 
developed a theory that  describes exactly when a polynomial is solvable by radicals. 
For instance, the polynomial 2x 5 - 2x + 1 has Galois group $5, which is not solvable, 
so the roots of 2x 5 - 2x + 1 cannot be represented in terms of radicals. 

Still, we know by the Fundamental Theorem of Algebra (17.36) that every fifth- 
degree polynomial equation with complex coefficients has five complex roots. If they 
cannot be represented using radicals, how can the roots be represented? Radicals are 
not enough; more functions are needed. In 1844 Eisenstein solved quintic equations 
in terms of radicals and what we shall call the E i s e n s t e i n  f u n c t i o n  in the paragraph 
below. In 1858 Hermite, Kronecker, and Brioschi solved quintic equations in terms of 
radicals and elliptic modular functions; in 1877 Klein solved quintic equations in terms 
of radicals and the hypergeometric function. For additional information about some 
of these solutions, see Wolfram [1994] or Shurman [1995]. 

For most choices of a, the quintic equation x 5 + x - a cannot be solved by radicals. 
However, some basic properties of the polynomial p ( x )  - x 5 + x are easy to figure out: 
That polynomial has derivative p~(x)  - 5x 4 + 1 _> 1, and so p is strictly increasing 
and gives a bijection from I~ onto ]K. Let the inverse of that function p be denoted by 
E i s ( x ) ;  we shall call it the E i s e n s t e i n  func t ion .  Then it can be shown that a solution 

of x 5 + a x  4 + bx 3 + cx  2 + d x  + e - 0 is given by x - E i s ( q ( a ,  b, c, d, e ) l  , where q( .) is  

a function of five variables that can be expressed entirely in terms of radicals (i.e., in 
\ ] 

terms of nth roots for n _< 5, together with sums, differences, products, and quotients). 
The function q can be expressed in closed form, but the formula is extremely long, 
and we shall not give it here. That formula can be produced by methods described by 
Stillwell [1995]. 

Nowadays, when one wants to solve a polynomial equation of degree higher than two, 
generally one uses a numerical iterative scheme on an electronic computer. For instance, 
one such scheme is Newton's Method, which can be found in every modern textbook on 
calculus. These numerical schemes do not yield exact solutions, but they yield solutions 
to as much accuracy as one wishes; 10 decimal places of accuracy is more accuracy than 
any  engineering problem will ever require. However, roots produced by a numerical 
scheme may have no apparent rhyme or reason; they may seem to be arranged entirely 
at random. The formulas of Cardan, Hermite, Eisenstein, et al. are of interest because 
they reveal the p a t t e r n  o{ the roots i.e., the relationships between the roots and the 
other numbers present in the problem. That is important for theoretical purposes and 
ultimately has some effect on engineering problems as well. 

ABSOLUTE VALUES 

10.31. D e f i n i t i o n s .  Let X be a field (not necessarily ordered). By an a b s o l u t e  value  on 
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X we mean a mapping I �9 [" X ~ [0, +oc) satisfying 

I x [ - 0  ~ x - 0  (positive-definiteness) 

I yl - lyl (multiplicativeness) 

I x + y l  _< I x l + y l  (subadditivity) 

for all z, y c X. These properties imply also Ill- 1 (ezercise). An absolute value is also 
known as a modulus or magnitude or value or valuation. 

The absolute value thus defined on fields should not be confused with the absolute value 
defined in 8.39 for lattice groups. Fortunately, the two notions do coincide in the case where 
the field or lattice group is R (or any subfield of R); in that  case axe is just m a x { x , - x } ,  
the u s u a l  a b s o l u t e  va lue  on  R. It will always be used on R, except when some other 
arrangement is specified. 

10.32.  The absolute value of a complex number. For real numbers x and y, define I x + iy I - 
V/X 2 + y2. Show that  

a. l a D -  v / ( R e a )  2 + (Im a) 2 for any complex number c~. 

b. If a - r cis0 for some real number 0 and positive number r (as in 10.28), then Ic~ I - r. 
Hence Is /31-  lallJl, by our observations in 10.28. 

I l- 
d. I a +/312 - I ~ l  + 2 Re c ~  + 1~12 _< + 21~31 + 191 - (l~l + 191) 
e. I I is an absolute value. 

It is the u s u a l  a b s o l u t e  va lue  on  C. It will always be used on C, except if some 
other arrangement is specified. The usual topology and uniform structure on C are 
given by the metric d(a,/3) - l a  - / 3  I. Remark. This topology and uniform structure 
are the same as those of IR 2" see 18 18 and 22.11 However C and R 2 have different 
differentiable structures; see 25.8. 

f. The set ll" - {z E C �9 Izl - 1} is a commutative group whose operation is the 
multiplication of complex numbers. It is often called the c i rc le  g r o u p ,  since it is 
geometrically a circle, x 2 + y2 _ 1, in the complex plane. It is isomorphic (as a group) 
to the additive group introduced in 8.10.e. In fact, the mapping 0 H cis(0) (defined in 
10.28) is an isomorphism from the additive group [0, 2rr) onto the multiplicative group 
T. Also, the mapping 0 H cis(0) is a group homomorphism (not an isomorphism) from 
the additive group R onto the multiplicative group T. 

10.33. Let F be a field, not necessarily contained in R or containing R. (For instance, IF 
could be one of the finite fields discussed in 8.20.) For clarity in the discussion below, let 
1 denote the multiplicative identity of R, and let e denote the multiplicative identity of IF. 
For any n E N, let us denote ne = e + e + - . .  + e (the sum of n e's). Let I I be an absolute 
value on the field IF. Then the following conditions are equivalent; if any (hence all) are 
satisfied we say that  the absolutevalue is n o n - A r c h i m e d e a n .  

(A) The set {Inel : n c N} is bounded in 1R. 
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(B) Inel _< 1 for every n 6 N. 

(c)  la + bl <_ max{lal ,  Ibl} for all a, b E IF. 

(D) The  metr ic  d(u,v) = l u -  v] satisfies the u l t rametr ic  inequali ty d(u,v) <_ 
max{d(u,w),d(v,w)}. 

Proof of equivalence. The proofs of ( C ) ~  ( D ) a n d  ( C ) = ~  ( B ) = ~  ( a ) a r e  easy; it 
sumces to prove (A) =~ (C). Let r = sup{lnel :n  6 H}. Let any a,b 6 IF be given; let 
s = max{lal ,  [bl}. For each n 6 H, observe tha t  

l a + b  ~ - I ( a + b ) ~ l  - 

j=0 

an-J b j 
n 

<_ E r s ' ~  - ( n + l ) r s  ~. 
j=0 

Hence la + b I < ~/ (n  + 1)r s. Take limits as n ---, oc to obta in  la + bl _< s; this completes 
the proof. This  proof follows Rooij [1978]. 

Examples of non-Archimedean valuations. 
a. The  d i s c r e t e  a b s o l u t e  v a l u e  (or Kronecker absolute value) on any field F is given by 

]x - { 0 if x - 0  
1 if x # 0 .  

Obviously this satisfies condit ion (C) given above. 

b. Let p be a pr ime number  i.e., one of the numbers  2, 3, 5, 7, 11, . . . .  Any nonzero 
rat ional  number  can be expressed in the form m/(np~), where r, m, n are integers, with 
m and n nonzero and not divisible by p. Define Im/(np~)]p = p~; this is the p - a d i c  
a b s o l u t e  v a l u e  on Q. Complet ions  of metr ic  spaces will be s tudied in Chapte r  19; the 
complet ion of the metr ic  space (Q, I Ip) is the sys tem ofp-adic  numbers, which are used 
in algebraic number  theory and in the s tudy of topological groups. An int roduct ion to 
this subject  is given by Bachman  [1964]. 

c. Let ]F be a field, let x be a variable, and let F(x)  be the field of rat ional  functions in 
the variable x with coefficients in IF (see 9.28). Each nonzero element can be wri t ten  
in the form r(x) = x'~p(x)/q(x) where m is an integer, p(x) and q(x) are polynomials,  
and nei ther  p nor q has a factor of x. Then  let Irt = 2 -m.  Verify tha t  this yields a 
non-Archimedean  valuat ion on F(x).  Ins tead of 2 -m we could use c -m  for any constant  
c > 1. For fur ther  reading, see also Narici and Beckenstein [1990]. 

10 .34.  Intentional ambiguity. In later chapters,  the main  fields we shall use are R and 
C. We shall somet imes s ta te  a theorem involving a field F tha t  may be R or C, wi thout  
specifying which of these fields is intended. This  intentional  ambigui ty  permi ts  us to cover 
bo th  cases simultaneously.  For any c~ E F, we shall let Re c~, Im c~, ~, and tc~ be the real and 
imaginary  par ts  of c~, the complex conjugate  of c~, and the absolute value of c~, respectively. 
This nota t ion  is applicable (albeit unnecessari ly complicated)  even when F - R; in tha t  
case we have Re c~ - ~ - ct and Imc~ - 0. Likewise, the expression Ic~ has the same 
value regardless of whether  the field being used is R or C, since the absolute value function 
on R is just  the restr ict ion of the absolute value function on C. 
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See also the related discussions in 11.1, 26.5, 26.21, and 27.30. 

1 0 . 3 5 .  C l a r k s o n ' s  i n e q u a l i t y  f o r  s c a l a r s .  Let p , q  E ( 1 , + o c )  with 

for any complex numbers ~, r/, 

1 1 
-4- 

P q 

I~ + ~1 p + I ~ -  ~1 p ~ 2 (1~1 ~ + I~1~) p/q if p _> 2 _> q, 

- 1. Then 

and the reverse of this inequality holds if p _< 2 _< q. (This result will be used in Chapter 22 
to prove that  the Banach spaces L P ( p )  are uniformly convex; other properties of uniform 
convexity are studied in that  chapter and in Chapter 28.) 

Proof .  Our presentation is based on that  of Weir [1974]. Define 

~(t) - (1 + ~ft)P + ( 1 -  ~/t)P (0 < t <  1). 

Then compute the first two derivatives and simplify to: 

qJ(t) -- [(1 -~- ~/~)p-1 (1--~/~)p-1] t(1/p)-1 

g)"(t) -- ( ~ - 1 ) [ ( 1 +  ~/~)p-2- ( 1 - ~ / t ) P - 2 1  t (1/p) -2. 

For most of the remaining steps, we shall give inequalities only for p > 2 _> q; the reversed 
inequalities are then valid when p < 2 < q. Observe that  ~"(t) _< 0 (assuming p _> 2 > q). 
Hence, by integrating, 

~(a) < ~(b) + (a - b)~' (b) for a, b E (0, 1). 

Substituting a - r p and b - r pq and simplifying, we obtain 

(1 + r)  p + (1 - r)  p G 2 (1 + rq) p/q 

for r E (0, 1). Taking limits, we find that  this is also valid for r c [0, 1]. 
(This paragraph can be omitted if we wish to consider only real numbers for scalars.) 

Next we claim that  if 4 is any complex number with ]{] _< 1, then 

]p/q 
I1+r ; + 1 1 - r  _< 21+1r q 

again, with inequality reversed if p _< 2 <_ q. To establish this inequality, note that  
can be represented in the form ~ - r cos0 + i r sin0 for some real number 0, with 

r - I ~ l  E [0, 1]. Holding r fixed, define ~(0) - I  1 + ~[P + I 1 -~IP;  it suffices to show that  
~(0) _< ~(0) for all 0. Note that  ~ is periodic with period 7r, since ~ and - ~  switch places 
when we increase 0 by 7r; hence it suffices to consider 0 c [0, 7r]. Observe that  

ll + r = (1 + ~)(1 + ~) - 1 + 2r cos0 + r 2 

l l  - r = (1 - ~ ) ( 1  - ~)  - 1 - 2r cos0 + r 2. 

and 
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This yields the representation 

(1 + 2r cos 0 + r2) p/2 + (1 - 2 rcos0  + r2) p/2 

and it is then easy to compute 

~'(0) - pr{  - I I + C p - 2 + I 1 - C I  p - 2 } s i n 0 .  

In the interval 0 _< 0 <_ 7r we have sin 0 _> 0. Also, we have 

I i + g l  > I1 -~1  when 0 < 0 < 7r/2, 
I I + g l  < I1 -~1  when 7r/2 < 0__ :r. 

and 

Hence~b assumes a m a x i m u m  at 0 -  0 and 0 -  7: (or a m i n i m u m ,  if p_< 2_< q). This 
completes the proof of the claim. 

Finally, to prove the theorem, let any complex numbers ~, ~ be given. We may assume 
that  at least one of ~, ~ is nonzero; without loss of generality we may assume I~1 -< Ir/I �9 Then 
we subst i tute  ~ - ~/~. 

CONVERGENCE OF SEQUENCES AND SERIES 

10.36.  Remarks. Both IR and [-oc,  +eel are chains; hence their natural  convergences are 
defined as in 7.41. The extended real line [ -oc,  +oc] has the further advantage that  it is 
order complete; hence its convergence can also be described as in 7.45. 

It is sometimes easier to work in [-oc,  +oc], since any net in that  space has a limsup 
and a liminf. Questions about convergence in IR can be restated as questions about conver- 
gence in [ -oc,  +oc], since the convergence in IR is just  the restriction of the convergence in 

On the other hand, it is sometimes easier to work in R, because that  space has a simpler 
metric and simpler arithmetic.  Questions about  convergence in [ -oc,  +oc] can be restated 
as questions about  convergence in a bounded subset of R, via the following observation: 

The mapping 0 H t an0  is an order isomorphism from - ~ ,  ~ onto [ -oc,  +oc]. 

Any net in [ -oc ,  +oc] has both a lim inf and a lim sup in I -co,  +oc]. Any bounded net 
in IR has both a lim inf and a lim sup in R. Not every bounded net in R has a limit; for 
instance, the sequence 0, 1,0, 1, 0, 1 , . . .  has no limit. (However, every bounded net in R has 
generalized limits, in a sense described in 12.33.) 

10.37.  (Optional.) Notions of calculus, such as limits, can be described in terms of infinites- 
imals; Newton and Leibniz had something like this in mind when they invented calculus. 
(The epsilon-delta approach now widely used in calculus books was not developed until 
many decades after Newton and Leibniz.) 

Assume that  :Y is a free ultrafilter on N; hence *R = IR N/:y is a non-Archimedean field, 
as in 10.20.a. Let f : R  ~ R be some function; let p, L be some real numbers. Show that  
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the r ight-hand limit f (p+)  - lima10 f (p  § a) exists and equals L, if and only 
if for each positive infinitesimal a the hyperreal number *f(p + c~) is infinitely 
close to L. 

(The number  a is understood to vary through real values, not hyperreal values.) Applying 
that  result twice, we obtain: 

l ima-0  f (p  + a) exists and equals L if and only if for each nonzero infinitesimal 
the hyperreal number *f(p + c~) is infinitely close to L. 

Pro@ It suffices to prove the first equivalence. First suppose that  f (p+)  - L. Let any 
positive real number  e be given. Then there is some positive real number 5 such that  

a E R ,  0 < a < 6  L - e  < f ( p + a )  < L + c .  

It follows from 9.50.c and 9.52.d that  

ctE*IR, 0 < c ~ < ~ 5  => L - c  < *f(p+o~) < L + c .  

In particular,  if c~ is a positive infinitesimal, then 0 < c~ < ~5 is satisfied for every positive 
real number  5; hence - e  < *f(p + c~) - L < c is satisfied for every positive real number e; 
hence * f  (p + c~) is infinitely close to L. 

Conversely, suppose that  *f(p + c~) is infinitely close to L for every positive infinitesimal 
c~. We wish to show that  f (p+)  = L. Let (an) be any sequence of positive real numbers 
decreasing to 0; it suffices to show that  f (p  + an) --+ L. Let any real number e > 0 be given; 
it sumces  to  show that  If(P + an) - LI < e for all n sufficiently large. Define a function 
A : N --+ R by taking A(n) = an; let c~ be the equivalence class of that  function; then c~ 
is a positive infinitesimal. Since *f(p + c~) is infinitely close to L, we have in particular 
L - e < *f (p  + ~) < L + e. That  is, L - c < f (p  + A(n)) < L + c for all but finitely many 
values of n. This completes the proof. 

10.38.  (This result can be postponed; it will not be needed until 28.37.) 
Let X be a nonempty set. A sequence (fj)  in R x is a Pryce sequence if 

sup lim inf f j  (x )  - sup lim sup f j  (x ) .  
x E X j ---* oc  x E X j ---, cx:~ 

(The liminf and limsup take their values in [ -oc,  +oc].) It is easy to show that  any subse- 
quence of a Pryce sequence is also a Pryce sequence. 

Pryce Selection Theorem. 
sequence. 

Every sequence in R X has a subsequence that  is a Pryce 

Proof. We follow the presentation of KSnig [1986]. Throughout  this proof, both subscripts 
and superscripts will be used as indices; superscripts will not denote exponentiation or 
composition. Also, for brevity, for any function u" X --+ [-oc,  +oc], 

will denote the number sup u(x). 
z E X  
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0 Let the given sequence be ( f  j) .  For j - 1, 2, 3 , . . . ,  let 9j - f j .  For each n - 1, 2, 3 , . . . ,  

recursively define a point z ~ E X and a subsequence (9~ "J  E N) of the sequence (95 ~-1" 
j E N) as follows" Let 

p '~- l (z )  - l iminf  90 
j---+ oc 

n - 1  q n - l ( x )  --  l imsup  9j (z) 
j--+oc 

for each z E X,  with values in [ -oc ,  +oc]. Then  choose x ~ E X according to the value of 
qn-  1, as follows" 

If qn-1 _ --cx), let z ~ be any point of X.  

If qn-1 E R, choose some z ~ E X satisfying q n - l ( x n )  > qn-1 

If qn-1 _ -+-oc, choose some x ~ E X satisfying qn-l(ocn) > 72. 

rt--1 Let r '~ - qn-l(ocn). Since r ~ - l imsupj__,~gj  (z~), some subsequence (g2 " j  E N) of 

the sequence ( g , ] - l . j  E N) satisfies r ~ - limj__+~ g~(z'~). This completes the recursive 
definition. Since the sequence (g~](z '~) " j c N) is convergent,  we have r '~ - p'~(z '~) - 

Now let (h ~) be a diagonal  subsequence of the 9's tha t  is, let h ~ be a member  
of the sequence (g~ �9 j c N), and then let h n+l be some later member  of the sequence 

( 9 ~ ' J  c N), chosen so tha t  h n+l also belongs to the subsequence (9~+1 �9 j c N). For each 

n, it follows tha t  (h~ ,h  ~+1, h ~+2, h ~+3, .. .) is a subsequence of (92 "J c N), and therefore 

7,~ - l i m j ~  hJ(x~).  In part icular ,  (h ~) is a subsequence of the originally given sequence 
(f j ) ;  we shall show tha t  (h ~) is a Pryce sequence. Define 

p(x) - lira inf h j (x), 
j --+oc 

q(x) - l imsup  hJ (x); 
j ---+ cx~ 

then p _< q and it suffices to show tha t  p > ~. We may assume tha t  ~ > - o c  and p < +oc.  
Since (h j)  is a subsequence of (9~ " J  c N), which is in tu rn  a subsequence of (9~ -1 �9 

j c N), we have 

Po _< P l  <_ P2 _< " ' "  _< P <_ q _< " ' "  _< q2 _< ql  _< qo. 

Hence the numbers  q,~-i are bounded  below by the number  ~, which is not - o c .  Also, 

q n - l ( x n  ) --  .i -n = p n ( x n  ) < p n  < ~ < -FOG. 

Sin.ce p < +oc ,  we h a v e  qn- l (xn)  <_ 72 for all n sufficiently large. For those 72, our definition 
of x ~ tells us tha t  qn-1 c a n n o t  be +oc.  Thus  for all n sufficiently large we have q~- i  finite, 
and therefore (by our definition of x '~) 

--OC < -0 <_ q n - 1  < 
1 1 
- + q ' ~ - a ( x ~ )  <_ - + ~  < +oc. 
72 IZ 

Taking limits yields ~ _< p. 
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10.39.  Convergence of infinite series. Let al ,  a2, a3 , . . ,  be complex numbers (or, in par- 
ticular, real numbers). Then the expression 

E 
k - - 1  

ak or al + a2 + a3 + - . .  

is called a se r ies  (or an infinite series). That  expression also represents the limit of the 
sequence 

al ,  al + a2, al + a2 + a3, al + a2 + a3 + a4, . . .  

n 
that  is, the value of l imn_.~ Ek=l  ak if that  limit exists. (We say the series is the 

"limit of the partial sums.") When the limit exists, we say the series ~;~k=l ak conve rges .  
When the limit fails to exist, we say the series d ive rges .  

The definitions above all generalize readily to the case where al ,  a2, a3 , . . ,  are members 
of any monoid equipped with a Hausdorff convergence structure (see 7.36). In 22.20 we 
consider the case where X is any Banach space; in Chapter  26 we consider the case where 
X is a topological vector space. 

For infinite series of real numbers, it is customary to extend the definition a little further: 
When al,a2,a3, . are real numbers, then } - ~  �9 " k=lak is understood to mean the limit of 
al + a2 + . . .  + an, not just in R, but in the extended real line [-c~, +c~]. When the limit 
happens to be +c~, some mathematicians say that  the series d i v e r g e s  to  inf in i ty .  (Some 
mathematicians say that  the series c o n v e r g e s  to  inf in i ty ,  but we shall not follow that  
terminology in our discussion of infinite series.) Similar terminology applies for - ~ .  

The sequence (ak) -- (a l ,a2,a3, . . . )  should not be confused with the series ~j-~k=l ak -- 
1 1 1 . .) converges to 0 while al + a2 + a3 + ' - . .  For instance, the sequence (2 -k) - (2 ,4 ,  s," 

2-k 1 1 1 the series ~-~k~__l -- ~ + ~ + g + - - .  converges to 1 by the result in 10.41.d. 

0<3 
10.40.  When all the ak's are nonnegative real numbers, then Ek=l  ak always exists in 
[0, +c~] that  is, the series always converges to a finite number or diverges to +c~. We 
may abbreviate these two cases by saying simply that  }-~k=l ak < c~ or that  }-~k=l ak -- c~. 

More generally, let (a~ �9 A c A) be any parametrized collection of members of [0, +c~]. 
Then we define the sum ~ - ~ A  a~ to mean the supremum of all sums of the form ~-~CL a~ 
for finite sets L C_ A. The supremum exists, since [0, +c~] is order complete. Again, the 
order of the terms does not affect the summation. Exercise. When A - N, then this 
definition is equivalent to the one given earlier for Ek--1 ak. 

Actually, we are mainly interested in the countable case, because (exercise) if }-~cA a~ 
is finite, then at most countably many of the a~'s are nonzero. Hint: Show that  for each 

1 positive integer m, the set Am - {A E A" a~ > ~ }  is finite. 

10.41. Some basic properties of convergent series. 

a. Suppose ~ - ~  j=l  aj and }--~j=l by are convergent series of real or complex numbers with 

finite sums, and k is any constant. Then }--~j=l (aj +by) and }-~j=l (kay) are also conver- 

gent series, with sums equal to I aj + }-2~j=1 by and k Y~j=I aj, respectively. 
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( x )  (X) 

b. If aj < bj for all j ,  t h e n  E j = I  aj < E j = I  bj. In part icular ,  if 0 < aj < bj and ~ bj is 
convergent, then ~ aj is convergent. 

OO c. If Y~j=I aj is a convergent series of real or complex numbers,  then l i m j + ~  aj - O. 
o o  

On the other  hand,  if limj__+~ aj - O, it does not follow tha t  Y~j=I aj is convergent 
- -  for example,  consider the harmonic  series in 10.41.f below. 

d. Geometric series. Show tha t  1 + r + r 2 + . . .  + r n - (1 - r ~ + l ) / ( 1  - r) if r 5r 1, and 
hence 

{ r j = 1 + r + r 2 + r 3 + . . . .  1/(1 - r) if Irl < 1 
divergent  if ]r _> 1. 

j = 0  

O o  e. Integral test. If f �9 [1, +oc)  ---+ [0, +oc)  is a decreasing function, then Ej=I f ( J )  and 
oc x - ~ n + l  1 f l  f ( x ) d x  are bo th  finite or bo th  infinite. In fact, z__,j=2 f ( J )  <- f~+ f ( x ) d x  <_ 

n 

Y~.j=l f (J)" 
(X) 

f. Corollary. The series }-~j=l J-P converges for real numbers  p > 1 and diverges if 
0 < p _ < l .  

oc 1 _ 1 + 1 + 1  1 In part icular ,  the h a r m o n i c  se r i e s  }-~j=l 7 - 5 + ~ + " "  diverges. However, 
n 1 it diverges ra ther  slowly i.e., to make }-~-j=l ? modera te ly  large, we must  make n 

n 1 is approximate ly  incredibly enormous.  In fact, the integral test tells us tha t  }--~.j=l j 
n 1 equal to in n. For instance, when n is a trillion, then ~ j = l  j is only approximate ly  

, n 1 equal to ln(1012) - 121n(10) ~ 27.63. When  n is a googo l ,  or 101~176 then }--~-j=l ; is 

still only about  ln(101~176 - 100 ln(10) ~ 230.26. 
The harmonic  series is a sort of "borderline case" - -  it often takes delicate calcula- 

tions to decide the convergence or divergence of series tha t  are similar to the harmonic 
oc oc 1 also diverge even more slowly. On 1 and }--~j=2 j(ln j)(ln in j) series. The series }--~-j=2 j 1;~ j 

oc 1 converges the other  hand, the series }--~j=2 j(lnj)2 

g. Alternating series test. If al _> a2 > a3 _> . "  > 0 and l i m n ~  an - 0, then the series 
al - a 2  + aa - a 4  + - . .  converges. We omit  the ra ther  e lementary proof (which can be 
found in most  calculus books),  since we shall prove a stronger result in 22.21. 

1 1 1 1 h. Let t~ - 1 + ~ + 5 + " "  + - - inn .  Show tha t  tn - t~+l - -  f ~ + l  1 dx > 0. Hence 
x n + l  n 

the sequence t l ,  t 2 , t 3 , . . ,  is bounded and decreasing. It therefore converges to a limit, 
which is called E u l e r ' s  c o n s t a n t .  Tha t  limit is approximate ly  0.577215664901532. . . ;  
it is commonly  denoted by ~/. 

10 .42 .  When  we add up only finitely many numbers,  or add up infinitely many  nonnegative 
numbers,  then it does not ma t t e r  in what  order we add them; the result is the same. 
However, when we add up infinitely many numbers,  some positive and some negative, then 
changing the order of the terms may affect the answer. For instance, using 10.41.h, show 

1 1 1 1 -" - in 2, but  tha t  1 - ~ + 5 - a  + g - "  

1 1 1 1 1 1 1 1 1 1 1 3 
1-t 3 2 t- ~-4 7 4 ~- ~-t  11 6 ~- 1--3+ 1 5 - 8  . . . .  ~ l n 2 .  
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If we change the order of the terms a bit more, we obtain the series 

m m _ ~ _  

2 

1 
m 

3 
V 

1 odd term 

1 1 1 1 1 1 1 1 1 
- 4 + 5 - ~ - 7  - 6 + 9 + ] - 1 + 1 - 3 - ~  15 8 

2 odd terms 4 odd terms 
1 1 1 1 1 1 1 1 1 

+ 
]-7 + T6 + ~ + 2-3 + 2-5 + ~ + 2--9 q 31 10 

8 odd terms 

. . . ,  

which converges to +oc.  Hints: Observe that  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 
> ~, g - t - ~  > ~ + ~ ,  9 + i-1 + ]--3 + i-5 > -i-6 + 1-6 + i-6 q- 1--6' 

etc. Also, show that  

1 In(l) - l n ( 2 )  1 l n ( 2 ) -  ln(3) 1 ln(3) - l n ( 4 )  
> > > 

4 2 ' 6 2 ' 8 2 ' 

Other rearrangements  of this series yield other sums. In fact, it can be proved tha t  any 
number  L in [ - ~ ,  +oc] can be obtained as the sum of a suitable rearrangement of the series 
above. (Hints: Obtain L - - c ~  in a fashion analogous to the method used above for the 
sum L - +co.  Now consider any finite number L. Take just  enough positive terms to get 
a partial  sum that  is greater than L; then take just  enough negative terms to get a partial  
sum that  is less than L; then just enough positive te rms . . . ;  etc.) 

(2<3 Thus, it is erroneous and misleading to say that  ~ k = l  ak -- al  -+- a2 + a3 + "-" is simply 
the "sum" of the ak's. To be more precise, we must say that  }--~ k=l ak is the sum of the ak's 

( X )  in the specified order, this is reflected in our definition }-~-k=l ak - limn-+~ (al + a 2 + . .  "+an).  
Different orderings of the ak's yield different partial  sums sn - al  q- a2 + . . .  + an and thus 
different sequences (Sn), which may have different limits. Intuitively, it may be helpful to 
view a series this way: The numbers in al q-a2 + a3 + . . .  are not all added "simultaneously;" 
rather,  the leftmost terms are added earlier than the terms occurring farther to the right. 
See the related results in 23.26. 

oc 1 10.43.  Example. We shall now show that  the series }-~n=l nls in(nx)l  diverges, for any 
real number x tha t  is not a multiple of re. (However, in 22.22 we shall show that  the series 
}-~n=l~ ;1 sin(nx) converges for any real number x.) 

Proof. Since I sin(n(x + rr)) I = I sin(nx)l, we may translate x by any multiple of re; thus 
we may assume that  - r e /2  < x < re/2 and x -J= 0. Since I s in ( -nx ) l  = I sin(nx)l, we may 
assume that  0 < x < re/2. Choose a positive integer M large enough so that  ( M -  1)x > 2re. 

Consider any M consecutive integers k + 1, k + 2 , . . . ,  k + M. Since (k + M ) x -  (k + 1)x > 
2re, the angles (k + 1 ) x , . . . ,  (k + M)x go a bit more than once around a circle. Those 

1 , art ) (modulo 2rr) without taking a value in tha t  angles cannot skip across the interval (are 
interval, since tha t  interval has width re/2, which is larger than x. Thus at least one of 

1 are) (modulo 2re) and so at least one of the numbers those angles lies in the interval (are, a 

�9 1 V~. Hence for any nonnegative integer j sin((k + 1 ) x ) , . . . ,  sin((k + M)x) is larger than 
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we have 

s in (Mj  + 1) s in (Mj  + 2) 
max M j  + I ' M j + 2  

sin(MJMj+M + M ) }  
M j + l  

Therefore 
oc oc M oc 1 /-~ 

V z 
E lsin(n)lrt = E E  I sin(MJMj+p +p)I -> E M j + I '  
n = l  j = 0  p = l  j = 0  

which diverges to oc since the harmonic series does. 

10.44. Decimals from real numbers. Let D - {0, 1 , 2 , . . . , 9 } .  For each sequence cr - 
( 8 1 , 8 2 ,  83,  8 4 , . . . )  in D N, let 

oo 
S1 S2 S3 S4 Sj 

h(cr) : l--d -t- ~0-ff + ~-0-g + ~0-~ + . . . .  E 10J " 
j = l  

Since the sj 's  are nonnegative, the partial sums are an increasing sequence, and it is easy 
to see that  they are bounded above; hence the series converges to a finite real number h(a).  
Then the expression "0.Sl s2s3 " "" is called the the d e c i m a l  r e p r e s e n t a t i o n  of the number 
h(a).  Show that  

a. 0 _< h(cr) _< 1. 

b. By a decimal rational we shall mean a number of the form m/10  k, where rn and k are 
integers. Show that  any decimal rational m/lO k in (0, 1) is equal to h(a) for exactly 
two different sequences a" one that  is all 0s after a certain point, and another that  is 
all 9s after a certain point. (For instance, 3 . 2 7 9 9 9 9 . . . -  3.280000 . . . .  ) 

c. Any other real number r c (0, 1) (i.e., not a decimal rational) is equal to h(a) for 
exactly one sequence a. 

d. Note that  there are only countably many decimal rationals in [0, 1]. Use this to show 
that  card(J0, 1]) - card(DN). 

e. We evolved the decimal representation system because we each have ten fingers. But 
mathematically, there is nothing special about the number ten. An analogous system, 
which might develop on a planet where the people have b fingers for some integer b > 1, 
would use representations of the form 

81 $2 $3 $4 

T+j+g+V+.. .  
with sj E {0, 1, 2 , . . . , b -  1}. Thus card(J0, 1]) = card({0, 1 , 2 , . . . , b -  1}N). 

In particular, we could take b = 2. Thus card(J0, 1]) = card(2N). 

f. C a r d i n a l i t y  of  t h e  reals .  Conclude that  c a r d ( R ) =  card(2N). 
The number system C, defined in 10.24, has a natural  bijection to R x R; conclude 

that  also card(C) = card(2N). 
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10.45. Real numbers from decimals (optional). In the preceding section, we considered I~ 
as already known i.e., as defined in 10.8 and constructed in 10.15.d and we studied 
decimal expansions as infinite series in ]R. Historically, decimal expansions predate the 
abstract ideas of a Dedekind complete, chain ordered field. We could actually construct 
a Dedekind complete, chain ordered field by using formal decimal expansions; these ideas 
were published by Stolz in 1886. 

We assume some familiarity with (~, but not with I~. Define IR to be the set of all infinite 
sequences of the form 

(z, y l , y 2 , y 3 , Y 4 , . . . )  c Z •  { 0 , 1 , 2 , . . . , 9 }  N, 

where we identify a sequence ending in infinitely many 0s with the corresponding sequence 
ending in infinitely many 9s (as in 10.44.b). Such a sequence will be represented, as usual, 
by "z + .yly2y3y4 . . . .  " Its rational truncations are the finite sequences of symbols 

z, z + .yl, z § .yly2, z § .YlY2y3, z § .yly2Y3Y4, etc. 

where "z + .yly2"'" Yk" represents the rational number z + ~ + ~ + . . .  + 
1 0 0  1 0  k " 

Define the ordering of I~ in the usual lexicographical fashion. Then it is easy to show that  
I~ is chain ordered and Dedekind complete. Define the arithmetic operations (+) and (.) 
first for rational truncations, in the obvious fashion. Then the sum of two numbers a, b E 
is defined to be the sup of the sums of the rational truncations of a and b. The product 
of two positive numbers a, b E R is the sup of the products of their rational truncations. 
The product of two not-necessarily-positive numbers is defined in terms of the products of 
positive numbers; we omit the details. Zealous readers can verify that  I~, defined in this 
fashion, is a complete ordered field. This approach is developed in greater detail in various 
other sources for instance, Abian [1981], Dienes [1957], and Ritt  [1946]. 

10.46. Constructible numbers. The constructivists' notion of "number" is a bit different 
from the mainstream mathematicians '  notion. For a constructivist, a number is acceptable 
if it can be approximated arbitrarily closely and some estimates can be given for how fast the 
approximations are converging. Thus, numbers such as v/2 and 7r are perfectly acceptable, 
for we have formulas (albeit complicated) for approximating these numbers to as many 
decimal places as we may wish. (See also 6.7.) However, the constructivists' notion of 
"number" has a few surprising consequences. 

For instance, recall from the footnote in 6.4 that  G o l d b a c h ' s  C o n j e c t u r e  asserts that  
for each integer k > 1, 

(.)  the number 2k can be written as the sum of two prime numbers. 

No proof or counterexample for this proposition has yet been found. Although we do not 
know whether (.)  is true for every k, we can easily test it for any particular k, and thus we 
can evaluate the number defined by 

X k  = 
0 
1 

if (,) is true for this k 
if (,) is false for this k. 
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Let us also define X l  - -  0. We can evaluate  Xk for as m a n y  k's as we wish. (So far, all 
known xk's  are 0. Pe rhaps  someday  someone will find a k for which xk - 1, or will prove 

'S t ha t  all the  xk are 0.) Now define 

X l  X2 X3 
F = J 

10 100 1000 

Xk ~ - . . .  + " "(_l)k_=_ + . . . .  
10 ~ 

(To show tha t  this series converges to a real number ,  ei ther  use results  abou t  Cauchy 
sequences in C h a p t e r  19, or prove tha t  the  l iminf and l imsup of the  par t ia l  sums differ by 
less t han  10 - n  for any n.) We shall refer to this number  F as the  "Goldbach number ."  We 
don ' t  know the  "exact value" of F yet. Nevertheless,  cons t ruct iv is ts  would say tha t  F is 
indeed a "real number , "  since we have an a lgor i thm tha t  can "find" F as accura te ly  as we 
wish i.e., given any c > 0, we can compu te  an approx ima t ion  F ~ satisfying I F -  F~I < c. 
The  sign of the  Goldbach  number  is re la ted to the  Goldbach  Conjecture:  

�9 F - 0, if the  conjec ture  is true; 

�9 F > 0, if the  conjecture  is false and the first coun te rexample  (i.e., the  first cont radic t ion  
to ( . ) )  occurs when k is even; 

�9 F < 0, if the  conjecture  is false and the  first coun te rexample  occurs when k is odd.  

We don ' t  yet know which of those three  cases holds; it is possible tha t  we will never know. 
This  myster ious  qual i ty  may  make  some classical ma the ma t i c i a ns  re luc tant  to accept  F as a 
"real number . "  It leads const ruct iv is ts  to conclude tha t ,  even if we know two real numbers 
(0 and F) to arbitrarily high accuracy, we still may be unable to tell which of the numbers is 
larger. This  makes  plausible our asser t ion in 6.6 tha t  the  Tr ichotomy Law for real numbers  
is not const ruct ive ly  provable.  

We shall encounte r  the  Goldbach  number  F again in 15.48. 



Chapter 11 

Linearity 

LINEAR SPACES AND LINEAR SUBSPACES 

11.1. D e f i n i t i o n s .  Let IF be any field. An F - l i n e a r  s p a c e  is a set V equipped with 
operations 0, - ,  +,  which make it an additive group, and also equipped with another 
mapping called s c a l a r  m u l t i p l i c a t i o n ,  from IF • V into V, satisfying certain rules noted 
below. The elements of V are called v e c t o r s .  The elements of IF are then called the sca la r s ;  
we refer to IF as the s c a l a r  field. 

For any vector v and scalar c, the result of the scalar multiplication of c and v is called 
their p r o d u c t .  It is usually writ ten as c - v  or as cv ;  generally the raised dot is included 
only for clarification or emphasis. The rules satisfied by scalar multiplication are: 

(i) 1 . v  = v, 

(ii) a .  (/3. v) = (a/3) �9 v, 

(iii) a . ( u + v ) = ( ~ . u ) + ( a . v ) ,  
(iv) ( a  + f l )  . v = ( a  . v )  + ( f l  . v ) ,  

for all a ,  fl E IF and u, v c V. The second rule is a sort of associativity of multiplication, 
although it should be noted that  two different kinds of multiplication are involved: scalar 
times scalar and scalar times vector. The last two rules assert the distributivity of multipli- 
cation over addition; they can also be described as asserting the additivity of the mapping 
v ~ a . v  (for fixed scalar a)  and the mapping a H a . v  (for fixed vector v). 

The same symbol "0" will be used for the additive identities of the scalar field IF and 
the various linear spaces; it should be clear from the context just which additive identity is 
meant  by any "0." 

An F-linear space may be called a l i n e a r  space ,  or a v e c t o r  space ,  if the choice of 
the scalar field IF is clear or does not need to be mentioned explicitly. Whenever we work 
with several linear spaces at once, it will be  understood that  all the linear spaces are over 
the same scalar field IF (unless some other arrangement  is specified) e.g., the discussion 
may apply to several vector spaces over IR or to several vector spaces over C, but we do not 
mix the two types unless that  is mentioned explicitly. Whenever possible, we prefer not to 
specify what  scalar field is being used, so that  we can apply our results to many different 

272 
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scalar fields. See also the related discussion in 10.34. 

11.2.  Some basic properties. 

a. 0. v - 0 for any vector v; tha t  is, the field's addit ive identi ty t imes any vector v yields 
the linear space's  addit ive identity, and 

b. ( - 1 ) .  v - - v  for any vector v; tha t  is, the field's - 1  t imes any vector v yields the 
addit ive inverse of v. 

11.3.  More definitions. A l i n e a r  a l g e b r a  over a field F is a set X equipped with 0, + ,  
and two mult ipl icat ion operat ions  | and , ,  such tha t  

(i) X with O, + , ,  is a ring. (The operat ion �9 may be called the r i n g  m u l t i p l i -  
c a t i o n ;  in some contexts  it is referred to as the v e c t o r  m u l t i p l i c a t i o n .  

(ii) X with 0, +,  | is a linear space over some field F (and | is the mult ipl icat ion 
of scalars t imes vectors, often called the s c a l a r  m u l t i p l i c a t i o n ) .  

(iii) The  two mult ipl icat ion operat ions satisfy this compat ibi l i ty  rule: c |  ( x ,  y) - 
(c | x) �9 y - x | (c �9 y) for all scalars c and vectors x, y. 

Such an object  X is simply called an "algebra" in some of the older l i terature;  we might  refer 
to it as an a l g e b r a  i n  t h e  c l a s s i c a l  s ense .  For clarification we might  call X an algebra 
over F. (Perhaps  a be t te r  t e rm would be l i n e a r  r ing ,  or F - l i n e a r  r ing . )  If (X, 0, +,  , )  is a 
ring with unit  1, then the result ing linear algebra is called an algebra with unit, or a u n i t a l  
a l g e b r a .  

The  linear algebra is said to be c o m m u t a t i v e  if its ring mult ipl icat ion is commuta t ive  
i.e., if x ,  y = y ,  x for all x , y  c X.  

Of course, we have used the symbols | and �9 in this in t roduc tory  discussion only for 
emphasis.  Usually, the mult ipl icat ion operat ions  are bo th  wr i t ten  as a raised dot (.) or 
indicated by jux tapos i t ion  - -  i.e., the product  of x and y (with either type of mult ipl icat ion)  
is usually denoted x . y  or xy. 

Most of the rings used by analysts  are linear algebras over the field R or C. Boolean 
a lgebras ,  s tudied in Chap te r  13 and thereaf ter ,  can be viewed as algebras over the finite 
field Z2 = {0, 1}. 

11.4.  Examples. 

a. Any field F is a commuta t ive  unital  algebra over itself. 

b. More generally, if F is a field and n is a positive integer, then  F ~ - {n-tuples of 
elements  of F} is a commuta t ive  unital  a lgebra over F. Elements  of F n are cus tomari ly  
represented in the form v - (Vl, v 2 , . . . ,  vn) using parentheses  and commas,  or as n-by- 
1 column matrices,  or as the t ransposes  of 1-by-n row matrices" [Vl v2 .-- v~]<; see 
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8.26. The vector operations on IFn are defined coordinatewise: 

Xl Yl Xl + Yl 
x2 Y2 x2 + Y2 

�9 + . - -  . , 

Xn Yn Xn + Yn 

Xl Yl 
x2 Y2 

. 

Xn Yn 

etc., for any vectors x, y C IFn and scalar c E IF. 

Xl 
X2 

C . 

Xn 

X l Y l  
x2y2 

XnYn 

CX l 
cx2 

CXn 

c. Still more generally, any product P - nx~A Xx of IF-linear spaces can be made into 
an IF-linear space, with operations defined coordinatewise: 

( f  + g)(A) - ( f (A ) )  + (g(A)), (c .  f ) ( A )  - c .  ( f (A ) )  

for all f, g E P,  ~ c A, and scalars c. If the X~'s are IF-(unital) algebras, then P is 
also an IF-(unital) algebra, with vector multiplication 

( f  g)(A) - ( f (A) ) (g (A) ) .  

It is commutat ive if the X~'s are all commutative�9 
In particular, when all the X~'s are equal to one space X, we see that  X A = 

{functions from A into X} is a linear space or a linear algebra. 
The product vector space takes a more intuitively appealing form if we write A -- 

{c~,/~,~,...}. (Here we follow the convention of 1.32: it is not assumed that  A is 
ordered or countable.) Then we have 

x~ y~ x~ + y~ x,~ cx,~ 
x z  yz  x z  + yz x z  cxz  
x~ + y~ - x.y + y~ , c x~ = cx.y 

and for linear algebras 
x~ y~ x~y~ 
x z  yz  x z y z  
x~ y~ x~ y~/ �9 

d. Let IF be a field, let n be a positive integer, and let X be the set of all n-by-n  matrices 
over IF. Then IF is a unital algebra, with vector multiplication given by the multiplica- 
tion of matrices (as defined in 8.27). This algebra is not commutative if n > 1. 

Preview. More generally, if X is a linear space, then the linear operators from 
X into X form a noncommutative unital algebra with ring multiplication given by 
composition of operators. If X is a topological vector space, we may also consider the 
continuous linear operators; it is another unital algebra. 
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e. Let G be a locally compact  Abel ian group equipped with  its Haar  measure,  and let 
L 1 ((7) be defined accordingly - -  see 26.45. It can be shown tha t  L 1 ((7) is a commuta t ive  
algebra, generally not unital ,  with ring mult ipl icat ion defined by the c o n v o l u t i o n  
operat ion ( f  �9 g)(t) - fa  f ( t -  s)g(s) ds. 

f. Another  impor tan t  algebraic sys tem can be described as follows" Let X - ira be 
equipped with the usual vector space operat ions,  as in l l .4.b. The  c r o s s  p r o d u c t  of 
two vectors is defined by 

[Xl] ix2] [  122 z1 2 ] 
Y l  • Y2  - -  Z l X 2  - -  X l Z 2  �9 

Z l  z 2  x l Y 2  - -  y l x 2  

This mult ipl icat ion is a n t i c o m m u t a t i v e :  it satisfies x x y - - y  x x, and consequently 
z x z - O. In part icular ,  we have 

i •  j •  k •  
j • i -  - k ,  k • j - - i ,  i • k -  - j ,  

where [1] [0] [0] 
i -  0 , j -  1 , k -  0 . 

0 0 1 

The  cross product  is not associative; for instance, i x (i x j)  = - j  ~- 0 = (i x i) x j. 
Consequently,  IR a is not a linear algebra when the cross product  is used for vector 
mult ipl ication.  

Several more examples  are given in 11.45 and 11.46, and in Chap te r  22 and thereafter .  

11.5.  Definitions. Let X be an F-linear space, and let S C_ X.  A l i n e a r  c o m b i n a t i o n  of 
elements of S is an expression of the form 

t - -  Oz181 -~- Ct282 J r - ' ' '  n L C t n S n ,  

where n is a nonnegat ive integer, the sj's are elements of S, and the c~j's are elements of 
F. We permi t  n - 0, with the convention tha t  the sum of no elements of X is 0. 

A l i n e a r  s u b s p a c e  of X is a subset  S c_ X with  the proper ty  tha t  any linear combi- 
nat ion of elements of S is also an element of S. Equivalently, it is a nonempty  set tha t  is 
closed under  scalar mult ipl icat ion by all scalars and under  the binary  opera t ion  of addition. 
(Thus,  it is a subalgebra  in the variety of F-linear spaces see 8.55 and 9.21.) 

11.6.  Basic properties. Let X be an F-linear space. Prove the following results, ei ther 
directly or by using results of 9.21. 

a. The  whole vector space X is a linear subspace of itself. 

b. Any intersection of linear subspaces is a linear subspace. 

c. Let T C_ X.  Then  there exists a smallest  linear subspace containing T; it is the 
intersection of all the linear subspaces containing T. It is also equal to the set of 
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all linear combinations of elements of T. It is called the s p a n  (or linear span) of T; 
it may be abbreviated span(T).  A linear subspace S is said to be s p a n n e d  by T if 
S = span(T).  (This is a special type of Moore closure, but the term "closure" generally 
is not used in this context.)  

d. If S is a linear subspace of X,  then S becomes a linear space in its own right, when 
the vector space operations of X (addition, scalar multiplication, additive inverse, 0) 
are restricted to S. 

e. {0} is a linear space over any scalar field. It is also a linear subspace of any linear 
space. It is contained in the span of any set. In fact, {0} is the span of the empty  set. 
The empty  set is not a linear space. 

f. The definition of linear subspace depends on the choice of the scalar field F. For 
instance, the set S = {u E C : Re(u) = 0} is a linear subspace of C when we take IK 
for the scalar field, but not when we take C for the scalar field. 

g. If S and T are linear subspaces of X and c E F, then the sets 

S + T  = ( s + t  : s E S ,  t E T } ,  c S  = {cs  : s c S }  

are linear subspaces also. 

h. If S~ (A c A) are linear subspaces of X,  then the sum }-~A~A S~ (defined in 8.11) is 
also a linear subspace; in fact, it is the span of U ~ A  S~. 

i. Let (Y~ : A C A) be an indexed set of F-linear spaces. The e x t e r n a l  d i r e c t  s u m  of 
the YA's is the set 

[_]Y~ 
AEA 

{I H is nonzero at most  nitely many s} 

k@ 

This is a linear subspace of the product HACA YA" Of course, if A is a finite set, then 
the external direct sum is equal to the product.  

The external direct sum described above is a special case of the external direct sum 
defined in 9.30. Caution: Some mathemat ic ians  call this the "direct sum;" see the 
remarks in 9.30. 

An important  special case is that  in which all the Y~'s are equal to one vector space 
Y. Then the external direct sum UACA Y is equal to the set of all functions f : A -~ Y 
that  vanish on all but finitely many A's. 

Specializing further: Let F be the scalar field; then [-JncN F is the linear space 
consisting of all sequences of scalars tha t  have only finitely many nonzero terms. 

If F is any field, then F ~ = {functions from F into itself} is a linear space. (In fact, it 
is a commutative algebra; see 11.3.) For each positive integer n, let Pn = {polynomials 
of degree at most n, in one variable, with coefficients in F}; this is a linear subspace of 
F ~. The set Qn = {polynomials of degree exactly n} is not a linear space, since it is 
not closed under addition. 

Preview. Let IF be the scalar field (either IR or C). Then F (~ = {functions from (0,1) 
into IF} is a linear space. Following are some linear subspaces of F (~ of types tha t  
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will be studied later in this book" 

B 

B C  
B U C  

Lip 

- {bounded functions}, 

= {bounded continuous functions}, 

= {bounded, uniformly continuous functions}, 

- {Lipschitzian functions}, 

= {smooth functions vanishing at endpoints}. 

All of the relevant terms are defined later in this book. Ezercise for more advanced 
readers: Show that  IF(0,1) D B ~ BC ~ BUG ~ Lip D C ~  :/: 

LINEAR MAPS 

11.7. Definitions. An F - l i n e a r  m a p  is a mapping f "  X -+ Y from one IF-linear space 
into another that  satisfies 

f (z + z') - f (z) + f (z') and f (cz) - c f (z) 

for all x , x '  E X and c E IF. We may omit the prefix "F" and simply refer to a l i n e a r  
m a p ,  if no confusion will result. However, we emphasize that  the choice of IF is part  of the 
definition. For instance, the map c~ H ~, from C into itself, is lR-linear but not C-linear. 

The F-linear maps are just the homomorphisms (as defined in 8.48) for the variety of all 
IF-linear spaces. The category of F-linear spaces has IF-linear spaces for objects and IF-linear 
maps for morphisms. 

Mathematic ians  often omit the parentheses in writing linear maps i.e., if f is linear 
then f ( x )  may be writ ten as f x .  As usual, operations wri t ten multiplicatively are per- 
formed before operations wri t ten additively, if no parentheses dictate otherwise. Thus, an 
expression such as f x  + u is understood to mean ( f (x ) )  + u, not f ( x  + u). 

A b i l i n e a r  m a p  is a mapping f : X x Y --+ Z from the product of two linear spaces 
into a linear space, such that  

f ( x ,  .)" Y ---+ Z is linear for each fixed x E X, and 

f( . ,  y ) ' . X  ~ Z is linear for each fixed y E Y. 

11.8. It is easy to see that  if X and Y are F-linear spaces, then 

Lin(X, Y) - {E-linear maps from X into Y} 

is a linear subspace of y X. 

A linear map from a vector space into the scalar field is also called a l i n e a r  f u n c t i o n a l .  
The l i n e a r  d u a l  of an F-linear space is the linear space 

Lin(X, IF) - {linear maps from X into IF}. 
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When the context is clear, Lin(X, F) may be called the d u a l  of X and denoted more briefly 
by Lin(X) or by X*. The reader is cautioned that  "dual" and "X*" have other meanings 
in other contexts; see 9.55. 

11.9. Examples and further properties. Prove the following, either directly or as special- 
izations of results about homomorphisms between algebraic systems. 

a. Any linear map f is a homomorphism of additive groups. Hence it satisfies 

f ( 0 ) -  0, {0} c f - l ( 0 ) ,  f is injective ~ {0} - f - l ( 0 ) .  

b. If f "  X ~ Y is a linear map, then Graph( f )  is a linear subspace of X x Y. 

c. (This example requires some familiarity with calculus.) The set 

C[0, 1] - {continuous functions from [0, 1] into I~} 

is a linear subspace of IR [~ Let any g c C[0, 1] be fixed; then a linear functional 
L 9 "C[0, 1] ---, IR can be defined by the Riemann integral 

Lg( f )  - f ( t )g( t )  dt ( I  ~ 6'[0, 1]). 

This example will be generalized substantially in later chapters. 

d. If f �9 X ~ Y is a linear map and S is a linear subspace of X, then f ( S )  is a linear 
subspace of Y. 

e. If f "  X ~ Y is a linear map and T is a linear subspace of Y, then f - l ( T )  is a linear 
subspace of X. 

f. A l i nea r  i s o m o r p h i s m  is a linear map that  is bijective. Show that  if f �9 X ---, Y 
is a linear isomorphism, then f - 1  . y ~ X is also linear, and hence is also a linear 
isomorphism. 

g. The identity map i" X ~ X is linear; its kernel is {0}. 

h. If X and Y are linear spaces, then the constant mapping from X to Y that  sends all 
elements to 0 is a linear map; its kernel is X. 

i. Let S be a linear subspace of X. Define a relation on X by Xl ~ x2 if Xl - x2 c S. 
This is an equivalence relation. Let X / S  be the quotient space i.e., the set of all 
equivalence c l a s s e s -  and let 7r �9 X ~ X / S  be the quotient map. Then X / S  is a linear 
space, with operations defined by 

71"(Xl) + 71"(X2) --  71"(Xl n t- X2) ,  c (x) -  (cx) 

for Xl,X2,X C X and c c F, and the quotient map is a linear map. 

j.  ( I s o m o r p h i s m  T h e o r e m . )  X / K e r ( f )  is isomorphic to Range(f) ,  by the mapping 
F(Tr(x)) = f ( x ) .  

k. Let A be an m-by-n matrix over a field F. Represent elements of the vector spaces F m 
and F n as column vectors. Then the map v H Av, defined as in 8.28, is a linear map 
from IF n into F TM. 
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11.10. Proposition. Let X and Y be linear spaces. Let S c_ X, and let f �9 S ~ Y be some 
function. Then f can be extended to a linear map F "  span(S) ~ Y if and only if f has 
this property" 

whenever 8 1 ,  S 2 ,  �9 �9 �9 , S r n  are elements of S and al ,  a2,. �9 �9 am are scalars such that  
a l s  1 nt-a2s2-n t-. . "nt-amSrn -- 0, then f satisfies a l f ( S l ) + a 2 f ( s 2 ) + .  . " + a r n f ( s m )  -- 
O. 

Moreover, if f satisfies that  condition, then the extension F is unique, for it must satisfy 

F(alSl  + a2s2 + . . .  + amsm) -- a l f ( S l )  + a2f(s2) + . . .  + amf(Sm).  (*) 

Proof. If ( a l S l  + ' ' "  + arnSrn) -- (bi t1 + ' ' "-Jr-  bntn) - O, with the si 's and t j 's in S, then 
[ a l f ( S l )  + ' " - F  a m f ( S r n ) ]  -- [ b l f ( t l )  + . . . - F  bnf(tn)] - 0 by our hypothesis on f .  Hence 
the formula ( ,)  does indeed define a function F. Obviously tha t  function is linear. 

Further observation (optional). Let (I) be the collection of all graphs of functions f from 
subsets of X into Y, such that  f can be extended to a linear map on span(Dom(f ) ) .  Then 
(I) has finite character (see 3.46). 

11.11.  Real linear versus cornplez linear. In applications, the most important  fields are R 
and C. A linear space over the scalar field R is a r ea l  l i n e a r  space ;  a linear space over 
the scalar field C is a c o m p l e x  l i n e a r  space .  

In some parts of functional analysis - -  e.g., vector lattices or nonlinear functional anal- 
ysis there are relatively .few benefits from working with complex scalars. Consequently 
some mathemat ic ians  simplify their notat ion by only considering real linear spaces. For 
many purposes, this l imitation is without loss of generality, since every complex linear 
space can also be viewed as a real linear space. Indeed, since IR c_ C, we can replace the 
scalar multiplication (.)" C x V -~ V with its restriction (.)" R x V --, V. 

Complex scalars are important  for some areas of functional analysis and its applications, 
particularly spectral theory and mathemat ica l  physics. Consequently some mathemat ica l  
books and papers only consider complex linear spaces. This limitation is without much loss 
of generality, for every real linear space X can be viewed as a subset of a complex linear 
space, as we now show" 

Let X be any real linear space. Then on the vector space X x X we can define the 
vector operations 

( X l , Y l ) + ( x 2 , Y 2 )  

( a + i b ) . ( x l , Y l )  

- -  ( X l  n t- X2 ,  Yl -t- Y2) ,  

--  ( a x l  -- by1,  a y l  -F bXl  ) 

and 

for ( X l ,  Yl) and (x2, Y2) in X x X and a, b E R. These definitions make X x X a complex 
linear space, called the c o m p l e x i f i c a t i o n  of X. We may denote it by X + i X  and its 
element (x, y) by x + iy. Note that  X is isomorphic to the subset {(x, 0 ) : x  E X}. 

This construction seems rather  cumbersome, but in most applications the complexifica- 
tion arises naturally. Indeed, C (introduced in 10.24) is just  the complexification of R, and 
for any set A the linear space C A is the complexification of R A. Here is another example: 
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Let A be a topological space; then a function f : A ~ C is continuous if and only if it is of 
the form f = u + iv, where u, v are real-valued continuous functions. 

In l l.30.e we shall see that  any complex linear space can be viewed as the complexifi- 
cation of a real linear space though not necessarily in a constructive fashion. 

11.12.  Bohnenblust-Sobczyk Correspondence. Any complex vector space V may also be 
viewed as a real vector space (by "forgetting" how to multiply by scalars), but the two 
viewpoints give us two different collections of linear functionals. How are the two collections 
related? 

Recall tha t  a mapping f : V ~ Z, from one IF-linear space into another, is an F-linear 
map if it is additive and satisfies f (cv )  = c f (v )  for all v E V and c E F. A r ea l  l i n e a r  
f u n c t i o n a l  on V is an R-linear map from V into ~; a c o m p l e x  l i n e a r  f u n c t i o n a l  on V 
is a C-linear map from V into C. 

Now suppose V is a complex linear space. Show that  

a. If f is a complex linear functional on V, then gl (v) - -  Re f ( v )  and g2(v) = Im f ( v )  are 
real linear functionals on V with g2(v) = - g l  (iv), and f = gl -Jr- ig2. 

b. Conversely, if gl is a real linear functional on V, then f ( v )  = g l ( v ) -  igl( iv)  is a 
complex linear functional on V. 

c. These t ransformations give a bijection f ~ gl between the real linear and complex 
linear functionals on V. 

d. (Optional.) Generalize the preceding argument.  If V is a complex linear space and X 
is a real linear space with complexification X + i X ,  then there is a bijection between 
complex linear maps f : V ~ X + i X  and real linear maps gl : V ----+ X.  Also, if T and 
X are real linear spaces, then any real linear map from T into X extends uniquely to 
a complex linear map from T -4- iT  into X + iX .  

LINEAR DEPENDENCE 

11.13.  Definitions. A set S C_ X is l i n e a r l y  d e p e n d e n t  if we can write 

0 ~ C l S 1  -~- C282 ~ " ' "  -+ C n S n ,  

where n is a positive integer, the ci's are nonzero scalars, and the si 's are distinct elements 
of S. If 0 cannot be expressed in this fashion, S is l i n e a r l y  i n d e p e n d e n t .  

11.14.  Observations. In any linear space: 

a. ~ is a linearly independent subset. 

b. Any subset containing 0 is linearly dependent. 

c. If v is a nonzero vector then the singleton {v} is a linearly independent set. 

d. If b and c are distinct scalars and v is any vector, then any set containing both by and 
cv is linearly dependent.  



Linear  D e p e n d e n c e  281 

e. A set S is linearly dependent if and only if some point s E S is in span(S\{s}) .  

f. (Opt ional . )  A set S is linearly independent if and only if each finite subset of S is 
linearly independent.  Thus, the collection of all linearly independent sets has finite 
character (see 3.46). 

11.15.  Example .  For each r E IR, let v(r )  - (1 ,r ,  r 2 , r 3 , . . . ) .  Then { v ( r ) ' r  E IR} is a 
linearly independent subset of the real linear space R N - {sequences of reals}. 

Hint:  Suppose a i r ( r 1 )  -4- a2v(r2)  n c . . .  -4- a n y ( m )  - 0 for some scalars a l , a 2 , . . .  ,an  and 
some distinct real numbers r l ,  r 2 , . . . ,  rn. Show that  alp(r1)  -t- a2p(r2) -4-...-4- anp(rn)  - 0 
for every polynomial p. By considering the Lagrange polynomials (2.2.e), show al - a2 - 

. . . .  a n - O .  

11.16.  C o m m o n  Kerne l  Le m m a .  Let k be a positive integer, let X be a linear space, and 
let A0, A1, A2 , . . . ,  Ak be elements of X*,  the linear dual of X (defined in 11.8). Then: 

(Pk) n i ~ l  Ker(Ai) c_ Ker(A0) if and only if A0 c span{A1, A2 ,  �9 �9 �9 , Ak  }. 

(Qk) A1, A2 , . . . ,  Ak are linearly independent elements of X* if and only if there exist vectors 
Z l , Z 2 , . . .  , x k  E X such that  Aj (x i )  - 8~j (where 8 is the Kronecker delta). 

Hints: The "if" parts are obvious. We shall prove the "only if" parts by induction on k, 
showing Qm ~ Pm ~ Qm+l.  The proof of Q1 is trivial. 

To prove Qm => Pro, first note that  we can omit any element of the set {A1, A2, . . . ,  Am} 
that  is a linear combination of the other elements of that  set; hence we may assume that  
that  set is linearly independent.  Now show that  if X l , X 2 , . . .  , z m  are as in Qm and z c X, 

m m 
then X~j=I A j ( x ) x j  - x E ~ i = l  Ker(Ai). 

To prove Pm =~ Qm+l,  let A0, A1,A2, . . . ,Am be linearly independent elements of 
Lin(X).  By symmetry  (explain), it suffices to establish the existence of xo satisfying 
Ai(x0) - 8i0. If no such x0 exists, s h o w  Nim=l  Ker(Ai) C_ Zer(A0). 

11.17.  Defini t ions.  Let X be a linear space, and let B C X. Then the following conditions 
are equivalent. If one (hence all) of them is satisfied, we say B is a bas i s  for X or, to be 
more specific, a v e c t o r  bas i s  or l i n e a r  basis .  (Some mathemat ic ians  also call it a H a m e l  
basis ,  but other mathemat ic ians  reserve that  term for a narrower meaning indicated in 
11.30.c.) 

(A) For each nonzero vector x E X, there is one and only one way (except for 
changing the order of the summation)  to write x - C l S 1  -4- c 2 8 2  Jr- ' ' '  + CnSn, 
with n equal to a positive integer, with the ci's equal to nonzero scalars, and 
with the si 's equal to distinct elements of B. 

(B) 
(C) 

(D) 

B is linearly independent and span(B) - X. 

B is a maximal  linearly independent subset of X,  i.e., a linearly independent 
set that  is not included in any other linearly independent set. 

B is a minimal spanning set for X; tha t  is, span(B) - X and B does not 
contain some other set A satisfying span(A) - X. 
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Later we shall use the Axiom of Choice to prove that  every linear space V has a vector 
basis and that  any two vector bases for V have the same cardinality. Tha t  cardinality is 
called the d i m e n s i o n  of V; it is wri t ten dim(V).  The linear space is said to be f in i te -  
d i m e n s i o n a l  or i n f i n i t e - d i m e n s i o n a l  according as dim(V) is finite or infinite. When V 
is finite-dimensional, then dim(V) is a nonnegative integer. 

11.1 

a .  

b. 

C.  

d .  

e .  

8. Examples and observations. 
{ (1, 0), (0, 1) } and { (1, 0), ( -  1, 1) } are two different vector bases for F 2. 

Let X be the degenerate linear space {0}, which contains just the one vector 0. Then 
the empty set is a vector basis for X.  

Let X be a linear space, and let S c_ X. Then S is linearly independent if and only if 
S is a vector basis for span(S).  

Let X and Y be linear spaces, let B be a vector basis for X,  and let f c y B. Then 
f extends uniquely to a linear map from X into Y. Thus, there is an isomorphism 
between the linear spaces yU and Lin(X; Y) - {linear maps from X into Y}. In 
particular,  F B is isomorphic to the linear dual of X (defined in 11.8). 

If X is an F-linear space with vector basis B, then X is isomorphic t o  UbEB ]~ - -  tha t  
is, the external direct sum of B copies of the scalar field IF (defined in 11.6.i). An 
isomorphism i from the external direct sum onto X is given by i ( f )  = ~-~b~B f ( b ) .  b. 
(This sum makes sense since f(b) is a scalar, b is a vector, and f(b) vanishes for all 
but finitely many b.) For each b C B, we have i - l (b )  equal to l{b}, the characteristic 
function (defined on B) of the singleton {b}; such functions form a vector basis for the 
external direct sum. 

FURTHER RESULTS IN FINITE DIMENSIONS 

11.19.  Let n be a positive integer. For each j c { 1 , 2 , . . . , n } ,  define the vector 

r]j - ( 0 , . . . , 0 , 1 , 0 , . . . , 0 )  - [0 .- .  0 1 0 . . .  0] T c F n, 

where r]j has a 1 in the j t h  position and 0s elsewhere. It is easy to see tha t  any vector v = 
(Vl,V2,.. .  ,vn) c IF n can be writ ten in one and only one way as v = c1~]1 +c2~]2 +" "'+Cn~]n 
for scalars Cl,C2,...  ,Cn; indeed, we must take cj = vj for each j .  Hence {r]l, r]2,. . .  ,tin} is 
a vector basis for ]Fn; it is called the s t a n d a r d  bas i s  for F n. The vector r]j is called the 
j t h  s t a n d a r d  bas i s  v e c t o r  for F n. 

11.20.  Matrices as linear maps. Every linear map from IF n into IF m is uniquely representable 
as an m-by-n matrix,  in the sense of 11.9.k. 

Indeed, let {r]l, r ]2 , . . . ,  tin} be the s tandard vector basis for F n, as in 11.19. Let A : IF n 
F m be a linear map. Then the values of A are determined by its values on the 7]j's; indeed, if 
V - -  C l ~ l  -Tt-C2~2-~ - ' "  "-~t-Cn~n for some scalars Cj E F,  then Av = clA~71 +c2Ar]2-~-...-~-cnA?]n. 
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It follows tha t  A is represented  by the rn-by-n ma t r ix  whose columns are the  vectors Ar b 
( j -  1 , 2 , . . . , n ) .  

11 .21 .  If v, w E F n, then  v T w  is the  p roduc t  of a 1-by-n ma t r ix  and a n-by-1 matr ix .  
Thus  it is a l-by-1 matr ix ,  which we may view as a scalar. We shall call this the  s c a l a r  
p r o d u c t  of the  vectors v and w. A couple of its basic proper t ies  are: 

a. The  scalar p roduc t  is symmet r i c  - -  t ha t  is, v i w - w T v. 

b .  In a p roduc t  of matr ices  C - A B ,  the  componen t  cik is the  scalar p roduc t  of the  i th  
row of A wi th  the  k th  co lumn of B. 

11 .22 .  For each fixed v c I~ n, define a mapp ing  fv : F  n ~ F by w H vTw.  Then:  

a.  f~ is a l inear funct ional  on Fn; t ha t  is, f~ is a m e m b e r  of (F n)*, the  linear dual  of F n. 

b.  The  mapp ing  f : v H f .  is a linear map  from F n into (F n)*. 

c. The  mapp ing  f : v  ~ fv  is a bi ject ion from F n onto (Fn) *. (Thus  F n is isomorphic  to 
its own linear dual.)  

Hints: Any m e m b e r  of (Fn) * is a linear map  from F n into F 1, hence (by 11.20) 
representable  as f~ for some n-by-1 ma t r ix  v; thus  f is surjective. To show it is 
injective, note  tha t  if v = (Vl ,V2 , . . . ,  vn) :/: 0, then  vj r 0 for at least one j;  hence 
fv(r]j) r 0, where  r 5 is the  j t h  s t a n d a r d  basis vector; hence fv r 0. 

d. The dual of  a linear map. Suppose  X and Y are linear spaces over the  scalar field F, 
and  A : X ~ Y is some linear map.  T h e n  we may  define a dual  ma p  A* : Y* ~ X *  
by A * ( f )  = f o A, as in 9.55. Show tha t  if X and Y are finite dimensional ,  and A 
is represented  by a matr ix ,  then  A* is represented  by the  t ranspose  of t ha t  matr ix ,  
in t roduced  in 8.26. 

More precisely: Let v H fv be the  biject ion from F n onto (F n)* descr ibed above, 
and  let w ~ g~ be the  analogous bi ject ion from F m onto (Fm)*. Suppose  A : F n ~ F m 
is some linear map,  represented  by an m-by-n  ma t r ix  which we shall also denote  by A. 
Define a cor responding  map  A * :  (Fro) * ---. (Fn) * by this rule: [A*(gw)](x) = g ~ ( A ( x ) )  
for any x c F n tha t  is, A*(gw) is the  composi t ion  

A*(g~)  gw o A ]~n A ]~m gw _ . ~ ~ ( F r o ) , .  

Show tha t  A*(gw) - f aTw,  where A T is the  t r anspose  of the  ma t r ix  A 
A* (g~) - fv, where  v - AT w. 

tha t  is, 

11 .23 .  L e m m a .  Let A be an m-by-n  ma t r ix  over F. T h e n  the n columns of A are linearly 
independen t  e lements  of F TM if and only if there  exists an n -by -m mat r ix  B such tha t  B A  
= In. (-We then  say B is a le f t  i n v e r s e  for A.) 

Proof. For the  "if" par t ,  suppose  B A  - In, but  the  columns A 1 , A 2 , . . .  , A n  are linearly 
dependen t  vectors in F m i.e., suppose  clA1 + . . .  + c n A n  is equal  to 0m, the  zero vector  
in F m, for some scalars C l , . . .  ,Cn tha t  are not  all 0. Let c -  [Cl c2 . . .  Cn] r', infer tha t  Ac 
is equal  to 0m. But  then  c - Inc - B A c  - BOrn - 0n, a contradic t ion.  
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For the "only if" part,  assume the columns A 1 , A 2 , . . . , A n  are linearly independent 
vectors in F TM. View them as elements of the linear dual of IF m, by their action in the scalar 
product (see 11.22). By the Common Kernel Lemma, there are vectors b l ,b2 , . . .  ,bn C F TM 

such that  b [ A j  - 5ij.  Take the l -by-m matrices b~ to be the rows of a matrix B; then 
B A - I n .  

11.24.  R e m a r k s .  By taking transposes in the preceding result, we obtain this dual result" 

The rows of a matrix A are linearly independent if and only if A has a right  
inverse, i.e., a matr ix C such that  A C -  I .  

It can also be proved, though not so easily, that  the rows of a square matrix are linearly 
independent if and only if its columns are linearly independent. This slightly deeper result 
can be proved using determinants or other more advanced methods, but we shall not need 
it. It implies that  a linear operator f : V ~ V, from a finite-dimensional linear space into 
itself, has a left inverse if and only if it has a right inverse. That  conclusion is not valid in 
infinite-dimensional linear spaces, as we see from the example in 8.5.a. 

11.25.  P r o p o s i t i o n .  In any linear space V over the field F, if wl, w 2 , . . . ,  Wn+l are n + 1 
vectors in the span of some n vectors y l , y 2 , . . .  ,Yn,  then the vectors Wl, w 2 , . . . ,  Wn+l are 
linearly dependent. 

Proof.  We first prove this in the special case where V - F n and the yi's are the basis vectors 
rh; that  is, we first show that  any n + 1 vectors in Fn are linearly dependent. Assume, to the 
contrary, that  Wl, w 2 , . . . ,  Wn, Wn+I are linearly independent. View Wl, w 2 , . . . ,  Wn as the 
columns of an n - b y - n  matrix W; then there exists an n - b y - n  matrix B such that  B W - I .  
Let B w n + l  - c -  [cl c2 . . .  cn] T. Show that  Wn+l - ClWl + "'" + CnWn, proving that  
wl, w 2 , . . . ,  Wn+l are linearly dependent. 

Now, for an arbitrary linear space V, assume that  wl, w 2 , . . . ,  W~+l lie in the span of 
{yl, y2,. �9 �9 yn }. Then 

Wi -- ~ aijyj (i - 1 , 2 , . . . , n  + 1) 
j=l 

for some scalars aij .  Let Ai - [ a i l  ai2 --- ai~] T. Then the Ai's are n + 1 vectors in F n, so 
they are linearly dependent. Hence c lA1  + . . .  + C n + l A n + l  - 0 for some scalars ci that  are 
not all 0. Now show that  Cl Wl + . . .  + cn+ l Wn+ l - O. 

11.26.  C o r o l l a r y .  Let X be a linear space. Assume that  X can be spanned by some finite 
subset of X. Let n be the smallest number of vectors that  span X. Then X has at least 
one vector basis, any vector basis for X contains exactly n vectors, and X is isomorphic 
to F n. (We then say that  X is f in i te  d i m e n s i o n a l ,  and we call n the d i m e n s i o n  of the 
vector space X.) 

11.27.  Example .  Let F be a field. The set of all polynomials of degree _< n, in one variable 
x, with coefficients in F, is a linear space with dimension n + 1, when the vector operations 
are defined in the obvious fashion. One vector basis is {1, x, x 2 , . . . ,  x n} .  
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CHOICE AND VECTOR BASES 

11.28. Remarks. By using the Axiom of Choice, we shall now obtain further results about 
vector bases and cardinality in infinite-dimensional linear spaces. These results provide 
representations of linear spaces, which may be conceptually helpful to the beginner. How- 
ever, the results below are optional; they will not be needed later except for pathological 
examples. These results have little practical value in applied mathematics  or in functional 
analysis, because (1) the Axiom of Choice and its consequences are nonconstructive, and 
(2) the vector basis of an infinite-dimensional topological linear space generally has little 
connection with the topology of that  space. 

11.29. Many formulations of the Axiom of Choice were introduced in Chapter  6. We now 
state three more equivalents of Choice" 

( A C 1 6 )  V e c t o r  Bas i s  T h e o r e m  ( s t r o n g  f o r m ) .  Let X be a linear space 
over a field F. Suppose that  I is a linearly independent subset of X, G is a 
generating set ( that is, span(G) - X), and I c_ G. Then I c_ B C_ G for some 
vector basis B. 

( A C 1 7 )  V e c t o r  Bas i s  T h e o r e m  ( i n t e r m e d i a t e  f o r m ) .  Let X be a linear 
space over a field F, and let G be a subset of X that  generates X (that is, 
span(G) - X).  Then X has a vector basis B contained in G. 

( A C 1 8 )  V e c t o r  Bas i s  T h e o r e m  ( w e a k  f o r m ) .  Every linear space has a 
vector basis. 

Obviously (AC16)=~  ( A C 1 7 ) ~  (AC18). 

Proof of (AC5)o r  (AC7) =~ (AC16). Use 11.17(C). 

Proof of (AC17) =~ (AC2). This proof is due to Halpern [1966]. Let {So " a E A} be a 
nonempty set of nonempty disjoint sets; we wish to prove that  there is a set So consisting 
of exactly one element from each So. To this end, we shall construct not only a suitable 
vector space, but also a suitable scalar field. 

Let S - U ~ A  So. Let E be a field disjoint from S; this can always be accomplished 
by relabeling. Let F - E[S] be the field of rational functions with coefficients in E and 
variables in S (see 8.24). Form the external direct sum 

U F - { f E F  A �9 f ( c t ) r  
aEA 

as in 11.6.i; then (I) is a linear space over F. For each s E S and a E A, let 

s if s E So 
gs(c~) - 0 i f s  ~ So. 

Then gs E (I) and in fact the set G - {g~ �9 s E S} spans (I). Let B C_ G be a vector basis for 
(I) over F; then B - {g,~ " s E S0} for some set So c_ S. For each a E A, the characteristic 
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function of the singleton {a} is an element of �9 and thus in the span of B. Hence there 
is at least one gs c B that  does not vanish at a,  and thus So meets S~. To show that  So 
meets each S~ in at most one point, suppose t, u are distinct members of So N S~. Then 
tgu = ugt, contradicting the fact that  the set {gt, gu} is linearly independent. 

Proof of (ACI8) =~ (MC). (Recall that  (MC) was stated in 6.15.) This proof, given by 
Blass [1984], is similar but somewhat longer, and so we shall omit it. We remark that  it 
uses Blass's subfield (8.25). 

11.30.  Corollaries of the Vector Basis Theorem. 
a. Any F-linear space can be represented as an external direct sum of copies of IF (see 

11.18.e). 

b. If V and W are linear spaces over F, I C_ V is linearly independent, and f �9 I ~ W 
is any function, then f can be extended to a linear function from V into W. Hint: 
11.18.d. 

c. We may view I~ as a linear space over the scalar field Q; a basis for this linear space is 
called a H a m e l  basis .  (Some mathematicians apply that  term more widely, as noted 
in 11.17.) Using such a basis, show that  there exists a function f �9 I~ --~ I~ that  is 
additive tha t  is, satisfying f ( s  + t) - f (s)  + f ( t )  but not continuous. Remark: 
Compare this with 24.42. 

d. If V is any linear space, its linear dual separates points of V. 

e. Any complex linear space can be represented as the complexification of some real linear 
space (as defined in 11.11). 

f. Let S be a linear subspace of a linear space X. Then S has an additive complement T 
that  is, X has a linear subspace T satisfying 

S + T -  X and S M T -  {0}, 

or, equivalently, satisfying the condition that  

each x E X can be writ ten in one and only one way as s + t with s C S and 
t E T .  

It may be instructive to contrast this with 8.16. 

g. Let S be a linear subspace of a linear space X. Then S is the range of a linear projection 
i.e., there exists a linear map f : X ~ S that  has range S and satisfies f (s )  = s for 

each s c S. 

11.31.  T h e o r e m  (LSwig,  1934) .  Let V be an IS-linear space. Then any two vector 
bases for V over F have the same cardinality. (That  cardinality can therefore be called the 
d i m e n s i o n  of the linear space.) 

Proof. This proof is taken from Hall [1958]. Let S and T be vector bases for V. Each 
s c S can be expressed uniquely (except for the order of summation) in the form s = 
altl  + . . .  + antn for some positive integer n, some nonzero scalars a l , a 2 , . . .  ,an, and some 
vectors tl ,  t2 , . . . ,  tn E T. Let F(s) be the finite set {tl, t 2 , . . . ,  tn} obtained in this fashion. 
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If 8 1 , 8 2 , . . . , 8 k  are distinct elements of S, then F ( S l ) U  F(s2)LJ . . .  U F(sk )  contains at 
least k elements, for otherwise S l , S 2 , . . .  , sk  would be linearly dependent (by 11.25). By 
M. Hall's Marriage Theorem 6.37(ii), there exist points t(s)  E f ( s )  such that the mapping 
s H t(s) is injective; thus card(S) <_ card(T). Similarly card(T) _< card(S); now apply the 
SchrSder-Bernstein Theorem 2.19. 

DIMENSION OF THE LINEAR DUAL (OPTIONAL) 

11.32. Assumpt ions ,  notations, and remarks. The results below make use of the fact 
(proved in 10.44.f) that card(R) = card(C) = card(2N). Also, the results below assume the 
Axiom of Choice; these results should be contrasted with 27.47.a. 

Throughout the discussion below, let F be the scalar field; assume F is either R or C. 
Let X be a linear space over F, and let X* be its linear dual i.e., the set of all linear 
maps from X into F. 

11.33. Observation. If dim(X) - n < o c ,  then dim(X*) - n also, and card(X) - 

c a r d ( X * )  - card(F), m~t" 11.22. 

11.34. Proposition. c a r d ( X ) - m a x { c a r d ( F ) , d i m ( X ) } .  

Hi t . Let B be any vector basis for X; then card(F x B) - max{card(F),dim(X)} by 
(AC13) in 6.22. Let L]b~B F be the external direct sum (defined in 11.6.i) of B copies of F. 
Use 11.18.e, 6.22, and 11.29 to explain 

c a r d ( X ) -  card (hUB F )  _< card 

= card(F x B) < card(X x X) -- card(X). 

Then use the SchrSder-Bernstein Theorem. 

11.35. L e m m a .  If X is infinite-dimensional, then dim(X*) _> card(2N). 

Hints" Let {e0, el, e2,...} be any linearly independent sequence in X. For each real number 
r, by 11.30.b there exists some f~ E X* satisfying f~(en) - r ~ for n - 0, 1, 2, . . . .  Now apply 
11.15, to show that the f~'s are linearly independent members of X*. 

11.36. T h e o r e m .  If X is infinite-dimensional, then dim(X*) > dim(X). 

Proof. By the preceding results, we have dim(X*) _> dim(2N), hence dim(X*) - card(X*). 
Let B be a vector basis for X; then B is an infinite set; hence card(N x B) - card(B). Since 
the X* is isomorphic to F B, we have card(X*) - card(F B) - card((2N) B) - card(2 NxB) - 
card(2 B) > card(B) - dim(X). 
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PREVIEW OF MEASURE AND INTEGRATION 

11.37.  Definitions. Let X be an additive monoid. (In most cases of interest X is either 
[0, +oc] or a vector space.) Let g be a collection of subsets of a set f~ with z c g, and let 
7 �9 S ~ X be some mapping satisfying T(O) - 0. We say that  7- is 

n n 
f in i t e ly  a d d i t i v e  if T(Uj= 1 Sj) - E j = I  T(Sj) whenever $1, $2 , . . .  , Sn are 
finitely many disjoint members of g whose union is also a member of g; 

c o u n t a b l y  a d d i t i v e  (or a - a d d i t i v e )  if X is equipped with a metric (or other 
(~D (9O 

notion of convergence) and T(Uj= 1 Sj) -- E j = I  T(Sj) whenever S1, $2, $3 , . . .  
is a sequence of disjoint members of g whose union is also a member of g. 

(XD 

The expression Ej=I T(Sj) is defined as in 10.39. 
Of course, every countably additive mapping is also finitely additive, since we may take 

$3, $4, $5, . . .  all equal to ;3. We emphasize that  "finitely additive" means "at least finitely 
additive, and perhaps countably additive;" it does not mean "finitely additive but not 
countably additive." 

Aside from the requirements ~ E S C_ T(ft), the collection S in the definition above 
is arbitrary. We now impose some additional restrictions. By a c h a r g e  we shall mean a 
finitely additive mapping from an algebra of sets into an additive monoid. By a m e a s u r e  we 
shall mean a countably additive mapping from a a-algebra of sets into an additive monoid 
equipped with some convergence structure. 

Cautions" The terminology varies considerably throughout the literature. Some math- 
ematicians apply the term "measures" to what we have called charges, or to countably 
additive charges, or to positive measures (defined below), etc. 

Unfortunately, the phrase "p is a charge (or measure) on W" has two different meanings 
in the literature" It may mean W is the (a-)algebra S on which p is defined, or it may mean 
that  W is the underlying set f~ on which S is defined. One must determine from context 
just which meaning is intended. 

11.38.  Remarks on the choice of the codomain X. In most applications of charges, the 
monoid X usually is either [0, +cc] or some vector space; then p may be called a p o s i t i v e  
c h a r g e  or a v e c t o r  cha rge ,  respectively. Though a wide variety of vector spaces are 
used in this fashion in spectral theory, in more elementary applications the vector spaces 
most often used for the monoid X are the one-dimensional vector spaces R and C. The 
resulting charge or measure is then called a r e a l - v a l u e d  c h a r g e  or  m e a s u r e  or a c o m p l e x  
c h a r g e  or  m e a s u r e ,  respectively. We shall study positive charges and measures in 21.9 
and thereafter; real-valued charges and measures in 11.47 and thereafter; and other vector 
charges and measures in 29.3 and thereafter. 

Positive charges and vector charges differ only slightly in their definition, but more 
substantially in their use. We are mainly interested in positive charges when they are 
in fact measures; moreover, it is commonplace to fix one particular positive measure p 
and then use it for many different purposes. In contrast, vector charges are sometimes of 
interest without countable additivity or a-algebras, but they are of interest mainly in large 
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collections i.e., we may study the relationships between many different vector charges, 
which are members  of a "space of charges" as in 11.47. An important  part  of the theory of 
vector measures u is the question of just when they can be represented in the form 

~(S) - L f(w) d#(w) 

for some vector-valued function f and some positive measure #; see 29.20 and 29.21. 

1'1.39. Remarks on the choice of the domain g. In most of our elementary examples of 
charges or measures later in this book, the collection of sets g is actually equal to [P(ft) = 
{subsets of ft}. However, our most important  measure is Lebesgue measure, which is not 
so elementary and which is not defined on a a-algebra of the form iP(f~); in 21.22 we prove 
it cannot be extended in a natural  way to iP(ft). 

In many cases of interest, ft is a topological space, and g is either the Borel a-algebra 
or some a-algebra containing the Borel or-algebra. Recall tha t  the B o r e l  c r - a lgeb ra  is the 
or-algebra on Ft generated by the topology i.e., the smallest a-algebra containing all the 
open sets; the members of that  a-algebra are called B o r e l  se ts .  

A m e a s u r a b l e  s p a c e  is a pair (f~, g) consisting of a set ft and a a-algebra g of subsets 
of f~; a m e a s u r e  s p a c e  is a triple (f~,g,#) in which # is a positive measure on g. (It 
might be more descriptive to call (f~, g, #) a "positive measure space," but we shall not be 
concerned with a measure "space" in which # is a vector measure.) 

Thus, a measurable space is a space that  is capable of being equipped with a measure; 
a measure space is a space that  has been equipped with a positive measure. These terms 
should not be confused with each other, or with a space of measures i.e., a collection 
of measures equipped with some structure that  makes the collection into a vector space, a 
topological space, or some other sort of "space," as in 11.48. 

11.40. Several kinds of integrals will be introduced in this book; still more integrals can 
be found in the wider literature. When necessary, we shall specify what kind of integral 
is being used. Fortunately, the several integrals generally agree in those cases where they 

are all defined. For instance, fo t2 dt makes sense as a Riemann integral or as a Lebesgue 
integral, but with either interpretat ion the expression has the value of 1/3. 

We now informally sketch some of the main features shared by most types of integrals. 
Precise definitions will be given later. 

In general, an integral fs  f d# depends on a set S, a function f (called the i n t e g r a n d ) ,  
and a charge #. In some of our studies of integrals, we may hold one or two of the arguments  
S, f,  # fixed. When an argumefit is held fixed and /or  its value is understood, then it may 
be supressed from the notation; thus 

~ s f d #  may be wri t ten as j~sf  or ffa  or / f .  

Usually, when S is omit ted from the notation, then S is understood to be equal to ft. When 
f~ is a subset of IR n and # is Lebesgue measure, then d#(a~) may be wri t ten simply as da~. 

The integral fs  f d# may be wri t ten in greater detail as fs  f(a~) d#(a~). Here a~ is 
a dummy variable, or placeholder. It is sometimes helpful in clarifying just  what is the 
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argument of f ,  particularly if the function f is complicated. The integral is not altered in 
value if we replace w with some other letter, or omit it altogether. Thus: 

L L 
11.41. Using (a-)algebras and charges, we shall consider integrals f f dp of three main 
types in this book: 

(i) p is a vector charge taking values in a complete normed vector space, and f is 
a scalar-valued function taking values in the scalar field of that  vector space. 
Then f fdp takes values in the vector space. 

We shall call this a B a r t l e  i n t e g r a l  (though the terminology varies in 
the literature); this type of integral is introduced in 29.30. The mapping 
( f ,p )  H f f dp is bilinear i.e., linear in each variable when the other 
variable is held fixed. For f and # held fixed, the mapping S ~-~ fs f dp is 
finitely additive; i.e., it is a vector charge. 

This is algebraically the simplest type of integral we shall consider. We 
modify this concept in a couple of ways, indicated below, to allow +c~ in our 
computations. 

(ii) # is a positive measure (and thus may take the value + ~ ) ,  f is a function 
taking values in some complete normed vector space, and some restriction is 
placed on IIf(')ll so that  it is "not too big." Then f fd# takes values in the 
vector space. 

We shall call this a B o c h n e r  in tegra l ;  it is introduced in 23.16. It is a 
linear function of f ,  for fixed #. For fixed f,  the mapping # ~ f f d# is like 
the "upper half" of a linear map: It preserves sums and multiplication by 
positive constants. For f and # fixed, the mapping S ~ fs f d# is countably 
additive i.e., it is a vector measure. A central result for Bochner integrals 
is Lebesgue's Dominated Convergence Theorem, 22.29. 

(iii) p and f both take values in [0, +c~], and f fd# does, too. 
We shall call this a pos i t i ve  in tegra l ;  it is introduced in 21.36. It behaves 

like the "positive quadrant" of a bilinear mapping: The maps f H f f d# and 
# H f f d# both preserve sums and multiplication by positive constants. For 
f and p fixed, the mapping S ~ fs f d# is countably additive i.e., it 
is a positive measure. A central result for positive integrals is Lebesgue's 
Monotone Convergence Theorem, 21.38(ii). 

We emphasize that  for integrals of this type, f f d# may take the value 
+c~. When f fd# exists and is finite, we say that  f is i n t eg rab le .  

Other types of integrals over charges are possible, of course. For instance, for any vector 
spaces X, Y, Z, we could integrate an X-valued function f with respect to a Y-valued 
measure it, using some bilinear map ( , } : X •  ~ Z; then f f d #  takes place in Z. 
However, such integrals will not be studied in this book. 

A few other integrals will be defined in other fashions, not in terms of charges and 

algebras. The R i e m a n n  in t eg ra l  f:  f(t)dt is reviewed in Chapter 24; in that  chapter we 
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also introduce the H e n s t o c k  i n t e g r a l  f:  f(t)dt and the H e n s t o c k - S t i e l t j e s  i n t e g r a l  

f:  f(t)dp(t), and show how these integrals are related to the Lebesgue integral. Here f 
and ~ are functions defined on an interval [a, hi. 

11.42. Integration of simple functions. Let A be an algebra of subsets of a set ~. 
function f : ~ -~ X is called a s i m p l e  f u n c t i o n  if 

the range of f is a finite subset of X, and f - l ( x )  E Y:[ for each x E X (or 
equivalently, for each x E Ran(f ) ) .  

A 

Equivalently, a simple function is one that  can be writ ten in the form 

n 

f(') = ~ lsj(')xj (,) 
j=l  

where n is a positive integer, the xj's are members of X, and 1s~ (.) is the characteristic 
function of some set Sj E A. (The representation (,)  is not unique, since we do not require 
the xj's to be nonzero or distinct and we do not require the Sj's to be disjoint.) 

If X is a vector space, then it is easy to verify that  the simple functions form a linear 
subspace of X ~. If X = [0, +oc], the set of simple functions is not a linear space, but at 
least it acts like the "upper half" of a linear space: It is closed under addition and under 
multiplication by nonnegative constants. 

Now let # be a charge defined on A, taking values in some monoid K, and let f : ~ ~ X 
be a simple function. When it makes sense, we define 

/~ f dp = E #( f - l (x))  X. 
x 

The summation on the right is over all x E X or, equivalently, (since # (~ )  = 0) the 
summation is over all x E Ran(f ) .  Thus, the summation involves only finitely many terms. 
Equivalently, if f is represented by (,),  then 

n 

J~fd# = E p ( S j )  x j .  
j = l  

For these summations to make sense, we must also make certain restrictions: We must 
have some notion of how to multiply x times # ( / - l ( x ) )  and how to add up the resulting 
products. This requirement is met by any simple function, in cases 11.41(i) and ll.41(iii).  

In case ll .41(ii) ,  the requirement is met by any simple function f that  satisfies this 
additional hypothesis: 

In this case we say that  f is an i n t e g r a b l e  s i m p l e  func t i on .  If we use representation 
(,) ,  then we must choose the Sj 's  so that  no nonzero vector xj is associated with a set Sj 
that  has infinite measure. (That is accomplished, for instance, if we require that  f be an 
integrable simple function and the Sj's be disjoint.) 
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11.43. Simple functions should not be confused with step functions, though the two 
notions are closely related. A s t ep  func t i on  is a mapping f : [a, b] ~ X, from some 
subinterval of R into some vector space, with the property that there exists some partition 
a = to < tl < t2 < . . .  < tn = b such that f is constant on each subinterval ( t j _ l , t j ) .  
(Different partitions may be used for different step functions.) 

Step functions are a special case of simple functions, as follows: Let A be the collection 
of all finite unions of subintervals of [a, b]. (We interpret "subintervals" so that singletons 
and the empty set belong to A.) Then A is an algebra of sets, and the resulting X-valued 
simple functions (defined as in 11.42) are precisely the step functions. 

ORDERED VECTOR SPACES 

11.44. Remarks. We shall only consider ordered vector spaces using R for the scalar field. 
It is possible to develop a theory of ordered vector spaces using other scalar fields see, 
for instance, Schaefer [1971] - -  but such a theory is more complicated and less natural and 
intuitively appealing; it is not recommended for beginners. 

Definitions. An o r d e r e d  vec to r  space  is a real vector space X equipped with a partial 
ordering ~ such that 

(i) x ~ y ~ x + u ~ y + u (i.e., X is an ordered group); and 

(ii) I f x ~ 0 i n X a n d r > 0 i n I R ,  t h e n r x ~ 0 i n X .  

We say X is a Riesz  space,  or vec to r  la t t ice ,  if in addition 

(iii) (X, 4) is a lattice i.e., each finite nonempty subset of X has a supremum 
and an infimum. 

Finally, X is a l a t t i ce  a l g e b r a  (or a l g e b r a  la t t ice)  if X is also an algebra (in the classical 
sense, as in 11.3) whose vector multiplication satisfies 

(iv) x , y ~ O  ~ x y ~ O .  

If X is a Riesz space, then a Riesz  s u b s p a c e  is a subset S that is closed under the 
vector operations and the lattice operations that is, 

s, t E S ,  c E R  s + t ,  cs, s V t ,  s A t  E S .  

Clearly, such a set is itself a Riesz space, when equipped with the restriction of the operations 
of X. 

11.45. Example: real-valued functions. Let A be any set. Then the product 

IR A = {functions from A into R} 

is a Dedekind complete lattice algebra, when given the product ordering 
ordered by 

x ~ y  if x (A)<y(A)  for every AEA.  

that is, when 
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The vector and lattice operations are defined pointwise" 

( . .  y)(a) - . ( a ) .  y(a), 

(x V y)(s - max{x(A), y(k)}, (x A y)(k) -- min{x(A), y(A)}. 

More generally, for any set S c_ IRA that  is bounded above or below by some real-valued 
function, we have 

[sup(S)] (/~) -- sup{s(A) �9 s C S}, [inf(S)] (A) - inf{s(A) �9 s E S}. 

When this ordering is used, many mathemat ic ians  write x <_ y instead of x 4 y. However, in 
this book we shall often write 4 for such an ordering, to help beginners avoid inadvertently 
a t t r ibut ing familiar properties (e.g., a chain ordering) to a familiar symbol. 

11.46. Further examples" subspaces of R A. The pointwise formulas given for x V y, x A y, 
sup(S),  inf(S) in the previous paragraph remain valid in many important  subsets of IRA; 
some of these are listed below. 

a. The set B(A) = {bounded functions from A into R} is a Dedekind complete lattice 
subalgebra of R A. 

b. The space C[a, b] = {continuous functions from [a, b] into R} is a lattice subalgebra of 
R [a'b], for any real numbers a, b with a < b. 

C[a, b] is not Dedekind complete. Example. Show that  the sequence of functions 
f~(t) = ~/max{0, t} is bounded above in C [ - 1 ,  1] but does not have a least upper 
bound in C [ -  1, 1]. 

c. The space Cl[a,b] = {continuously differentiable functions from [a,b] into IR} is a 
subalgebra of R [a'b] i.e., it is closed under addition and both multiplications. Also, 
it is an ordered vector space. 

Cl[a, b] is not a lattice. Example. Let x(t) = t and y(t) = - t .  Show that  the set 
{x, 9} has an upper bound in CI[-1,  1], but not a least upper bound. 

d. If we use R for the scalar field, then many of the Banach spaces used in the theory of 
measure and integration are vector lattices. They are not subspaces of IRA; rather, they 
are subspaces of a quotient space IRA/J for some ideal J. Examples will be developed 
in later chapters. 

11.47. The space of bounded  real charges. Let ft be a set, let A be an algebra of 
subsets of f~, and let 

ba(A,R) - (bounded, real-valued charges on A}. 

(Here, "ha" stands for "bounded additive.") Then ba(A, IR) is a linear subspace of B(A, R) - 

{bounded functions from A into R}, which is in turn a linear subspace of IR A - {functions 
from A into R}. 

Let ba(A, R) be equipped with the restriction of the product ordering that  is, 

# ~ u means that  p(A) <_ u(A) for e v e r y A E A .  
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Then ba(A, R) is a Dedekind complete vector lattice, with lattice operations as follows" 

(#V~)(A)  - s u p { p ( B ) + ~ ( A \ B )  �9 B e A ,  BC_A},  

(#A~)(A)  = i n f { p ( B ) + ~ ( A \ B )  : B E A ,  B C _ A } .  

Although ba(A, R) is a linear subspace of N A as linear spaces, it is not a sublattice. The 
lattice operations V and A shown in the preceding paragraph are not simply the restrictions 

of the lattice operations of R A. Indeed, ba(A,R), considered as a subset of R A, is not 
closed under that space's lattice operations; an elementary example of this is given in the 
exercise in 21.11.c. 

Since ba(A, R) is a vector lattice, each charge # has a positive part, a negative part, and 
an absolute value, as defined in 8.39. In the present context those are 

#+(A) = 
#-(A) = 

/#/(A) = 

sup{p(S)  �9 S e A ,  Sc_A},  

s u p { - p ( S )  �9 S e o 4 ,  Sc_A},  

s u p { p ( S ) - p ( A \ S )  �9 S E A ,  SC_A}, 

respectively. The three functions #+, # - ,  a n d / # / a r e  called the pos i t ive  va r ia t ion ,  the 
nega t i ve  va r i a t ion ,  and the v a r i a t i o n  (or total variation) of #, respectively; they are 
members of ba(A,N). The variation of # may also be written as Var(#). We emphasize 
that any bounded real charge has finite variation; this fact will be important in 29.6.d and 
29.6.h. 

The lattice ba(A,R) is Dedekind complete. If M is a nonempty subset of ba(A,R), 
bounded above or below by some member of ba(A, R), then we have 

[sup(M)] (A) - sup 
n n 

E p j ( S j )  or [inf(M)] (A) -- inf E p j ( S j ) ,  
j = l  j = l  

respectively, where the sup or inf is over all positive integers n, all finite sets of charges 
{#1, # 2 , . . . ,  #n} C_ M, and partitions A - $1 U $2 [2. . .  U Sn where the Sj's are disjoint 
elements of A. If (M, ~) or (M, ~) is a directed set, then we obtain these simpler formulas, 
respectively: 

[sup(M)] (A) - sup #(A) 
itEM 

or  [inf(M)] (A) - inf #(A). 
ttCM 

(Hints: Since ba(A,R) is a lattice, we easily reduce the proof to the case where M is a 
directed set; then use the fact that a setwise limit of charges is a charge.) 

The space ba(A,R) is studied in greater depth by Bhaskara Rao and Bhaskara Rao 

[19831 . 

11.48. T h e  space  of b o u n d e d ,  c o u n t a b l y  a dd i t i ve  real  charges .  Let ~ be a set, let 
A be an algebra of subsets of ~t, and let 

ca(A,R) - {bounded, countably additive, real-valued charges on A}. 
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(We emphasize that  A is not assumed to be a a-algebra, so the members of ca(A,R) are 
not necessarily measures.) Then ca(A,R) is a sublattice of ba(04, IR) that  is, ca(A,R) is 
closed under the binary operations V and A of ba(A,R). (Exercise.) 

Moreover, ca(A, JR) is Dedekind complete. If M is a subset of ca(A, R) that  is bounded 
above or below by some member of ca(A, R), then 

[sup(M)] (A) - sup 
o o  ( x )  

Z #j(Sj)  or [inf(M)] (A) - inf E #j(Sj)  
j=l j=l 

respectively, where the sup or inf is over all countable collections {Pl, P2, P3,.. .} C M, and 
pi~rtitions A - $1 U $2 U $3 U . - . ,  where the Sj's are disjoint elements of 04. (Exercise. 
Verify.) 

11.49. Notes on the boundedness of charges. 
a. In 29.3 we shall prove that  any real-valued measure (i.e., countably additive, on a a- 

algebra) is bounded. In fact, any measure taking values in a Banach space is bounded. 

b. A finitely additive charge on an algebra of sets need not be bounded. For example: 
Let A - {S c_ N �9 S is either finite or cofinite}; this is an algebra (but not a 

a-algebra) of subsets of N. Define A �9 A ~ Z by 

A(S) - { card(S) if S is finite 
- c a r d ( N  \ S) if S is cofinite. 

Verify that  I is a real-valued charge that  is unbounded. 

e. Are there any real-valued charges on a a-algebra that  are not countably additive? Well, 
yes and no. Such objects exist, but explicitly constructible examples of such objects 
do not exist. This is discussed further in 29.37. 

11.50. Some basic properties of Riesz spaces. If X is a Riesz space, then X is a lattice 
group, so it has all the properties of lattice groups listed earlier in this chapter. It also has 
the following properties: 

a. r(x V y) = (rx) V (ry) and r(x A y) = (rx) A (ry) for all x, y e X and any real number 
r > 0. Hence a l s o / r x / =  r / x / a n d  (rx) + = r(x+). 

/) /x /) b. x V y - - ~  x + y + / x - y  a n d x A y - - ~  x + y -  - y  

c. x V ( - x )  -- I x l  ~ O. 
d . - y 4 y  <---> y ~ O .  

11.51. P r o p o s i t i o n .  Let X be a Riesz space. Then X has the same ideals, whether we 
view X as a Riesz space or (by "forgetting" how to multiply by scalars) we view X as a 
lattice group. Thus, an ideal in a Riesz space X is an additive subgroup satisfying any of 
the conditions in 9.27. 

Pro@ Since the category of lattice groups has fewer fundamental  operations, it has at least 
as many ideals i.e., every Riesz space ideal is a lattice group ideal. Conversely, suppose 
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S c_ X is a lattice group ideal; we must show that  it is a Riesz space ideal. We shall use 
the fact that  S is solid (established in 9.27(B)). To show that  S satisfies definition 9.25(B) 
for Riesz spaces, it suffices to show that  

c C N ,  s E S  ~ c s E S .  

Since S is an additive subgroup, it suffices to prove this implication in the case where c > 0. 
Since 0 ~ s + ~ / s /  and 0 ~ s -  ~ / s / ,  we have s+,s  - c S. Since S is closed under 
addition, m s  +, m s -  c S for any positive integer m. Let m be some integer greater than c. 
Since X is a Riesz space, we obtain 

0 ~ cs + ~ ms  + and 0 ~ cs -  ~ m s - ,  

and therefore cs +, c s -  c S. Now use the Jordan decomposition: 

= c - = - 

Since S is an additive group, it follows that  cs E S. 

P O S I T I V E  O P E R A T O R S  

11.52.  Definitions. Let X and Y be lattices (not necessarily groups or vector spaces). A 
mapping f "  X -~ Y is 

a l a t t i c e  h o m o m o r p h i s m  if it satisfies f ( x l  V x2) - f ( x l )  V f ( x2 )  and f ( x l  A 

x 2 ) - -  f ( x l ) A  f (x2) .  

i n c r e a s i n g  (or i so tone )  if X 1 ~ X 2 ==~ f ( x l )  4 f(x2).  

o r d e r  b o u n d e d  if the image of any order interval is contained in an order 
interval i.e., for any Xl, x2 E X there exist Yl, Y2 E Y such that  

f ({x c X �9 Xl ~ x ~ x 2 } )  c_ {y E Y �9 yl ~ y ~ y2}. 

It is clear that  f is a lattice homomorphism => f is increasing =~ f is order bounded. 
Any of these three types of functions can be used as the morphisms for a category, with 
lattices for the objects. 

Note that  a linear operator between Riesz spaces (or more generally, an additive mapping 
between ordered groups) is increasing if and only if it is a p o s i t i v e  o p e r a t o r  i.e., if and 
only if it satisfies x ~ 0 ==v f (x) ~ O. 

11.53.  Proposition. Let X and Y be Riesz spaces; assume that  Y is Archimedean (defined 
as in 10.3). Let f "  X ~ Y be anaddi t ive ,  increasing map that  is, 

f ( x l  -+- x2) -- f ( x l )  + f(x2),  and Xl ~ X2 =:~ f ( x l )  ~ f(x2).  
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T h e n  f is R-linear.  

Corollary. Every  lat t ice group h o m o m o r p h i s m  from a Riesz space into an Arch imedean  
Riesz space is actual ly  a Riesz space homomorph i sm.  

Proof of proposition. It suffices to show tha t  f ( rx )  - r f (x )  for every real number  r and 
every vector  x c X.  By addi t iv i ty  and the Jo rdan  Decomposi t ion ,  it suffices to prove tha t  
equat ion  when r _> 0 and x > 0. 

By addit ivity,  it is easy to see tha t  f (qx) - qf(x)  for rational numbers  q. Since f is 
order-preserving,  we can conclude tha t  

x E X +, 0 < ql <_ r < q2, ql, q2 E Q =~ q l f ( x )  4 f ( r x )  4 q2 f ( x ) .  

Now, for any integer rn C N, we can find ra t ional  numbers  ql q2 > 0 such tha t  - z  < 
' 77L 

ql -- r < 0 < q2 -- r < 1 .  It follows tha t  
TtL 

1 
- - ~ f ( x )  4 ( q l - - r ) f ( x )  4 f ( r z ) - r f ( z ) 4  ( q 2 - r ) f ( z ) 4  - - f ( z ) .  m ~rt 

Let 7 - f ( r z ) -  r f (z);  it follows tha t  the  subgroup  Z7 - {rn7 �9 rn E Z} is bounde d  above 
by f ( z ) .  Since Y is Archimedean ,  it follows tha t  7 -  0. 

11 .54 .  A pathological ezarnple. In the preceding theorem,  we cannot  omit  the assumpt ion  
tha t  Y be Archimedean.  To see this, let H be the  hyperrea l  line (see 10.18). We shall prove 
the existence of a mapp ing  f : IR ~ H tha t  is a h o m o m o r p h i s m  for lat t ice groups but  is not  
R-linear.  

First  represent  R as an internal  direct sum, R = X O Y ,  where X and Y are some addi t ive 
subgroups  of R other  t han  {0} and IR itself. (This can be accomplished using l l .30 .a ,  since 
R may be viewed as a linear space over the scalar field Q.) Let c be a nonzero infinitesimal 
in H. Define f : R  ~ H by taking f ( z  + y) = z + (1 + c)y for all z E X and y E Y. Then  
f is clearly additive.  It is not  linear, for if z, y are nonzero real numbers  wi th  z E X and 
y c Y then  y f ( z )  = yz r (1 + c )zy  = z / ( y ) .  It s~mce~ to ~how tha t  f is order-preserving.  

Suppose  X 1 -+- Yl < x2 + Y2, where  Xl,X 2 E X and Yl,Y2 C Y. Then  x2 + Y2 - X l  - Yl is a 
posit ive real number  and (Yl - y2)e is an infinitesimal. Hence (Yl - y2)e < x2 + Y2 - Xl - Yl. 
T h a t  is, f ( X l  + Yl) < f ( x 2  + Y2). 

(This example  disproves an erroneous asser t ion of Birkhoff  [1967, page 349].) 

11 .55 .  Proposition (Kantorovid). Let X, Y be Riesz spaces, and  assume Y is Archimedean.  
Let f : X+  ---, Y+ be any function.  Then  f ex tends  to a posit ive ope ra to r  F : X --~ Y if and 
only if f is addi t ive i.e., if and only if f ( x l  + x2) = f ( x l )  + f (x2)  for all Xl, x2 E X+.  If 
t ha t  condi t ion is satisfied, then  the extension F is uniquely  de termined:  It satisfies 

F(x) - f ( x  +) - f ( x - ) .  (**) 

Proof. This  proof  follows the p resen ta t ion  of Aliprant is  and Burk inshaw [1985]. Obviously, 
if f ex tends  to a posit ive linear opera tor ,  then  f must  be addi t ive and the  extension F must  
satisfy the  formula (**). Conversely, assume f is addi t ive and define F :  X ~ Y by (**); 
we must  show tha t  F is linear. The  proof  will be in several steps: 
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a.  I f x - u - v w i t h u ,  v E X + , t h e n F ( x ) - f ( u ) - f ( v ) .  Hint: x + - x - - x - u - v ,  
hence x + + v - u + x - ;  now use our assumption that  f is additive on X+. 

b. F(Xl + x2) - F ( X l ) +  F(x2);  that  is, F is additive on Z.  Hint: Apply the preceding 
result w i t h u - X l  + + x  + a n d v - x  l + x  2. 

c. F is an increasing function on X. Hint: If x ~ 0 => F(x) - f (x) ~ O. 
Finally, apply 11.53 to complete the proof. 

11.56. Observations. Let X and Y be Riesz spaces. Then: 

a. Lb(X, Y) = {order bounded linear maps from X into Y} is a linear subspace of 
L(X, Y ) =  {linear maps from X into Y}. 

b. Let f, g E L(X,  Y). Then the following conditions are equivalent: 

(A) f - g  is an increasing operator 
f(x2) -g(x2) .  

that  is, Xl ~ X2 ==> f ( X l )  -- g ( X l )  

(B) f - g is a positive operator that  is, x ~ 0 ~ f ( x ) -  g(x) ~ O. 

(C) f (x)  ~ g(x) for all x E X+. In other words, the restriction of f to X+ 
is larger than or equal to the restriction of g to X+, where functions on 
X+ are ordered by the pointwise o r d e r i n g -  i.e., where IR X+ is equipped 
with the product ordering. 

When either (hence both) of these conditions holds, we shall write f ~ g. This ordering 
makes L(X,  Y) and Lb(X, Y) into ordered vector spaces. 

11.57. T h e o r e m  ( R i e s z - K a n t o r o v i e ) .  Let X and Y be Riesz spaces, and suppose Y is 
Dedekind complete. Then the linear space 

Lb(X, Y) -- {order bounded linear operators from X into Y} 

is equal to the set of all linear operators that  can be writ ten as the difference of two positive 
operators. Furthermore, Lb(X, Y) is a Dedekind complete Riesz space when ordered as in 
11.56.b. For any f E Lb(X, Y), the positive part  is given by this formula: 

f+ (x )  - sup{f(u)  �9 u E [ 0 ,  x]} when x E X+. 

Other lattice operations are as follows, for x E X+" 

( f  V g)(x) 
( f  A g)(x) 

/ f / ( x )  

- sup{f(u)  + g(v) �9 u,v E X+ and u + v - x}, 

- inf{f(u)  + g(v) �9 u,v E X+ and u + v - x}, 

- sup{ / (u)  �9 u E [ -x ,x ]}  -- sup{ / f (u) /  �9 u E [--x,x]}. 

When �9 is a nonempty subset of Lb(X, Y) that  is directed and that  is bounded above by 
some member of Lb(X, Y), then 

(sup (I))(x) - sup f (x)  for each x E X+. 
fE~ 
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Caution: A formula above shows the relation b e t w e e n / f / ( x )  a n d / f ( x ) / .  In general they 
are not the same; do not confuse them. In the expression / f / (x) ,  we take the absolute 
value of the vector f in the lattice Lb(X, Y); it is a function from X into Y that  can be 
evaluated at x. On the other hand, f(x) is a vector in the lattice Y, and so we can take its 
absolute value in that  lattice to o b t a i n / f ( x ) / E  Y. 

Proof of theorem. Our proof is based on the presentation of Fremlin [1974]). It is easy 
to show that  any positive operator is order bounded; hence any difference of two positive 
operators is order bounded. 

Conversely, suppose f -  X ~ Y is order bounded. Define a function g"  X+ ~ Y+ by 
g(x) - sup{ f (u) 'u  E [0, x]}; that  supremum exists because Y is assumed to be Dedekind 
complete. We note that  g is additive on X+" 

g ( x l )  + g ( x 2 )  = sup{f (u l )  4- f(u2) " ~tl E [0, Xl] , U 2 E [0, X2]} 

= sup{f (v) 'v  E [0, xl] + [0, x2]} 

(]--)-- sup{ f (v) 'v  E [0, Xl -~- X2]} -- g(Xl -Jr- X2) 

where equation (!) is by the Riesz Decomposition Property  (noted in 8.38). By 11.55, 
therefore, g extends to a positive linear map from X into Y, which we shall also denote 
by g. Then g(x) ~ f(x) for all x E X+, so g - f  is also a positive linear map. Thus 
f - g -  ( g -  f )  is the difference of two positive linear maps. 

It is an easy exercise to verify that  the function g constructed above is actually equal 
to the supremum of the set {0, f},  in the ordered vector space LD(X, Y). Thus 0 V f exists 
for each f E LD(X, Y), and therefore that  ordered vector space is a vector lattice, by the 
observations in 8.38. 

To show LD(X,Y) is Dedekind complete, suppose �9 C_ LD(X,Y) is a nonempty set 
bounded above by some/3 E LD(X, Y); we shall show that  sup O exists in LD(X, Y). We 
may replace (P by the collection of sups of nonempty finite subsets of ~; the existence and 
value of �9 are not thereby affected. Thus we may assume (I) is directed; we shall show 
that,  on X+, sup (I) is then equal to the pointwise supremum of the members of q). Fix any 
~0 E (I). We may replace each ~ E �9 with the function ~ -  ~0; this does not affect the 
existence of sup O, and it replaces the value of sup �9 with sup �9 - ~0; thus we may assume 
that  0 E (P. Since Y is Dedekind complete, h(x) - suP/E~ f(x) exists for each x E X+. 
Since 0 E ~, we have h(x) ~ 0 for each x E X+. By 8.32, the function h �9 X+ ~ X+ 
is additive. By 11.55, h extends to a positive linear operator from X into Y; clearly that  
operator is the sup of q) in LD(X, Y). 

11.58. Definition and corollary. Let X be a Riesz space. Then the linear space 

Lb(X, R) -- {order bounded linear functionals on X} 

is called the o r d e r  d u a l  of X. It is equal to the set of all linear functionals that  can be 
writ ten as the difference of two positive linear functionals. It is a Dedekind complete Riesz 
space when equipped with this ordering: f ~ g if x ~ 0 ~ f(x) >_ g(x). It also satisfies 
this formula: 

/ f / (x )  = sup{if(u)l  : u E [ -x ,x ]} ,  if x E X+. 
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This definition is a special case of the notion of "dual" introduced in 9.55. It is investigated 
further in books on vector lattices; we shall not study it further in this book. 

ORTHOGONALITY IN RIESZ SPACES (OPTIONAL) 

11.59. Definitions. Let X be a Riesz space (or more generally, a lattice group). In this 
context, two elements x, y are orthogonal to each other, denoted x _1_ y, i f / / x / A / y / / - -  O. 
For any set S c_ X, the o r t h o g o n a l  c o m p l e m e n t  of S is the set 

S • = { x E X  �9 x _ l _ s f o r a l l s E S } .  

This definition is a special case of 4.12, with 

r = { ( x , y ) . x •  - 

and so the conclusions of 4.12 are applicable. Thus, x I x ~ x -- 0, and 

S c_ S •177 S • - S •177177 and S1 C $2 ===} S~- C S1 Z, 

for sets S, $1, $2 C X. Also, if S - T • and T -  S • then 

{0} - S A T -  S NT • - ( S U T )  

11.60.  Example. We consider IRA as in 11.45. Verify that  x _L y if and only if xy -- 0, 
where xy is the function defined pointwise i.e., (xy)(A) = [x(A)][y(A)] for all A e A. Also 
prove that  two sets $1, $2 c_ IR A are orthogonal complements of each other if and only if 
they are sets of the form 

where A1 and A2 form a part i t ion of A. 

11.61.  Definition. Let X be a Riesz space or, more generally, a lattice group. A b a n d  in 
X, also known as a n o r m a l  s u b l a t t i c e ,  is an ideal (as defined in 9.27 and 11.51) that  is 
sup-closed in X (as defined in 4.4.b). 

R i e sz  T h e o r e m  on  O r t h o g o n a l  D e c o m p o s i t i o n s .  Suppose tha t  X is Riesz space 
(or, more generally, a lattice group). Assume X is Dedekind complete. Then a subset 
S c_ X is an orthogonal complement of some subset of X if and only if S is a band. 
Furthermore,  if S and T are orthogonal complements of each other, then they form a direct 
sum decomposition: X - S | T, as defined in 8.13. The projections 7rs �9 X ~ S and 
7rT �9 X ~ T are homomorphisms of lattice groups (or of Riesz spaces, if X is a Riesz 
space). The projection onto S is given by the formula 

 s(x) -  es} i f x  ~ 0 ,  
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and ~ s ( x )  - ~ s ( x  + ) - ~ s ( x -  ) in general. 
formulas. 

The projection onto T is given by analogous 

Remark .  Compare this theorem with 22.52. 

Proo f  o f  theorem (following Bhaskara Rao and Bhaskara Rao [1983]). First suppose tha t  
S is an orthogonal complement. Then S is an ideal; tha t  is a straightforward exercise. To 
show that  S is sup-closed, let M be a nonempty subset of S, and suppose # - sup(M) exists 
in X. Show that  / # / ~  s u p { / m / ' m  E M}, and hence # E S. (These arguments actually 
do not require tha t  X be Dedekind complete.) Now assume X is a Dedekind complete 
lattice group, and S is a band in X. Most of our proof will be concerned with showing tha t  

( * * * ) I f T - S  "c a n d x E X  + , t h e n x - s x + t x  for s o m e s x E S a n d t x E T .  

The set M - { / s / A  x "  s E S} is bounded above; since X is Dedekind complete, Sx - 
sup(M) exists in X. Since S is a sup-closed ideal, we have M C_ S and also Sx E S.  The 
elements of M are nonnegative; hence Sx ~ 0 also. Let tx - x -  Sx; next we shall show that  
tx lies in T - S "c. Let any a E S be given; we are to show that  / a / A / t x / - -  O. Since M 
is bounded above by x, we have Sx ~ x; therefore tx ~ 0 a n d / t x / -  tx. Let u -  (7 ab /~  tx ;  
t h e n u  ~ 0 a n d i t  suffices to show that  u 4 0. S ince0  4 u 4 / a /  a n d a  E S a n d  S i s a  
sup-closed ideal, it follows that  u E S; hence also u + Sx E S.  Then 

0 ~ U + S x  = ( / a / A t x ) + ( X - t x )  ~ x, 

and so 
= e M, 

whence u + Sx ~ sup(M) - Sx, and thus u ~ 0. This completes our proof of ( ,  �9 ,).  Next 
we prove the conclusion of ( ,  �9 ,)  with the hypothesis weakened: We shall permit  x to be 
any element of X, not necessarily nonnegative. Applying the Jordan Decomposition, we 
have x - p -  n, where p, n E X +. Then p, n have Riesz decompositions 

p - Sp -F tp E S + T and n - s~ + t~ E S + T. 

We obtain x - S x + t x ,  with Sx - S p - S ~  E S and tx - t p - t ~  E T .  To show every sup-closed 
ideal is an orthogonal Complement, let S be an sup:closed ideal. Clearly S c_ S "c'c For the 
reverse inclusion, let x E S "c'c have decomposition x - s + t E S + T. Then t E T, but also 
t - x - s E S  - c ' c - T  "c. H e n c e t - 0 ,  a n d x - s E S .  

Whenever S and T are orthogonal complements, they satisfy S N T - {0}; see 8.13. 
In the present context, we have also shown that  S + T  - X. Hence S |  - X (see 
8.11), and the projections 7rS,TrT are uniquely determined group homomorphisms. The 
arguments of the preceding paragraphs show that  7rs must satisfy the formula stated in 
the theorem. Note that  i f u  ~ 0 then 0 4 7rs(u) 4 u. For any x E X, both x + and 
x -  are nonnegative, so 0 4 7rs(x +) 4 x + and 0 4 7rs(x-)  4 x - .  S i n c e x  + A x -  - 0, it 
follows that  7rs(x +) A 7 r s ( x - )  -- O. From the Jordan Decomposition x - x + - x - ,  we obtain 
7cs(x) - 7rs(x +) - : r s ( x - ) ,  which is therefore the Jordan Decomposition of 7rs(x).  Hence 
[Trs(x)] + - 7rs(x +). By 8.45, 7rs is a homomorphism of lattice groups. If X is a Riesz space, 
then 7rs is a homomorphism of Riesz spaces, by 11.53. The same conclusions can be drawn 
for 71" T . 
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Convexity 

12.1. Preview. The diagram below shows examples of a star set, a nonconvex set, and a 
convex set, all of which will be defined soon. The distinction between convex and nonconvex 
may be easier to understand after 12.5.i. 

A typical 
star set 
in R 2 

/ convex 
set 

12.2. Notational convention. Throughout the remainder of this book (except where noted 
otherwise), the scalar field of a linear space will always be either R or C. Usually the scalar 
field will be denoted by IF, and we shall not specify which field is intended; this intentional 
ambiguity will permit us to treat both the real and complex cases simultaneously. However, 
we shall make free use of certain properties and structures enjoyed by IR and C that are 
not shared by all other f i e l d s -  e.g., the real part, imaginary part, complex conjugate, and 
absolute value (see 10.31), and the completeness of the metric determined by that absolute 
value (see Chapter 19). 

C ONVEX SETS 

12.3. Definitions. Several types of sets will now be introduced together; they have similar 
definitions and basic properties. Let X be a linear space with scalar field IF (equal to IR or 
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C), and let S c_ X. We say that  the set S is 

a l i n e a r  s u b s p a c e  of X if s, t E S and A, # E F imply As 4- #t E S; 

c o n v e x  if s , t  C S and A E (0, 1) imply As + (1 - A)t E S; 

aff ine if s , t  E S and A E IF imply As 4- (1 - A)t E S; 

s y m m e t r i c  i f s E S  ::> - s c S .  

Also, a nonempty set S a X is said to be 

b a l a n c e d  (or circled) if, whenever s E S and a is a scalar with ]a <_ 1, then 
as E S; 

a b s o l u t e l y  c o n v e x  if, whenever s, t G S and a,/3 are scalars with ]a] + I/3 <_ 1, 
then as  + fit E S; 

a s t a r  se t  if, whenever s c S and A E [0, 1), then As E S. 

Caution" This definition of "star set" is well suited for our purposes, but it differs slightly 
from the definitions of "star body," "star-like set," etc., used elsewhere in the literature. 

Though these different classes of sets ul t imately must be studied separately, they do 
share a few basic properties: They are classes of sets that  are closed under certain fun- 
damental  operations, and thus they are Moore collections (as in 4.6). For instance, a set 
S a_ X is a linear subspace of X if and only if S is closed under all the binary operations 
b~,~ �9 X • X ~ X defined by b~,~(x, y) - Ax + #y, for all choices of A, # in the scalar field. 
Likewise, S is a convex set if and only if S is closed under all the binary operations b~,l-~ for 
A E [0, 1]. The other classes of sets can be characterized similarly using not only binary 
operations, but also unary operations (s ~ As for balanced sets and star sets, s ~ - s  for 
symmetric  sets) and the nullary operation 0 (for balanced sets, absolutely convex sets, and 
star sets). 

Since these classes are Moore collections, they are closed under intersection. Thus, any 
intersection of convex sets is a convex set, etc. In fact, all the fundamental  operations 
involved are finitary, and so the resulting classes of sets are algebraic closure systems, in 
the sense of 4.8. 

Since these classes of sets are Moore collections, they yield Moore closures (see 4.3) 
in fact, they yield algebraic closures (see 4.8). However, in this context it is not customary 
to use the term "closure." Instead we use different terms for the different kinds of closures: 
The smallest linear subspace containing a set T is the ( l inea r )  s p a n  of T. The smallest 
convex set containing a set T is the c o n v e x  hul l  of T. Analogously we define the aff ine 
hul l  of T, the s y m m e t r i c  hul l  of T, the b a l a n c e d  hul l  of T, the a b s o l u t e l y  c o n v e x  
hul l  of T, and the s t a r  hul l  of T. Notations for these hulls vary throughout  the literature. 
In this book the convex hull of T and balanced hull of T will be denoted by co(T) and 
hal(T), respectively. 

12.4. Some relations between convexity and its relatives. These relationships are summa- 
rized in the following chart. 
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I nonzero singleton I I{O}l 

l 
I linear subspace 

[  fane I 

S 
I convex 

- affine containing 0 I 

1 
absolutely convex = convex and balanced I 

I convex containing 0 1 I balanced [ 

IstaI set I I symmetric I 

a. A set is absolutely convex if and only if it is convex and balanced. 

b. Every balanced set is a symmetric star set. 

c. Every convex set that  contains 0 is a star set. 

d. Every affine set is convex. 

e. A subset of X is a linear subspace of X if and only if it is affine and contains 0. Thus 
any linear subspace of X (in particular, X itself) is convex, affine, symmetric, balanced, 
absolutely convex, and a star set. 

f. If x E X \ {0}, then the singleton {x} is an affine set, but it is not balanced. 

Moreover, suppose that  the scalar field IF is R. Then: 

g. A set is balanced if and only if it is a symmetric star set. 

h. A set is absolutely convex if and only if it is nonempty, symmetric, and convex. 

12.5. Further elementary properties. Let X be an F-linear space. Then: 

a. Any union of symmetric sets or balanced sets or star sets is, respectively, a symmetric 
or balanced or star set. 

b. Suppose that  9" is a nonempty collection of subsets of X that  is directed by inclusion 
i.e., such that  for each F1, F2 C 9" there exists some F c :~ such that  F1 U F2 C_ F. 

If every member of 9" is convex or affine or absolutely convex, then the union of the 
members of 9" also has that  property, respectively. Hint: 4.8(B). 
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c. The  convex hull of a set T is equal to the set of all c o n v e x  c o m b i n a t i o n s  of members  
of T i.e., all vectors of the form 

X ' Cltl + c2t2 + "'" + Cntn 

where n is a positive integer, the t j ' s  are members  of T, and the cj 's are positive 
numbers  whose sum is 1. 

d. The  convex hull of a set T is the union of the convex hulls of the finite subsets  of T. 

e. The  convex hull of a balanced set is balanced.  

f. The  absolutely convex hull of any set S c_ X is equal to co(bal(S)) .  

g. The  balanced hull of a convex is set is not necessarily convex. See the example  in the 
following diagram.  

v 

S 

Example. Let the scalar field be R, 

let the vector space be IR 2, and let 

S = [0, 1] x [0, 1]. Then  S is 

convex. However, T = hal(S)  = 

[0,1] x [0,1] U [ -1 ,0]  x [ -1 ,0]  
is balanced but  not convex. 

/ / / / / ~  bal(S)  

I 

h" If x , y  E X ,  then the s t r a i g h t  l ine  through x and y is the set {c~x+(1-c~)y  �9 c~ E R}. 
It is the affine hull of the set {x, y}, if the scalar field is R. In a real vector space, a 
set S c_ X is affine if and only if it contains the s t raight  line th rough each pair of its 
members .  

i. If x, y C X,  then the s t r a i g h t  l ine  s e g m e n t  from x to y is the set {c~x + (1 - c ~ ) y  �9 
E [0, 1]}. It is the convex hull of the set {x, y}. The  points x and y are its e n d p o i n t s .  

A set S c_ X is convex if and only if it contains the s traight  line segment  connecting 
each pair of its members  (regardless of whether  the scalar field is IK or C). 

j .  A subset  of IR is convex if and only if it is an interval. 

k. Let X be a real linear space, and let C c X.  Then  there exists an ordering 4 on X 
tha t  makes X into an ordered vector space with  nonnegat ive cone X+ equal to C if 
and only if C satisfies these conditions" (i) C is convex, (ii) C n ( - C )  - {0}, and (iii) 
if x E C and r > 0 then rx  E C. 

12.6.  Exercises: ari thmetic operations on convex sets. 

a. For each ~ in some index set A, suppose tha t  Ca is a convex subset  of some linear 
space Xa.  Then YI~EA CA is a convex subset  of the linear space I-[XEA Xx. 

b. Let f "  X ~ Y b e a l i n e a r m a p .  I f S  c_ X is a convex set , then  so is f ( S )  c_ Y .  If 
T C_ Y is a convex set, then so is f - l ( T )  C_ X.  
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In particular, if S C_ X is a convex set, then cS  - {cs �9 s c S }  is convex for any 
scalar c, and xo + S -  {xo + s" s E S} is convex for any vector xo E X. 

c. If S and T are convex subsets of X,  then 

co(S U T) = U [oeS + (1 - oe)T]. 
0<c~<1 

d. For any sets A1, A 2 , . . . ,  Ak  C X ,  the convex hull of the sum is the sum of the convex 

hull  That co (E L1 - co(A ) 

e. If C is a convex set , t h e n C + C - 2 C .  That  is, { x + y ' x ,  y E  C } -  { 2 u ' u c  C}. 
1 C -  ~ 1 C -  C. Equivalently, ~ 

12.7. (Opt ional . )  As we noted in 12.3, it is possible to consider convex sets as algebraic 
systems, with fundamental  operations given by the binary operations 

c r ( x , y )  - r x  + (1 - r )y  for r E (0, 1). 

One may be tempted  to try to view convex sets as an equational variety and thus apply to 
them all the theory of equational varieties. 

However, convex sets do not  form a variety, for they are not closed under the taking 
of homomorphic images that  respect the fundamental  operations. It can be proved (see 
Romanowska and Smith [1985]) that  the smallest variety containing all convex sets is the 
variety of barycentric  algebras. These are the algebraic systems that  have fundamental  
operations given by some binary operations c~ for r E (0, 1), where the binary operations 
satisfy these identities: 

c~(x, x)  - x and c~(x, y) - c l - ~ ( y ,  x)  when 0 < r < 1; 

Ct/(s+l ) (Cs/t(X , y), Z) -- Cs/(s+l ) (X, Ct--s(y, Z)) when 0 < s < t < s + 1. 

The convex sets are the barycentric algebras that  can be embedded in vector spaces; not 
all barycentric algebras can be so embedded. 

The following example, from [Romanowska and Smith], shows that  the class of convex 
sets is not closed under the taking of homomorphic images that  respect the fundamental  
operations. Let n be an integer greater than 1. Let ft = { e l , e 2 , . . .  ,en} be the s tandard 
basis for ]R n - -  tha t  is, let e i = (0, 0 , . . . ,  1 , . . . ,  0, 0) be the vector with 1 in the j t h  place and 
0s elsewhere. Let A be the convex hull of the set ft; it is a convex subset of ]R n (called the 
s t a n d a r d  s i m p l e x ) .  We shall also consider the set ~P(f~) = {subsets of f~} as an algebraic 
system, with binary operations defined by 

c r ( A , B )  - A U B for r E (0, 1). 

(We emphasize tha t  all the cr's, for different values of r, are the same  binary operation.) 
The set [P(f~) cannot possibly be isomorphic to a convex subset of a real vector space, for 
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any convex set t ha t  contains  more  t han  one point  must  conta in  infinitely many  points.  
However, the  mapp ing  f : A  ---, T(f~) defined by 

f (;-~ ?~jej) -- {ej E ~ �9 rj 

is a h o m o m o r p h i s m  - -  i.e., it preserves the  fundamen ta l  opera t ions  of the  algebraic systems.  
Thus  ~P(f~) is a homomorph ic  image of a convex set. Therefore  it preserves any identi t ies 
tha t  could be used to define the  variety of convex sets but  it is not  a convex set. Thus  
convex sets do not  form a variety. In fact, T(f~) is a barycent r ic  algebra.  

12 .8 .  Defini t ion.  Let X be a linear space, wi th  scalar field R or C. A set S c_ X is 
a b s o r b i n g  (or radial) if for each x E X we have cx E S for all scalars c sufficiently small 
(i.e., for all scalars c sat isfying c I < r, where  r is some posit ive number  tha t  may depend  
on x and S). 

Show tha t  the  absorbing sets form a proper  filter on X;  thus they  are sets t ha t  are 
"large" in the  sense of 5.3. 

Absorbing  sets will be i m p o r t a n t  in the  theory  of Minkowski funct ionals  (see 12.29.c 
and 12.29.g) and  topological  vector  spaces (see 26.26, 27.9.e, and 27.20). 

COMBINATORIAL CONVEXITY IN FINITE 
DIMENSIONS (OPTIONAL) 

12.9 .  R a d o n ' s  A f f i n e n e s s  L e m m a .  Let x0, X l , . . . ,  Xk be vectors in I~ ~, for some posit ive 
integers k and n wi th  k > n. T h e n  there  exist real numbers  P0, P l , . . . ,  Pk, not  all zero, such 

k k 
t h a t  ~-~j=o PJ -- 0 a n d  ~-~j=o pjxj -- O. 
Hint:  Firs t  show tha t  the  vectors Xl - x0, x2 - x 0 , . . . ,  xk - x0 are linearly dependen t  
see 11.25. 

12 .10 .  C a r a t h ~ o d o r y ' s  T h e o r e m .  Let S c N n. T h e n  every point  in co(S) can be 
expressed as a convex combina t ion  of n + 1 or fewer e lements  of S. 

Proof. The  proof  is in several steps. 
(i) Let Tk be the  set of all convex combina t ions  of k or fewer e lements  of S. It suffices 

to show tha t  if k > n then  Tk+l C_ Tk. (Why?)  
(ii) Let x E Tk+l.  T h e n  x = aoxo + . . .  + akXk  for some X o , X l , . . . , x k  E S and 

a 0 , a l , . . . , a k  C (0, 1] wi th  ao + . . .  + ak  = 1. (Explain.)  
(iii) Choose  real numbers  P o , P l , . . . , P k  as in Radon ' s  Lemma.  For j = 0, 1 , . . . , k  and 

k 
any real number  r, let f ly(r) - a j  - rpj .  Show tha t  x - ~-~j=o/3j ( r ) x j  and 1 - )-~=0/3j (r). 

(iv) By a sui table  choice of r, show tha t  x E Tk. 

12 .11 .  R a d o n ' s  I n t e r s e c t i o n  T h e o r e m .  Let S be a subset  of R n consist ing of at least 
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n + 2 points. Then S can be partitioned into disjoint subsets Q and R such that co(Q) 
meets co(R). 

Hints: Let S D_ {XO,Xl,...,Xn+I}. Choose real numbers po,pl,...,pn+l as in Radon's 
Lemma. By relabeling and reordering, we may assume 

P0, pl , .  �9 �9 pr > 0 and 

where 0 _< r < n + 1 (explain). Now let 

Q ~ {XO,Xl,...,Xr} 

Then what? 

and 

Pr+l,Pr+2,... ,Pn+l _~ 0, 

R D {Xr+l ,Xr+2, . . . ,Xn+l} .  

12.12. He l ly ' s  I n t e r s e c t i o n  T h e o r e m .  Let S0, S l , . . .  ,Sk be convex subsets of ]~n, 
where k and n are positive integers and k > n. Suppose that each n + 1 of these sets have 
nonempty intersection. Then []~=0 Si is nonempty. 

Hints: By induction on k, we may assume that the intersection of any k of the Sj's is 
nonempty (explain). For each j - 0, 1 , . . . , k ,  pick some xj c ~i#j Si. Apply Radon's 
Intersection Theorem to the points xj. (How?) 

12.13. The following result is interesting enough to deserve mention, though its proof is 
too difficult to include here: 

m S h a p l e y - F o l k m a n  T h e o r e m .  Suppose x C E j = I  co(Aj), in I~ '~. Then x can 
m 

be expressed as x - E j : I  xj, where each xj e co(Aj) and where { j ' x j  ~ Aj} 
has cardinality at most n. 

Taking m much larger than n, this shows that the sum of a large number of arbitrary sets 
is "almost convex." Proofs can be found in the appendices of Arrow and Hahn [1971] and 
Starr [1969]. Actually, those proofs assume the sets Aj are compact, but the problem can 
easily be reduced to that case by using Carath~odory's Theorem and its consequences; see 
26.23.g. 

Other matters related to the theorems of Radon, Helly, and Carath~odory are considered 
by Danzer, Griinbaum, and Klee [1963]. Additional material on convexity, especially in finite 
dimensions, can be found in Roberts and Varberg [1973], Rockafellar [1970], and Stoer and 
Witzgall [1970]. 

CONVEX FUNCTIONS 

12.14. Remarks. For the definitions below, we consider functions f taking values in 
[-c~, +c~]. The definitions can be simplified slightly when f is known to be real-valued 
i.e., when -c~ ,  +c~ ~ Range(f)  - -  and certainly that restricted case still covers most of the 
applications. For these reasons, some mathematicians define "convex" only for real-valued 
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functions. However, the greater generality of extended real-valued functions is occasionally 
useful, because [ -oc,  +oc] is order complete i.e., we can always take sups and infs in 

Ari thmetic in [ -oc,  +oc] is defined as in 1.17. Note that  a sum of finitely many terms, 
r l  ~- r2 + ' ' '  + r n ,  is defined if and only if - o c  and +oc are not both among r l , r 2 , . . . , r ~ .  

12.15.  Definit ion. Let C be a convex subset of a linear space X, and let f : C ~ [ -oc,  +oc] 
be some function. Then the following conditions are equivalent; if they are satisfied we say 
f is a c o n v e x  function. 

(A) The set {(x , r )  C C x R :  f ( x )  <_ r} is a convex subset of C x N. (This set is 
called the e p i g r a p h  of f . )  

(B) The set {(x , r )  E C x R :  f ( x )  < r} is a convex subset of C x R. 

(C) Whenever xo, X l E C and 0 < A < 1, then 

f ((1 - A)xo +/~Xl) _~ (1 - A ) f ( x o ) §  Af(xl)  

whenever the right side is defined (see remark in 12.14). 

(D) Whenever n is a positive integer and hi,  ~ 2 , . . . ,  ~ are positive numbers sum- 
ming to 1 and X l , X 2 , . . . , x ~  c C, then 

f (/~lXl -~-/~2x2 -~-...-~-/~nXn) ~_ ,~lf(Xl) + A2f(x2)§ + A~f(x,) 

(E) 
whenever the right side is defined (see remark in 12.14). 

Whenever n is a positive integer and #1, # 2 , . . . ,  #~ are positive numbers and 
Xl,X2,  . . . , x~  E C, then 

f (plXl -~- p2X2 -~-"""-~- pnXn) # l f (X l )  q- P2f(x2) + ' ' " -+ -  p n f ( x ~ )  
#i + # 2 + ' " + # ~  

whenever the right side is defined. 

If f is real-valued i.e., if +oc ~ Range(Z) 
equivalent. 

(F) For each v c X and ~ E C, the function 

then the following conditions are also 

f (~ + pv) - f (~) 

(G) 

is increasing on the interval {p E R :p  > 0, ~ + pv c C}.  

For each v E X and ~ c C, the function p ~ h~,v(p) = [f(~ + pv) - f ( ~ ) ] / p  
is increasing on the set where it is defined i.e., on the set {p E R \ {0} : 
 +pvcC}. 
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IBnts: The equivalence of (A), (B), (C) follows by considering various cases, according to 
whether each number involved is +oc,  - o e ,  or a finite real number. Obviously (D) implies 
(C) as a special case; conversely, (D) follows from (C) by induction. Condition (E) is just  
a reformulation of (D). 

Now suppose f is real-valued. To prove (C) => (F), show h~,v(Ap) <_ h~,v(p) for 
0 < A < 1 by taking x0 = ~ and X l  - -  ~ § pv. To prove (F) ~ (C), take ~ = x0 and 
v = X l -  x0; use the fact that  h~,~(A) < h~,~(1). Obviously (G) impl i e s  (F). To prove 
that  (C) and (F) together imply (G), note that  h~,_~(-p)  = -h~,~(p); also, the inequality 
h~,v(-p) < h~, v(p) for p > 0 follows from the convexity of f .  

12.16.  Further definitions. A function g : C ~ [-c~,  +c<~] is c o n c a v e  i f - g  is convex. 
A function h : C ~ [-c~,  +c<~] is a t t ine  if it is both concave and convex. An equivalent 
condition for h to be affine is that  

whenever x0 ,x l  E C and 0 < A < 1, then 

h((1 -  )x0 +  Xl) - ( 1 -   h(Xl) 

whenever the right side is defined i.e., whenever we do not have one of 
h(x0), h(xl )  equal to - c ~  and the other equal to +c~. 

12.17.  Some elementary properties of convex functions. Let X be a vector space, let C be 
a convex subset of X,  and let f : C ~ [ -oe,  +c~] be some function. Then: 

a. f is convex if and only if the restriction f ]L is a convex function for each line segment 

L whose endpoints are elements of C - -  equivalently, if and only if for each x0, Xl E C, 
the function A H f ((1 - A)x0 § AXl) is a convex function from the interval [0, 1] into 

b. We say f is q u a s i c o n v e x  if the set {x C C : f(x) < r} is a convex set for each 
r C [ - ~ ,  + ~ ] .  Show that  

(i) Every convex function is quasiconvex. 

(ii) Every increasing function from R into [-c~,  +c<~] is quasiconvex. 

(iii) (Example.) The function f(x) = x 3 is increasing on R, hence quasicon- 
vex, but it is not convex. (Hint: Use 12.19(E).) 

c. We say f is s t r i c t l y  c o n v e x  if it has this property: Whenever x and y are two distinct 
points in C and 0 < A < 1, then f()~x + (1 - A)y) < )~f(x) + (1 - )~)f(y). 

Show that  if C is an open interval in the real line, then any convex function from 
C into IR is either affine or strictly convex. 

d. If f is a real-valued function defined on a linear space, then f is affine if and only if 
f - f (0)  is linear. 

Caution: In some contexts the term "linear" is used for affine maps as well. Es- 
pecially, a " p i e c e w i s e - l i n e a r "  map is a map that  is defined separately on various 
parts  of its domain and is affine on each of those parts. This terminology is especially 
common in numerical analysis. 
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e. (Optional.) If f is real-valued and convex and its domain C is the convex hull of a 

finite set, then f is bounded. 
Hints: Say C = c o { x l , x 2 , . . . , x n } .  First show SUpxec f ( x )  <_ maxj f ( x j ) .  Then 

let u - l ( x l  + x2 + ' "  + xn). For each y c C, show there is some corresponding z E C 
f t  

1 n - l z .  Use this to obtain a lower bound on f (y) .  satisfying u -  ~y + 

f. (Optional.) Let V be a real linear space. Let �9 be the collection of graphs of functions 
f that  have the property that  they can be extended to convex functions from convex 
subsets of V into IR. Then �9 has finite character (see 3.46). 

12.18.  Remarks. Let C be a convex subset of a vector space X,  and let f �9 C ~ [-oc,  +ec] 
be a convex function. Then the set 

{x C C �9 f ( x )  < + o c }  

is a convex subset of C, sometimes called the e f fec t ive  d o m a i n  of f .  Most interesting 
behavior of convex functions occurs in the effective domain, and we can replace f with 
its restriction to this set without seriously affecting most results about convex functions. 
Conversely, any convex function f defined on any convex set S C_ X can be extended to a 
convex function on any larger convex set C, by taking f ( x )  - +oc whenever x c C \ S. 
The extension and the original function have the same effective domain. 

Here is a simple special case: Let f be the constant function 0 on some convex set 
S. Let C be any larger convex set. Then f can be extended to the convex function 

I s "  C ---+ {0, +co} defined by 

0 when x E S 
Is (x)  - +oc w h e n x c C \ S .  

Then Is  is a convex function, sometimes called the i n d i c a t o r  f u n c t i o n  of C. Note that  
its definition depends on not only S but also C, though the choice of C is not reflected 
by our notation Is. (The indicator function should not be confused with the characteristic 
function I s :  C ---+ {0, 1}, defined in 2.2.b.) 

12.19.  Derivatives and convexity. (These results assume some familiarity with college 
calculus.) Let C c_ R be an interval, and assume f "  C ~ IR is continuously differentiable. 
Show that  the following are equivalent: 

(A) f is convex, 

(B) ( y -  x ) f ' ( y )  > f (y )  - f ( x )  for all x, y E C, 

(C) ( y -  x ) [ f ' ( y ) -  if(x)] > 0 for all x, y e C, 

(D) f ' ( x )  is an increasing function of x on C. 

If f is twice continuously differentiable, then this condition is also equivalent" 

(E) f "  >_0on C. 

Remark. In 25.25 we shall determine precisely how much differentiability a convex function 

must possess. 
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12.20.  Corollaries. We now note some specific applications of the preceding results. 

a. Show that  t ~ e t is convex on R. Then use that  fact to show that  if p, q E (1, c~) with 
t u f o r t  u > 0 .  p 't- q l  1 __ 1, then ~/t ~ _< p + q , _ 

b. The function x ~ x p, defined on [0, +co),  is convex if 1 <_ p < ec and concave if 
0 < p _ < l .  

c. Show that  tan "[0, 7 r / 2 ) ~  [0, + o c ) i s  convex. Taking limits, define t a n ( T r / 2 ) -  +oc, 
and show that  tan "[0, 7r/2] ~ [0, +oo] is convex. 

12.21. C o m b i n i n g  c o n v e x  f u n c t i o n s .  Let C be a convex subset of a linear space. 

a. Sums" Let f and g be convex functions defined on C, both taking values in ( - o c ,  +oc] 
or both taking values in [ -oc,  +ec).  Then f + g is convex. 

b. Products" Let f, g" C ~ [0, +co) be convex functions. Assume also that  

0 _< 

(This condition is satisfied, for instance, if the linear space is R, and f and g are both 
increasing or both decreasing.) Show that  the product function x H f ( x ) g ( x )  is also 
c o n v e x .  

c. Compositions" Let J C_ R be an interval i.e., a convex subset of R. Let f �9 C ~ J 
and g �9 J ~ [ -oc,  +oc] both be convex, and assume g is increasing. Show that  the 
composition g o f �9 C ~ [-oc,  +oc] is convex. As a particular example, show that  
x H exp(tan(x))  is convex on [0, 7r/2). 

d. Pointwise suprema" Let {f~ �9 A E A} be a nonempty family of convex functions from C 
into [-oo,  +co]. For each x E C let a(x)  - s u p ~ e A  f~(x) .  Then a is convex. (Dually, 
the pointwise infimum of concave functions is concave.) 

Hint" Rather than bother with separate cases according to whether f~(x )  is +oc, 
- o c ,  or a member of N, just note that  the epigraph of a is the intersection of the 
epigraphs of the f~'s. 

Example. Using this result (or arguing directly), prove that  the mapping x 
-min{ 1, x} is convex on R. 

Remarks.  A converse of this result is given by (HB4) in 12.31. Compare also the 
supremum results in 15.23 and 16.16(D). 

12.22. The in f imum of convex functions.  Let {fx : A c A} be a nonempty family of convex 
functions from C into [-oc,  +co]. 

a. In general, the pointwise infimum p(x)  = infxcA f x ( x )  is not convex. 
For instance, let C be the real line, and let {fa : A E A} consist of just the two 

functions x and - x .  Then the pointwise infimum is - Ixl ,  which is not convex. 
n 

b. Define ~ �9 C ~ [-co,  +oc] by taking t(x) - inf ~-~j=l cj faj  (xj) ,  where the infimum 
is over all choices of n, cj, )U, xj  such that  

n is a positive integer, the Cj'S are positive numbers summing to 1, the ~j'S 
n are members of A, and the xj ' s  are members of C satisfying x - ~-~.j=l CjXj 
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and such that  +ec  and - e c  are not both among the values fAl (Xl), f x 2 ( x 2 ) ,  

�9 . .  , f . X n ( X n ) .  

Then c is convex, and in fact ~ is the largest convex function that  satisfies c _< fx for 
all A. We may refer to it as the c o n v e x  i n f i m u m  of the fa's. 

Thus, the convex functions from C into [ -ec ,  +ec] form a complete lattice. 
Of course, in some cases, the convex infimum may simply be the constant - oc .  

That  is the case, for instance, when C - IR and the collection of functions consists of 
just { - x ,  x}. 

c. Suppose {fx �9 A E A} is directed downward i.e., suppose that  for each finite set 
A0 c A t h e r e i s  some # E A such that  f ,  < min{fx �9 A E A0}. Then the pointwise 
infimum p is equal to the convex infimum 5. 

NORMS, BALANCED F UNCTIONALS~ AND OTHER 
SPECIAL FUNCTIONS 

12.23. Definition and exercise. Let X be a real or complex linear space; let the scalar 
field be denoted by F. Let p"  X ---, [0, +ec)  be some mapping. Show that  the following 
conditions are equivalent. If one, hence all of them, is satisfied, we shall say that  p is a 
b a l a n c e d  function. 

(A) Icl _< 1 =~ p(cx) <_ p(x) for scalars c and vectors x. 

(B) Icll ~ Ic~l ~ /9(CLX) ~ p(C2X) for scalars c1,c2 and vectors x. 

(C) For each number b E [0, +oc], the set {x E X : p(x) <_ b} is balanced (in the 
sense of 12.3). 

Show that  any balanced function also satisfies p(cx) = p(Iclx). In particular, if I c l -  1 
then p(cx) = p(x). 

12.24.  Definitions. Let X be a real or complex vector space. 

a. A function g" X -* [-oc,  +oc] is p o s i t i v e l y  h o m o g e n e o u s  if it satisfies 

g ( t x )  - t ~ ( x )  for all t E [0, +oc) and x E X. 

Here we follow the convention that  0. oc - 0. Thus, a positively homogeneous function 
g may have oc in its range, but it must satisfy g(0) - 0 .  

A function g" X ~ [-oc,  +oc) is h o m o g e n e o u s  if it satisfies 

g ( t x )  - I t lg (x)  for all scalars t and all x E X. 

(Here g is not permit ted to take an infinite value.) 
Exercise. Let g �9 X ~ [0, +co).  Then g is homogeneous if and only if g is both 

balanced and positively homogeneous. 



314 Chapter 12: Convexity 

b. Let C be a subset of X that  is closed under addition. Suppose/3 : C ~ [ -oc,  +oc] does 
not have both - o c  and +oc in its range. If ~(x + y) _< ~ ( x ) +  ~(y) for all x, y E C, we 
say/3 is s u b a d d i t i v e  (at least, in the context of vector spaces; the term "subadditive" 
has another meaning in measure theory see 29.29.b). 

c. A function f : X ~ [ -oc,  +oc] is s u b l i n e a r  if it is both subadditive and positively 
homogeneous. Exercise. Such a function is convex. 

A s e m i n o r m  is a function f : X ~ [0, +oc) that  is subadditive and homogeneous. 
Note that  any such function is sublinear, hence convex. A n o r m  is a seminorm f tha t  
also satisfies x r 0 ~ f (x )  > 0. Seminorms and norms will be studied in greater 
detail in Chapter  22 and thereafter. 

Remarks. We shall use sublinearity very seldom in this book; most of our functions will 
satisfy either stronger hypotheses (e.g., linear or seminorm) or weaker hypotheses (e.g., 
convexity). An exception is the proof in 28.37, which uses a sublinear functional. See also 
the remarks in 12.31. 

12.25. Elementary properties and examples. 
a. Any norm is a seminorm; any seminorm is sublinear; any linear function is sublinear; 

any sublinear function is convex. 

b. If p is subadditive, then p(x) < p(y) + p(x - y) and p(y) < p(x) + p(y - x), hence 

- p ( u - x )  < p(x)-p(u) <_ p(x-u) .  

c. The map f H f +  - max{f ,  0} is sublinear on IR x ,  for any set X. 

d. I f /3"[0 ,  +c~) ~ [0, +oc) is concave and/3(0) - 0, then/3  is subadditive. 
X 

Hint: Use the decomposition x - (1 - A)0 + A(x + y) to show 3(x) > 

Similarly,/3(y) > Y /3(x + y). Now add these two results. 
x + y  

e. In particular,  some subadditive functions are the functions 

8 
~ ,  min{ 1, s} tanh(s)  and s p arctan (s), 1 + s ' ' 

x + y  

for p C (0, 1]. 

(Some beginners may be unfamiliar with tanh(s) ,  which is the function (e s - e - S ) / ( e  s + 
e-S).) All of these functions except the last are also bounded; tha t  fact will be signifi- 
cant in 18.14. 

f. If p : X ~ [0, +oc) is balanced and subadditive, then 

p( x) _< (I I 1]] + 1)p(x) < (1 1 + 1)p(x) 

for all vectors x and scalars c, where Is I is the greatest integer less than or equal to s. 

12.26.  P r y c e ' s  S u b l i n e a r i t y  L e m m a .  Let X be a linear space, let Y C X be a convex 
set, and let ~ r X.  Let p" X ~ I~ be a sublinear functional. Let a, b, c c (0, +oc),  with 

p(~) + ac < i n f p ( ~ + a y )  
yCY 
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Then there is a point r / c  Y such that  

p({ + aT]) + bc < inf p({ + ar I + by). 
y 6 Y  

(This rather technical result will not be needed until 28.37.) 

Proof (Pryce [1966]). The hypothesis can be restated as: 

-p(~)  - a c -  inf p(~ § ay) + 6 
y 6 Y  

for some 6 > 0. 

Consider any y0 yl 6 Y and let ~ -  ayo+byl Then ~ E Y and a+b 

-+- ayo -Jr- byl  -- ~ q- (a q- b ) y  
b b 

(1 + - ) ( {  + aft) - - { .  a a 

By sublinearity of p, 

b _b 
p(~ -Jr- ayo + by1) >_ (1 + - )p (~  + a~) - p(~). a a 

Hence for any fixed ~ E Y, we have 

inf p(~ + arl + by) 
yEY 

> ( l + - ) i n f  p ( { + a ~ )  �9 ~ -  y e Y  - p({) 
- a a + b  ' 

b b 
_> (1 + - )  inf p(~ + ay) - -p(~)  

a yEY a 

= ( 1 + - )  inf p ( { + a y ) + -  a c -  i n f p ( { + a y )  + - 6  
a yEY a yEY a 

The last expression, in square brackets [], is greater than bc + p(~ + arl) if we choose r / c  Y 
appropriately. 

MINKOWSKI FUNCTIONALS 

12.27.  Definitions. Let S be a star set in a vector space X. Note that  if z is a point in 
the vector space (not necessarily a member  of S), then 

{r c [0, +oc) : r z  ~ S}  
1 

is a subinterval of [0, +oc) that  includes 0, so 

is a subinterval of (0, +oc] that  includes oc. 
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Thus the number 
i t s (x )  - i n f { k E ( 0 , + e c ]  �9 k - l x  E S }  

is well defined (though it may be ec). The function its " X ~ [0, +c~] is the M i n k o w s k i  
f u n c t i o n a l  of the set S. 

It is easy to see that  the mapping S H its is direction-reversing i.e., if S and T are 
star sets and S C_ T, then its _> itT. The largest star set, X, has the smallest Minkowski 
functional: i tx is just the constant function 0. The smallest star set, {0}, has the largest 
Minkowski functional; it is easily seen to be 

_ S 0 i f  x - 0 (x) it{0} i f x  ~ 0 .  

In our applications, we will use Minkowski functionals i ts mainly when S is a convex set 
a case investigated in 12.29.e - -  but the most basic properties of Minkowski functionals 

do not involve convexity. 

12.28.  Proposition. Let X be a vector space. Let g" X ~ [0, + ~ ]  be some function, and 
let S be a nonempty subset of X. Then the following two conditions are equivalent" 

(A) S is a star set and g is the Minkowski functional of S. 

(B) g is a positively homogeneous function and 

{x  E X �9 g(x)  < l}  C_ S c_ {x  E X �9 g(x)  < l} .  

Hints for  (B) =~ (A)" To show S is a star set, observe that  

x E S, A E [0, 1) =~ g ( A x ) -  Ag(x) < 1 =~ Ax E S. 

To show its <_ g, observe that  

(1 )  1 
- x  < 1 =~ - x  E S ==> i t s (x )  <_r. g(x)  < r => g r r 

To show g <_ its,  similarly, 

1 (1)  
i t s ( x )  < r ~ - x  E S ~ g r x <_1 ~ g(x)  <_r. 

r 

12.29.  Corollaries and fur ther  properties. 
a. A function on a vector space is positively homogeneous if and only if it is the Minkowski 

functional of some star set. 

b. The Minkowski functional of any balanced set is a balanced function. 

c. Let S be a balanced star set. Then its is finite-valued (i.e., does not take the value 
+c~) if and only if S is absorbing (as defined in 12.8). 

d. If g is a positively homogeneous function, then both the sets {x E X : g(x)  < 1} and 
{x  E X : g(x)  <_ 1} are star sets with Minkowski functional equal to g. 
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e. If S is a convex star set, then #s is a convex function. 
Hints" If 0 < ,~ < 1 and c~ > ps(x)  and/3 > Ps(Y), then c~ -1 

S, hence 

x and /~-1 y belong to 

A x +  ( 1 -  A)y Aa x (1 - A)/3 y 
- ~ - E 

+ ( 1  - + ( 1  - + - 
S. 

f. The converse of that  last result is false; a star set S may be nonconvex and still have 
#s  convex. 

For instance, let X - ]R 2 and define g(x, y) - max{ix , lyl}; this function is convex. 
Thus the s e t s A -  {(x,y) E R  2 �9 g(x,y)  < 1} a n d B -  {(x,y)  E R  2 �9 g(x,y)  <_ 1} 
are convex. The function g is the Minkowski functional of both A and B, and also of 
any set between A and B, but A c_ S c_ B does not imply S is convex. 

g. L e m m a  on  t h e  c o n s t r u c t i o n  of  s e m i n o r m s .  Let S c_ X be a convex, balanced set 
(not necessarily absorbing), and let #s be its Minkowski functional. Then the linear 
span of S is the set Xo - Un%l n S  -- { x  E X ' p s ( x  ) < OO}, and Its is a seminorm on 
that  set. If S is also absorbing, then X0 - X; that  is, #s  is a seminorm on X. 

Remark. Minkowski functionals will be used in 22.11, 22.25, 22.28, and 26.29. 

HAHN-BANACH THEOREMS 

12.30. Introduction. The literature contains many closely related theorems, any one of 
which may be referred to as "the Hahn-Banach Theorem." These theorems are useful in 
different ways in different parts of analysis. We shall prove about 20 of these theorems, 
in this and later chapters see 12.31, 23.18, 23.19, 26.56, 28.4, 28.14.a, and 29.32. Still 
other forms of the Hahn-Banach Theorem are given by Buskes [1993], Gluschankof and Tilli 
[1987], Holmes [1975], Luxemburg [1969], Thierfelder [1991], Tuy [1972], and Zowe [1978]. 

We shall view the Hahn-Banach Theorems as weak forms of the Axiom of Choice. The 
various equivalent forms will be denoted by (HB1), (HB2), (HB3), etc.; collectively we shall 
refer to them all as HB. (It is surprising that  some seemingly weaker forms of HB commonly 
presented as "corollaries" in the literature such as (HB1), (HB4), (HB9) are in fact 
equivalent to HB in their set-theoretic strength.) We shall keep track of effective proofs 
because the Hahn-Banach Theorem is nonconstructive: It implies the existence of certain 
pathological objects for which we have no explicit examples. However, many analysts prefer 
to view the Axiom of Choice (AC) as simply being "true" and will therefore view the Hahn -~' 
Banach Theorem in the same fashion; these readers can skip some of the converse proofs. 

Considered as a set-theoretic principle, the Hahn-Banach Theorem is weaker than the 
Ultrafilter Principle, which is in turn weaker than the Axiom of Choice. (In 17.6 we shall 
prove UF ~ HB.) In fact, the Hahn-Banach Theorem is strictly weaker than the Ultrafilter 
Principle; that  fact was established by Pincus [1972], but its proof is beyond the scope of 
this book. A survey comparing the relative strengths the Hahn-Banach Theorem and other 
weak forms of Choice is given by Pincus [1974]. Some theorems that  appear similar to the 
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Hahn-Banach Theorem are in fact equivalent to the Axiom of Choice (see Lembcke [1979]) 
or the Ultrafilter Principle (see Buskes and van Rooij [1992]). 

We begin with vector space versions of the Hahn-Banach Theorem which do not involve 
any topology. In later chapters we shall present other versions in normed vector spaces, 
topological vector spaces, and Boolean algebras. 

1 2 . 3 1 .  R e a l - v a l u e d ,  N o n t o p o l o g i c a l  H a h n - B a n a c h  T h e o r e m s .  Following are our 
most basic versions of the Hahn-Banach Theorem; we shall show that  they are equivalent 
to one another and are consequences of the Axiom of Choice. However, the proofs will be 
postponed until 12.36, 12.37, and 12.38, where we present proofs of more general results. 

Many of the Hahn-Banach Theorems can be extended to complex vector spaces via the 
Bohnenblust-Sobczyk Correspondence (11.12): If X is a complex vector space on which 
A is a linear functional, then X can also be viewed as a real vector space on which Re 1 
is a linear functional. We shall omit the details of that  argument; for simplicity we shall 
generally only consider real vector spaces. 

For brevity we combine certain theorems. Theorems (HB2) assumes p is convex where 
(HB3) assumes p is sublinear; otherwise those two theorems are identical. Theorems (HB4) 
and (HB5) differ in the same fashion. Of course, in each case the sublinear version is just a 
weakened form of the convex version, since any sublinear function is convex. The sufficiency 
of convexity was noted at least as early as Nakano [1959], but it seems not to be widely 
known that  the assumption of sublinearity can be replaced by the weaker hypothesis of 
convexity. Most of the literature assumes sublinearity a notable exception being the 
excellent textbook of Reed and Simon [1972]. We will use convexity instead of sublinearity 
throughout this book. 

It is interesting to compare (HB4) with 16.16(D) and (HB17) (see 28.4). It is also 
interesting to compare (HB6) with Dowker's Sandwich Theorem 16.30. 

Banach limits, introduced below, will be discussed further in 12.33. Note that  any 
member of B(A) is a bounded net of real numbers, hence it has a limsup. 

( H B 1 )  E x i s t e n c e  of B a n a c h  L imi t s .  Let (A, 4)  be a directed set, and let 
B(A) = {bounded functions from A into R}. Then there exists a real-valued 
Banach limit for (A, ~) that  is, a linear map LIM : B(A) ~ R that  satisfies 
LIM(f)  _< limsup~cA f(6) for each f e B(A).  

( H B 2 )  C o n v e x  E x t e n s i o n  T h e o r e m  and (HB3)  S u b l i n e a r  E x t e n s i o n  
T h e o r e m .  Suppose X is a real vector space, X0 is a linear subspace, 1 �9 X0 --* IR 
is a linear map, p �9 X ---. R is a convex (or sublinear) function, and A < p on 
X0. Then I can be extended to a linear map A" X ~ Ig that  satisfies A < p on 
X. 

( H B 4 )  C o n v e x  S u p p o r t  T h e o r e m  and ( H B h )  S u b l i n e a r  S u p p o r t  
T h e o r e m .  Any convex (or sublinear) function from a real vector space into Ig 
is the pointwise maximum of the affine functions that  lie below it. That  is, if 
p : X  ~ IR is convex (respectively, sublinear), then for each x0 E X there exists 
some affine function f : X ---, R that  satisfies f (x)  < p(x) for all x E X and 



Convex Operators 319 

f ( xo ) - p( xo ) . 

( H B 6 )  S a n d w i c h  T h e o r e m .  Let C be a convex subset of a real vector space. 
Suppose that  e" C -~ IR is a concave function, g �9 C ~ R is a convex function, 
and e < g everywhere on C. Then there exists an affine function f �9 C ~ R 
satisfying e _< f _< g. 

Proofs will be given in 12.36, 12.37, and 12.38. 

CONVEX OPERATORS 

12.32. Before proving that  the principles in 12.31 follow from each other and from the 
Axiom of Choice, we shall generalize slightly. This will require more definitions: 

Definitions. Let C be a convex subset of a vector space and let (Z, 4)  be an ordered vector 
space (not necessarily a vector lattice). A mapping p :  C ~ Z is 

s u b l i n e a r  if p(x + y) ~ p(x) + p(y) and p(tx) = tp(x) for all t E [0, +oc);  
c o n v e x  if p(tx + (1 - t)y) ~ tp(x) + (1 - t)p(y) for all t E [0, 1]; 
c o n c a v e  if p(tx + (1 - t)y) ~ tp(x) + (1 - t)p(y) for all t E [0, 1]; 
aff ine if p(tx + (1 - t)y) = tp(x) + (1 - t)p(y) for all t E [0, 1]; 

in each case the condition is to hold for all x, y E C. Note that  any sublinear function is 
convex. 

Remarks. The theory of convex operators obviously includes the theory of convex real- 
valued functions. It also includes the theory of affine operators between (unordered) linear 
spaces, for if f : X ~ Y is any affine mapping, we can make it into a convex operator by 
equipping Y with the trivial ordering described in 8.37. We shall s tudy convex operators 
further in Chapters  26 and 27. 

Another way to unite the theories of linear operators and convex functionals is via Ioffe's 
"fans;" these are convex-set-valued functions. An introduction to the subject and further 
references are given by Ioffe [1982]. 

12.33.  The notion of generalized limits can be traced back at least as far as Banach [1932]. 
However, the precise definition of "Banach limit" varies slightly from one paper to another 
in the literature. In the case o f 'Z  = R, our definition of "Banach limit" agrees with the 
definition given by Yosida [1964]. 

Let (A,_E) be a directed set, and let (Z, 4)  be a Dedekind complete, ordered vector 
space. (The reader should keep in mind the special case of Z = R; that  is the simplest and 
most fmportant  case.) Let 

B(A,  Z) - {bounded functions from A into Z}; 

in this context a function f is b o u n d e d  if its range has an upper bound and a lower bound. 
Note that  B(A,  Z) is itself an ordered vector space. 
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A member of B(A,  Z) may be viewed as a bounded net based on A, taking values in Z. 
Since Z is Dedekind complete, for any f E B(A, Z) the objects 

l iminf(f )  - sup inf f (~) ,  l imsup(f)  - inf sup f(/3) 
aEA ~ a  aEA ~_~a 

both exist in Z, and lim inf(f)  4 l imsup(f) .  We say that  the net f conve rges  if and only 
if l iminf(f )  and l imsup(f )  are equal, in which case their common value is the l imi t  of f ,  
denoted lim(f).  We may sometimes refer to this as the o r d e r  l imit .  We may also call 
it the o r d i n a r y  l imit ,  to contrast it with the generalized limit developed in the next few 
paragraphs. 

Note that  (ezercise) the order limit is a positive linear operator, from a linear subspace 
of B(A, Z) into Z. That  linear subspace - -  i.e., the space of all convergent nets - -  generally 
is not all of B(A,  Z), since some bounded nets are not convergent in the sense of ordinary 
limits. 

Let LIM : B(A) ~ Z be a linear map. At the end of this section we shall show that  the 
following three conditions are equivalent: 

(A) LIM(f)  4 limsuP~EA f(5) for each f E B(A, Z). 

(B) liminf5EA f(5) ~ LIM(f)  4 limsuPSED f(5) for each f E B(A, Z). 

(C) LIM is a positive operator that  extends the ordinary limit to all of B(A, Z). 
That  is, f ~ 0 =~ LIM(f)  ~ 0, and LIM(f)  = limsEA f(5) whenever the 
right side of that  equation exists. 

If one, hence all, of these three conditions are satisfied, we say LIM is a Z - v a l u e d  B a n a c h  
l imi t  for the directed set (A, __) If, moreover, (A, _) is the ordered set (N, _<) - -  that  is, the 
positive integers with their usual o r d e r i n g -  then we shall call LIM a s e q u e n t i a l  B a n a c h  
l imit .  

In the next few sections we shall prove the existence of Banach limits. The Banach limit 
is an extension of the ordinary limit; it gives us a way of saying that,  in a generalized sense, 
every bounded net "converges." In particular, when Z = R, it says that  every bounded 
net of real numbers "converges" to a real number; a real-valued sequential Banach limit is 
a way of saying that  every bounded sequence of real numbers converges to a real number. 
We emphasize that  there may be many different Z-valued Banach limits for a directed set 
(A, _E). They agree on those nets that  converge in the usual sense, but they may give 
different generalized limits for those nets that  do not converge in the usual sense. 

Banach limits could be contrasted with limsups and liminfs (discussed as "generalized 
limits" in 7.46). Banach limits have slightly better algebraic p r o p e r t i e s -  they are given by 
a linear map but they do not preserve topological properties quite as well as the limsup 
and liminf do. 

Proof of equivalence: First, (A) ~ (B) since limsup f = - l i m i n f ( - f )  and L I M ( - f ) =  
- L I M ( f )  by the linearity of LIM. Clearly, condition (A) implies that  LIM is a positive 
operator, and condition (B) implies that  LIM agrees with lim wherever the latter exists. 

It remains only to prove (C) =~ (A). For each e E A, let u(e) = supsz~ f(5). Then 
u(c) ~ f(c); thus u -  f ~ 0, so L I M ( u -  f)  ~ 0. Also, the net (u(c) : c E A) decreases to 
limsuP~EA f(~). Thus LIM(f)  4 LIM(u) = lim~EzX u(C) = limsuP~EA f(5). 
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12 .34 .  V e c t o r - v a l u e d  H a h n - B a n a c h  T h e o r e m s .  We now generalize the theorems of 
12.31. We shall show that  the following principles are equivalent to each other and that  
they are all consequences of the Axiom of Choice. (It is not yet known whether they are 
equivalent to the Axiom of Choice or are strictly weaker.) 

H y p o t h e s i s .  Let Z be a Dedekind complete, ordered vector space. 

( V H B 1 )  E x i s t e n c e  of  B a n a c h  L i m i t s .  If (A, 4)  is any directed set, then 
there exists a Z-valued Banach limit for (A, 4)  (as defined in 12.32). 

( V H B 2 )  C o n v e x  E x t e n s i o n  T h e o r e m  and ( V H B 3 )  S u b l i n e a r  E x t e n -  
s ion  T h e o r e m .  Suppose X is a real vector space, X0 is a linear subspace, 

: X0 --~ Z is a linear map, p :  X --~ Z is a convex (or sublinear) function, and 
4 p on X0. Then ~ can be extended to a linear map A : X ~ Z that  satisfies 

A 4 p o n X .  

( V H B 4 )  C o n v e x  S u p p o r t  T h e o r e m  and ( V H B 5 )  S u b l i n e a r  S u p p o r t  
T h e o r e m .  Any convex (or sublinear) function from a real vector space into Z 
is the pointwise maximum of the affine functions that  lie below it. Tha t  is, if 
p :  X ~ Z is convex (respectively, sublinear), then for each x0 E X there exists 
some affine function f : X ---, Z that  satisfies f (x)  ~ p(x) for all x c X and 

f(xo) = p(x0). 

( V H B 6 )  S a n d w i c h  T h e o r e m .  Let C be a convex subset of a real vector 
space. Suppose that  e : C ~ Z i s  aconcave  function, g : C ~ Z is a c o n v e x  
function, and e 4 g everywhere on C. Then there exists an aFfine function 
f : C  ~ Z satisfying e 4 f 4 g. 

Proofs will be given in the next few sections. 

12.35.  F i n i t e  E x t e n s i o n  L e m m a  ( F E L ) .  Suppose X is a real vector space and Z 
is a Dedekind complete, ordered vector space. Suppose X0 c_ X is a linear subspace, 
~0 " X0 --~ Z is linear, p" X ---, Z is convex, and A0 4 p on X0. Also assume that  

X - span(X0 U S) for some finite set S c_ X. ( ,)  

Then A0 can be extended to a linear map A �9 X --~ Z satisfying ~ 4 p on X. 

Remarks. We shall use FEL in proving (VHB2). Note that  FEL differs from (VHB2) only 
in the addition of the hypothesis (,).  

FEL does not require the Axiom of Choice or any of its weaker relatives; FEL can be 
proved using just ZF. FEL or a similar result was already known to Banach; it appears 
explicitly in Luxemburg [1969]. 

Proof of FEL. The proof is by induction on the cardinality of S; thus we may assume S 
contains just one element ~. Using the linearity of A0, the convexity of p, and the fact that  
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A0 4 p on X0, we can verify that 

sup p(w + s~) - ~o(w) ~ inf p(v + r~) - ~o(v) 
wEXo, s < 0  8 vEXo, r > 0  r 

(the details of the verification are left as an exercise). Now let ~(~) be any member of Z 
lying between those two values. The function ,~, being linear, must be defined by 

A(x + r~) = Ao(x) + rA(~) for all x E X0, r c N. 

From our choice of ~(~) it follows that ,~ 4 p on X (again, the details of the verification are 
left as an exercise). This completes the proof. 

12.36. Proof of AC =, (VHB2). We shall give two different proofs. 
Version (i): This is the more traditional proof. Consider all linear maps A : W ~ Z, 

where W is a linear subspace of X that includes X0 and A is an extension of A that satisfies 
A ~ p on W. Partially order such A's by inclusion of their graphs. By Zorn's Lemma, there 
is a maximal member of this partially ordered set i.e., an extension A : W ~ Z that 
cannot be extended farther. If W C X, choose any ~ E X \ W. By the Finite Extension 
Lemma 12.35, A can be extended to all of span(W U {~}) contradicting the maximality 
of W. Thus W = X, completing the proof. 

Version (ii): Some mathematicians may find the Finite Character Principle more intu- 
itively appealing than Zorn's Lemma, so we offer an alternative proof. Consider all functions 
A : W -~ Z where W is a subset of X that includes X0, A is an extension of ,~ that satisfies 
A ~ p on W, and A is a function that can be extended to a linear function (see 11.10). 
Partially order such A's by inclusion of their graphs. Use the Finite Character Principle 
((AC5), in 6.20) to show that there is a maximal A in this collection. 

12.37. Most of the equivalence proofs. In this section we prove most of the equivalences 
stated in 12.34; the one remaining argument is much longer and will be given separately in 
12.38. 

Proof of (VHB2)=~  (VHB3). Obvious. 

Proof of (VHB2) =, (VHB4). Define q(x) = p(x + x o ) -  p(xo). Then q is also convex, 
and q(0) = 0. By (VHB2) (with X0 = {0}), there exists some linear function g :  X ~ Z 
that satisfies g ~ q everywhere on Z .  Now let f (x)  = g(x - xo) + p(x0); this completes the 
proof. 

Proof of (VHB3) =, (VHB1). Let X = B(A ,Z) ,  and let X0 = {convergent nets}. Let 
p(x) = limsup6eA x(5); this functional is easily verified to be sublinear. For x c X0, let 
A(x) - lim x; then A ~ p on X0. 

Proof of ( V H B 4 ) ~  (VHBh). Obvious. 

Proof of (VHBh) =, (VHB1). The mapping (I) : f H limsup6~A f(6) is a sublinear 
mapping from B ( A , Z )  into Z, which vanishes on the zero element of the linear space 
B(A, Z). Let LIM: B(A, Z) ~ Z be an affine mapping satisfying LIM ~ �9 and LIM(0) = 
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Proof of (VHB1) =, (VHB2). Let f0 " X0 ~ Z and p be given. For each finite set 
S c_ X, let (I)s be the set of all functions g �9 X ~ Z that  have the following properties: 
g is an extension of fo, - p ( - x )  ~ g(x) ~ p(x) for all x E X, and the restriction of 
g to span(X0 U S) is linear. By Banach's Finite Extension Lemma (in 12.35), each (I)s is 
nonempty. Since (I)s N(I)T -- (PSuT, the family of sets (I)s has the finite intersection property. 
Now let 

A = {(g, S) �9 S is a finite subset of X and g E ~ s } ,  

and let A be ordered by: (gl, S1) 4 (g2, $2) if S1 C_ $2; then A is a directed set. Define 
LIM" B(A,  Z) -+ Z as in (VHB1). 

For each x E X, define a function gax " A --+ Z by taking gax(g,S) - g(x). Then ~Px 
is bounded, since - p ( - x )  4 ~bx((5) 4 p(x) for all ~ E A. Define a function f "  X --+ Z 
by taking f ( x )  - LIM(~Px). Observe that  f ( x )  - LIM(~bx) 4 LIM(p(x)) - p(x), since 
p(x) does not depend on (5. Also observe that  if x E X0, then ~Px(5) - fo(x),  so I (x )  - 
L I M ( f 0 ( x ) ) -  fo(x).  

It remains to show that  f is linear. Fix any x ,y  E X and c~,~ E Z. Then for all 
~i - (g, S) sufficiently large in A, we have x, y E S, so g is linear on the span of {x, y}. 
Thus g(c~x +/3y) - c~g(x) - fig(y) - O. Therefore ~x+Zy(~i) - C~x(~i) -/3~y(~i) - 0 for all 
(5 sufficiently large. Since LIM is a linear operator, we have 

f (c~x + fly) - c~ f (x) - / 3 f ( y )  - LIM(ga~x+Zv) - c~LIM(~b.) -/3LIM(g.,v) 

= L I M ( ~ x + Z y - C ~ x - / ~ y )  - 0. 

(The proof above is a reformulation of an argument of Luxemburg [1969]. We use nets 
where Luxemburg used reduced powers of Z and the terminology of nonstandard analysis; 
our condition (VHB1) is essentially a translation of Luxemburg's Theorem 6.1.) 

Proof of (VHB6) ~ (VHB1). Let e -  l iminf and g -  limsup. 

12.38. Proof of (VHB1) ~ (VHB6). This proof takes several ingredients from Neumann 
[1994]. However, Neumann was not concerned with weak forms of Choice, and so he used 
Zorn's Lemma to find a minimal element of the set N investigated below. In our present 
investigation of weak forms of Choice, we are not permit ted to use Zorn's Lemma an 
equivalent of AC and so it is not clear that  :M has a minimal element. Instead, in our 
proof (heretofore unpublished) we shall use infinitely many decreasing sequences in :JV[. 

Let ~ = i n f { g ( x ) -  e(x) : x E C}; then ~ E Z+. By replacing g with g - ~ ,  we may assume 
t = 0. Let N be the set of those convex functions f : C --+ Z that  satisfy e 4 f 4 g on C. 
The set 5I is nonempty, since g E 5I. 

The proof will be in several steps. We first show that  

(a) From any f E N and c~,/3 E (0, 1) with c~ + /3  - 1, we can canonically construct a 
function p E 5I that  satisfies p(x) 4 f ( x )  and p (c~x + ~y) ~ c~p(x) +/3e(y)  for all 
x, y E C .  

(The term "canonically" here refers to the fact that  no arbitrary choices are needed; the 
function p is constructed from ct, ~, and f by a uniquely specified algorithm. That  fact is 
important ,  since we shall apply this construction infinitely many times later in this proof.) 
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To prove (a), we define a decreasing sequence f0 ~ f l  ~ ]'2 ~ f3 ~ "'" in 9~ as follows: 
Let f0 = f .  Now assume some fn c 9V[ is given. Since e is concave and e ~ fn, we 
have e(x) ~ [fn(ax + ~ y ) -  ~e(y)]/c~ for all x, y E C. Hence we may define a function 
fn+l : C--* Z by 

f n+ l (X) -- inf { f n (olx + ~Y)a - ~e(y) �9 y E C } . (1) 

Then e ~ fn+l. From the convexity of fn and the concavity of e, we find tha t  fn+l is 
convex, too (easy exercise). From fn ~ g and the convexity of f~, we obtain 

A( x + 9Y) - 9 (y) A ( x )  + Z [fn(Y) -- f (x) + _Z [g(y) _ 

for all x ,y  C C. Hold x fixed and take the infimum over all y; this yields fn+l(X)  ~ fn(X)  
since i n f { g ( y ) -  e(y) : y E C} = 0. Thus fn+l c 9~, too. This completes the recursive 
construction of the sequence {fn }. 

Now define p(x) = infneN fn(x). The pointwise infimum of a chain of convex functions 
is convex, so p is convex. Hence p E ?yr. By taking the infimum over all n in both sides of 
(1), we obtain 

p(x) - inf{P(ax+~Y)c~ - ~e(Y) . Y E C }  . 

This completes the proof of (a). 
Next we shall show that  

[ \ 
(b) From any function f E :M: and any finite sequence ((011,~1), (0L2,~2),..., (Olj,~j)) in 

(0, 1) • C, we can canonically construct a function q c :M: that  satisfies q(y) ~ f (y)  
f 

and q(o~j~j + (1 - c~j)y) = c~jq(~j) + (1 - aj)q(y) for all y E C and 1 _< j _< J. 

Extend the given finite sequence to an infinite sequence (((~j, ~ j ) ' j  E N) in (0, 1) x C by 
making it periodic in j with period J.  Let/~j - 1 - c~j. Construct  a sequence 

f l ~ p l ~ f 2  ~ p 2  ~ f 3  ~ P 3 ~ " "  in:M: (2) 

as follows: Let f l  -- f .  
Pn ~ fn and with 

Given fn, choose Pn C :)~ as in s ta tement  (a) that  is, with 

pn(OlnX + ~nY) ~ OlnPn(X) -~ ~ne(y) for all x ,  y e C. (3) 

Then we can define a convex function fn+l " C ----> Z by 

Pn (OLnCn -~- ~nY) -- OLnPn (r for  y e C. (4) 
fn-+-l (Y) -" /~n 

From (3) we may deduce tha t  e ~ fn+l o n  C. On the other hand, fn+l ~ Pn follows 
from the convexity of Pn. Thus fn+l  c 9V[, completing the recursive construction of the 
sequence (2). Now let q be the pointwise infimum of the functions in that  sequence. Then 
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q is the order limit of the fn's, as well as the order limit of the pn'S. The order limit is 
a linear operator, so it preserves linear combinations. Fix some particular j ,  and consider 
the subsequence of equations obtained from (4) by taking n - j, j + J, j + 2J, j + 3J, . . . .  
Taking order limits, we obtain 

q(ctj~j +/3jy) -c~jq(~j) for y E C. q(Y) = 9j 

This proves (b). 
Finally we proceed to our main construction. Let A be the set of all ordered pairs (Q, q) 

where Q is a finite subset of (0, 1) x C and q is a member of :M: that satisfies 

q ( a ~ + ( 1 - a ) y ) - a q ( ~ ) + ( 1 - a ) q ( y )  for a l l y E C a n d ( a , ~ )  EQ.  

For such an ordered pair (Q, q) and for each z E C, let ~x(Q, q) - q(z). In this fashion we 
define a function ~x"  A + Z. This function has bounded range" e(z) ~ ~x(Q, q) 4 g(z) 
for all (Q, q) E A. Thus ~x E B(A, Z). 

Say that (Q, q) E_ (R, r) whenever Q c_ R; from statement (b) it follows that _ is a 
directed ordering of A. By (VHB1) there exists a Z-valued Banach limit LIM" B(A, Z) 
Z. Define f ( x ) -  LIM(~x). Then e(x) 4 f (z )  4 g(z). 

To show f is affine, fix any z, y E C and ct E (0, 1). For all (Q, q) sufficiently large in A, 
we have (c~, z) E Q. Then q(c~z + (1 -c~)y) - c~q(z)+ (1 -c~)q(y). That is, 

@c~z+(1-a)y(Q, q) - ctq~x(Q, q) + (1 - ct)@v(Q, q) 

for all (Q, q) sufficiently large. Apply the Banach limit on both sides; we obtain f(c~x + 
(1 - c~)y) - c~f(z) + (1 - c~)f(y). This completes the proof. 



Chapter 13 

Boolean Algebras 

B O O L E A N  L A T T I C E S  

13.1. Def in i t ion .  Let (X, 4) be a lattice that  has a first element and a last element 
denoted 0 and 1, respectively. If x c X, then a c o m p l e m e n t  of x is an element y that  
satisfies 

x A y  -- 0 and x V y  - 1. 

The lattice X is c o m p l e m e n t e d  if each of its elements has at least one complement. 
Recall from 4.23 that  a lattice is d i s t r i b u t i v e  if its binary operations V, A distribute 

over each other i.e., if 

x A (y v z) - (x A y) v (x A z), x v (y A z) - (x v y) A (x v z) 

for all x ,  y, z E X .  Exerc ise .  If X is a distributive lattice with smallest and largest elements 
0 and 1, then each member of X has at most one complement. 

A B o o l e a n  l a t t i c e  is a complemented lattice that  is also distributive. (Some mathe- 
maticians add the further requirement that  0 ~= 1, but we shall not impose that  restriction; 
see the remarks in 13.4.a and 13.13.) A Boolean lattice is c o m p l e t e  if its ordering is com- 
plete - -  i.e., if every subset S c_ X has a supremum (written V S) and an infimum (written 

AS). 
By the exercise above, if X is a Boolean lattice, then each x E X has exactly one 

complement, which we shall denote by Cx. It is convenient to also define the s y m m e t r i c  
d i f fe rence  of two elements x and y: 

x A y  -- (xACy) V(CxAy). 

A Boolean lattice is essentially the same thing as a Boolean  algebra, and the two terms 
may be used interchangeably. However, the term "Boolean algebra" emphasizes the univer- 
sal algebra viewpoint, as discussed in 13.7. Boolean rings are introduced in 13.13; although 
Boolean rings and Boolean lattices are not the same, there is a natural correspondence 
between them, and for that  reason the terms "Boolean rings" and "Boolean lattices" are 
occasionally used interchangeably. 

Much of this chapter is based on Halmos [1963], Monk [1989], and Sikorski [1964]. 

326 
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13.2. Exercise (optional). Let X be a distributive lattice with smallest and largest elements 
0 and 1. Then the set S of all complemented elements of X is a sublattice of X; it is a 
Boolean lattice if we restrict the lattice operations of X to S. If X contains more than one 
element, then no element of X can be its own complement. 

13.3. T h e  bas ic  example"  a l g e b r a s  of sets .  If g is an algebra of subsets of a set Ft 
(as defined in 5.25), then g is a Boolean lattice, when ordered by c_. In this case we have 
a conversion of symbols as described in the table below. Of course, in the algebra of sets, 
the complement of a set S is the set CS - {x E ft" x ~ S}. We emphasize that  in Boolean 
lattices, C may have other meanings. 

Algebra of subsets of f~ 
Boolean lattice 

O 
0 

A 
A 

Boolean lattices are not really much more general than algebras of sets. In fact, the 
Stone Representation Theorem, proved later in this chapter, states that  every Boolean 
algebra is isomorphic to some algebra of sets. However, that  isomorphism is sometimes 
an inconvenient representation; the proof of the Stone Representation Theorem involves 
arbitrary choices and intangibles. 

Aside from the conceptual difficulty of intangibles, the chief difference between Boolean 
lattices and algebras of sets is one of viewpoint: When considering algebras of sets, we 
are permitted to consider the points that  make up those sets. In contrast, the members 
of a Boolean lattice are considered as urelements, not necessarily containing any "points." 
(Compare the remarks in 5.21 about "pointless" open sets.) 

13.4. F u r t h e r  e x a m p l e s  of B o o l e a n  l a t t i ces .  

a. If 0 = 1 in a Boolean lattice X, then X contains just the single element 0. We shall 
call {0} the d e g e n e r a t e  B o o l e a n  la t t ice ;  it is the smallest Boolean lattice. It is 
isomorphic to [P(2~)= {0}. 

Any Boolean lattice with 0 ~ 1 will be called n o n d e g e n e r a t e .  
To call {0} a Boolean lattice reflects a recent trend among algebraists. The older 

literature imposed the restriction that  0 :/: 1 in any Boolean lattice (and that  additional 
restriction is still imposed by some mathematicians today). That  restriction only 
excludes one Boolean lattice, and so that  restriction has little effect on the ultimate 
results of the theory if one is careful to keep track of the degenerate case. However, that  
restriction complicates the notation and the development of the theory, because with 
that  restriction Boolean algebras and Boolean rings (discussed later in this chapter) 
do not form equational varieties. We emphasize that  

in this book, {0} is a Boolean lattice 

and so Boolean algebras and Boolean rings do form equational varieties. 

b. The next smallest Boolean lattice is the set 2 - {0, 1} consisting of two elements, 
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ordered by 0 -~ 1. This example, though quite elementary, is extremely important; it 
will be used in 13.19. The set 2 is isomorphic to ~P(S) if S is any singleton. 

c. Some algebras of sets, such as ~P(fft), are complete Boolean lattices. 
Others are not complete. For instance, let X be the algebra of all finite or cofinite 

subsets of Z. (This is a special case of 5.26.f.) Show that S = {finite subsets of the set 
of even integers} is a subset of X that does not have a least upper bound in X. 

Hints" Any upper bound for S is a set B that contains all the even integers; hence 
it is not finite; hence it is cofinite; hence it contains all but finitely many odd integers. 
If r is an odd integer belonging to B, then B \ {r} is a slightly smaller upper bound 
for S. 

d. The lattice M3 given in 4.18 is complemented but not distributive; thus it is not  a 
Boolean lattice. 

e. Let S be a topological space. Recall that a subset of S is c lopen  if it is both open and 
closed. The collection clop(S) - {clopen subsets of S} is an algebra of sets, and thus 
a Boolean lattice. It will play an important role in 17.44. 

f. Let X and l be as in 4.12 , and le t  C = { S C X  �9 S J - J - - S }  that is, let e b e t h e  
collection of closed subsets of X. Show that (C, C) is a complete Boolean lattice, with 

t E T  t E T  t E T  

Hint:  To prove (e, C_) is distributive, observe that for any sets P, Q c_ X we have 
c l ( g n Q )  = cl(g) ncl(Q), as noted in 4.12. Apply this with P - A U B  and Q - A U C  
to show that 

A V ( B A C )  - ( A V B )  A ( A V C )  for any A, B, C E (~. 

go 

hO 

Let L be some language, and let IF be the set of all formulas that can be formed in 
that language. Assume that the language is equipped with some suitable collection 
of axioms and rules of inference, which reflect ordinary methods of reasoning. (A 
precise specification of such "suitable" axioms and rules will be given in 14.32.) Call 
two formulas A and ~B "equivalent" provided each implies the other via the given 
axioms and rules of inference. This turns out to be an equivalence relation on F. The 
resulting quotient algebra is a Boolean lattice, with the binary operations A, V, and C 
corresponding to the logical notions "and," "or," and "not" respectively. See 14.33. 

Let f~ be a topological space; define closure and interior as in 5.16. A set S c f~ is 
r e g u l a r  o p e n  if S -  int(cl(S)). Clearly, any clopen set is regular open; a topological 
space may have other regular open sets as well. The regular open sets may be described 
as those open sets that have no "cracks" or "pinholes." The collection RO( f~ )  - 
{regular open subsets of ft}, ordered by c ,  forms a complete Boolean lattice, with 
Boolean lattice operations given by 

V s i -  int ( e l ( U S / ) ) ,  A S i -  int (i('~ISi) ' ' c  C S - ~ \ c l ( S )  
iEI  i 6 I  iCI  
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for S, S~ E RO(f~). Although RO(ft)  is a subcollection of T(ft) and its ordering is the 
restriction of the ordering of [P(ft), the Boolean lattice operations of RO(~)  generally 
are not just  the restrictions of the Boolean lattice operations of ~P(ft). The Boolean 
lattice RO(ft)  may appear rather complicated, but it arises natural ly in certain ap- 
plications: It turns out to be the smallest complete Boolean lattice tha t  fits certain 
constructions. It plays an important  role in the theory of forcing. See 14.53 and Bell 
[1985]. 

Another Boolean lattice that  is of particular interest to analysts is given in 21.9. 

13.5. A few computations. If X is a Boolean lattice, show that  

a. CCx = x. (Thus, C is an involution of X, in the sense of 2.4.) 

b. x ~ y  ~ C x ~ C y .  
c. x = y ~ x A y  = 0 ~ x A C y = C x A y = O .  
d. D e  M o r g a n ' s  Laws .  C(x v y) = (Cx) A (Cy) and C(x A y) = (Cx) v (Cy). 

e. b ~ Cb K-->. b = 1, and b ~ Cb ~ b = 0. Hence no Boolean lattice with more than 
two elements is also a chain. 

13.6. The duality principle. Whenever B = (X, ~,  0, 1, C, A, V) is a Boolean lattice, then 
B ~ = (X, ~, 1, 0, C, V, A) is another Boolean lattice - -  i.e., we obtain a new Boolean lattice 
if we keep the same set X and the same complementat ion operation, but swap 0 and 1, and 
swap meets and joins. (In fact, the mapping x ~ Cx is an isomorphism, in the sense of 
13.7, from B onto B~ 

Any s ta tement  about  Boolean lattices has a dual s ta tement  that  follows as a consequence 
by this swapping. For instance, the two De Morgan's Laws in 13.5.d are dual to each other. 
When two s ta tements  are dual to each other in this fashion, for brevity we may state just  
one of them. 

BOOLEAN HOMOMORPHISMS AND SUBALGEBRAS 

13.7. Definitions. We may view Boolean lattices as an equational variety, in the sense of 
8.50. The f u n d a m e n t a l  o p e r a t i o n s  are V, A, C, 0, 1. A Boolean lattice satisfies the axioms 
of a lattice ( that  is, L1-L3 in 4.20), together with these axioms: 

x A O  = x A C x  = O, x V l  = x v C x  = 1. 

A Boolean lattice, viewed as an algebraic system in this fashion, is usually called a B o o l e a n  
a l g e b r a .  We may occasionally revert to the term "Boolean lattice" to emphasize the 
ordering structure.  We emphasize that ,  in this book, the singleton {0} is a Boolean algebra 
(albeit a degenerate one); see the remarks in 13.4.a. 

A B o o l e a n  h o m o m o r p h i s m  is a homomorphism in this v a r i e t y -  i.e., a mapping that  
preserves the fundamental  operations. Thus, a Boolean homomorphism means a mapping 
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f : X  ~ Y from one Boolean algebra into another that  satisfies 

f ( x l  V x2) = f (x l )  V f(x2), f ( x l  A x2) = f (x l )  A f(x2),  

f(Cx) = Cf(x), f(0) = 0, f(1) = 1, 

for all X, Xl,X2 E X .  We may call this a Boolean algebra homomorphism for emphasis or 
clarification. Exercise. It suffices to show that  f preserves V and C; the other conditions 
then follow as consequences. Hint: 0 - 0 A CO. 

13.8. Definition and a concrete example. A t w o - v a l u e d  h o m o m o r p h i s m  on a Boolean 
algebra X is a Boolean homomorphism from X into the Boolean algebra 2 = {0, 1}. 

If X is an algebra of subsets of some set ~t, and ~0 c ~t, then one two-valued homomor- 
phism on X is the p r o b a b i l i t y  c o n c e n t r a t e d  a t  Wo: 

1 i f w 0 E S  f o r S E X .  
# ( S )  - 0 i f w 0 ~ S  

Exercise. If Y is a nondegenerate Boolean algebra, then there does not exist any ho- 
momorphism from the degenerate Boolean algebra {0} into Y. In particular, there is no 
two-valued homomorphism on the degenerate Boolean algebra {0}. 

13.9. More definitions. If X is a Boolean algebra, then a B o o l e a n  s u b a l g e b r a  of X 
is a subobject of X in the variety of Boolean algebras i.e., it is a set S C_ X that  is 
closed under the fundamental operations. Thus, a Boolean subalgebra of X is a nonempty 
set S C X that  satisfies 

Xl,X2 E S Xl V X2, Xl A X2, ~Xl, 0, 1 E S. 

Note that  S itself is then a Boolean algebra, when equipped with the restrictions of the 
operations of X. 

We can apply to Boolean subalgebras all the conclusions of Chapter 4 about Moore 
closed sets and all the conclusions of Chapter 9 about subalgebras in an equational variety. 
Thus, X is a Boolean subalgebra of itself; the intersection of any collection of Boolean 
subalgebras is a Boolean subalgebra; any homomorphic image of a Boolean subalgebra is 
a Boolean subalgebra; etc. The Boolean subalgebra S g e n e r a t e d  by a set G C_ X is 
the smallest Boolean subalgebra that  includes G; it is equal to the intersection of all the 
Boolean subalgebras that  include G; the set G is then called a g e n e r a t i n g  set ,  or a set  of 
g e n e r a t o r s ,  for the Boolean subalgebra S. In the special case where X - T(~) for some 
set ~ and G is a collection of subsets of ~t, we find that  S is the algebra of sets generated 
by G (see 5.26.e). 

13.10. N o r m a l  F o r m  T h e o r e m .  Let X be a Boolean algebra, and let G c_ X. Then the 
Boolean subalgebra S generated by G can be described more concretely in three stages, as 
follows: Let 

G C 

GCA --- 

GCA v = 

{ x E X  �9 x C G o r C x E G } ,  

{x E X �9 x is the inf of finitely many members of G c}, 
{x c X �9 x is the sup of finitely many members of GCA}. 
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(We have 1 C GCA and 0 E GCA v since the inf of no members of X is 1 and the sup of no 
members of X is 0.) Then GCA v = S. In other words, S consists of the elements of X that 
can be written in the form 

I J~ 

i=1 j = l  

where I ,  J 1 , J 2 , . . . , J i  are nonnegative integers, the n ( i , j ) ' s  are nonnegative integers (or 
more simply, 0s and ls), and the gi,j 's  are elements of G. An expression such as the right 
side of (.) is said to be in n o r m a l  form.  

In particular, the subalgebra generated by a finite set is also finite. 

Hints:  Obviously GCA v is closed under finite sups. Use the Distributive Law and De Mor- 
gan's Laws to show that GCA v is also closed under finite infs and under complementation. 

Remarks .  An important special case is that in which X = ~P(f~) for some set f~. Then 
G, G C, GCA, GCA v are collections of subsets of ft, and "inf" and "sup" mean "intersection" 
and "union," respectively. The theorem above shows that the algebra of sets g generated 
by a given collection of sets ~} can be obtained by a three-stage construction. 

An analogous three-stage construction does not  work for a-algebras: If we start with a 
collection 9 of subsets of ft, and then close it under complementation, then under countable 
intersection, then under countable union, the resulting collection A ~  is not necessarily 
equal to the a-algebra generated by 9. Indeed, A5~ is contained in the a-algebra generated 
by ~}, but Ae~ is not necessarily closed under complementation or countable intersection. 
An example is given by ft = 2 N, with A equal to the collection of all sets of the form 

O(3 m 
P x l--[j=m+l {0, 1}, where m is any positive integer and P is any subset of r l j= l  {0,1}. We 
omit the lengthy computation that shows that the resulting collection Ae~ is not closed 
under complementation or countable intersection. 

It is easy to see where the analogy between algebras and a-algebras breaks down: the 
product of finitely many finite sets is finite, but a product Y I ~ c  A~ (as in 1.38) of countably 
many countable sets is not necessarily countable see 2.20.k and 2.20.1. 

13.11. S ikorsk i ' s  e x t e n s i o n  c r i t e r ion .  Let G be a subset of a Boolean algebra X, 
which generates a Boolean subalgebra S c_ X. Let Y be another Boolean algebra, and 
let f �9 G ~ Y be some mapping. Then f can be extended to a Boolean homomorphism 
F "  S ~ Y if and only if f satisfies the following condition: 

C TMgl A C n292 A . . .  A ~nkgk -- 0 

implies 
~ n l f ( g l )  A ~n2f(g2) A ' ' '  A Cnk f (gk )  - 0 

for every nonnegative integer k and every choice of 

gl,  g2, . �9 �9 gk C G and n l , n 2 , . . . , n k  C {0, 1}. 

Moreover, if this condition is satisfied, then the extension F �9 S ---, Y is uniquely determined. 

Remark .  This theorem is similar in nature to 11.10, though a bit more complicated. 
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Proof of theorem. The uniqueness of F is clear: If an extending homomorphism F "  S --+ Y 
exists, then it must satisfy 

I Ji I Ji 
g ( 8 )  - V A Cn(i'J) f (gi,j ) whenever s -  V A 

,/,=1 j = l  i=1 j = l  

Cn(i'J) 9 i , j .  (1) 

Every s c S can be expressed as a combination of gi,j's in G as above, by 13.10; hence there 
is at most one homomorphism F : S --~ Y that extends f.  It is not immediately clear that 
equation (1) determines a function, however. Some s c S may be representable in normal 
form in terms of gid's in more than one way, and so we must verify that the resulting value 
of F(s) does not depend on the particular representation of s. After we establish that, we 
shall show that the function F defined by (1) is indeed a homomorphism. 

To show that  (1) actually does define a function, suppose that 

I Ji K Lk 
V A Cn(i'J)gi,j = 8 --- V A 
i = l  j = l  k--1 l = l  

C m(k'z) hk,t 

'S for some gi,j's and hk,t in G, and let 

I Ji K Lk 
~1 -- V A Cn(i'J) f ( g i , j )  and (~2 - -  V A Cm(k'l) f ( hk , l ) .  

i=1  j = l  k = l  /=1 

We must show that ~1 and ~2 are equal to each other. 
To show this, first observe by De Morgan's Law and the Distributive Law that 

I 
Cs - V 

(ji) i=1 

9,,j, (2) 

where the join V(j,) is over all sequences (ji) e I I i 2 1 { 1 ,  2 , . . . ,  Ji} i.e., all sequences 
(jl ,  j 2 , . . . ,  j I )  that  satisfy 1 _< ji <_ Ji for each i. 

Now, from the two representations for s, together with De Morgan's Law and the Dis- 
tributive Law, we see that 

0 - s A C s  - 
K Lk I 

V V A A 
(j i)  k = l  /=1 i=1 

The right side of this equation is an expression of the type in the hypothesis of Sikorski's 
criterion. Hence, by assumption, 

K Lk I 

V V A A 
(j i)  k = l  /=1 i=1 

- 0 .  

Unwinding our computations, we find t h a t  ( ~ 9 1 ) A  ~2 -- 0. 
Therefore ~1 -- ~2. 

Similarly, qPl A ( C ~ 2 )  - -  O. 
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Thus F is well-defined. It remains to show that  F is a Boolean homomorphism. Suppose 
that  s and F ( s )  are represented as in (1). We claim that  

I 
C F ( s )  - V A ccn(~'J~) f (g i ,J~) - F(cs). 

(ji) i=1 

Indeed, the first equation follows from our representation of F ( s )  in (1), by an argument 
analogous to our proof of (2). The second equation follows from our representation of Cs in 
(2), using the definition of F.  Thus F preserves C. Tha t  F also preserves V is obvious from 
our definition of F.  Now it follows from an exercise in 13.7 that  F is a homomorphism. 

1 3 . 1 2 .  T a r s k i - S c o t t - L u x e m b u r g  E p i m o r p h i s m  T h e o r e m .  Every Boolean algebra is 
the homomorphic image of some algebra of sets. Tha t  is, if X is any Boolean algebra, then 
there exists some g) that  is an algebra of sets and some surjective Boolean homomorphism 

f :fo--+ X .  

Pro@ We may specify such a surjective homomorphism as follows: 
Temporari ly forget the Boolean algebra structure of X,  and just view X as a set. Let 

A -  ~P(X). For each x E X, let 

~x = {A  c_ X �9 x E A}  - {A  E A �9 x E A}  c_ X.  

(This is just the ultrafilter on X, fixed at x, as in 5.5.c.) Thus O = {9"x : x E X} is a 
collection of subsets of A; let .~ be the algebra of subsets of A generated by O. 

Now recall the Boolean algebra structure of X. We shall show that  the mapping ~ H x 
satisfies Sikorski's criterion (13.11); hence it extends uniquely to a Boolean algebra homo- 
morphism from .~ onto X. Let 

X l , X 2 , . . . , X m _ I , X  m and Y l , Y 2 , . . . , Y ~ - I , Y ~  

be any elements of X,  such that  

( ~ x ,  r-'l.~z2 r-'l . . .  r-'l 9 :x , ,_1 r-1C~xm) r-'l (Cgry, ci [~c~y 2 r-'l . . .  r-'l C~y,~_,  r-'l C ~ y n )  - 0 .  (a )  

(We permit  m or n to be 0, with the understanding that  the intersection of no subsets of 
A is just A.) It suffices to show that  

(Xl AX2 A-. .  AXm_l AXrn) A (Cyl A Cy2"'" A CYn-1  A Cyn) -- O. (b) 

The set on the left side of (a) can be rewrit ten as 

S c X �9 {Xl,...,Xrn } C S C X \  {Yl,. . . ,Yn}}. 

The fact that  this set is empty  implies that  

{Xl~X2~... ,Xrn} is not a subset of X \ {Yl,Y2,. . . ,Y~}, 
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and therefore xi = yj for some i and j .  But then xi A Cyj = O, implying (b). 

Remarks and alternate proof. This theorem could be taken as a corollary of the Stone 
Representation Theorem (UF6) in 13.22. However, the Stone Representation Theorem is 
an equivalent of the Ultrafilter Principle i.e., it is a weak form of the Axiom of Choice. 
In contrast, the present theorem does not require any arbitrary choices. We shall use that 
fact in our proof of (HB12) =, (HB13), in 23.19. 

This theorem was announced by Tarski [1954], who credited it to Scott. It was subse- 
quently used by Luxemburg [1969]. 

Readers with a greater background in algebra may prefer the following proof. Let XD 
denote the given Boolean algebra X, and let X8 denote the underlying set of X i.e., 
without its Boolean structure. Let A be the free Boolean algebra that has the set X8 for 
its set of generators. By the definition of a free Boolean algebra (not covered in this book), 
the identity map i : X~ ~ Xb extends uniquely to a homomorphism I : A ---. Xb, which 
is therefore surjective. The construction of free algebras is a well-known construction and 
can be found in many algebra books. By an argument similar to the proof of 13.11, it can 
be shown (without using the Axiom of Choice or any of its weaker offspring) that the free 
Boolean algebra with generators X~ is isomorphic to a subalgebra of iP(T(X~)); thus A is 
isomorphic to an algebra of sets. 

B OOLEAN RINGS 

13.13. Definitions and remarks. A B o o l e a n  r ing  is a ring X with unit, in which every 
element is idempotent - -  i.e., in which x 2 = x for every x E X. The collection of all Boolean 
rings is an equational variety, as defined in 8.50, and so our results on algebraic systems 
are applicable. The fundamental operations are the ring operations: . ,  +, - ,  0, 1. Boolean 
rings are a full subcategory of the category of rings with unit. 

We emphasize that, by our definition, the degenerate ring {0} is a Boolean algebra. Some 
of the older literature imposes the further restriction that 0 -r 1 as part of the definition 
of a Boolean ring; see the remarks in 13.4.a. In this book, {0} is a Boolean ring, and so 
Boolean rings do form an equational variety. 

Exercise. Let X be a Boolean ring. Show that 

- x  = x and xy  = yx 

for all x , y  E X .  Hints: (x + x) 2 = (x + x) and (x + y)2 = (x + y). 

13.14. Any Boolean ring (X, + , - , . ,  0, 1) can be made into a Boolean lattice with the same 
underlying set, (X, A, V, C, 0, 1), by the definitions 

p A q = p q ,  p V q = p + q + p q ,  Cp= l +p .  

The unary operations 0 and 1 are left unchanged. Conversely, we can make any Boolean 
lattice into a Boolean ring by defining 

pq = p A q ,  p + q  = p A q ,  - p  = p. 
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These two transformations are inverses to each other; they yield a bijection between Boolean 
rings and Boolean lattices. (The relevant verifications are left as a tedious but straightfor- 
ward exercise.) 

In the mathematical  literature, the phrases "Boolean lattice," "Boolean ring," and 
"Boolean algebra" are sometimes used interchangeably. The same set X may be viewed as 
a Boolean lattice or a Boolean ring. However, some caution must be exercised. It should 
be noted that  

if X contains more than one element, then the ring and lattice structures are not 
compatible with each other in the sense of ordered groups (discussed in 8.30). 

Proof. We noted in 10.2 that  an ordered group containing more than one element cannot 
have a lowest or highest element, but any Boolean lattice has both. 

13.15. Proposition (optional). Let p(xl ,x2 , . . .  ,xn) and q(xl ,x2, . . .  ,Xn) be terms for the 
variety of Boolean algebras (as in 8.50) that  is, assume p and q are functions of the vari- 
ables Xl,X2,.. .  ,x~, expressed by formulas using only those variables and the fundamental 
operations 0, 1, V, A, [~ or 0, 1,., +. Then 

the equation p ( X l ,  X 2 , . . . ,  Xn) -- q(xl, x2 , . . . ,  xn) is satisfied by every choice of 
Xl, x 2 , . . . ,  x~ in every Boolean algebra X 

if and only if 

the equation p ( X l , X 2 , . . .  ,Xn) -- q ( X l , X 2 , . . .  ,Xn) is satisfied by every choice of 
Xl,X2,.. .  ,x,~ in the Boolean algebra 2 -  {0, 1}. 

In other words, the identities that  are true for all Boolean algebras are the same as the 
identities that  are true for 2. 

Remarks. We omit the proof, since this result is not needed later in this book. A proof is 
given by Johnstone [1987] and other books. 

13.16. Some features associated with Boolean rings are equivalent to features associated 
with Boolean lattices: 

a. If X is a Boolean ring, then a B o o l e a n  s u b r i n g  of X is a nonempty subset S c_ X 
that  is closed under the fundamental operations of rings with unit i.e., that  satisfies 

Xl,X2 E S ==~ XlX2, Xl -~-X2, --Xl, 0, 1 E S. 

It is then a Boolean ring in its own right, when equipped with the restrictions of the 
operations of X. 

Let X be a Boolean algebra, and let S c_ X. Show that  S is a Boolean subring 
(i.e., closed under the ring-with-unit operations) if and only if S is a Boolean sublattice 
(i.e., closed under the Boolean lattice operations). Hereafter, we shall use the terms 
"Boolean sublattice," "Boolean subring," and "Boolean subalgebra" interchangeably. 
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b. Recall that  a ring-with-unit homomorphism is a mapping f -  X ~ Y, from one ring 
with unit to another, that  preserves the fundamental  operations of rings with units 
i.e., that  satisfies 

f ( x l x2)  - f ( x l ) f ( x 2 ) ,  f ( x l  + x2) - f ( x l ) +  f(x2),  

f ( - x l )  - - f ( x l ) ,  f(0) - 0, f(1)  - 1 

for all  x l,  x2 E X .  

Let f : X --+ Y be a mapping from one Boolean algebra into another. Show that  
f is a homomorphism of Boolean lattices (as defined in 13.7) if and only if f is a 
homomorphism of rings with unit (as in the preceding paragraph).  Hereafter, either 
type of homomorphism may be described more briefly as a B o o l e a n  h o m o m o r p h i s m .  

13.17. More definitions. Let X be a Boolean ring. 

a. By an idea l  in X we shall mean a set S c X that  is an ideal in the sense of 9.25, in 
the category of rings with unit or in the category of Boolean rings. (We obtain the 
same ideals either way; see 9.26.g.) Clearly the set X itself is an ideal; any other ideal 
is called a p r o p e r  ideal .  

An equivalent definition can be given in terms of the lattice structure. Exercise. 
Let X be a Boolean algebra, and let S c_ X. Show that  S is an ideal in X if and only 
if S is nonempty and 

(i) s, t E S  => s v t E S ,  and 

(ii) s E S ,  x E X  => x A s E S .  

b. Dual to the notion of "ideal" is that  of "filter." Let X be a Boolean algebra, and let 
T C_ X. We shall say that  T is a f i l ter  if T is nonempty and 

(i) s, t E T  ~ s A t E T ,  and 

(ii) t E T ,  x E X  ~ x V t E T .  

Equivalently, a filter is a set of the form f -  1 (1), where f is any Boolean homomorphism. 
Clearly the set X itself is a filter; any other filter is called a p r o p e r  fi l ter .  (Note that  
the improper filter is of the form f - l ( 1 )  because we may take f "  X --+ {0}; recall that  
0 -  1 in the degenerate Boolean algebra {0}.) 

c. Let T - {Cs" s E S}; then T is a filter if and only if S is a ideal. We say S and T are 
dual to each other. 

d. If X - iP(f~) for some set f~, with ordering given by c_, then an ideal or filter in X as 
defined above is the same thing as an ideal of sets or a filter of sets (as defined in 5.2 
and 5.1). 

13.18. Let I be a proper ideal in a Boolean algebra X, and let F = { C x : x  E I}; thus F 
is a proper filter. Show that  the following conditions are equivalent. When any of them is 
satisfied, we say I is a p r i m e  idea l  and F is a B o o l e a n  u l t r a f i l t e r .  

(A) I is a maximal ideal i.e., a proper ideal that  is not included in any other 
proper ideal. (Equivalently, F is a maximal filter.) 
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(B) 

(c) 

(D) 

(E) 

For each x E X,  exactly one of x, Cx is an element of I (and hence the other 
is a member  of F) .  Tha t  is, the f l te r  F = {x E X : Cx E I} is also equal to 

e X : x r  

Whenever x A y E I, then at least one of x, y is an element of I. Equivalently: 
if x V y E F,  then at least one of x, y belongs to F.  

The quotient Boolean algebra X / I  is isomorphic to {0, 1}. 

The characteristic function of F is a two-valued homomorphism on X (defined 
as in 13.8). 

If X - [P(f~) for some set ft, then another equivalent condition is 

(F) F is an ultrafilter of sets on f~ (in the sense of 5.8). 

Hint for (A) ~ (B)" Show that  if I is an ideal in X containing neither z nor [}z, then 
{x V y" x ~ z and y E I} is a strictly larger ideal tha t  contains z. 

13.19.  The d u a l  of a Boolean algebra A is defined to be the set 

a �9 - -  {two-valued homomorphisms on A} 

{characteristic functions of Boolean ultrafilters in A}, 

which is a subset of 2 a - {mappings from A into {0, 1 } }. From the examples in 13.8 w e  see 
tha t  A* is empty when A is the degenerate algebra {0}, but A* is nonempty when A - ~P(ft) 
for some nonempty set ~t. In (UF8) we shall prove tha t  A* is nonempty whenever A is any 
nondegenerate Boolean algebra. In 17.44 we shall introduce a natural  topology on A*. 

Remarks. Since we may identify sets with their characteristic functions, we could say 
tha t  a Boolean algebra A has dual A* - {Boolean ultrafilters in A} C_ ~P(A). However, we 
prefer to view A* as a subset of 2 a because this makes the topology on A* (introduced in 
17.44) more obvious and also makes more obvious the analogy between Boolean duality and 
the other kinds of dualities described in 9.55. 

Caution" Some mathemat ic ians  instead define A* to be the set of all prime ideals in A. 
Switching to this definition would require no changes of substance; we would simply have to 
replace each argument  with a dual argument.  Of course, switching back and forth between 
the two conventions is a tedious process, so we find it more convenient to stick with just  one 
of the conventions. We prefer to use ultrafilters rather than ideals here, because this makes 
our Boolean duality more like the other kinds of duality discussed in 9.55. In this book we 
shall always take A* to be the set of (characteristic functions of) Boolean ultrafilters. 

13.20.  Proposition. Any finite, nondegenerate Boolean algebra X has a nonempty dual. 
In fact, if z0 E X \ {0}, then there exists at least one f E X* with f ( zo)  - 1. 

Remark. This proposition does not require the Axiom of Choice or any of its weakened 
forms. This proposition will be used, together with a weak form of Choice, to prove (UF8) 
in 13.22, which removes the restriction to finite X's .  
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Proof of proposition. Since So = {u E X : 0 -~ u ~ xo} is a nonempty, finite poset, it 
has a minimal element. Let u0 be any minimal element of So. (Different choices of uo 
may yield different functions f ,  but in the present argument we are only concerned with 
proving the existence of at least one such f; we do not need a canonical, particular f .)  
Observe that y A uo is either uo or 0, for each y E X. Use that fact to show that the set 
T = {y E X :y  ~ uo} is a Boolean ultrafilter in X. Hence its characteristic function 

1 i f y E T  
I(Y) -- 0 i f y E X \  T 

is a member of X* with f ( xo)  = 1. 

13.21. L e m m a  on  Stone's Epimorphism. Let X be any Boolean algebra. Assume 
that X* is nonempty. Then there exists a Boolean homomorphism from X onto an algebra 
| of subsets of X*. 

In fact, one such homomorphism may be defined as follows: For each x E X, let S(x)  - 
( f  E X *  : f ( x )  -- 1}. Let | be the range of this mapping. Verify that 

S(x v y) = S(x)u s(y), S(x A y) = S(x) n s(y),  

S(Cx) = X *  \ S(x) ,  S(0) = o,  S(1) = X*. 

These equations show that | is an algebra of subsets of X* and that the mapping x ~ S(x )  
is a homomorphism from X onto | 

These observations do not require the Axiom of Choice or any of its weakened forms. 
However, we can draw further conclusions about Stone's epimorphism if we assume some 
weakened form of the Axiom of Choice; see (UF6) in 13.22. 

B O O L E A N  E Q U I V A L E N T S  OF UF 

13.22. We shall show that the several principles listed below are equivalent to the Ultrafilter 
Principle. In Chapter 6 we proved (UF1) ~ (UF2) (and in Chapters 7 and 9 we proved 
that (UF1) r (UF3) w (UF4)); now we shall complete the cycle by proving that (UF2) 
=v (UFh) :~ ( U F 6 ) = v  (UF7) =v ( U F 8 ) ~  ( U F 9 ) ~  (UF10)=v  (UF1). 

Remark. Although (UF1) is probably the version of the Ultrafilter Principle most useful 
for analysts, the variants listed below are as well known in logic and algebra. The mathe- 
matician who is searching through the literature for equivalents of UF and related material 
would do well to look under not only "ultrafilter," but also "prime ideal" and "Boolean." 

( U F h )  Boolean Separation T h e o r e m .  The dual of a Boolean algebra 
separates its points. That  is, if X is a Boolean algebra and x0, x l are distinct 
members of X, then there exists f E X* with f (xo)  ~: f ( x l ) .  Or, by translation, 
we may restate this as: If X is a Boolean algebra and x0 E X \ {0}, then there 
exists f E X* with f ( xo)  = 1. 
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( U F 6 )  S t o n e  R e p r e s e n t a t i o n  T h e o r e m  (expl ic i t  ve r s ion) .  If X is a 
nondegenerate Boolean algebra, then X* is nonempty and the Stone mapping 
(described in 13.21) is an isomorphism from X onto an algebra of sets. 

( U F 7 )  S t o n e  R e p r e s e n t a t i o n  T h e o r e m  ( s imple  ve rs ion) .  Every Boolean 
algebra is isomorphic to some algebra of sets. 

( U F 8 )  B o o l e a n  P r i m e  Idea l  E x i s t e n c e  T h e o r e m .  If X is a nondegenerate 
Boolean algebra, then X has a prime ideal. (Equivalently, X has a Boolean 
ultrafilter; X* is nonempty; there exists a two-valued probability on X, in the 
terminology of 23.19.b.) 

( U F 9 )  B o o l e a n  P r i m e  Idea l  E x t e n s i o n  T h e o r e m .  Let X be a Boolean 
algebra. Then every proper ideal in X is included in a prime ideal. (Equivalently, 
every proper filter in X is included in a Boolean ultrafilter.) 

( U F 1 0 )  B o o l e a n  U l t r a f i l t e r  E x t e n s i o n  T h e o r e m .  Let X be a Boolean 
algebra, and let S be a nonempty subset of X. Then S is included in a Boolean 
ultrafilter if and only if S has this finite meet property: 

81 A 82 A ' ' "  A 8 n r 0 for each finite set {81, s 2 , . . .  , s n} C S. 

(Equivalently, S is included in a prime ideal if and only if S has the analogous 
finite join property.) 

Proof of (UF2) =~ (UF5). Let �9 be the collection of all functions f from subsets of X 
into {0, 1} that  have the following property: 

f can be extended to a Boolean homomorphism from some subalgebra of X into 
{0, 1}, where that  subalgebra includes the point x0 and where that  homomor- 
phism maps x0 to 1. 

Then (P can be described also as the set of all functions f from subsets of X into {0, 1}, 
such that  

{ (x0, 1)} u Graph(f )  is the graph of a function that  satisfies Sikorski's extension 
criterion (13.11). 

It is easy to verify that  (I) has finite character, in the sense of (UF2)(iii). Also, (I) satisfies 
(UF2)(i) trivially, since the set {0,1} is finite. To verify (UF2)(ii), let S be any finite 
subset of X. Then the Boolean subalgebra generated by S U {x0} is finite, and so we can 
apply 13.20 to it. Thus, (UF2) is applicable; this completes the proof. This argument is a 
modification of one by Rice [1968]. 

Proof of (UF5) ~ (UF6). X* is nonempty, so Stone's mapping S : X ~ G in 13.21 is 
well-defined. Also, from (UF5) we see that  x c X\{0}  => S(x) =/: ~. Thus the ring-with- 
unit homomorphism S : X ~ G has kernel equal to {0}, so S is injective. Therefore S is 
an isomorphism from X onto 6 .  
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Proof of ( U F 6 ) = >  (UF7). Obvious. 

Proof of (UF7) => (UF8). Immediate from the example in 13.8. 

Proof of (UF8) ~ (UF9). Let I be a given proper ideal in X. Let rr : X --+ X / I  be 
the quotient map, onto the quotient Boolean algebra. By (UF8), X / I  has a prime ideal P. 
Verify that  r~-l(P)  is a prime ideal in X that  includes I. 

Proof of (UF9) => (UF10). The "only if" part is obvious and does not require (UF9); any 
subset of an ultrafilter (or more generally, any subset of a proper filter) has the finite meet 
property. For the "if" part, conversely, suppose S has the finite meet property. Then the 
set 

{ x C X " x ~ s l A " " A Sn forsomef in i tese t  { s 1 , . . . , s n } C S }  

is a proper filter containing S. (In fact, it is the smallest such filter; it is the filter generated 
by S.) By (UF9), this filter is contained in some ultrafilter. 

Proof of (UF10) => (UF1). Immediate from 13.18(F). 

HEYTING ALGEBRAS 

13.23. In this subchapter we shall consider two types of algebraic systems that  are slightly 
more general than Boolean algebras. They have most of the properties of Boolean algebras, 
but not quite all. In particular, they lack some of the symmetry or duality of Boolean 
algebras; thus they might be thought of as "one-sided Boolean algebras." That  relatively 
pseudocomplemented lattices are more general than Heyting algebras and Heyting algebras 
are more general than Boolean algebras can be seen from the examples in 13.28. 

13.24. Definition. Let X be a lattice, and let a, b E X. Then the set {x E X : a A x ~ b} 
is nonempty for instance, b is a member. The p s e u d o c o m p l e m e n t  of a r e l a t i ve  to  b 
is the element of X denoted by a => b and defined by this formula: 

(a=>b)  = m a x { x E X  : a A x ~ b }  

if such a maximum exists. We shall also refer to => as the H e y t i n g  impl i ca t ion .  
We say that  X is a r e l a t i ve ly  p s e u d o c o m p l e m e n t e d  l a t t i ce  if the Heyting impli- 

cation is a binary operation that  is, a => b exists in X for all a, b E X, and thus the 
Heyting implication is a mapping from X • X into X. 

13.25. Basic properties. Let X be a relatively pseudocomplemented lattice. Then: 

a. x ~ ( a = > b )  i f a n d o n l y i f a A x ~ b .  

b. x ~ (a => (b => c)) if and only if a A b A x ~ c. 

c. I n t e r c h a n g e  of  H y p o t h e s e s .  (a => (b => c)) = (b => (a => c)). 

d. ( a A ( a ~ b ) )  ~ b ~ ( a ~ b ) .  
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e. If a >--< b, then (c => a) >--< (c => b) and (a ~ c) ~ (b ~ c). Hint" 

{x c X " c A x  ~ a} C_ {x E X " c A x  ~ b}, 

{x c X " a A x  ~ c} D_ {x E X "  b A x  ~ c}. 

f. (a ~ b) ~ ((b ~ c) =~ (a =~ c)). 
g. X has a largest element, hereafter denoted by 1. It is equal to (a =~ a), for any a E X. 

h. ( l = ~ a ) = a a n d ( a = ~ l ) = l f o r a n y a c X .  

i. a ~ b if and only if (a => b) = l. 

j .  X is a distr ibutive lattice. In fact, it satisfies one of the infinite distr ibutive laws: 

If a C X and S C_ X and c r -  sup(S)  exists, then sup{a A s ' s  C S} exists 
and equals a A or. 

k" 

Proof. Let T = {a A s : s E S}. In any lattice, if a = sup(S)  exists, then a A a is an 
upper  bound  for T (easy exercise). To show tha t  in a relatively pseudocomplemented  
lattice, a A a is the least upper  bound,  we shall show tha t  a A a 4 r ,  where r is any 
given upper  bound  for T. By assumption,  a A s 4 r for each s E S. Then each s c S 
satisfies s 4 (a ~ r) ,  by definition of 3 .  Thus cr 4 (a ~ r) .  Using the definition of 
=> again, we have a A a 4 r ,  as required. (This proof can be found in Rasiowa and 
Sikorski [1963] and other  books.) 

It can be shown tha t  relatively pseudocomplemented  lattices form an equational  variety. 
We omit the proof; it can be found in Rasiowa [1974]. 

13.26.  A H e y t i n g  a l g e b r a  (also known as a B r o u w e r i a n  la t t ice  or a p s e u d o - B o o l e a n  
a l g e b r a )  is a relatively pseudocomplemented  lattice with the further proper ty  tha t  

X has a smallest element, denoted hereafter by 0. 

In a Heyting algebra X,  we also define a unary  operat ion C" X --+ X by 

Ca - ( a = ~ 0 )  - m a x { x c X  �9 a A x - 0 ) .  

The operat ion C is called the p s e u d o c o m p l e m e n t .  

13 .27.  Basic properties. Let X be a Heyting algebra. Prove the following properties.  
(Several of these are just  specializations of results of 13.25, obtained by set t ing one of the 
variables to 0.) 

a. C 0 = I ,  C I = 0 ,  ( 0 = ~ b ) = l .  
b. If a ~ b, then Cb ~ Ca. 

c. C o n t r a p o s i t i v e  L a w .  (a =~ (Cb)) - (b =~ (Ca)). 

d. D o u b l e  N e g a t i o n  L a w .  a ~ CCa. Hint: Use the Contraposi t ive  Law with b = Ca, 
and use 13.25.i. 

e. (a =~ b) ~ ((Cb) =~ (Ca)). 
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i. 

j. 
k. 

1. 

I n .  

f. a A ( C a ) = 0 .  

g. (a=> (Ca)) - (Ca). 

h. Brouwer's  Triple N e g a t i o n  Law. COOa = Ca. 
Hints: (Ca) d C0(Ca) by applying the Double Negation Law to Ca. Also, apply C 

to both sides of the Double Negation Law; by 13.27.b this yields C(COa) ~ C(a). 

((Ca) A (Cb)) - C(a V b). 

((Ca) v (Cb)) d C(a A b). 
((Ca) V b) d (a =~ b). 

CC (b v (Cb)) - 1. Hint" Use 13.27.f with a -  Cb; also use 13.27.i. 

Although we omit the proof, it can be shown that  Heyting algebras form an equational 
variety. See Rasiowa [1974]. 

n. Every Boolean lattice is a Heyting algebra. 

13.28. Topological examples. Let X be a set, and let 2) be a collection of subsets of X that  
is closed under finite intersections and arbitrary unions. Assume that  the partially ordered 
set (�9 C_) is a lattice. 

Then (2), C_) is a relatively pseudocomplemented lattice. To see this, let S, T be any two 
given members of 2). Let %S,T -- {G C �9 �9 S rq G c_ T}. Then the union of the members 
of %S,T is itself a member of %S,T, and thus the largest member of KS,T; hence it satisfies 
the requirements for a relative pseudocomplement. 

We note two particular instances of this when X is a topological space; these examples 
are from Rasiowa and Sikorski [1963]" 

a. The lattice of open sets, discussed in 5.21, is a Heyting algebra, since it also has a 
smallest member - -  namely, the empty set. (Although the proof is too long to present 
here, it can be shown that, conversely, any Heyting algebra is lattice isomorphic to 
the lattice of open sets of some topological space; a proof of this is given by Rasiowa 
and Sikorski [1963, page 128].) In 5.21 we verified directly that  the lattice of open sets 
satisfies one of the infinite distributive laws; that  fact also follows from 13.25.j. The 
lattice of open sets may or may not be a Boolean algebra; in 5.21 we gave an example 
in which the lattice of open sets does not satisfy the other infinite distributive law and 
thus is not a Boolean algebra. 

b. The open dense subsets of a topological space X form a lattice, with binary lattice 
operations U, rq (see 15.13.c). In fact, it is a relatively pseudocomplemented lattice, by 
the argument given at the beginning of this section. It may or may not have a smallest 
member, and thus it may or may not be a Heyting algebra. For instance, (exercise) it 
does not have a smallest member if X is the real line with its usual topology. 

13.29. Which Heyting algebras are Boolean? Suppose X is a Heyting algebra. Then the 
following conditions are equivalent: 

(A) a v ( C a ) - l f o r a l l a E X .  

(B) COa ~ a for all a E X. 
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(C) (a =~ b) 4 ((Ca) v b) for all a,b E X. 

(D) ((Ca) =~ (Cb)) 4 (b =~ a) for all a, b E X. 

(E) ((Ca) =~ b) 4 ((Cb) ~ a) for al la ,  b E X .  

(F) X is a Boolean algebra. 

Proof. If X is a Boolean algebra, then it is easy to verify that all the other conditions listed 
above are satisfied. Conversely: 

If (A) holds, then C is a complementation operation (as in 13.1), not just pseudocomple- 
mentation; since any Heyting algebra is a distributive lattice, (F) follows. For (B) implies 
(A), note that CO (a v (Ca)) - 1 and a 4 CCa in any Heyting algebra. For (C) implies (A), 
let b = a. For (D) implies (B), let b = COa and simplify. For (E) implies (B), let b = Ca. 



Chapter 14 

Logic and Intangibles 

14.1. Introduction. Contrary to the assumption of many nonmathematicians, the study 
of formal logic does not make us more "logical" in the usual sense of that word - -  i.e., the 
study of logic does not make us more precise or unemotional. Formal logic is not merely 
a more accurate or more detailed version of ordinary mathematics. Rather, it is a whole 
other subject, with its own methods and its own theorems, which are of a rather different 
nature than the theorems of other branches of mathematics. 

Because many of logic's most important applications are in set theory, those two subjects 
are often presented together, and they may be confused in the minds of some beginners. 
However, logic and set theory are really different subjects. It is possible to do some inter- 
esting things in set theory without any formal logic (see Chapter 6). Conversely, logic can 
be applied to other theories besides set theory e.g., real analysis, ring theory, etc. We 
have already seen examples of this in 8.51 and 13.15. 

14.2. Chapter overview. This chapter provides a brief introduction to formal logic. Our 
presentation is mostly conventional, but we follow the unconventional approach of Rasiowa 
and Sikorski [1963] in our definition of "free variables" and "bound variables;" this is dis- 
cussed in 14.20. 

We shall cover the basics of logic, up to and including a proof of the Completeness and 
Compactness Principles, which show that the syntactic and semantic views of consistency 
are equivalent. An easy corollary of the Compactness Principle is the existence of nonstan- 
dard models of arithmetic and analysis in 14.63; this is one way to introduce the subject of 
nonstandard analysis. The Completeness and Compactness Principles are also interesting 
to us because they are equivalent to the Ultrafilter Principle, a weak form of Choice studied 
extensively in other chapters of this book. 

After the Completeness and Compactness Principles we shall state a few more advanced 
results, with references in lieu of proofs. Our main goal is to develop some understanding of 
the notion of "consistency," so that we can understand Shelah's alternative to conventional 
set theory, 

Con(ZF) ~ Con(ZF + DC + BP).  

This result was proved by Shelah [1984], but the proof is too long and too advanced to be 
included in this book. Our goal is only to understand the statement of Shelah's result and 
some of its applications. At the end of this chapter, we shall use Shelah's consistency result 
to explain intangibles - -  i.e., objects that "exist" in conventional mathematics but that lack 

344 
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"examples." For a first reading, some may choose to skip ahead to the end of this chapter 
and just read the summary of consistency results and the explanation of intangibles; the 
rest of this chapter will not be needed elsewhere in the book. 

SOME INFORMAL EXAMPLES OF MODELS 

14.3. In logic we separate a language from its meanings. An i n t e r p r e t a t i o n  of a language 
is a way of assigning meanings to its symbols. Formulas are not true or false in any absolute 
sense; they are only true or false when we give a particular interpretation to the language. 
For instance, the axioms of ZF set theory are usually regarded as true, but they become 
false if we interpret "set" and "member" in the peculiar fashion indicated in 1.48. In the 
view of some logicians especially, formalists mathematical  objects such as sets do not 
really "exist;" all that  really "exists" is the language we use to discuss sets and the reasoning 
we can perform in that  language. When we change the language or its interpretation, then 
the nature of sets or other mathematical  objects changes. Bertrand Russell took such a 
viewpoint when he said 

Mathematics is the only science where one never knows what one is talking 
about nor whether what is said is true. 

If we cannot establish absolute truth, the next best thing is s y n t a c t i c  c o n s i s t e n c y  
i.e., knowing that  our axioms do not lead by logical deduction to a contradiction. By the 
Completeness Theorem (proved in 14.57), syntactic consistency is equivalent to s e m a n t i c  
c o n s i s t e n c y  - -  i.e., knowing that  our collection of axioms has at least one model. A m o d e l  
of a collection of formulas is an interpretation that  makes those formulas true; it is a sort 
of "example" for that  collection of formulas. 

An interpretation of a language may be highly unconventional, unwieldly, and not at 
all intuitive. It may be constructed just for a brief, one-time use e.g., to prove the 
consistency of a given collection of axioms. After a model has been used to establish 
consistency of some axioms, in some cases we may choose to discard the model and think 
solely in terms of the axioms, because they are conceptually simpler. (A good example of 
this is in 14.4.) Application-oriented mathematicians may choose to skip the modeling step 
altogether, and begin with the axioms, trusting that  other mathematicians have already 
justified those axioms with a model. 

All of the terms introduced above interpretation, consistent, model, etc. will be 
given more specialized and precise meanings later in this chapter. But first, to introduce the 
basic ideas, in the present subchapter we shall present some informal examples of models, 
where "model" has the broad and slightly imprecise meaning indicated above. Most of these 
examples are mere sketches, intended only to indicate the flavor of the ideas. The omitted 
details are considerable, and are not intended as exercises; the reader who wishes to fill in 
the details should consult the references in the bibliography. 

14.4. Models of the reals. The axioms for an ordered field were given in 10.7; those plus 
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Dedekind completeness make up the axioms for the real number system. Many analysis 
books simply "define" IR to be a Dedekind complete, ordered field. But how do we know 
that that  list of axioms makes sense? We must show (or trust other mathematicians who 
say they have shown) that 

(i) there is such a field, and 

(ii) any two such fields are isomorphic. 

Proof of (ii) is given in 10.15.e. Proofs of (i) by different constructions in terms of the 
rationals are given in 10.15.d, 10.45, and 19.33.c. Any one of these constructions is a 
model of the axioms of I~, and it therefore demonstrates the consistency of the axioms of 
I~. However, the constructions involving Dedekind cuts, equivalence classes of Cauchy 
sequences, etc. are rather complicated and generally have little to do with our intended 
applications of the reals. The axioms for R are usually much simpler conceptually and more 
convenient for applications. Thus, after we have demonstrated consistency we may discard 
the model and think of the real numbers in terms of their axioms: The real number system 
is a complete ordered field. 

14.5. A non-Euclidean geometry modeled in Euclidean geometry. During the 18th and 19th 
centuries, mathematicians became concerned about Euclid's Pa ra l l e l  P o s t u l a t e ,  which 
says, in one formulation: 

through a given point p not on a given line L, there passes exactly one line that 
lies in the same plane as L but does not meet L. 

The other postulates of geometry are concerned with objects of finite size, such as triangles. 
In contrast, the Parallel Postulate is concerned with behavior of points that are very far 
a w a y -  perhaps infinitely far a w a y -  and so the Parallel Postulate is less self-evident. Some 
mathematicians at tempted to remove any doubts by proving this axiom as a consequence 
of the other axioms of Euclidean geometry. In these attempts, one approach was to replace 
the Parallel Postulate with some sort of alternative that negates the Parallel Postulate, and 
then try to derive a contradiction. Some alternatives to the Parallel Postulate did indeed 
lead to clear contradictions, but other alternatives merely led to very peculiar conclusions. 

The peculiar conclusions made up new, non-Euclidean geometries. For instance, a paper 
of Riemann (1854) developed a geometry, now called d o u b l e  el l ipt ic  g e o m e t r y  or Rie-  
m a n n i a n  g e o m e t r y ,  in which any two lines meet in two points, and the sum of the angles 
of a triangle is greater than 180 degrees. At first these geometries were not seen to have 
anything to do with the "real" world; they were merely viewed as imaginary mathematical 
constructs. 

However, in 1868 Eugenio Beltrami observed that the axioms of two-dimensional double 
elliptic geometry are satisfied by the surface of an ordinary sphere of Euclidean geometry, 
if we interpret "line" to mean "great circle" (i.e., a circle whose diameter is the diameter 
of the sphere). Therefore, if a contradiction arises in our reasoning about double elliptic 
geometry, then by the same argument with a different interpretation of the words we can 
obtain a contradiction in Euclidean geometry. Thus, we have a model that establishes 
relative consistency: If the axioms of Euclidean geometry are noncontradictory and the 
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theorems we have proved about the sphere in Euclidean geometry are correct, then the 
axioms of double elliptic geometry are also consistent. 

Even if we find these bizarre geometries distasteful and prefer to concern ourselves only 
with Euclidean geometry, Beltrami's reasoning leads to this important  conclusion: 

The Parallel Postulate of Euclidean geometry is not implied by the other axioms 
of Euclidean geometry. 

As Hirsch [1995] has put it so aptly, before the 19th century Euclidean geometry was 
"not merely an axiomatic study, but our best scientific description of physical space." In 
retrospect, we can now see that  double elliptic geometry is every bit as "realistic" as Eu- 
clidean geometry. Ants on a very large sphere might think they were on a plane, if they 
thought at all. Indeed, many humans thought that  way until Colombus sailed. In much the 
same fashion, our three-dimensional space may be very slightly curved in a fourth direction, 
but the curvature may be so small that  we have not yet detected it. Perhaps a space ship 
that  travels far enough in a seemingly straight line will eventually return to its home planet. 
We can only be certain of what is near at hand. 

For a more detailed discussion of the history of these ideas, see Kline [1980]. A similar 
approach to the Parallel Postulate, using the interior of a circle in the Euclidean plane, was 
developed by Cayley; it is discussed by Young [1911/1955]. 

14.6. Specifying a universe. Here is one way to construct m o d e l s  of  se t  t h e o r y :  Let :M 
be some given class of sets. Hereafter, interpret the term "set" to mean "member of 3V[." 
Thus, the phrases "for each set" and "for some set" will be interpreted as "for each member 
of N:" and "for some member of 3V[." Then statements in the language of set theory can be 
interpreted in terms of :M:. 

For instance, the definition of equality of sets (given in 1.47) says that  if A and B are 
two sets, then 

A = B holds if and only if for each set T, we have T E A ~ T E B. 

This condition is satisfied when "set" and "member" have their usual meanings, but not 
when those terms have certain unconventional meanings, as in 1.48. Are they satisfied in 
the model ~ ?  Yes, for some choices of 3V[; no, for others. In the model [M[, the definition of 
equality has this interpretation: Let A, B E 5I; then 

A = B if and only if for each T E :M:, we have T E A ~ T E B. 

It is easy to see that  "equality" of sets in the model Ni coincides with the restriction of 
ordinary equality to the collection JV[ if and only if 5I has this property: 

whenever A, B E ~ and :M N A = :M: A B, then A = B. 

Easy exercise (from Doets [1983]). If :M: is a transitive set (defined as in 5.42), then :M: 
satisfies the condition (!) above. A converse to this exercise is M o s t o w s k i ' s  C o l l a p s i n g  
L e m m a ,  which states that  any model that  satisfies (!) is isomorphic to a transitive model. 
We shall not prove this lemma; it can be found in books on axiomatic set theory. 
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If :M: includes some, but not all, members of von Neumann's universe V (described in 
5.53), then sets A, B E :M: may have different properties when viewed in 5I or in V. For 
instance, since ~ has fewer sets than V, it also has fewer functions and fewer bijective 
functions. It is quite possible that  there exists a bijective function in V between A and 
B, but there does not exist such a function in 9V[. Thus card(A) = card(B) in V, but 
card(A) % card(B) in 5I. When we go from the smaller universe ~ to the larger universe 
V, some distinct cardinalities coalesce; this phenomenon is called c a r d i n a l  col lapse .  

14.7. G5del's universe. A subclass of V was used for an important model of set theory by 
GSdel around 1939. He interpreted "set" to mean "member of L," using the universe L of 
sets that  are "constructible relative to the ordinals," as described in 5.54. That  universe is 
(perhaps) smaller than the usual universe V. With this interpretation, he was able to show 
that  the axioms of ZF set theory plus AC (the Axiom of Choice) plus GCH (the Generalized 
Continuum Hypothesis) are all true. He constructed his model L inside the conventional 
universe V, and his use of V assumed the consistency of the ZF axioms. Thus, he concluded 
that  

if ZF is consistent, then ZF + A C + G CH is consistent. 

Though GSdel's proof involved constructible sets, this conclusion does not mention con- 
structible sets, and is not restricted to any particular meaning for "sets." 

(In 1963 Cohen showed, by other methods, that  -~CH is also consistent with set theory; 
see 14.8. Thus the Continuum Hypothesis and the Generalized Continuum Hypothesis are 
independent of the axioms of conventional set theory.) 

GSdel's construction also shows that  if ZF is consistent, then so is ZF + AC + GCH + 
(V = L). The axiom V = L is called the A x i o m  of C o n s t r u c t i b i l i t y ,  which says that  
all sets are constructible relative to the ordinals. Thus, we cannot be sure that  GSdel's 
constructible universe L really is smaller than von Neumann's universe V; we do not obtain 
a contradiction if we assume that  those two universes are the same. O n  the other hand, 
it has been proved by other methods that  V ~: L is also consistent with set theory see 
for instance Bell [1985] - -  so the Constructibility Axiom is independent of the axioms of 
conventional set theory. 

14.8. Modeling the reals with random variables. The Continuum Hypothesis (CH) can 
be formulated as a statement about subsets of the reals: It says that  no set S satisfies 
card(N) < card(S) < card(R). By now the literature contains several different variants of 
Cohen's proof that  CH is independent of ZF + AC. One of the simplest to outline is the 
following: 

Let (~, E, #) be a probability space, where the set gt has a very high cardinality. Let 9~ 
be the space of all equivalence classes of real-valued random variables. For a suitable choice 
of (~t, E, #), it is possible to show that  

(i) For a suitably formulated axiomatization of ll~, every axiom of I~ is satisfied 
with probability 1 by ~. 

(ii) If s tatements that  are true with probability 1 are used to generate new state- 
ments, via the rules of logic, then the new statements are also true with 
probability 1. 
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(iii) The Cont inuum Hypothesis, interpreted as a s ta tement  about  [R, is not true 
with probabili ty 1. 

Here IR is modeled by [R, and "truth" is replaced by " t ruth  with probabili ty 1." The axioms 
of set theory and of R, though interpreted in a peculiar fashion, remain unchanged in 
superficial appearance, and the rules of logic remain unchanged insofar as they deal with 
strings of symbols. Therefore, regardless of what kind of "truth" and "sets" and "real 
numbers" we use, the axioms of sets and of R cannot be used, via the rules of logic, to 
deduce the Cont inuum Hypothesis. 

The explanation sketched above is only the merest outline; the omit ted details are 
numerous and lengthy. Some of them are given by Manin [1977]. 

14.9. A topos model for constructivists. We mentioned in 6.6 that  the Trichotomy Law 
for real numbers is not constructively provable. We now sketch part  of a demonstrat ion of 
tha t  unprovability, due to Scedrov. Our t rea tment  is modified from Bridges and Richman 
[1987]. 

By a "Scedrov-real number" we shall mean a continuous function from [0, 1] into IR. Let 
f be such a function, let P be a s ta tement  about  a real number,  and let x c [0, 1]; then 
we say P is t r u e  for af a t  a: if P is a true s ta tement  about the real number f (y)  for all !/ 
in some neighborhood of x in [0, 1]. The collection of all such points x is the t r u t h  va lue  
of P for f;  it is an open set. A s ta tement  is t r u e  if its t ru th  value is the entire interval 
[0, 1]. It can be demonstra ted  (though we shall omit the details here) that  the Scedrov-real 
numbers are a model of the real numbers with constructivist rules of inference. 

Now let f ( x )  = x and g(x) = 0, for all x E [0, 1]. Then the t ru th  value of the s ta tement  
f _< g is the empty set (since the interior of a singleton is empty),  while the t ru th  value of 
f > g is the interval (0, 1]. Hence the t ru th  value of the s ta tement  " f  < g or f > g" is the 
interval (0, 1], and thus that  s ta tement  is not true in this model. 

14.10.  A finite model. The following example (from Nagel and Newman [1958]) is a bit 
contrived, but it illustrates a point well. We consider a mathemat ica l  system consisting of 
two classes of objects, K and L, which must satisfy these axioms: 

1. Any two members of K are contained in just one member  of L. 

2. No member  of K is contained in more than two members of L. 

3. The members of K are not all contained in a single member  of L, 

4. Any two members of L intersect in just  one member  of K.  

5. No member  of L contains more than two members of K. 

The consistency of this axiom system can be established by the following model: 

(*) Let T be a triangle. Let L be the set of edges of T, and let K be the set of vertices 
o f T .  

We can verify tha t  this model satisfies the preceding five axioms; thus they cannot be 
contradictory. We emphasize tha t  those five axioms might also have other interpretations; 



350 Chapter 14: Logic and Intangibles 

we are not restricted to (*) as the only possible interpretation. However, we do have at 
least one model, given in (*). This is sufficient to prove that  the five axioms by themselves 
cannot lead to a contradiction. 

We have used Euclidean geometry to make (*) easy to visualize, but perhaps we do not 
feel certain about the reliability of Euclidean geometry. The use of geometry is not essential 
for our present axiom system. We can reformulate (*) without mentioning triangles: 

(**) Let a, b, c be distinct objects. Let K - {a, b, c} and L = { {a, b}, {b, c}, {c, a} }. 

The model (**) has only finitely many parts; thus, it leaves very little room for doubt. The 
importance of such models is discussed in 14.70. 

LANGUAGES AND TRUTHS 

14.11. A l a n g u a g e  is a collection L of symbols, together with rules of grammar that  
govern the ways in which those symbols may be put together into strings of symbols called 
"formulas." For instance, one of the most important languages we shall study is the language 
of set theory. This language includes symbols such as E, c_, N, etc. Its grammatical rules 
tell us that  A O B E C is a formula, but 

A CE B, A O U = B, AN = 

are not formulas. 
In formal logic we separate a language from its meanings. For instance, in a formal 

language, "1 + 2" and "3" are different, unrelated strings of meaningless symbols. When 
we interpret that  language in its usual fashion, then the strings "1 + 2" and "3" represent 
the same object. Although ultimately we shall be concerned with attaching meanings to 
the symbols in the language L, at the outset it is best to disregard such meanings even 
the meanings of familiar symbols such as E, c_, N, +, =. Conceptually, a good place to start  
is the monoid of meaningless strings of symbols, described in 8.4.g. 

14.12. Formal versus informal systems. Ordinary mathematicians (i.e., those other than 
logicians) may study sentences, theorems, and proofs about (for instance) rings or differen- 
tial equations. However, logicians study sentences, theorems, and proofs about sentences, 
theorems, and proofs. The ordinary mathematician uses a language that  describes rings or 
differential equations; the logician uses a language that  describes languages. The logician 
is related to the mathematician much as a linguist is related to a novelist. 

As Rosser [1939] pointed out, in works of logic we may commonly identify at least two 
distinct systems of reasoning: 

a. The inner system of reasoning is the subject of the work. It is a sort of microcosm 
of reasoning. It may be less powerful than the reasoning that  we use in "ordinary" 
mathematics, but it is delimited more precisely. Just as a theorem about rings must 
have precise hypotheses ("Let G be a commutative r i ng . . . " ) ,  so too a theorem in logic 



Languages and Truths 351 

must have precise hypotheses ("Let L be a language with infinitely many free variable 
symbols . . . " ) .  The inner language is also called the o b j e c t  l anguage .  Formulas such 
as (V~ P(~, x ) ) u Q  (x, f (y ,  z)) will occur in the object languages studied in this chapter. 

b. The outer system of reasoning is ordinary reasoning. It is conducted in the language 
of ordinary discourse, also sometimes known as the m e t a l a n g u a g e  a natural lan- 
guage such as English or Japanese, modified slightly to suit the specialized needs of 
mathematicians. In logic, as in algebra or analysis, the outer language usually does 
not have to be formal we can communicate effectively without first discussing in 
detail how we will communicate. 

When the inner system is mathematics,  the outer system is often called " rec ta -  
m a t h e m a t i c s , "  which translates roughly to "beyond mathematics" or "above mathe- 
matics" or "about mathematics." For instance, the Soundness Principle 14.55(iv) and 
the GSdel-Mal'cev Completeness Principle in 14.57 are results about formal systems; 
thus they are "metatheorems" which reside in the outer system. 

The inner and outer systems do not necessarily have the same truths; one of these 
systems may be stronger than the other. For instance, we must assume ZF plus the 
Ultrafilter Principle (UF) in our outer system when we want to prove the GSdel-Mal'cev 
Completeness Principle. That  principle can be applied to inner systems that  are weaker 
(such as ZF) or stronger (ZF + AC) or perhaps not even directly comparable. 

Here is another example: Let "Con" denote consistency. Then "Con(ZF)" and 
"Con(ZF + AC + GCH)" are two statements about the consistency of certain axiom 
systems in formal set theory. Thus they are metamathematical  statements, where the 
mathematics in this case is set theory. Then "Con(ZF) ~ Con(ZF + AC + GCH)" 
is a m e t a t h e o r e m -  or, if we prefer, a rnetarnetatheorem, as discussed below. 

c. Beginners may find it helpful to view the Ultrafilter Principle and the Completeness 
Principle as "true;" then they will only need to deal with the two levels of reasoning 
described above. However, more advanced readers can consider a third level: Through- 
out many chapters of this book we study equivalents of AC and of UF, viewing them 
as principles which "might be true" or "might be false," depending on what kind of 
universe we decide to live in. The implication (UFS) ~ (UFl l ) ,  proved in 14.57, is a 
m e t a m e t a t h e o r e m -  it is a theorem about metatheorems such as the Completeness 
Principle. It is even more "outer" than the "outer system" but to avoid confusion, 
hereafter we shall not discuss such results in this fashion. 

There is some resemblance between the logician's inner and outer s y s t e m s -  both systems 
include "sentences," "implications," "theorems," and "proofs." This may cause some con- 
fusion for beginners. No such confusion arises in other subjects, such as ring theory or 
differential equations e.g., a theorem about rings generally does not look like a ring. 

14.13. The beginner is cautioned to carefully maintain in his or her mind the distinction 
between inner and outer systems. Throughout this chapter we shall use notations that  
support that  distinction. First, however, we shall give an example of the kind of difficulties 
that  arise when the distinction is not maintained carefully: 

B e r r y ' s  P a r a d o x .  Call a positive integer succinct if it can be described in 
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sentences of the English language using less than 1000 characters (where a char- 
acter means a letter, a space, or a punctuat ion symbol). There are only finitely 
many different characters, and so it is clear that  there are only finitely many 
succinct numbers. Let no be the first positive integer tha t  is not succinct. We 
have described no in this paragraph,  which is shorter than 1000 characters. So 
no is succinct after all, a contradiction. 

Explanation of the flaw in the reasoning. The first sentence suggests tha t  we are to use 
English for the formal language of our inner system. However, English is a very fluid 
language, which changes even while it is being used. Everyday, nonmathemat ica l  English is 
permi t ted  to talk about  itself, and this kind of self-referencing can lead to paradoxes, but 
they are not taken seriously because, after all, English is not mathematics .  

In a t t empt ing  to make mathemat ical ly  precise sense out of Berry's Paradox, we must use 
some frozen, unchanging "version" of English for the formal language of our inner system. 
We assume that  some particular version of English has been selected and is understood by 
all parties part icipating in this endeavor. The term "English" hereafter is understood to 
refer to this frozen, formal language. This object language cannot discuss itself, and thus 
cannot discuss what  is a "sentence of the English language." The notion of a "sentence" 
(as it is used here) is a metamathemat ica l  concept i.e., a concept about the language, 
rather  than a concept expressed in the language. 

Now we can give a more precise definition of a "succinct" positive integer: It is a positive 
integer tha t  can be described in the object language in fewer than 1000 characters. Likewise, 
no is the first positive integer that  cannot be described in the object language in fewer than 
1000 characters. These definitions are mathemat ical ly  precise, quite brief, and not at all 
fallacious, but they are formulated in the metalanguage,  not in the object language. Our 
definition of no is formulated in the metalanguage; we have not given a definition of no in 
the object language. We certainly have not given a definition of no that  is 1000 characters 
or fewer in the object language. We cannot conclude that  no is succinct, so no contradiction 
is reached. 

14.14.  When 9" and ~} are formulas in our object language, then 9" -~ g is also a formula 
in that  language. It is most often read as "9" implies g." 

We now consider two types of implications in our rnetalanguage, which will be investi- 
gated in greater detail later in this chapter. Let E be a set of formulas, and let 9" be a 
formula. 

a. A d e r i v a t i o n  of 9" from E is a finite sequence of formulas s s s such tha t  
En = 9 ~ and each ~j is either (i) an axiom, (ii) a member  of E, or (iii) obtained from 
previous members of the sequence by rules of inference. When such a sequence exists, 
then we say 9: is a s y n t a c t i c  c o n s e q u e n c e  of E; this is abbreviated as E k- 9". 

When E is the empty  set, the derivation is called a proof ,  and the consequence 9" 
is called a s y n t a c t i c  t h e o r e m ;  we may write ~ k 9" or, more briefly, ~- 9". Observe 
that  this notat ion does not reflect the choice of the axioms, which are nevertheless 
available for use in the derivation. The s ta tement  " E ~- 9" " is equivalent to this 
s ta tement ,  which may be preferred by some readers: "any set of axioms that  makes all 
the members of E into syntactic theorems, also makes 9" into a syntactic theorem." 
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A set of formulas E is s y n t a c t i c a l l y  i n c o n s i s t e n t  if some formula and its negation 
are both syntactic consequences of E; otherwise the set of formulas is s y n t a c t i c a l l y  
c o n s i s t e n t .  The study of syntactic consequences is sometimes called p r o o f  t h e o r y .  

b. We write E ~ 9" to say that  9= is a s e m a n t i c  c o n s e q u e n c e  of E. This means that  
every model of E is also a model of 9 " -  i.e., that  every interpretat ion of the language 
that  makes E true (and makes all of our unmentioned axioms true), also makes 9 ~ true. 
The axioms, if any, are understood from the context and are not mentioned in this 
notation. 

When E is the empty set, the consequence 9 = is called a s e m a n t i c  t h e o r e m .  We 
may write ~ ~ 9" or, more briefly, ~ 9 ~. This means that  any interpretation that  makes 
the axioms true also makes 9 ~ true. 

A set of formulas E is s e m a n t i c a l l y  i n c o n s i s t e n t  if it has no models or s e m a n -  
t i ca l ly  c o n s i s t e n t  if it has at least one model. The study of semantic consequences 
is sometimes called m o d e l  t h e o r y .  

On the surface, proof theory and model theory seem rather different. A fundamental and 
nontrivial result of first-order logic is that  proof theory and model theory are equivalent, in 
this sense: they actually yield the same notions of "theorem" and "consistency," provided 
that  our system of reasoning is sound. This equivalence will be established in 14.57 and 
14.59; thereafter, we can simply refer to a "theorem" and to "consistency." However, to 
establish the equivalence, we must first develop the syntactic and semantic views separately. 

A few cautionary remarks. 

(i) 

(ii) 

(iii) 

Terminology varies in the literature. Some mathematicians prefer either the 
viewpoint of proof theory or the viewpoint of model theory, and so they define 
the terms " t h e o r e m , "  "valid fo rmula , "  " t r u e  fo rmula , "  or " t a u t o l o g y "  
to be synonomous with what we have called a "syntactic theorem" or with 
what we have called a "semantic theorem." Which term is applied to which 
type of theorem varies from one paper or book to another. That  may confuse 
beginners, but it does not affect the ult imate results since the two kinds of 
theorems will eventually be shown equivalent. 

The symbol ~ has another meaning, which will not be used in this chapter. 
We mention it to prevent confusion when the reader runs across it in some 
other book. If N is some particular model in which a formula 9" is true, some 
mathematicians may write 5I ~ iT. This is read as: :IV[ is- a model of 9", or 5I 
sa t is f ies  9 ~, or 9" ho lds  in 5I. 

The symbols V (syntactic implication) and ~ (semantic implication) should 
not be confused with these similar symbols: 

T ( t ru th) ,  _[_ (falsity), IF- (forcing), 

which are used in some books (but not this one). Forcing is discussed briefly 
in 14.53. 
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(iv) Although 9" ~- 9 and 9" ~ 9 will ultimately be proved equivalent to each 
other, they are not equivalent to 9" --~ 9. In fact, no direct comparison is 
possible, since 9" ---, S is a statement in the object language. We can modify 
that statement slightly if we wish to make comparisons: Each of the four 
expressions 

9 9 S, (9 (9 S) 

is a statement in the metalanguage. The first two are equivalent to each 
other, and the last two are equivalent to each other. In propositional logic, 
all four statements are equivalent to each other. In predicate logic, the last 
two statements are slightly stronger than the first two statements; this will be 
discussed further in 14.38 and thereafter. 

14.15. The kind of logic used most often in the literature is f i r s t -o rde r  logic; it is also 
known as p r e d i c a t e  logic or the p r e d i c a t e  calculus.  

To be precise, we may subdivide a theory into these ingredients: 

A f i r s t - o rde r  l a n g u a g e  includes an alphabet of symbols punctuation sym- 
bols, symbols for individuals, symbols for operations, and quantifiers and 
grammatical rules for forming those symbols into formulas. All of the symbols 
are understood as meaningless characters of a meaningless alphabet; they will 
only take on meaning when we consider an interpretation or quasi-interpretation 
(as in 14.47). The specification of the symbols and rules is understood to in- 
clude a specification of the arities of the operation symbols, as explained in 14.18 
below. First-order language is discussed in further detail in the next subchapter. 

A f i r s t -o rde r  logic includes the language, plus rules of inference and logical 
axioms. It may also be viewed as including the resulting theorems i.e., the 
syntactic and semantic consequences of those rules and axioms. The rules of 
inference and logical axioms are discussed in the subchapter which begins with 
14.25, and the resulting theorems are discussed in the subchapters after that. 

A f i r s t -o rde r  t h e o r y  includes the logic, plus extra-logical axioms. It may also 
be viewed as including the resulting theorems. Some examples of extra-logical 
axioms are given in 14.27. 

INGREDIENTS OF FIRST-ORDER LANGUAGE 
We shall now list the ingredients. Some readers may wish to glance ahead to 14.24, where 
we consider propositional logic, a special case that has fewer ingredients. 

14.16. Punctuation symbols. These are parentheses for g r o u p i n g -  i.e., to avoid ambiguity 
and commas for delimiting items in a list. It is possible to give precise rules for the use 

of parentheses and commas, but we shall omit the details. 
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14.17.  Symbols for individuals. (These are omit ted in propositional logic; see 14.24.) In 
predicate logic, there are three types of symbols for individuals: 

�9 i n d i v i d u a l  c o n s t a n t  s y m b o l s ,  denoted in the discussions below by 

a, b, c , . . .  or al, a2, a3,. �9 �9 or a, a ~, a ' , . . .  

(Actually, constant symbols may be dispensed with as a separate class of symbols, 
since they may be viewed as function symbols of arity 0; see 14.18 below.) 

�9 i n d i v i d u a l  f ree  v a r i a b l e  s y m b o l s ,  denoted in the discussions below by 

x, y, z , . . .  o r  ?21,  v 2 ,  v 3 ,  �9 �9 �9 o r  ?J, v t ,  ?2 t t ,  . . . 

�9 i n d i v i d u a l  b o u n d  v a r i a b l e  s y m b o l s ,  denoted in the discussions below by 

~, ~, ~ , . . .  or ~1, ~2, ~3, �9 �9 �9 or ~, ~', ~ " , . . .  

In most texts on logic, the free and bound variables are taken from the same set of symbols; 
in some texts either the constant symbols or the variable symbols are omit ted altogether. 
However, we prefer to use three separate sets of symbols; this is discussed further in 14.20. 

The sets of constants and variables are countably infinite in most applications, but these 
sets could be larger or smaller. Practical,  everyday mathemat ics  uses only countably many 
symbols for instance, al though there are uncountably many real numbers, we have no 
way of actually writing down distinct representations for most of those numbers. It is not 
even humanly possible to write down a countably infinite collection of symbols; tha t  would 
require more t ime than any mere mortal  has. Nevertheless, for some theoretical purposes it 
can be useful to conceptualize and investigate a language with uncountably many symbols 

e.g., we could say "let L be a language that  includes a constant symbol c~ for each real 
number r." We can talk about  the c~'s in the abstract ,  even if we can' t  write them all down 
concretely. 

Hereafter, we shall assume that  

the set of free variables and the set of bound variables are both empty (as in 
propositional logic) or both infinite (as in ordinary mathematics). 

The case of finitely many variables turns out to be technically different and difficult, and 
will not be considered in this chapter. Tha t  case is manageable for elementary results but 
becomes difficult s tart ing in 14.41; for simplicity of exposition we shall exclude that  case 
from the outset. One difficulty with that  case can be explained roughly as follows: Reasoning 
in formal logic (or in other parts of mathemat ics ,  for that  mat ter)  involves substitutions, 
usualiy replacing all occurrences of one free variable with copies of some term whose free 
variables are not already in use. A single computat ion may involve many substi tut ions and 
thus many free variables. It will involve only a finite number  of free variables, but in general 
we do not know in advance how large or small tha t  finite number will be the number 
may vary from one computat ion to another,  and in general there is no finite upper bound 
for the number of variables needed for a computat ion.  If our language has only finitely 
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many free variables i.e., if some particular finite number is specified in advance then 
we may run out of variables before some computations are completed. On the other hand, 
if we have infinitely many free variables, we can complete any computation and still have 
plenty of free variables left over. 

14.18. Symbols for operations. Each operation symbol has an ar i ty ,  or r a n k  i.e., an 
associated nonnegative integer that specifies how many arguments each of these symbols 
should be followed by. For instance, if f has arity 4, then we may form expressions such as 
f (w,x,  y, z). The precise rules for forming such expressions are given in 14.22 and 14.23. 

It is convenient to write x + y instead of +(x, y). The abstract discussions of expressions 
f(x, y) will apply to expressions x + y with obvious modifications. Analogous modifications 
also apply for other commonly used binary operation symbols, such as . ,  x, A, V, etc. 

We have three types of operation symbols, listed below. Although interpretations are 
not part of the formal language, a preview of typical interpretations may make the formal 
language easier to understand, so we include a few examples of interpretations here: 

(i) F u n c t i o n  symbol s ,  here denoted f, g, h, etc. (These are omitted in propo- 
sitional logic; see 14.24.) 

Examples in arithmetic or analysis. We might use the function symbols 
+ , - , . , / ,  all with arity 2, and the function symbols cos and - with arity 1. A 
function symbol with arity 0 is a symbol that gets interpreted as a constant 

e.g., the symbol "3" or "v/5. '' 
In ordinary mathematics, the character " - "  represents both the binary 

operator of subtraction and the unary operator of additive inverse, but those 
are actually different operators, and for purposes of logic it would be best to 
represent them with different characters such as " - "  and "-." Interestingly, 
these two operators are represented by different keys on some recent handheld 
electronic calculators, a source of confusion for mathematicians who grew up 
using one character for the two operations. 

Examples in set theory. We might use the function symbols N, U with arity 
2, and C with arity 1; we might use ~ for a symbol with arity 0. 

Examples in group theory. A character such as o or D might be used as a 
function symbol of arity 2. 

(ii) R e l a t i o n  (or p r e d i c a t e )  symbol s ,  here denoted P, Q, R, etc. (In propo- 
sitional logic, these occur only with arity 0, and are then called primitive 
proposition symbols; see 14.24 and 14.18(ii).) 

Examples. Some common relations of arity 2 are <, >, <, >, =, r  E, ~. 
Many other meanings are possible for relation symbols; for instance, in arith- 
metic, R(x, y) might have the interpretation "x is a divisor of y." An example 
of a relation with arity 1 is "x is a prime number." A relation with arity 0 is 
just a statement that does not mention any variables. 

Remark. It is actually possible to dispense with function symbols, by 
viewing each function of arity n as a relation with arity n + 1. For instance, 
the equation z = x + y determines a function z = f(x, y) with arity 2, but it 
also determines a relation R(x, y, z) with arity 3. 
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(iii) Logica l  c o n n e c t i v e  symbo l s .  The precise choice of logical connective sym- 
bols may vary slightly from one exposition to another. The ones we shall use 

are: 
-7 (arity 1) not, negation 
U (arity 2) or, disjunction 

(arity 2) and, conjunction 
(arity 2) implies, implication 

Some mathematicians use additional c o n n e c t i v e s -  e.g., the connective 
(iff) or the connective I(the Sheffer stroke). Also, some mathematicians prefer 
to define some of the connectives in terms of others e.g., the connective U 
may be defined by the equation A U ~B = (=A) ,~ ~B. However, we prefer to 
begin with unrelated symbols and then find relationships as a consequence of 
axioms. 

The notations vary slightly. For instance, among some mathematicians, 

"not" may be written instead as 
"or" may be written instead as V or U 

"and" may be written instead as A or n or 
"implies" may be written instead as =~ or D 

We have chosen our notation in this book so that  different symbols are used 
in logics (U, N), in lattices (V, A), and in algebras of sets (U,N). This may 
reduce some confusion when two of these different kinds of structures must 
interact see especially 14.27.d, 14.32, and 14.38. 

It should be understood that  meanings are not yet attached to the symbols not even 
to familiar symbols such as -7, +, [}, o, =, E, --~. We may call -~ the "negation" or call + the 
"plus sign" to make them easier to read aloud and to lend some intuition about what this 
is all leading up to, but we do not yet associate these symbols with their usual meanings 
or any other meanings. Meanings will be attached later, when we consider interpretations 
in 14.47. In the formal language, these symbols are merely viewed as meaningless symbols, 
with arities assigned to grammatically govern the joining of these meaningless symbols 
into meaningless strings. In fact, the symbols -7 and U have slightly different meanings in 
intuitionist and classical logic, both of which are introduced in the following pages. 

In the formal theory, our meaningless symbols may also be accompanied by some axioms. 
The logical connective symbols are governed by the logical axioms (see 14.25); function 
symbols may be governed by extra-logical axioms as in 14.27.c; relation symbols may be 
governed by extra-logical axioms as in 14.27.a. No other meaning is attached to any of 
these symbols in the formal theory. 

14.19. Quantifiers. There are two kinds of quantifiers: 

V(, the u n i v e r s a l  quan t i f i e r ,  usually read "for each (." 

3~, the e x i s t e n t i a l  quan t i f i e r ,  usually read "there exists ~ such that." 
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Here ~ is a bound variable; any other bound variable may be used in the same fashion. (In 
propositional logic there are no variables and thus no quantifiers; see 14.24) We caution 
that the symbols V and 3 occasionally have meanings slightly different from "for each" and 
"there exists;" see 14.47.j. Until we study their interpretations in 14.47.j, the symbols V 
and 3 should be viewed as not having any meaning at all; they are simply meaningless 
symbols whose use is governed by grammatical rules and inference rules listed in 14.23(iii) 
and 14.26. 

The quantifier V is commonly read as "for all" in the mathematical literature, but we 
prefer to read it as "for each." In common English, "for all" suggests that the objects are 
perhaps being treated all in the same fashion. The customary mathematical meaning of V 
is closer to "for each," which emphasizes that the objects under consideration can all be 
treated separately, one by one, perhaps with each treated differently. 

We emphasize that in a first-order language, a quantifier is understood to act only on an 
individual variable. Thus, it is possible to say "for each individual ~," but grammatically 
it is not permitted to say "for each formula 9"' or "for each class S of individuals." Those 
expressions are permitted in higher-order languages i.e., languages of second or third 
order, etc.; we shall not investigate such languages in this book. 

14.20. Discussion of bindings. Some popular expositions of logic are Mendelson [1964] 
and Hamilton [1978]; those textbooks have been usedwidely and their treatment can now 
be considered "conventional" or "customary." Our own treatment will follow Rasiowa and 
Sikorski [1963], which is unconventional in some minor respects. For instance, the Rasiowa- 
Sikorski treatment uses fewer definitions of symbols and more axioms governing the use of 
undefined symbols. 

A more important difference is in the use of bound and free variables: 

In conventional treatments such as Mendelson [1964] or Hamilton [197S], the rule for 
incorporating quantifiers into formulas is trivial: If 04 is any formula and x is any 
variable, then Vx04 and 3x04 are formulas, regardless of how x is already being used in 
the formula A or elsewhere. The same symbols are used for free variables and bound 
variables; one defines whether a variable symbol x is bound or free according to how 
and where it appears in a formula. The definitions of bound and free variables and 
the rules for substitution are (in this author's opinion) rather complicated and nonin- 
tuitive. The definitions involve the "scope" of a quantifier and the rather convoluted 
notion of "a term t that is free for the variable x in the formula 3"." 

�9 In Rasiowa and Sikorski [1963], the rule for defining free and bound variables is trivial: 
Before we even begin to think about how to make formulas, we agree in advance which 
symbols (x, y, z , . . . )  will be free variables and which symbols (~, r/, ( , . . . )  will be bound 
variables; two disjoint sets of symbols are used. The rules for incorporating those 
variables into formulas (described in 14.22 and 14.23) and for making substitutions 
(described in 14.26) are not trivial, but they are not particularly complicated. 

To motivate either approach, we shall now discuss bindings in general. 
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In ordinary mathematics (i.e., outside of formal logic), bindings are generated by certain 
operators such as f ,  }-~, l-[. For instance, the equation 

~0 x f (x) - ~2 d~ 

makes sense whenever x is a real number. In this equation, x is a free variable, and ~ is a 
bound or dummy variable (also sometimes known as an apparent variable). The function f 
is a function of x; it does not really involve ~. In some sense, ~ is not really a "variable" at 
all it is just a "placeholder," and the place can be held just as well by nearly any other 
letter. All of the expressions 

i x /oo x /o x /i x ~2 dw, ~2 d~, ~2 dr], ~2 d~ 

represent exactly the same function f (x) .  In fact, that function can also be represented 
without any dummy variables: f ( z )  = x3/3. However, dummy variables are unavoidable 
for certain other functions; for instance, it is well known (but not easy to prove) that the 
function g(x) - fo  exp (~2) d~ cannot be represented in terms of the classical elementary 
functions (algebraic expressions, trigonometric functions, exponentiation, logarithms, and 
compositions of such). 

In the paragraph above, we have followed the typographical convention of Rasiowa and 
Sikorski, using different sorts of letters for free variables (x, y, z, etc.) and bound variables 
(~, ~, C, etc.). But in the wider literature, that convention generally is not observed, and any 
letter can be used for either type of variable. For instance, the function f described in the 

preceding paragraph could be defined as easily by the equation f(~) - f~o z2 dx. In this re- 
spect, the Mendelson/Hamilton approach follows the convention of "ordinary" mathematics 
(i.e., mathematics outside of logic). However, in other respects the Mendelson/Hamilton 
approach differs from the conventions of ordinary mathematics, as we shall now describe. 

In the equation f (x )  - fo  ~2 d~, we can replace ~ by nearly any other letter. There is 
one exception: We should not replace ~ with x itself. Polite mathematicians prefer not to 
write f ( x )  - fo  x2 dx since that equation uses the same letter z for two different purposes 

as a free variable and a bound variable. Admittedly, that type of expression can be 
found in some physics or engineering books it is interpreted to mean the same thing 
as f ( x )  - fo  ~2 d~ but mathematicians frown upon such constructions. Likewise, an 
expression such as 

/0 g(x, y) - (x + y)2 + exp(x 2) dx 

will make any well-bred mathematician uncomfortable, but we know that what is probably 
meant is 

/0 g(x, y) -- (x + y)2 + exp({ 2) d{. 

Analogous beasts appear in conventional logic books, but with little or no stigma at- 
tached. In the formula 
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the variable x has one free occurrence and two bound occurrences. (The "x" immediately 
after the V is one of the bound occurrences.) Such a distasteful formula is not absolutely 
necessary for proofs, since Vx (R(x,z)) is in most respects equivalent to Vw (R(w,z)), as 
explained in 14.42. Thus we can replace (.) with the formula Q(x,y)u (Vw (R(w,z))), 
which does not mix free and bound occurrences of one symbol. 

An integral formula  such as g(tt) - / 1 / o  x3l tdz  dx has no clear meaning in ordinary 
mathematics. Nevertheless, analogous formulas appear often in logic; one such formula is 

which has one variable bound twice. Such a formula may seem unnatural, since it has no ana- 
logue outside of formal logic. Again, such beasts are not really necessary: Since Vx P(x, u) 
is in most respects equivalent to Vw P(w, u) (see 14.42), it may be helpful to view (**) 
as having the same meaning as 3x (Vw (P(w, u))), an expression with no double bindings. 

(An analogous interpretation would make f l  fo x3udx dx equal to fo f l  w3ud w dx.) 
Thus, in any explanation of logic, it is necessary to either 

(i) prohibit nonintuitive expressions such as (,) and (**), or 

(ii) provide rules for dealing with such expressions. 

Conventional books such as Mendelson [1964] and Hamilton [1978] have followed option (ii), 
but the rules are necessarily rather complicated. Rasiowa and Sikorski [1963] have taken 
option (i), and so shall we in this book. Since the nonintuitive expressions can always be 
replaced by more acceptable ones anyway, the difference between options (i) and (ii) has 
only a superficial or cosmetic effect; it has no effect on deeper results discussed later in this 
chapter, such as the Completeness Principle. 

A word of caution: Even the Rasiowa-Sikorski approach is not entirely trivial. Among 
other things, it permits expressions such as (34 P(~)) U (V~ Q(~)). The ~'s in the first half of 
this expression are unrelated to the ~'s in the second half of this expression. Some confusion 
might be avoided if we replace this formula with the equivalent formula (34 P(~))U(Vv Q(r/)). 

Actually, variables could be dispensed with altogether; books on c o m b i n a t o r y  logic 
such as Hindley, Lercher and Seldin [1972] show that everything can be expressed in terms 
of functions. That  approach will not be followed in this book, however. 

14.21. Substitution notation. Throughout the discussions in the next few pages, we shall 
frequently use this notation: 

Let x be a free variable symbol. Let A(x) be a finite string of symbols in which 
x may occur 0 or more times, and in which other free or bound variables may 
occur 0 or more times. Let a be any finite string of symbols. Then A(a) will 
denote the string of symbols obtained from A(x) by replacing each occurrence 
of x (if there are any) with a copy of the string or. 

Of course, if x does not appear in the string A(x), then A(a) is identical to A(x). 

14.22. Grammatical rules, part 1. In a first-order language, t e r m s  are certain finite strings 
of symbols formed recursively by these two rules: 
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(i) Any constant symbol or free variable symbol is a term. 

(ii) If f is an n-ary function symbol and t l , t2 , . . .  ,tn are terms, then the expres- 
sion f ( t l , t 2 , . . . , t n )  is a term. 

There are no other terms besides those formed via these rules. 
Condition (ii) is not self-referential i.e., it does not involve any circular reasoning 

that  leads to a contradiction. Indeed, we may classify strings of symbols according to their 
length (i.e., how many symbols appear in a string) or their depth (i.e., how many times 
we have functions nested within functions). Then the construction in condition (ii) always 
forms longer terms from shorter ones or forms deeper terms from shallower ones. To prove 
a s ta tement  about all the terms of a language, it is often possible to proceed by induction 
on the length or depth of the terms. 

Observation: By our definition, no bound variables appear in terms. 

Ezample. Consider a language in which 2, 5, 6 are among the constant symbols, z and y 
are among the variable symbols, v / a n d  cos are function symbols of arity 1, and + , - , .  are 

function symbols of arity 2. Then the string of symbols ( 5 . z ) + ( v / ( ( 6 . y ) -  (cos(2)))) is a term. 
When it is given its usual interpretat ion involving real numbers, then that  string of symbols 
is a real-valued function of two real variables, wri t ten more commonly as 5z + v/6y - cos 2. 

Remark. In the discussions below, terms will generally be represented by the letters 
t, t l , t2 , . . ,  and S, Sl,S2,.. . ,  etc. However, it should be understood tha t  these letters are 
not actually symbols making up a part  of our formal language (the inner system). Rather,  
these letters are m e t a v a r i a b l e s  i.e., they are part  of the metalanguage; they are infor- 
mal conventions adopted for our discussion in the outer system. The precise expression "let 
t be a term" is an abbreviat ion for the imprecise and unwieldly expression "let us consider 
any term, such as f (x l ,x2 ,g(q ,c2) ,h(x3 ,  c3,c4))." 

14.23.  Grammatical rules, part 2. Certain finite strings of symbols are known as f o r m u l a s  
(or, in some books, w e l l - f o r m e d  f o r m u l a s  

, or wtFs).  The definitions are recursive: 

(i) An a t o m i c  f o r m u l a  (or atom) is an expression of the form P(tl, t2 , . . . ,  tn), 
where P is an n-ary relation symbol and t l ,  t2, �9 �9 tn are terms. It is a formula. 

We permit  n = 0. Thus a primitive proposition symbol (i.e., relation sym- 
bol of arity 0) is an atomic formula. (In propositional logic, this is the only 
type of atomic formula, since the only relation symbols we have in proposi- 
tional logic are those 'of arity 0; see 14.24.) 

(ii) If J t l , J t 2 , . . .  ,An are formulas and ~ is an n-ary logical connective symbol, 
then ~ ( A 1 , A 2 , . . .  ,An) is a formula. Since we will only use a few connectives, 
this rule can be restated as: If ~[1 and A2 are formulas, then 

(-n~[1), (J:[1 U eLI2), (~[1 [-] J6~2), (eLI1 --~ oZ:[2) 

are formulas. We may omit the parentheses when no confusion is likely. 

(iii) Suppose 04(x) is a formula in which the bound variable ~ does not occur. 
Apply the subst i tut ion notat ion of 14.21. Then V~ ~4(~) and 3~ r are also 
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formulas. (Of course, no formulas can be formed in this fashion if the sets of 
variable symbols are empty, as in propositional logic.) 

There are no other formulas besides those formed recursively using the rules above. 
Remarks. The beginner might be concerned that 14.23(ii) seems self-referential and thus 

might permit circular reasoning. However, there is no need for worry no circularity is 
possible here. Each formula formed as in 14.23(ii) is longer (in number of symbols used) 
than the formulas from which it was formed. A statement about the set of all formulas can 
be proved by induction on the lengths of the formulas; this is a common method of proof. 

In the discussions below, formulas will generally be represented by the letters A, 13, e, 
etc. However, it should be understood that these letters are not actually symbols making up 
a part of our formal language (the inner system). Rather, they are metavariables, adopted 
for our informal discussion in the outer system. The precise expression "let 9"be a formula" 
is an abbreviation for the imprecise and unwieldly expression "let us consider any formula, 
such as (~P(x, f(y, z))) U (Q(x, z) ~ ((R ~ (S(x, y, z, g(z))))))." 

14.24. An important special case of predicate logic is propos i t ional  logic (or propo-  
si t ional calculus, also known as sentent ia l  logic or sentent ia l  calculus). Historically, 
it developed before other kinds of logic. It is simpler than predicate logic, in that it has 
fewer ingredients. A typical formula in propositional logic is (P ~ (P R (-~P))) ~ (-~P); a 
typical formula in predicate logic is (V~ P(~, x)) U Q (x, f(y,z)) .  

In propositional logic, there are no symbols for individuals i.e., no constant indi- 
viduals, no bound variables, and no free variables and there are no function symbols. 
Consequently, the only relation symbols have arity 0, and there are no quantifiers and no 
terms. 

ASSUMPTIONS IN FIRST-ORDER LOGIC 
In addition to its language (i.e., alphabet and grammatical rules, described above), a logical 
theory also involves certain assumptions. These are listed below. 

14.25. Logical axioms. The literature contains many different axiomatizations of logic. 
We shall follow the development of Rasiowa and Sikorski [1963]. 

Our first nine axioms determine what is known as posi t ive logic. 

(i) (A ~ ~) ~ ((~ ~ C) ~ (A ~ e)). This is called the Syllogism Law. 

(ii) A ~ ( A U ~ ) .  

(iii) ~B ~ (A u ~B). 

(iv) ( A ~ e ) - - .  ( ( i B ~ e ) ~  ( ( A U ~ ) ~ e ) ) .  

(v) (X n S) X. 

(vi) ( A m S ) + S .  
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(vii) (e ---, 04) ~ ( ( e  ~ (B) ~ (C ~ (04 m ~ ) ) ) .  

(viii) (04 --, (:B ---, e)) ---, ((04 ~ (B)---, e). This is the I m p o r t a t i o n  Law. 

(ix) ((04 R (B)---, C) ~ (04 ~ (~ ~ C)). This is the E x p o r t a t i o n  Law. 

The nine axioms above, plus the next two axioms below, determine what is commonly 
known as i n tu i t i on i s t  logic. It was developed largely by Heyting and corresponds closely 
to intuitionist or constructivist thinking. 

(x) (04 ~ (~04)) ~ ~. This is the D u n s  Sco tus  Law. 

(xi) (A ~ (04 m (-~04))) ~ (-~04). 

Finally, the eleven axioms above plus the twelfth axiom below determine what is known as 
classical  logic, which is close to the way of thinking of most mathematicians. 

(xii) 04 U (~04). This is the Law of t he  E x c l u d e d  Midd le ,  or tertium non datur. 

The twelve rules listed above are actually axiom schemes each of them represents 
infinitely many axioms. For instance, Axiom Scheme (ii) yields the axiom P ~ (PUQ),  but 
it also yields the axiom (P(x) N R(f (a ,  y))) ~ ((P(x) ~ R( f (a ,  y))) U (Q n (-~S))) by using 
different formulas for A and N. (Recall that A and N only belong to the metalanguage. 
They are informal shorthand abbreviations for expressions such as P(x ) •R( f (a , y ) ) ,  which 
belong to the object language.) 

14.26. The rules  of in fe rence  of our logical system are rules by which, from a given set of 
formulas, we may d e d u c e  (or infer) another formula. Here, "deduce" and "infer" merely 
mean "obtain." We are not necessarily obtaining "true" f o r m u l a s -  we are merely collecting 
"obtainable" formulas, and the rules of inference tell us which formulas are obtainable. 
Admittedly, the rules of inference are most often applied to formulas that are in some sense 
"true," but this is not always the case. For instance, in a proof by contradiction, we may 
assume the negation of the desired conclusion, and then use the rules of inference to try to 
infer various consequences of that and other assumptions, until a contradiction is reached, 
thereby proving the desired conclusion. 

The rules of inference and logical axioms vary slightly from one exposition to another. 
Indeed, what one book calls a rule of inference is what another book may call a logical 
axiom. Our own rules, listed below, follow those of Rasiowa and Sikorski [1963]. These 
rules will be "justified" in 14.55(ii). 

(R1) M o d u s  p o n e n s ,  also known as the ru le  o f  d e t a c h m e n t .  
formulas. Then from A and (A --, (B) we can infer N. 

Suppose A and ~ are 

Our first rule, modus ponens, is present in all versions of logic. The remaining rules below 
involve variables, and so they can be skipped in considering any logic that does not involve 
variables (such as propositional logic). 

(R2) R u l e  of s u b s t i t u t i o n .  Let Xl,X2, . . .  ,xn be distinct free individual variables, and let 
tl, t 2 , . . . ,  t~ be (not necessarily distinct) terms. Let 04(Xl, x 2 , . . . ,  xn) be a formula, 
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in which each of the free individual variables x l, x 2 , . . . ,  Xn occurs 0 or more times. 
Let A(tl, t2, . . . ,  tn) be the formula obtained from A(Xl,X2,... ,Xn) by simultaneously 
replacing all occurrences of the xj's with copies of the corresponding tj's. Then from 
fl[(Xl, x 2 , . . . ,  Xn) we can infer A(tl, t2, . . . ,  tn). 

In the four rules below, let A(x) be a formula in which the bound variable ~ does not occur; 
we follow the substi tution notat ion of 14.21. Also, let ~B be any formula. Then: 

(R3) Introduction of existential quantifiers. Suppose ~ contains no occurrence of x. Then 
from A(x) --~ ~ we can infer (3~ A(~)) ~ ~.  

(R4) Introduction of universal quantifiers. Suppose ~ contains no occurrence of x. Then 
from ~ ~ A(x) we can infer ~B ~ (V~ A(~)). 

(R5) Elimination of existential quantifiers. (We make no assumption about whether x 
appears in ~.)  From (3~ A(~)) --+ ~ we can infer A(x) ~ ~. 

(R6) Elimination of universal quantifiers. (We make no assumption about whether x ap- 
pears in ~.)  From ~B ~ (V~ A(~)) we can infer ~ --+ A(x). 

The rules of inference form the basis for our syntactic implications, and in fact the rules of 
inference are our most basic examples of syntactic implications. The rule of modus ponens 
says that  for certain formulas 9., 9, 9{ we have 9., 9 ~- 9{; the other five rules of inference are 
of the form 9" F- 9. 

The rules of inference listed above will be assumed i.e., taken as hypotheses in our 
reasoning about reasoning. Some auxiliary rules of inference will be proved as consequences 
of modus ponens and the logical axioms in 14.30. 

14.27.  Examples of extra-logical axioms. Besides the logical axioms shared by essentially 
all first-order theories determining our reasoning methods, a particular first-order theory 
may have additional, specialized axioms, determining the mathematical  objects that  we 
wish to study with that  reasoning process. We refer to these as extra-logical or nonlogical 
axioms. Below are some examples. It should be understood that  these examples are not 
part  of the general explanation of predicate logic developed in this chapter i.e., we shall 
not assume these axioms later in this chapter. 

a. In many first-order systems, a special role is played by a relation symbol of rank 
two, called equality or equals. It is equipped with several axioms; the precise list of 
axioms varies from one exposition to another. Most often this symbol is denoted by 
" = " though in some expositions it may instead be denoted by " ~ " or " = " or 
some other symbol, to emphasize that  it is a symbol with precisely specified properties 
under formal study rather than just ordinary informal equality. Here is a typical set 
of a x i o m s  for equa l i ty :  

(i) x - x. 

(ii) (x - y) ~ (y - x). 

(iii) ((x - y) • (y - z)) ~ ( x - z ) .  
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go 

C. 

(iv) Let s1,s2,t be terms, and let y be a free variable. For j = 1,2, let tj be 
the term obtained from t by replacing each occurrence of the variable y 
with the term sj. Then (Sl = s2) --~ (tl = t2) is an axiom. 

(v) Wi th  notat ion as in 14.21, if Sl, s2 are terms, then (Sl = s2) ~ (o4(Sl) 
A(s2)) is an axiom. 

The first three of these axioms say that  equality is an "equivalence relation," in a sense 
similar to that  in 3.8 and 3.10. The last two axioms say that  "equals can be subst i tuted 
for equals." Actually, there is some redundancy in our formulation; our axioms (ii) and 
(iii) actually follow from axioms (i), (iv), and (v). (See Hamilton [1978], for instance.) 

A logical system that  includes such axioms is generally called p r e d i c a t e  logic 
w i t h  e q u a l i t y .  In this book we shall consider the axioms of equality to be extra- 
logical axioms, since they do not occur in all first-order systems. However, we caution 
that  some mathemat ic ians  are concerned solely with first-order systems with equality, 
and some of these mathemat ic ians  find it convenient to designate the axioms of equality 
as "logical axioms" - -  which means that  those axioms may sometimes get used without  
being mentioned. 

For the t h e o r y  of  p r e o r d e r e d  sets ,  two of the binary relation symbols are = and 4.  
Axioms used are the axioms for equality (described above) plus these axioms for the 
ordering: 

(reflexive) (x 4 x), 
(transitive) ((x 4 Y)R (y 4 z)) ~ (x 4 z). 

For the t h e o r y  of  p a r t i a l l y  o r d e r e d  se ts ,  we add this axiom: 

(antisymmetric)  ((~ 4 y ) n  (y 4 x)) -~ ( x -  y). 

All of the axioms above are of first order - i.e., they deal only with individual 
members of a preordered or partially ordered set D, not with subsets of tha t  set. In 
contrast,  the Dedekind completeness of a poset D is a s ta tement  requiring a higher- 
order language. Recall that  D is Dedekind complete if each nonempty subset that  is 
bounded above has a least upper bound. In symbols, that  condition is 

for each S c_ D, ((7 (S - 2~))~ (3x Vy (y E S ~ y ~ x))) ~ (3u Vx ((u 
~) ~ (vy (y e s ~ y ~ ~)))) 

where A ~ ~ is an abbreviation for (o4 + ~B) A (~B ---, o4). The condition begins with 
"for each set S that  is a subset of D;" thus it involves a quantifier that  ranges over 
subsets of D. There are other, equivalent ways to formulate the condition of Dedekind 
completeness of D, but none of them can be expressed in first-order language over D. 
Contrast  this with 14.27.d, below. 

For the t h e o r y  of  m o n o i d s ,  one of the binary relations is =, one of the binary 
functions is o, and some nullary function (i.e., function of arity 0) is denoted by i. 
Axioms used are the axioms of equality (described above) plus these axioms: 

(associative) 
(right identity) 

(left identity) 

( x  o y )  o z - x o ( y  o ~), 
x o i  - -  X ,  

i o x - x .  
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Additional algebraic axioms can be used to determine the theory of other types of 
algebraic systems e.g., groups, rings, etc. 

d. In the l a n g u a g e  of set  t h e o r y ,  the individual elements a, b, c,z,  y, z, etc., that  we 
discuss are intended to represent sets. In conventional (i.e., atomless) set theory, the 
only undefined constant is O; all other constants are defined in terms of it. Thus, 0 is 
an abbreviation for O, 1 is an abbreviation for {0}, 2 is an abbreviation for {0, {O}}, 
etc., as in 5.44. 

A basic binary relation is E (membership). Other relations can be defined in terms 
of membership. For instance, u C v means (z E u) --+ (z E v), and u - v means 

c n c 
The most commonly used axioms of set theory are the ZF axioms listed in 1.47. 

To make ZF into a first-order theory we must view the Axiom of Comprehension 
and the Axiom of Replacement not as single axioms, but as axiom schemes. Each of 
these two schemes represents infinitely many different axioms. We have one Axiom of 
Comprehension for each property P that  can be formulated in the first-order language, 
and one Axiom of Replacement for each function f that  can be formulated in the 
first-order language. (See also the reinterpretation of these axioms indicated in 14.67.) 

The language of set theory is extremely powerful it is more expressive than any 
of the other languages mentioned above. As we remarked in 1.46, all familiar objects 
of mathematics  can be expressed in this language. The integers can be built up using 
the Axiom of Infinity; the rational numbers can be built up using equivalence classes 
of pairs of integers; the real numbers can be built up using Dedekind cuts of rationals. 
The language of set theory is sufficiently expressive for us to assert that  a certain poset 
X is Dedekind complete: We can describe the ordering as a subset of X x X, and the 
subsets of X are members of ~P(X). Contrast this with 14.27.b, above. 

SOME SYNTACTIC RESULTS (PROPOSITIONAL 
L O G I C )  

14.28. Remark. We now consider some consequences of the logical axioms and inference 
rules listed in 14.25 and 14.26. We begin with some results that  do not mention variables or 
constants; these results will not require any rules of inference except modus ponens; these 
results will apply equally well to propositional logic or predicate logic. In 14.39 we shall 
begin to consider results that  do involve variables and constants. 

14.29. Some basic syntactic theorems of positive logic. 

(i) A ~ A .  

(ii) A --+ (:B --+ ,4 ) .  

(i i i)  (B --+ (,/t ---+ ,/t).  
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(iv) 04 --+ ((04 --+ 04) --+ 04). 
(v) ((x n x) 

(vi) A -+ (~ --+ (04 m ~)) .  

These results will be proved for all formulas 04 and ~B,using the axioms of positive logic (i.e., 
Axioms (i) through (ix) of 14.25). These results will be used later in proofs. 

Proof. The formula 

is an instance of Axiom (ix), and (((04 V1A)--+ 04)904)  ---+ 04 is an instance of Axiom (vi). 

Combine these, by modus ponens, to prove the formula ((04 q 04) -+ 04) --+ (04 --+ 04). Next, 
(04 n 04) --+ 04 is another  instance of Axiom (vi); combine tha t  with the preceding formula 
to prove Theorem (i). 

Theorem (ii) is immedia te  from Axioms (v) and (ix) via modus ponens (with the sub- 
s t i tut ion e = A). 

The formula (04 --+ 04) --+ (:B --+ (04 --+ 04)) is an instance of Theorem (ii). Combine it 
with Theorem (i), by modus ponens, to prove Theorem (iii). 

Theorem (iv) is just  an instance of Theorem (ii). 

The formula ((04 --+ ~B) --+ (04 --+ {B)) --+ (((04 --+ {B)R04) -+ {B) is an instance of a x i o m  

(viii). An instance of Theorem (i) is (04 --+ ~B) --+ (04 --+ ~B). Combine those, by modus 
ponens, to prove Theorem (v). 

The formula ((04 rq 5 )  --+ (04 n ~B)) --+ (04 --+ ({B --+ (04 n {B))) is an instance of Axiom 
(ix), and the formula (04 ~ {B) --+ (04 ~ ~B) is an instance of Theorem (i). Combine these to 
prove Theorem (vi). 

14.30.  

(ii) 

(iii) 

(iv) 

Additional rules of inference. We shall use the axioms of positive logic to prove: 

If 04, {B, C are some formulas such tha t  A --~ ~B and ~B ---+ C are syntact ic  
theorems, then 04 --+ C is also a syntact ic  theorem. 

A rq ~B is a syntact ic  theorem if and only if both  04 and N are syntact ic  
theorems. 

(04 --+ A) --+ 04 is a sy~ltactic theorem if and only if 04 is a syntact ic  theorem. 

If 04 ---+ (~B -+ 12) and 04 -+ {B are syntact ic  theorems,  then 04 -+ C is a syntact ic  
theorem. 

Proofs. We shall use not only Axioms (i) through (ix), but  also some of the Theorems of 
the previous section. 

Rule (i) follows easily from Theorem (i) and modus ponens. 
For Rule (ii), observe tha t  if 04 rl ~B is a syntact ic  theorem, then 04 and 13 are syntactic 

theorems by ax ioms  (v) and (vi) via modus ponens. Conversely, if 04 and :B are syntact ic  
theorems,  then 04 gl ~B follows from Theorem (vi) and two applications of modus ponens. 
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To prove Rule (iii): If A is a syntactic theorem, then from Theorem (iv) by modus 
ponens we know (A ~ A) ~ A is a syntactic theorem. Conversely, if (A ~ A) ~ A is a 
syntactic theorem, then from Theorem (i) by modus ponens we can conclude tha t  A is also 
a syntactic theorem. 

To prove Rule (iv): Note that  (A --~ (i3 ~ C ) ) ~  ((A ~ ~)  --~ (A --~ ((iB -~ C)~IB)) ) i s  
an instance of Axiom (vii). Combine it with the two given syntactic theorems, via modus 
ponens; thus we obtain A --~ (((~ --~ C ) R ~ ) )  as a syntactic theorem. On the other hand, 
an instance of 14.29(v) gives us ((i3 ~ C)R iB) --~ C. Combine these two results, using 
14.30(i); thus A --~ C is a syntactic theorem. 

14.31.  A set E of formulas is s y n t a c t i c a l l y  i n c o n s i s t e n t  if we can use E to deduce both 
A and -~A, for some formula A. Note that  we can then use E to deduce any formula; that  
is clear from the Duns ScoUts Law (Axiom (x) in 14.25). 

If E is not syntactically inconsistent, then it is s y n t a c t i c a l l y  c o n s i s t e n t .  
A derivation is understood to involve only finitely many steps, and so it can only involve 

finitely many of the axioms. Therefore, 

a collection of formulas is syntactically consistent if and only if each finite subset 
of that  collection is syntactically consistent. 

In other words, syntactic consistency of sets of formulas is a property with finite character, 
in the sense of 3.46. 

14.32.  Definition of the ordering of the language. Let F be the set of all formulas. We use 
the positive logic axioms from 14.25, plus whatever additional axioms we may choose. We 
now define two binary relations on IF as follows: For formulas A and N, 

A 4 iB will mean that  the formula A ~ N is a syntactic theorem; 

A ~ iB will mean that  both A --~ ~ and iB --* A are syntactic theorems. 

It should be emphasized that  the relations ~ and ~ are part  of our metalanguage,  not part  
of our object language (see 14.12.b). Thus, the expressions A ~ ~ and A ~ ~ are not 
"formulas." 

It follows from Theorem (i) of 14.29 and Rule (i) of 14.30 tha t  

is a preorder, and ~ is an equivalence relation, on F. 

Let L = ( F / ~ )  be the set of equivalence classes. The set L, equipped with the operations 
discussed below, is commonly known as the L i n d e n b a u m  a l g e b r a .  

The preorder ~ on F determines a partial  order on L, which we shall also denote by ~. 
Let [] : F -~ L be the quotient map; tha t  is, [A] is the equivalence class containing the 
formula A. Thus 

[A] ~ [~] if and only if (A --~ ~)  is a syntactic theorem. 

We shall use equality (=) in its usual fashion as a relation between equivalence classes. 
Thus, [A] = [N] means that  A and N belong to the same equivalence class i.e., it means 
that  A ~ N. 
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It should be emphasized that  any axioms whatsoever (or no axioms at all) may be used 
in addition to Axioms (i)-(ix). Different choices of additional axioms yield different relations 
4,  ~ and thus yield different Lindenbaum algebras. Throughout  most of our discussions 
in this and the next chapter, we assume that  some particular choice is made regarding the 
additional axioms, and thus we may speak of the Lindenbaum algebra. 

14.33. T h e o r e m .  The Lindenbaum algebra (L, f )  defined above is, in fact, a relatively 
pseudocomplemented lattice (as defined in 13.24), with operations given by 

v = u ([..4] => = [ 4  
[ A ] A [ ~ ]  = [04n$] ,  1 - [ 0 4 ~ A ]  

for any formulas 04, ~B. A formula 04 is a syntactic theorem if and only if it satisfies [04] = 1. 
If we assume the axioms of intuitionist logic, then L is a Heyting algebra, with 

0 = [~ n (-~4)], C[A] = [-,4] 

for any formula 04. The Heyting algebra is degenerate (i.e., satisfying 0 = 1) if and only if 
our set of axioms is syntactically inconsistent (i.e., there is some formula such that  04N (-~04) 
is a syntactic theorem), in which case every formula is provable. 

If we assume the axioms of classical logic, then L is a Boolean algebra. Its greatest 
member 1 is also equal to [04 II (-,04)] for any formula 04. 

The Boolean algebra L is more than just {0, 1} if and only if at least one formula 9" is 
neither provable nor disprovable from the axioms. 

Proof of theorem. (This argument follows the exposition of Rasiowa and Sikorski [1963].) 
We first show that  any two-element subset of (L, 4)  has a supremum. Let any two 

elements of L be given; then those two elements can be represented as [04] and [~B] for some 
formulas 04 and ~B (which are not uniquely determined by the given elements of L). From 
Axioms (ii) and (iii) we see that  [NUN] is an upper bound for the set { [04], [N] } in the poset 
(L, 4) .  Is it least among the upper bounds? Let any other upper bound for {[04], [~B]} be 
given; say that  upper bound can be represented by [e] for some formula C. Then 04 ---, e and 
~B ~ e are syntactic theorems, by our definition of 4.  By Axiom (iv) via modus ponens, it 
follows that  (04 V ~B) ~ e is also a syntactic theorem; thus [04 U ~B] 4 [e]. Thus [04 U ~B] is 
indeed l ~ t  ~mong the upper bounds of {[4], IS] }. 

An analogous argument works for lower bounds, using Axioms (v), (vi), and (vii). Thus 
L is a lattice, with [04] V [~B] = [04 U ~B] and [04] A [~B] = [04 V1 ~B]. 

Next we shall show that  ([04] => [$]) = [04 ~ ~B] defines a relative pseudocomplementa- 
tion operator. Let any formulas 04, ~B be given; we are to show that  [04 ~ ~B] is the largest 
A in L that  satisfies ,~ A [04] 4 [~B]. By Theorem (v) of 14.29 we know that  [04 ~ ~B] is one of 
the ,Vs with that  property. Is it the largest? Let any formula �9 satisfying [�9 A [04] 4 [~B] 
be given. Then (�9 N 04) ---, ~B is a syntactic theorem. The formula 

( ( 9  N A ) ~  $)  -~ ( 9  -* (A -* $ ) )  

is also a syntactic theorem, as it is an instance of Axiom (ix). From those two syntactic 
theorems via modus ponens we deduce the syntactic theorem �9 --, (o4 ---, ~B). In other 
words, �9 4 (04 ---+ ~B), so [04 ~ ~B] is indeed largest. 
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That proves our claim about relative pseudocomplements. As in any relatively pseudo- 
complemented lattice, we now know that the largest element of L is 1 = [A --+ A], for any 
formula A. By 14.30(iii) we know that  A is a syntactic theorem if and only if 1 ~ [A]; that  
is, if and only if 1 = [A]. 

Now suppose our axioms include the axioms of intuitionist logic. By Axiom (x) we see 
that [Am (-~A)] ~ [~] for any formulas A, ~. Thus L has a smallest element, given by the 
rule 0 = [A ~ (-~A)] for any formula A. Hence L is a Heyting algebra. The conclusion about 
inconsistency and degeneracy is now obvious. 

We have 0 = [A] A [-,A]. By 13.25.a it follows that [-~A] ~ ([A] =~ 0). On the other 
hand, we also have ([A] =~ 0) = [A ~ (A ~ (-~A))] ~ [-~A] by Axiom (xi). Thus the pseu- 
docomplement ([A] =~ 0) is  equal to [~A]. 

If we also assume Axiom (xii), then [A] V (C[A]) - [A u (~A)] - 1, so L is a Boolean 
algebra. 

14.34. Further consequences in intuitionistic logic. In any intuitionist logic, all the formulas 
given by the following schemes are syntactic theorems. This follows from the fact that the 
formulas correspond to identities that are satisfied in any Heyting algebra. 

a. I n t e r c h a n g e  of  H y p o t h e s e s .  (A ~ (~ ~ C)) ~ (~ ~ (A ~ e)). 

b. C o n t r a p o s i t i v e  Law. (A ~ ( - ~ ) )  -~ (~ ~ (~A)). 

c. D o u b l e  N e g a t i o n  Law. A ~ (~-~A). 

d. (A ~ ( -~A) )~  (~A). 

e. (A ~ ~B)~ ( ( ~ B ) ~  (~A)). 

f. B r o u w e r ' s  Tr ip le  N e g a t i o n  Law. (~-~-~A)~ ( ~ A ) a n d  ( -~A )~  (-~-~A). 

g. ((-~A) R ( ~ ) )  ~ (-~(A U ~)) and (~(A U ~)) ~ ((-~A) R (~B)). 

h. ((-~A) U ( ~ ) )  ~ (-~(A ~ ~)).  

i. ((-~A)U ~ ) ~  (A ~ ~). 

In classical logic we have those formulas, plus the ones listed in the section below. 

14.35. Some nonconstructive techniques of reasoning. In the setting of intuitionist logic, 
the following formula schemes are undecidable, in the sense that they can neither be proved 
nor disproved syntactically, using just the intuitionist logical axioms. Moreover, they are 
equivalent to each other, in the sense that any one of them can be deduced from any of the 
others. They are all derivable in classical logic; adding any one of them to intuitionist logic 
yields classical logic. 

Some of the formulas below could be viewed as symbolic representations of the principle 
of proof by contradiction. 

(A) Law of the E x c l u d e d  Middle"  A U (~A) 

(B) C o n v e r s e  of  t h e  D o u b l e  N e g a t i o n  Law: (-~-~A) -~ A 

(D) ( ( = A ) ~  (=~B))~ (~B ~ A) 
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(E) A) 
for all formulas A, ~3. 

Proof. The equivalence of these conditions is just a restatement of the result of 13.29. To say 
that  these conditions cannot be disproved in intuitionist logic is just to say that  the axioms 
of classical logic are syntactically consistent; that  will be established in the next chapter. To 
show that  these conditions cannot be disproved in intuitionist logic, let (H, 0, 1, V, A, 3 ,  C) 
be some particular Heyting algebra that  is not a Boolean algebra. (An example of such 
is mentioned in 13.28.a.) Say the members of H are 0, 1, a, b, c, etc. Form a propositional 
calculus that  has one primitive propositional symbol for each member of H; say the primitive 
propositional symbols are denoted P0, P1, Pa, Pb, Pc, etc. Now interpret each formula in the 
propositional logic as the corresponding member of the Heyting algebra. For example, 
one instance of the Duns Scotus Law is the formula (Pc • (-~Pc)) ~ Pa; interpret this 
as the member of the Heyting algebra represented by (c A (Cc)) =V a. That  expression 
simplifies to 1, in any Heyting algebra. It is now a tedious but straightforward matter  to 
verify that  (i) each of the eleven logical axiom schemes of intuitionist logic is represented 
by 1 in the Heyting algebra; and (ii) if :T and 9" -~ 9 are formulas represented by 1 in 
the Heyting algebra, then ~ is also represented by 1 in the Heyting algebra i.e., modus 
ponens preserves "truth;" but (iii) the Law of the Excluded Middle is not represented by 1 
in this particular Heyting algebra. This completes the proof. 

Remarks. In effect, we have used H as a "quasimodel" for our propositional calculus. 
Models and quasimodels will be explored in greater detail later in this chapter. However, for 
brevity we shall only consider classical logics, and so all our formal models and quasimodels 
will be Boolean-valued. Thus the argument given in the preceding paragraph does not quite 
fit the formal framework developed later in this chapter. 

14.36. Discussion of intuitionist logic. The axiom system of classical logic is slightly 
stronger than that  of intuitionist logic. Hence, the set of syntactic theorems in classical 
logic is slightly larger than that  of intuitionist logic. 

The connective U has rather different meanings in classical logic and intuitionist logic. 
In classical logic, if P is a primitive proposition symbol about which nothing in particular 
is assumed, then neither P nor ~ P  is a theorem; nevertheless P U (~P)  is a t h e o r e m -  this 
is just the Law of the Excluded Middle. In contrast, 

in intuitionist propositional logic, if Yt and N are some formulas such that  A U 
is a syntactic theorem, then at least one of A or N is a syntactic theorem. 

(The proof is too difficult to give here; a topological proof is given by Rasiowa and Sikorski 
[1963, page 394]. An analogous result for predicate logic can be found on page 430 of that  
book.) This result may surprise many readers, because it is so different from what we are 
familiar with in classical logic. It may also puzzle some readers, because it seems to give 
a stronger conclusion in intuitionist logic than in classical logic even though intuitionist 
logic is the weaker logic. But read carefully! Since intuitionist logic has fewer axioms and 
fewer syntactic theorems than classical logic, the hypothesis that  "A U N is a syntactic 
theorem of intuitionist logic" is stronger than the hypothesis that  "04 U N is a syntactic 
theorem of classical logic." 
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Heyting developed his algebraic approach to intuitionist logic in a paper in 1930. In 
1932, Kolmogorov published some related results, including this intuitive (i.e., real-world) 
interpretation of Heyting's formalism: 

Let us use letters such as 04, {B, e, etc., to denote problems that are to be solved. Interpret 
connectives as follows: 

o4 ~ ~B means the problem "to solve both 04 and iB," 

04 U ~B means the problem "to solve at least one of 04 or iB," 

04 --+ N means the problem "to show how any solution of 04 would yield a solution 
of ~B," 

-~04 means the problem "to show how any solution of 04 would yield a contra- 
diction." 

Then the properties of Kolmogorov's system of problem-solving coincides with the prop- 
erties of Heyting's formal intuitionist propositional calculus. (For further references and 
discussion, see Kneebone [1963].) The Law of the Excluded Middle (which we introduced 
in 6.4) is not taken as an axiom in the intuitionist system of Heyting or Kolmogorov i.e., 
although for some particular problems 04 we may be able to solve at least one of 04 or -~04, 
we do not have a general method for doing that. The systems of Heyting and Kolmogorov 
reflect a somewhat constructive viewpoint, but we shall not try to make that description 
precise, for there are many different schools of constructivism. 

SOME SYNTACTIC RESULTS (PREDICATE LOGIC) 

14.37. Remark. Our preceding syntactic results did not make any direct use of variables; 
they would apply equally well to propositional logic or predicate logic. We now turn to syn- 
tactic results that do involve variables. Most of these results are only relevant to predicate 
logic. A few of them are also relevant to propositional logic, but take a simplified form in 
that case; see 14.40.b for instance. 

14.38. We begin by considering the relation between these two kinds of implications: 

(i) E k-(9"--+ ~3), (ii) E tO 9" b ~. 

Here 9" and 9 are any formulas, and E is any set of formulas. 
It is easy to see that (i) ~ (ii) i.e., that whenever 9" and 9 are some particular 

formulas that satisfy (i), then they also satisfy (ii). (Proof. Assume E b (9" --+ ~), and 
assume we are given the set of formulas E U 9". Since we are given E, we may deduce 9" --+ 9. 
Since we are also given 9", by modus ponens we may deduce ~3.) 

Under certain additional assumptions we can show that (ii) => (i), and therefore (i), 
(ii) are equivalent; that  is the subject of 14.39 and 14.40. However, in general (i.e., without 
additional assumptions), (ii) does not imply (i); that is shown by an example in 14.60. 
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14.39.  T h e  D e d u c t i o n  P r i n c i p l e .  Let g: and ~ be formulas, and let E be a set of 
formulas. Suppose tha t  E U {9"} k 9; that  is, there exists a derivation of 9 from E U (9"}. 
Suppose, moreover, that  the derivation can be chosen so that  

whenever any of the inference rules (R2), (R3), ( R 4 ) i s  used, then the free 
variables X, Xl ,X2,X3, . . .  being replaced are symbols that  do not appear in 9 ~. 

Then E k (9" -~ g). 

Proof. We view E as a collection of extra-logical axioms. Let gl ,  8 2 , . . . ,  8~ be the given 
derivation. Thus, 8n - 9, and each gi is either a logical or extra-logical axiom, or 9", or 

'S a consequence of previous 8i by the rules of inference. It suffices to prove, by induction 
on k - 1, 2 , . . . ,  n, tha t  E k- (9" -~ 8k). We prove this by considering cases according to the 
method by which 8k enters the given derivation. 

If 8k is an axiom, then from 8k --, (9" ~ ~k) (in 14.29(ii)) and 8k we may deduce 
9" --, 8k. If E k is equal to :Y, then 9" ~ 8k is the formula 5 ---, 9", which was proved in 
14.29(i). Thus, in these cases we have E k (:Y ~ 8k), without  even referring to the induction 
hypothesis. 

Next, consider the case in which 8k follows from previous formulas Ei and 8j via modus 
ponens. Then (with i and j switched if necessary) we may assume 8i is the formula 8j ~ Ek. 
By our induction hypothesis we have E ~- (9" ~ (~j ~ 8k)) and E k- (9" ~ 8j).  By 14.30(iv) 
it follows tha t  E k- (9- ~ 8k). 

Next, consider the case in which 8k follows from some previous formula 8j by the Rule of 
Substi tut ion (R2) i.e., by replacing some or all of the free variables with specified terms. 
Since none of those free variables appear in 9", the same subst i tut ion leaves 9" unaffected. 
Thus 5 ~ 8k follows from 9" ~ 8j by the Rule of Substitution. 

Next, consider the cases in which 8k follows from some previous formula 8j by one of 
the remaining inference rules (R3), (R4), (R5), (R6). In these cases, t~j is a formula e ~ �9 
of a certain type, and from it we can deduce 8k, a formula (~ �9 of a certain type. It 
suffices to show, by different reasonings in these four cases, that  

from 9 ~ ~ (e ~ �9 we can deduce 9" -~ (C' --~ �9 ). (a) 

For some of these cases it is helpful to use 14.34.a; thus (a) is established if we can just 
show that  

from C ~ (9" ---, �9 we can deduce C' (:Y --, �9 ). (b) 

For other cases, it is helpful to.use Axioms (viii) and (ix) in 14.25; thus (a) is established 
if we can just  show that  

from (C F? 9 " ) ~  �9 we can deduce (C '~  9 " ) ~  2)'. (c) 

Applications of (R3) are of this form: A(x)  contains no occurrence of ~, ~B contains no 
occurrence of x, and from A(x)  ~ ~B we infer (3~ A(~)) ~ ~B. By assumption,  x does not 
occur in 9", hence it does not occur in (9" ~ ~B), and so from A(x)  -~ (2F -~ ~B) we infer 
(3~ A(~)) ~ (9" --, ~B), by the same rule of inference. Tha t  is just (b). 

Applications of (R4) are of this form: A(x)  contains no occurrence of ~, ~B contains no 
occurrences of x, and from 23 ~ A(x)  we infer ~B ~ (V~ A(~)). By assumption, 9- contains 
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no occurrences of x, hence 23 V1 9" contains no occurrences of x, hence by the same inference 
rule from ({B N 9") ~ A(x) we infer ({B R 9") -+ (V~ A(~)). This is just (c). 

Applications of (R5) are of this form: A(x) contains no occurrence of ~ and from 
(3~ A(~)) ~ {B we infer A(x) -+ ~B. By the same inference rule, from (3~ A(~)) ~ (9" --+ ~B) 
we infer A(x) --+ (~-+ ~B). This is (b). 

Applications of (R6) are of this form: A(x) contains no occurrence of ~, and from 
{B -+ (V~ A(~)) we infer {B ~ A(x). By the same rule, from ({B R 9") ~ (V~ A(~)) we infer 
(~B R ~) --+ A(x). This is (c). 

This completes the proof. 

14.40. Corollaries. Refer to 14.38. In special circumstances we obtain simplified versions 
of the Deduction Principle: 

a. D e d u c t i o n  P r i n c i p l e  for C l o s e d  F o r m u l a s .  Let 9 ~ and S be formulas, and let E 
be a set of formulas. Assume 9" has no free variables. Then E O {9 ~} F- 9 if and only if 

e 

b. D e d u c t i o n  P r i n c i p l e  for P r o p o s i t i o n a l  Logic.  In propositional logic, let 9" and 
S be formulas, and let E be a set of formulas. Then EU{9"}  k S if and only if 

e 
(In particular, taking E = O, we see that  9" F- 9 if and only if F (9 ~ + S). Thus, 

"---+" means just what one would expect it to mean, at least in propositional logic.) 

c. A w e a k  f o r m  of  p r o o f  by  c o n t r a d i c t i o n .  Suppose E is a set of formulas and A is a 
formula with no free variables. If E U {A} is syntactically inconsistent, then E F (-~A). 
(Moreover, this result is valid both in classical logic and in intuitionist logic.) 

Proof of c. By assumption, E U {Jt} F (23 [-1 ( ~ ) )  for some formula 23. Now, the formula 
(iB V1 (-~23)) --~ (-~A) is an instance of the Duns ScoUts Law, Axiom (x) from 14.25. Hence 
by modus ponens we have E U {A} F (-~A). Since A has no free variables, we have E ~- 
(A ---+ (-~A)) by the Deduction Principle 14.40.a. However, by 14.34.e we have the syntactic 
theorem (.4 + (-~A)) + (-~A), based solely on the logical axioms. Hence by modus ponens 
we have E F- (~A). 

14.41. T h e o r e m  c h a r a c t e r i z i n g  q u a n t i f i e r s  as sup  a n d  inf. Let ~ be a bound variable 
that  does not appear in the formula A(x); we follow the substitution notation of 14.21. Let 
T be the set of all free variables ( - -  an infinite set, by our assumption in 14.17), or more 
generally let T be any set of terms with T ~_ {Xl,X2,X3,...} where the xj's are distinct free 
variables. Then, in the Lindenbaum algebra (L, ~),  we have 

[3~ A({)] -- sup [A(t)], 
t E T  

[V~ A ( ~ ) ] -  inf [A(t)]. 
t E T  

Proof. By 14.29(i) we know (3~A(~)) ~ (3~A(~)) is a syntactic theorem. From that  
syntactic theorem and inference rule (Rh) we can infer that  A(x) -+ (3~ A(~)) is also a 
syntactic theorem. Let t be any term in T. Note that  the variable x does not appear in the 
formula (3~ A(~)). When we replace each x with t in the formula A(x) --~ (3~ A(~)), the 
result is the formula A(t) --~ (3~ A(~)), which is therefore is a syntactic theorem by (R2). 
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Thus [A(t)] ~ [3~A(~)] in the poset (L, 4) .  Tha t  is, [~  A(~)] is an upper bound for the set 
{ [ A ( t ) ]  : t ~ T}. 

Is it the least upper bound? Let IB be a formula such that  [IB] is also an upper bound 
for {[A(t)] : t E T}; we are to show that  [3~A(~)] ~ [IB]. For each t E T, our assumption 
about IB says tha t  A(t) ~ ~b is a syntactic theorem. Since T contains infinitely many free 
variables, and IB and A(x) are strings of only finitely many symbols, we have A(z) ---, IB for 
some free variable z tha t  belongs to T but does not appear in ~B or in A(x). Then ~ does 
not appear in A(z), and A(~) is the same as the string of symbols obtained from A(z) by 
replacing each z with ~. By (R3), the formula (~A(~) )  --~ 23 is a syntactic theorem. That  
is, [~A(~)] 4 [~B], as required. 

A dual argument  proves [V~ r = inft~T [A(t)]. 

14.42.  Corollary. Suppose tha t  neither of the bound variables ~, r /appears  in the formula 
A(x). Then 

[v~ x(~)]  = [% x(,7)], [3~ x(~)]  = [3,~ x(,7)]. 

(Thus, the validity of a syntactic theorem does not depend on our choice of the bound 
variables.) Also, 

[-. (v~ 4(~))]  = [~  (- .4(~)) ] ,  

[(v~ 4(~))  u :B] = [v~ (4(~) u :B)], 

[(3~ ~(~)) u ~] = [~ (~(~) u ~) ] ,  

etc. By repeated use of these formulas, quantifiers can be moved to the beginning of any 
formula. Thus, any formula is equivalent to a formula in p r e n e x  n o r m a l  f o r m  i.e., 
a formula consisting of a string of quantifiers, followed by a string of symbols other than 
quantifiers. 

14.43.  R u l e  of  G e n e r a l i z a t i o n .  Let s c be a bound variable that  does not appear in 
the formula A(x); we follow the substi tut ion notat ion of 14.21. Then A(x) is a syntactic 
theorem if and only if V~ A(~) is a syntactic theorem. 

Proof. By 14.29(i) we know (V~A(~)) ~ (V~A(~)) is a syntactic theorem; by inference rule 
(R6) it follows that  (V~A(~)) ~ A(x) is also a syntactic theorem. If V~A(~) is a syntactic 
theorem, then modus ponens tells us A(x) is also a syntactic theorem. 

Conversely, assume A(x) is a syntactic theorem. Let T be the set of all terms. For 
each t E T, we know by (R2) that  A(t) is a syntactic theorem; tha t  is, [A(t)] = 1. Hence 
[V~A(~)] = inft~r[A(t)] = 1, so V~A(~) is a syntactic theorem. 

14.44. Definitions. A s e n t e n c e ,  or c losed  f o r m u l a ,  is a formula with no free variables. 
(Note that  "formulas" and "sentences" are the same thing in propositional logic, since that  
logic has no free variables.) 

Let A(xl,x2,. . .  ,x~) be some given formula whose free variables are the distinct sym- 
bols X l, X 2 , . . . ,  Xn, and no others. Let ~1, ~ 2 , . . . ,  ~n be any n distinct bound variables that  
do not appear in the given formula. Then the c l o s u r e  of the given formula is the for- 
mula V~I V~2 -.- V~ A ( ~ l , ( 2 , . . .  , ~ ) ;  that  is, it is the formula obtained by replacing all 
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occurrences of each xi with the corresponding ~i and binding all the ~i's with universal 
quantifiers. (Observe that the closure is a closed formula.) 

By applying the Rule of Generalization n times, we obtain: 

Proposition. Let 9" be any formula. Then 9" is a syntactic theorem if and only if its closure 
is a syntactic theorem. 

14.45. Lemma. Let (L, E) be a first-order theory (with language L and axioms E) that  is 
syntactically consistent. Assume L has infinitely many free variables. Let c be a constant 
symbol that  is not already in use in the language L; let L I = L U {c} be the larger language 
obtained by adding that  one symbol. Then (L ~, E) is also syntactically consistent. 

Proof. Suppose not i.e., suppose that E F 9"9 (-~9") for some formula 9" when we use the 
enlarged language L ~. Consider any derivation of the formula 9" 21 (-,9") from the axioms 
of E. The derivation involves only finitely many steps, hence only finitely many symbols. 
Select some free variable z that does not appear in the derivation, and replace all occurrences 
of c with z throughout the derivation. This yields a derivation E F ~} R (~}) in the language 
L, for some formula S contradicting the assumed consistency of (L, E). 

14.46. Technical lemma. (This lemma will be used in the proof of 14.57.) 
Let (L, E) be a first-order theory (with language L and axioms E) that is syntactically 

consistent. Assume that the language L contains infinitely many free variables, but all the 
axioms in E are closed formulas. Let (L ~, E ~) be a first-order theory with larger language L ~ 
and larger axiom collection E ~, formed by adding more constant symbols and more axioms 
according to these rules: 

(i) Whenever t is a term in the language L that involves no free variables (i.e., 
it involves only constant symbols and function symbols), and V(A(~) is an 
axiom in E, then add the axiom A(t) as one of the ingredients of E/. 

(ii) For each axiom in E of the form 3~ A(~), add to the language some constant 
symbol c not already present in L, and add the axiom A(c). 

Then the new system (L ~, E ~) is also syntactically consistent. 

Remarks. A constant c that satisfies A(c) is sometimes called a w i tnes s  for the axiom 
34 A(~). Thus, in part (ii) we add a new symbol c to serve as a witness. That new symbol 
can be chosen canonically - -  i.e., this does not require the Axiom of Choice - -  for instance, 

we could use the symbol I ~ ~ A(~ c) I' where the box and all the marks inside it are parts of 
| i 

the symbol. 

Proof of lemma. Suppose that (L', E') is not syntactically consistent - -  i.e., adding axioms 
and constants by methods (i) and (ii) yields a contradiction 9~F1 (--9"). Then finitely many of 
those axioms and symbols yield a contradiction, so the contradiction results from extending 
(L, E) finitely many times using steps of type (i) or (ii) above. Take those finitely many 
steps, one at a time, and stop at the point where the system becomes inconsistent. Say we 
have the systems 

(L0, E0) consistent and (L1, El) inconsistent, 
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separated by one step. 
The step that causes the inconsistency cannot be of type (i), since steps of that type 

do not enlarge the language, and they enlarge the axiom system only by adding formulas 
that were already syntactic theorems (by the Rule of Generalization 14.43 and the Rule of 
Substitution 14.26(R2)). Thus, the step causing inconsistency is of type (ii). We have 

fl~l -- s U {C} and ~1 z Z0 U {,,s 

where ~4 is some formula such that 

3~ r belongs to E and hence also belongs to E0. (**) 

By 14.45 we know that (s E0) is consistent. We shall use the language L1 throughout the 
remainder of this proof. 

Since E0 U {04(c)} is inconsistent and o4(c) has no free variables, 14.40.c tells us that 
E0 ~- (-~r Let some derivation of (~r from E0 be specified, and let z be a free 
variable that does not appear in that derivation. Replacing c with z throughout that 
derivation yields a derivation of the formula ~r By the Rule of Generalization 14.43, 
V~ (-~r is a syntactic theorem of E0. By 14.41, that theorem can be restated as 
-~ (3~ r This contradicts (**) and completes the proof. 

THE SEMANTIC VIEW 

14.47. We shall now discuss interpretations and quasi-interpretations of a language. In 
the discussion below, II will represent several different but related mappings. 

By a q u a s i - i n t e r p r e t a t i o n  of a first-order language L we shall mean 1 a triple (B, D, I I), 
with these ingredients: 

a. A Boolean algebra B is specified, which must be nondegenerate (i.e., satisfying 0 =/= 1). 
We may refer to B as the set of t r u t h  values.  We require that the Boolean algebra 
B satisfy a certain completeness condition, which is slightly complicated; it will be 
described in 14.47.j(~). The condition is satisfied if B happens to be a complete Boolean 
algebra (i.e., if every subset of B has a supremum and an infimum), but the condition 
may also be satisfied by certain other Boolean algebras. In the simplest cases we 
may take B = {0, 1}, and then the quasi-interpretation is called an i n t e r p r e t a t i o n .  
However, other choices of B are also of interest, and so we consider the more general 
theory of quasi-interpretations. The element 1 (the greatest element of B) may be 
called t r u e  or t r u t h  or t a u t o l o g y .  The element 0 (the least element of B) may be 
called false or f a l s ehood  or c o n t r a d i c t i o n .  

b. A collection D of objects is specified; it is sometimes called the doma in .  It may be a 
set or a proper class. Members of D are called ind iv idua ls .  Typical examples: For 
analysis, D could be the set of real numbers. For set theory, D could be the class 

1See also the alternate terminologies in 14.50. 
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of all sets or some smaller collection of sets such as the collection :hi in 14.6. For 
propositional logic, we generally take D to be empty. 

In some discussions, we may refer to D itself as the "interpretation" or "quasi- 
interpretation" but it is understood that the interpretation or quasi-interpretation also 
involves the Boolean algebra B and the mappings II discussed below. A c o u n t a b l e  
quasi-interpretation is a quasi-interpretation whose domain D is a countable set. 

A mapping II is given from the set of individual constant symbols of the language L, 
into D. Thus, each constant symbol c in L is understood to represent some individual 
in D, which will be denoted in this discussion by Ic I. We say that c is the n a m e  of the 
individual Icl. In ordinary mathematics we do not distinguish between an individual 
object and the symbol that is its name, but that distinction is important in logic. 

We emphasize that this mapping II is not necessarily injective i.e., one quasi- 
interpretation may give several names to the same individual. In other words, several 
constant symbols in L could conceivably all be names for the same number or set or 
other mathematical object in D. 

Also, we emphasize that this mapping I I is not necessarily surjective i.e., not 
every individual in D necessarily has a name. (For theoretical purposes it is sometimes 
useful to work with L(D),  the language obtained by adding to L another constant 
symbol for each individual in D i.e., a language that gives a name to every member 
of D but that language will not be studied here.) 

For each n-ary function symbol f in the formal language, the mapping II must specify 
some n-ary function Ill on D - -  that is, a mapping Ifl :  D'~ ~ D. Note this distinction: 
f is a meaningless letter, while Ill is a function. Typical examples with n = 2: If D is 
the real number system, then Ill might be addition or multiplication. If D is the class 
of all sets, then Ill might be the union operation. 

We emphasize that Ill(d1, d2 , . . . ,  dn) is defined to be some member of D whenever 
dl, d2 , . . . ,  d~ are any individuals; they need not be individuals with names. Thus, 
the function Ill goes beyond merely specifying meanings for expressions that can be 
formulated in the formal language L. 

e. For each n-ary relation symbol R in the formal language, we specify some corresponding 
function IRI" D n ~ B. 

Note that if B - {0, 1}, then IRI may be viewed as (the characteristic function of) 
some subset of Dn; thus it is an n-ary relation on D. In particular, if n - 2, then IRI 
is (the characteristic function of the graph of) a binary relation on D, such as _< or 
C_. Here is a typical example: When the language of analysis is interpreted in its usual 
fashion, then D is the set of real numbers and < is a binary relation symbol that is 
interpreted as a function I < I from IR 2 into {"true," "false" }. Some of its values are 
I <  1(3, 5 ) -  "true" and I <  1(3, 3 ) -  "false." 

Note that in propositional logic, each relation symbol R has arity 0, and so its 
quasi-interpretation [R I is just a constant member of B. 

Continuation of the quasi-interpretation. The ingredients indicated above can be specified 
arbitrarily (except that B must satisfy the completeness condition 14.47.j(~)). Once those 
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ingredients have been specified, we extend the mappings ]1 according to the following rules, 
which are not at all arbitrary. 

f. Each free variable symbol x is interpreted as the identity map from D into D. Thus, 
it acts as a variable whose possible values are the members of D. 

g. Any term in the formal language is interpreted as a function from D m into D for some 
nonnegative integer m; here rn is the number of distinct free variables appearing in 
the expression term. Indeed, we have already interpreted each constant symbol as a 
mapping from D o into D (i.e., as a member  of D - -  see 14.47.c) and each free variable 
symbol as a mapping from D 1 into D (see 14.47.f). Recall from 14.22 that  other terms 
are defined recursively. If 

tl, t2 , . . . ,  tn are terms interpreted to have values Itll, It21,. . . ,  It~l in D, 

and f is an n-ary function symbol with interpretat ion ] f l :  Dn ~ D, then 

is interpreted to have value I l l (  tll, t21 , . . . ,  tnl~ in D f ( t l , t 2 ,  . . \ / 

- -  it is the composition of the function Ifl: D~ ~ D and the functions Itjl. 
For instance, suppose al ,a2,a3 are constant symbols, f l ,  f2 are function symbols 

with arity 3, and g is a function symbol with arity 4; assume some interpretat ion is 
given for each of these symbols. Let X l , X 2 , X 3 , X 4  be any free variable symbols. Then 

9( f1(x1 ,a1 ,a2) ,  f2(x2,a3,x3) ,  x3, f l (X l ,X4 ,X2))  

is interpreted as a function from D 4 into D, since it yields particular values in D when 
particular values are subst i tuted for Xl, x2, x3, x4. 

For more concrete examples we turn to arithmetic.  If "3," "5," and "+" have 
their usual interpretations,  then the term "3 + 5" will be interpreted to have value 
8. The term "x + 5" will be interpreted as a function from D into D (where D is N 
or Z or whatever); this function takes numerical values when particular numbers are 
subst i tuted for x. 

h. An atomic formula P( t l ,  t 2 , . . . ,  tn) (defined as in 14.23(i)) is interpreted by composing 
the function IPI (introduced in 14.47.e) with the functions ]tll, I t21,. . . ,  ]tnl. Thus, it 
is interpreted as a function from D TM into B, where rn is the number of distinct free 
variables appearing in the atomic formula. 

For instance, in ordinary arithmetic,  the formula 3 + 5 < 10 is interpreted to have 
the constant value "true;" the formula 3 + 5 < x is interpreted as a mapping from the 
integers or the real numbers or other domain D, to the set { "true," "false" }. 

i. The logical connectives -~, U, 9, ~ are mapped to the corresponding fundamental  oper- 
ations of the Boolean algebra B. Formulas in the formal language are now interpreted 

�9 recursively, in the obvious fashion. If ~4 and ~B are formulas, then 

= (Cl l), 

I u2sl = ( 1 4 1 v  I 1), 
14 n -- (141/x I 1), 
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In each of these equations, the connective on the left side is the formal, logical symbol; 
the connective on the right side is a unary or binary operation in the Boolean algebra 
B. In general, a formula with n distinct free variables is interpreted as a mapping from 
D ~ into B. 

j. Quasi-interpretation of quantifiers. If the language has infinitely many free variable 
symbols, then quantifiers are interpreted as suprema and infima in the Boolean algebra 
B, as follows: 

For simplicity we explain quantifiers first in the case of a formula involving only 
one free variable. Suppose x is the only free variable occurring in A(x), and ~ does 
not occur in A(x); we follow the substitution notation of 14.21. Then x H IA(x)I is a 
function from D into B, which takes some t ruth  value whenever x is replaced by some 
d C D (whether that  d has a name or not). Then we define the quasi-interpretations 

]3~ A(~)l - sup ]A(d)], IV~ A(~)] - inf ]A(d)]. 
dED dED 

The sup and inf are with respect to the ordering of the Boolean lattice B. 
More generally, assume ~ is a bound variable, Xl ,X2, . . .  ,xn are distinct free vari- 

ables, A ( X l , X 2 , . . .  ,Xn) is a formula whose only free variables are Xl ,X2, . . .  ,xn, and 
does not appear in ad~(Xl, X2 , . . .  , Xn) .  Then (Xl, X 2 , . . . ,  Xn) H [A(Xl, x 2 , . . . ,  Xn)[ is a 
function from D n into B, taking a t ruth  value whenever Xl,X2, . . .  ,x~ are replaced by 
some dl, d 2 , . . . ,  dn E D (whether those dj's have names or not). Now we define the 
quasi-interpretations 

I ~  .~(~, x2, x3, . . . , xn)l 

xn)l 
these are functions from D n-1 into B. 

sup IA(d, x2, x 3 , . . . ,  x~)I, 
dCD 

inf IA(d, x2,x3, . . ,  xn)I" 
dED ' 

To make sense of this definition, we require that  

(~) all sups and infs of the types indicated above must exist in B. 

One simple way to satisfy (~) is by insisting that  B be a complete Boolean algebra 
i.e., by requiring that  every subset of B have a sup and an inf. However, that  simple 
requirement may be too strong in some cases see 14.56 so we merely keep it in 
mind for motivation; (~) is the one condition we shall actually impose as part of our 
definition of "quasi-interpretation." 

Caution: When B is the two-element Boolean algebra {0, 1}, then each of those 
sups or infs indicated above is actually a maximum or a minimum, and so V and 3 
actually do have the meanings "for e a c h . . ,  in D . . ."  and "there ex i s t s . . ,  in D such 
that . . . .  " However, when B is a larger Boolean algebra, then the sups and infs need not 
be maxima or minima. It is quite possible that  suPd~D ]A(d, x 2 , x 3 , . . .  ,Xn)l is equal 
to 1, and yet no one of the elements d E D actually satisfies IA(d, x2, x 3 , . . . ,  xn)] = 1. 
(Thus, in the terminology of 14.46 and 14.48, an existential formula may be valid and 
yet not have a witness.) The possible lack of a suitable d is the cause of some of the 
complications in the pages that  follow e.g., this is why 14.46 is needed as a step in 
the proof of the Completeness Principle. 



The Semantic View 381 

14.48.  More terminology. Let (B, D, I I) be a quasi-interpretation of some language L, and 
let :Y be some formula in that  language with n free variables. Then 19:1 is a function from 
D ~ into B. It is a constant function (i.e., a member  of B) if n = 0; it may or may not be a 
constant function otherwise.) We say that  the formula 9" is va l id  in the quasi-interpretation 
if that  function ItYl is a constant function that  takes only the value 1. 

Observation. From the definition given in 14.47.j for the quasi-interpretation of quan- 
tifiers and the definition of closures given in 14.44, we see immediately that  in any quasi- 
interpretation, the closure of any valid formula is valid. 

Ezample. Consider quasi-interpretations with domain D equal to the set Z of integers. 
Let 9~(x) be a formula that  states (in some appropriate symbolism) that  "x is even;" then 
-~(9"(x)) states that  "x is odd." When the language of ar i thmet ic  is given its usual inter- 
pretation, then the formula (9"(x))U (-~(9:(x))) is valid, since every integer is either even 
or odd; this is an instance of the Law of the Excluded Middle. However, neither of the 
formulas 9"(x) or -~(9"(x)) is valid, since neither of the s ta tements  "every integer is even" or 
"every integer is odd" is correct. 

14.49.  Definition. Let V be the set of all free variable symbols in a language L, and let 
(B, D, 11) be a quasi- interpretat ion of L. By a v a l u a t i o n  (or assignment) on (B, D, II) we 
shall mean a map r  V ~ D; thus it is just a member  of D v. We shall denote by I1~ the 
effect of combining a quasi-interpretation I I and a valuation ~. Expressions are interpreted 
with values in B, as in 14.47-14.47.j, but in addition each free variable v is replaced by its 
valuation ~(v) E D. Thus, all the functions get evaluated. For any formula 9" even one 
involving free variables the result 9~1~ is a particular member  of the Boolean algebra B, 
not just a function from D n into B. We emphasize that  9" ~ is not necessarily 0 or 1; it 
may be some other member  of B. Observe that  

a formula 9" is valid in I I, as defined in 14.48, if and only if it satisfies 
19" > - 1 for every valuation ~. 

14.50.  More terminology. Let (B, D, II) be a quasi- interpretat ion of the language, and let 
E be a collection of formulas in that  language. We say that  (B, D, II) is a q u a s i m o d e l  of  
t h e  t h e o r y  N if every formula in E is valid in (B, D, II). 

A two-valued quasimodel of a theory E (i.e., a quasimodel in which B = {0, 1}) will be 
called a m o d e l  of E. 

Alternate terminology. Instead of "quasi-interpretation" or "quasimodel," some mathemat i -  
cians use the terms B o o l e a n - v a l u e d  i n t e r p r e t a t i o n  or a B o o l e a n - v a l u e d  m o d e l .  We 
prefer not to use those terms, for this reason: Following common nonmathemat ica l  English 
usage, those terms would appear to refer to notions tha t  are less general than "interpreta- 
tion" or "model." Our prefix of "quasi-" suggests greater generality, and is therefore more 
descriptive. 

Also, Rasiowa and Sikorski [1963] use the term "realization" for both quasi-interpreta- 
tions and quasimodels, but perhaps that  is less helpful to the beginner's intuition. 

A few mathemat ic ians  use the term "model" where we have used the term "valuation." 
This changes the nature of the theory, but not by very much if (as in some books) we do 
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not distinguish between constants and variables. 

14.51.  Q u a s i - i n t e r p r e t a t i o n s  of  p r o p o s i t i o n a l  logic.  The ingredients of a quasi- 
interpretat ion can be simplified substantially when we work with propositional logic - -  i.e., 
when there are no quantifiers, individual constants, individual variables, or relation symbols 
of arity greater than 0. In this special case we can take the domain D to be empty. 

For a theory in propositional logic, a quasi-interpretation means an assignment of some 
t ru th  value for each primitive proposition symbol P; we may denote that  assignment by 
]P]. Thus, we only need to specify a mapping ]] as in 14.47.e, and only for n = 0. After 
that ,  the quasi- interpretat ion recursively assigns a true value to compound propositions, as 
in 14.47.i. 

Note that  if each primitive proposition is true or false - -  i.e., if ]P] E {0, 1 } for each prim- 
itive proposition symbol P - -  then in fact 19"] C {0, 1 } for each formula 9"; this follows by in- 
duction on the lengths or depths of formulas. In this case, the resulting quasi-interpretation 
is in fact an interpretation.  

14.52.  Example. P e a n o  a r i t h m e t i c  uses a constant symbol "u" (the "unit" or "urele- 
men t ' ) ,  a unary function "a" (the s u c c e s s o r  f u n c t i o n ) ,  the binary relation "=" with the 
axioms for equality (listed in 14.27.a), plus these three further axioms: 

(i) --1 (3~ (~(~) = u)). Tha t  is, u is not the successor of any number. 

(ii) ((a(x) - a(y))  ~ (x - y)). Tha t  is, a is injective. 

(iii) The I n d u c t i o n  A x i o m .  If S is a subset of the domain that  satisfies u E S 
and also satisfies ((x e S) --~ (a(x) e S)), then S = D. 

A few models of Peano's Axioms are given by: 

�9 D - N - { 1 , 2 , 3 , . . . } ,  u - l ,  a ( x ) - x + l ;  

�9 D - N U { 0 } ,  u - 0 ,  a ( x ) - x + l ;  

�9 D - 2 N - { 2 n ' n E N } ,  u - 2 ,  a ( x ) - x + 2 .  

It is not difficult to manufacture more models of Peano's Axioms. However, all these models 
are isomorphic i.e., it can be shown that  if (D, u,a) is any model of Peano's Axioms, 
then there is a unique bijection b" D ~ N such that  b(u) - 1 and b(a(x)) - 1 + b(x). Thus, 
Peano's Axioms determine N uniquely up to isomorphism. 

Peano's first two axioms fit into a first-order language, but the last axiom requires a 
higher-order language, since it quantifies over sets S c_ D. In a first-order language, we 
have no precise representation of the notion of "a subset of D." 

For most purposes, we can replace axiom (iii) with a scheme of infinitely many first- 
order axioms: For each property P(x) that  can be expressed in first-order language, we 
have an axiom 

(iii)p ( (P(u)  M (P(x)  ---+ P(~(x) ) ) )  ---+ (V~ P({)).  
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This axiom scheme is slightly weaker than Peano's Axiom (iii). One way to see that  fact 
is to note that  if we only have finitely or countably many symbols in our language, then 
there are only countably many properties P that  can be expressed in the language, but N 
has uncountably many subsets S for us to consider. For another demonstrat ion that  the 
first-order axiom scheme (iii)p is weaker than (iii), see 14.63, where we shall show that  no 
system of first-order properties of N can uniquely determine N up to isomorphism. 

14.53. A b r i e f  i n t r o d u c t i o n  to  fo rc ing  ( o p t i o n a l ) .  Cohen's method of forcing is a 
technique for creating models and quasimodels, particularly of set theory. Our presentation 
below is based on Bell [1985]. 

Let B be a complete Boolean algebra. We shall describe classes V (B) and V (r), which 
can be used for the domains for quasimodels of set theory, taking t ru th  values in B. 

The B o o l e a n - v a l u e d  u n i v e r s e  V (B), will be defined recursively, in a fashion some- 
what analogous to the construction of the von Neumann universe V in 5.53, but with this 
difference: When we ask whether x E y and whether x = y, the answers are not necessarily 
members of the Boolean algebra 2 = {0, 1} = {"no," "yes" }; rather, the answers may be 
members of the Boolean algebra B. More precisely, 

for each ordinal (~, let V(~ B) be the set of all B-valued functions x that  have 

Dom(x) C_ V~ (B) for some ordinal/~ < (~; 

then let V (B) be the union of all the v~(B)'s. 
Truth values in this quasi-interpretation are defined recursively too. The language of 

set theory expresses everything ordered pairs, the integers, functions, etc. in terms 
of set membership, so in our formal language we can dispense with function symbols and 
with most relation symbols; we only need the two relation symbols c and =. A term is a 
constant or a free variable; an atomic formula is an expression of the form s E t or s = t 
where s, t are terms. Truth values of atomic formulas are defined thus: 

~cDom(v) 

v x v,)A (  Oom v SUp 
Other formulas are built from atomic formulas and evaluated in a fashion similar to that  in 
14.47.i, 14.47.j. 

With  these evaluations, V (u) is a quasimodel of conventional set theory, ZF + AC 
(if we assume ZF + AC in the outer system). Making different choices of the complete 
Boolean algebra B yields different additional properties of V (B) , and hence various semantic 
consistency results. For instance, with a suitable choice of B, V (B) does not satisfy the 
Continuum Hypothesis; therefore 

Con(ZF) ~ Con(ZF + AC +-,CH). 

However, all the quasi-interpretations constructed in the fashion above will satisfy ZF + AC. 
To get negations of AC, we need a more complicated construction, based on automorphisms 
of B. 
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An a u t o m o r p h i s m  of B is a Boolean isomorphism g �9 B ~ B i.e., a Boolean 
homomorphism that  is also a permutation of B. The automorphisms of B form a group, 
Aut(B),  with group operation given by the composition of functions. 

An automorphism g �9 B ---, B can be extended naturally to a map g(B) . v ( B )  ~ v ( B )  
recursively by this rule" Whenever u E V (B) with domain Dora(u), then g(U)u is the member 
of V (B) that  has D o m ( g ( B ) u )  -- {g (B)x  �9 x E Dom(u)} and is defined on that  domain by 
( g (B )u ) (g (B )x )  -- g ( u ( x ) ) .  (That last g is just the original mapping from B into B.) It is 
not hard to verify that  the map g H g(B) is a group homomorphism; that  is, it preserves 
compositions: (gh) (B) - g(B)h(B) .  

Let G be a subgroup of Aut(B).  For each x E V (B), define the s t ab i l i z e r  g r o u p  

s tabc(x)  - {g E G �9 g(x )  - x};  

it is a subgroup of G. 
Now let F be a collection of subgroups of Aut(B).  We now recursively define the Boolean- 

valued universe V (r), a subclass of V (B), as follows: 

For each ordinal c~, let V (r)  be the set of all B-valued functions x that  have 

Dom(x) C_ V (r)  for some ordinal fl < a and satisfy s taba(x)  E F; 

then let V (r) be the union of all the v(r) ' s .  
Truth values can be defined on V (r) just as they were defined on V (u). Certain choices 

of G and F yield quasimodels of certain set theories. For instance, Bell [1985] shows a 
quasimodel of this sort in which a set is infinite but Dedekind finite (see 6.27); hence the 
axiom of Countable Choice is not satisfied. Thus 

Con(ZF) => Con(ZF +-.CC). 

The omitted details are very large and numerous, and are not intended as an exercise. 
The interested reader should consult Bell [1985] and other books on forcing. 

The main ideas of forcing can be reformulated in syntactic terms. Let P be a suitable 
subset of B \ {0}. For p E P and formulas A, let p IF- A be an abbreviation for p ~ IA], 
where II is the truth-value mapping and ~ is the ordering of the Boolean algebra B; then 
p is called a "forcing condition." The basic properties of the Boolean-valued universe V (r) 
can be reformulated as properties of the forcing relation IF-. In fact, it is possible to study IF- 
without referring to Boolean-valued universes. This approach is more difficult for newcomers 
to logic and will not be explained here, but it seems to be preferred by logicians they 
find it more intuitive than the Boolean-valued approach. This is the approach originally 
used by Cohen. The approach via Boolean-valued universes is a later reformulation, due 
largely to Scott and Solovay. 

Historical  note: The interested reader may search in vain for an important  paper of 
Scott and Solovay, often referenced as "to appear." That  work actually did not appear. It 
is subsumed by Bell [1985], as explained in Scott's foreword in that  book. 



Soundness, Completeness, and Compactness 385 

SOUNDNESS~ COMPLETENESS~ AND COMPACTNESS 

14.54.  Observation. Any first-order language (as described in 14.15-14.23) has at least 
one interpretat ion (as described in 14.47-14.50). 

Proof. Here is one trivial construction: Let D = {0}, where "0" is some object i.e., let 
D be a singleton. Interpret  every constant symbol to have value 0; interpret all the relation 
symbols to only take the value "true." 

14.55.  Proposition. Every quasi-interpretation of the language L is also a quasimodel of 
the logic. Tha t  is, if (B, D, II) is a quasi-interpretation of a first-order language L, then 

(i) each of the twelve logical axioms listed in 14.25 is valid in II; and 

(ii) each of the six rules of inference listed in 14.26 is valid in the following sense: 
Whenever ~ and ff are formulas tha t  are valid in I I and ~1 is a formula that  
can be deduced from t~ and ff using one of the rules of inference, then g is 
also valid in ll. 

Using the two preceding results plus an induction argument,  it follows that  

(iii) If E is any given set of extra-logical axioms and 04 is a formula tha t  can be 
deduced from E and the logical axioms via the rules of inference, then A is 
valid in every quasimodel of E. 

Since every model is a quasimodel, as a corollary we obtain this slightly weaker result: 

(iv) T h e  S o u n d n e s s  P r i n c i p l e .  If E is any given set of extra-logical axioms and 
04 is a formula tha t  can be deduced from E and the logical axioms via the 
rules of inference, then 04 is valid in every model of E. In other words, 

if E k- A, then E ~ A. 

In other words, every syntactic theorem is a semantic theorem. 

Remark. Some mathemat ic ians  use the term "theorem" only for syntactic theorems and 
call a formula "true" if it is valid in every model. Wi th  tha t  terminology, the Soundness 
Principle takes this more memorable form: Every theorem is true. 

Proof. We first consider the validity of the twelve logical axioms. We shall demonstra te  
validity only for Axiom (ii); the other axioms can be verified in a similar fashion and are 
left as exercises. Let I I be some quasi- interpretat ion of the language L; we wish to prove 
tha t  IA ~ (A U ~)1~ - 1 for every valuation ~. By 14.47.i, tha t  condition can be restated 
as (IAI~ =~ (IAI~VI~BI~)) = 1. But (c~ =~ (c~V~)) = 1 is true for any elements c~ , /3 in 
any Boolean algebra B. This proves the validity of Axiom (ii). 

Next, we consider the validity of the inference rules. We shall verify this only for (R3) 
and (R5); verification of the other inference rules is left as an exercise. We assume ~ is a 
bound variable tha t  does not occur in the formula A(x);  we follow the subst i tut ion notat ion 
of 14.21. Let N be some formula; for (R3) we also assume that  x does not occur in ~B. Let 
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I I be a given quasi-interpretation of the language. The conditions "A(x) ~ IB is valid" and 
"(3~ A(~)) ~ :B is valid" can be restated, respectively, as 

IA(x)l~ 4 I~BI~ for every valuation qp, (1) 

13~ A(~)I ~ ~ IIB1r for every valuation r 

If r is any given valuation, for each d c D we may define an auxiliary valuation by 

(2) 

Cd(V) -- ~ r whenv r x 
d when v - x. ( 

From the definition in 14.47.j we see that 13~ A(~)I r 
restated 

= suPd~D I (x)l d. Thus (2) can be 

IA(x)Iv, d 4 I~BI~ for every r II, and d. (2') 

To verify (R3), we nee~l to show that (1) implies (2'). Since x does not occur in the formula 
iB, we find that I~l~d =: I~1~ for every d; hence IA(x)l~d ~ I~1~ = IIB[~. To verify (Rh), 
we need to show that  (:),') implies (1); just observe that when 6 = r then r = r 

14.56. Observation. Let E be a syntactically consistent set of formulas. Then E has a 
quasimodel. In fact, one can be specified as follows: 

For domain D use the set of all terms in the language, with the interpretation mapping 
I } defined on terms by the identity mapping. For the Boolean algebra of t ruth values use 
the Lindenbaum algebra L, with the interpretation mapping [I defined on formulas by the 
equivalence class mapping [] defined in 14.32. 

Remark. We do not assert that the Lindenbaum algebra is necessarily complete. The 
fact that  it satisfies condition 14.47.j(~) follows from 14.41. 

14.57. We shall show that  the following two principles (and two more covered in 14.59) 
are equivalent to the Ultrafilter Principle; we refer especially to other equivalents in 13.22. 

(UF11)  
(UF12)  

for P r o p o s i t i o n a l  Logic: 
for P r e d i c a t e  Logic: 

G h d e l - M a l ' c e v  C o m p l e t e n e s s  P r i n c i p l e  ( cons i s t ency  vers ion) .  If E is 
any set of formulas, then these three conditions are equivalent: 

(A) 

(B) 
(C) 

E is syntactically consistent 
contradiction. 

E is semantically consistent 

E has at least one quasimodel. 

i.e., E cannot be used to deduce a 

i.e., E has at least one model. 

As an intermediate step between (UFl l )  and (UF12), we shall also prove the equivalence 
of this more complicated principle: 
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(UF13)  Let L be a language that has no variable symbols and no quantifiers 
(but may still have constants and functions). Let E be a set of formulas in L that 
is syntactically consistent in L. Then E has at least one model ({0, 1}, D, II). 
Furthermore, the model can be chosen so that the mapping ] I : {terms of 
L} ~ D is surjective i.e., so that for each individual d E D there is at least 
one term t satisfying Itl = d. 

Proof. The implication (C) ~ (A) is proved as follows: Suppose E is not syntactically 
consistent. Then there is some formula r such that both r and 7o4 are syntactic theorems. 
If ll is a quasimodel of E, then it makes both r and ~r valid - -  that is, Ir and I--r are 
both equal to the constant function 1. Then 1 = I~r = cl l-- c1 = o. Thus the Boolean 
algebra B is degenerate, contrary to the requirement in 14.47.a. This shows (C) ~ (A). 

The implication (B) ~ (C) is trivial, since every model is a quasimodel. It only remains 
to prove (A) ~ (B). (That implication by itself is sometimes known as the Completeness 
Principle.) 

Proof of (UF8) ~ (UFl l ) .  As we noted in 14.56, the Lindenbaum algebra L is a quasi- 
model of E. By (UF8), there exists a Boolean homomorphism from L into {0, 1}. Use 
that homomorphism to map the truth values in L to truth values in {0, 1}. The homomor- 
phism preserves the action of V, A, C, =~. We need not concern ourselves with ~, V since we 
are considering only propositional logic, which has no individuals or quantifiers. Thus the 
resulting map into {0, 1} is a model of E. 

Proof of (UFll)  ~ (UF13). Let e be the given predicate calculus i.e., the language L 
equipped with the logical axioms and rules of inference, the given extra-logical axioms E, 
and the resulting syntactic theorems. Tô  construct a model, we shall first form a related 
language L and propositional calculus C; a model for that propositional calculus will be 
used to form a model for C. 

Form a language L by taking each atomic formula of L as a primitive propositional 
variable symbol of L. Thus, an expression such as P(f(a,b),g(c)) will be treated as a 
single symbol, grammatically on the same level as Q or R. The terms f(a, b) and g(c) and 

A 

the constants a,b, c play no role in L, except as meaningless marks on paper that serve 
to make up parts of that single symbol. The language L will have no individual variable 
symbols, individual constant symbols, or functions. It will have the same logical connective 
symbols 7, •, U, ~ as the language L. Each formula in either of the languages L or L can 
be reinterpreted as a formula in the other language by reading it in a different fashion. 
For instance, in the original language L, the expression P U Q(a, b, g(c)) consists of seven 
symbols 

P U Q a b g c 

joined together with commas, parentheses, and juxtapositions; but in the new language L 
the expression P U Q(a, b, g(c)) consists of just the three symbols 

P U Q(a,b,g(c)) 

joined together with juxtaposition. 
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A A 

Form a new propositional calculus e using the language L and the same set E of extra- 
logical axioms (but read in a different fashion, as noted above). Since L has no variable 
symbols or quantifiers, rules of inference (R2) through (R6) are irrelevant; thus both e and 
A 

e have modus ponens as their only rule of inference. Therefore, proofs in the two systems 
are identical in appearance (though read differently). By assumption, e is syntactically 

A A 

consistent; therefore e is, too. By (UFl l ) ,  e has a model, as described in 14.51. That  is, 
there exists a mapping 

A 

I " {formulas of L} ~ {"true," "false"} 

defined on the primitive proposition sy.mbols and then defined recursively on other formulas, 
in such a way that  all the axioms of e become true. 

Next, let D be the set of all terms that  can be formed in the language L, as defined 
in 14.22 i.e., expressions such as f(a,b) and g(c). We shall now construct a model for 
e whose domain is the set D. To do that,  we must describe an interpretation mapping I I 
that  can be applied to constant symbols, to function symbols, and to relation symbols, as 
explained in 14.47. 

For terms, the mapping I I will just be the identity mapping. In other words, any term 
t in L is a string of symbols that  is a single element d of D; we interpret Itl = d. 

Next we shall interpret atomic formulas: If P is an n-cry predicate symbol in the 
language L, and t l , t2 , . . . , tn  are terms, then the atomic formula P(tl , t2, . . . , tn)  in L 
will be given the same truth value (1 or 0) that  it had when we viewed it as a primitive 

A 

proposition symbol in the propositional calculus e introduced a few paragraphs ago. 
Finally, we recursively assign t ruth values for compound propositions, as in 14.47.i. Thus 

we obtain an interpretation of L, which is in fact a model of E. 

Proof of (UF13) ~ (UF12). Let E be a syntactically consistent set of axioms; we wish 
to prove that  E has a model. By repeated use of the Rule of Generalization 14.43, we may 
replace all the members of E with closed formulas i.e., formulas with no free variables. 
Then, replacing members of E by equivalent formulas (where equivalence is as in 14.32), by 
14.42 we may assume that  each axiom in E is in prenex normal form i.e., with all the 
quantifiers at the beginning of the formula. 

Let 9"0 represent the given logical system i.e., the given language and syntactically 
consistent set of axioms. Form new, syntactically consistent systems 9"1,9"2,9"3,... recur- 
sively; obtain ~rn+l from ~rn by adding new axioms and new constant symbols, using the 
construction given in 14.46; the axioms added in this fashion are also without free variables. 

Let 9"~ - Un~__0 ~]~n, in the obvious sense - -  i.e., let 9"o~ be the original system if0 plus all 
the additional axioms and constant symbols of the 0"n'S. Clearly, 0"~ is also syntactically 
consistent, by 14.31. Let 11 be the subset of 0"~ consisting of those statements that  do not 
contain any quantifiers. Now let 9V[ = ({0, 1}, D, ]l) be a model for U, of the type described 
in (UF13) i.e., with each individual named by at least one term. We shall show that  9V[ 
is also a model for q'~ (and hence also for our original system 0" = 9"0). It suffices to show, 
by induction on integers k _> 0, that  

if 9" is an axiom of 9"~ in which k or fewer quantifiers appear, then 9" is valid in 
the interpretation :M:. 
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This is clear for k - 0, since such axioms are just the axioms of l/. Suppose it is true for 
some k, and let ff be an axiom of T~  involving k + 1 quantifiers; we shall show that  this 9" 
is also valid in 5I. There are two cases to consider" 9" is either of the form ~/~ A(~) or of the 
form 3~ Yt(~), for some formula A. For these two cases we refer again to the construction 
in 14.46. 

Case (i). 9" is of the form ~/~ A(~). Thus ~'~ A(~) is an axiom in T~ ,  hence in Tn for 
all integers n sufficiently large say for all n _> j .  If t is any term in the language of 
9 ~ ,  then t is a term in Tn for some n _> j ,  and so (by our construction of T~+I from T~) 
we know that  the s ta tement  A(t) is an axiom of Tn+l, hence of ~I'~. The s ta tement  A(t) 
involves only k quantifiers, hence it is valid in :M. Thus, 1 - A ( t ) l -  IAl(Itl) - IA l (d ) ,  
where d -  tl. By our assumption about the model ~ in (UFI3),  the mapping I I takes 
terms onto individuals; thus IAl(d) = 1 for every individual d in the domain D. By the 
definition in 14.47.j, therefore, IV~ A ( ~ ) I -  1, so 9" is valid. 

Case (ii). 9" is of the form 3~ A(~). Then 3~ A(~) is an axiom of ~'~ for some n. By 
our construction of ~ + 1  from 9"n, the axiom has a witness i.e., there is some constant 
symbol c in ~rn+l such that  A(c) is an axiom of T~+I. Now A(c) is an axiom of Tor involving 
only k quantifiers, so it is valid in JV[. Therefore 3~ A(~) is valid in iN: by the definition of 
13~ Yt(~c)l in 14.47.j. 

This completes the proof. 

14.58. Remarks. The earliest version of the completeness principle was due to G6del, so 
it is sometimes known as the G S d e l  C o m p l e t e n e s s  T h e o r e m .  It should not be confused 
with G6del's Incompleteness Theorems, introduced in 14.62 and 14.70. In mathematics ,  the 
term "complete" generally means "not missing any parts," or "not having any holes in it" 

see 4.14. Predicate logic is complete in some respects, but incomplete in other respects. 
The equivalence of the completeness principles with other forms of UF was proved by 

Rasiowa and Sikorski [1951], Log [1954], and Henkin [1954]. Our exposition is based on 
Cohen [1966] and several other works. 

Wi th  a bit more work (not shown in detail here), our proof of (UF12) can be modified 
to show a slightly stronger principle: 

If E is a syntactically consistent set of formulas, then E has a model whose 
domain D satisfies card(D) _< max{card(E) ,  card(N)}. 

In particular,  any syntactically consistent first-order theory with a countable language has a 
countable model. Most languages used in practice are countable (i.e., have only countably 
many symbols). 

As we remarked in 14.6, it is possible to form a model of set theory by replacing yon 
Neumann 's  universe V with some other class 5I of sets, which may be smaller. The class 
~V[ need not be a proper class it may be a set. In fact, it may even be a countable 
set, since set theory can be described with a countable language. Thus arises a situation 
which, at first, seems paradoxical: Set theory describes and proves the existence of various 
uncountable objects, and yet some of the sets that  can be used as domains for models of 
set theory are countable! This is known as S k o l e m ' s  P a r a d o x .  To understand this, we 
must distinguish between the "inner" and "outer" systems, described in 14.12. The set D 
may be countable in the outer system, but not in the inner system i.e., there may be a 
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bijection between D and N in the informal, outer system that  we use to analyze the model, 
but there may be no such function in the formal, inner system. 

14.59. Here is another form of the Completeness Principle: 

( U F 1 4 )  
( U F 1 5 )  

for P r o p o s i t i o n a l  Logic: 
for P r e d i c a t e  Logic:  

C o m p l e t e n e s s  P r i n c i p l e  ( t h e o r e m s  vers ion) .  Let E be a collection of 
axioms, and let A be a formula. Then the following are equivalent: 

(A) A is a syntactic theorem. That  is, E F- A. 

(B) A is a semantic theorem. That  is, E ~ A. That  is, in every model 
of E, the formula A is also valid. 

(C) In every quasimodel of E, the formula A is also valid. 

Proof that the "consistency versions" (UF l l )  and (UF12) imply the "theorem versions" 
(UF14) and (UF15), respectively. The implication (A) =~ (C) was given in 14.55(iii). The 
implication (C) ~ (B) is trivial, since every model of E is a quasimodel of E. It suffices 
to prove (B) =~ (_A-). 

Let K be the closure of A (defined as in 14.44). In every model of E, since A is valid, 
9C is also valid, by 14.48. If E u {-~9r is syntactically consistent, then it has a model by 
by (UF11) or (UF12), but that  model would make :K and ~:K both valid, a contradiction. 
Thus E U {~K} is syntactically inconsistent. The formula -~K has no free variables, so by 
14.40.c we obtain E ~ ~ : K .  Since we are using classical logic, that  simplifies to E ~ 9~. By 
the result in 14.44, then, we have E ~ A. This completes the proof. 

Proof that the "theorem versions" (UF14) and (UF15) imply the "consistency versions" 
(UF l l )  and (UF12), respectively. The only part that  requires proof is (A) =~ (B). Let A 
be any formula. Suppose that  E has no model. Then it is vacuously true that  every model 
of E makes A n (~A) valid. Thus A n (-~A) is a semantic theorem, and therefore a syntactic 
theorem. Thus from E we can deduce A ~ (-~A); that  is, E is syntactically inconsistent. 

14.60. A pathological example. To complete the discussion in 14.38, we shall now present 
an example in which 

9" ~ ~ but not ~- (9 ~ ~ ~}). 

It is clear from 14.40.a that  in such an example, 9" must have at least one free variable. 
Actually, what we shall prove is that  9 = ~ ~} but not k- (9" -~ 9); the desired conclusion then 
follows from the Completeness Theorem. 

Assume that  our language includes (among other things) the constant symbols 0 and 
1, the binary relation symbols = and =fi, and at least one free variable symbol x. Assume 
that  our axiom system includes at least the usual axioms for equality (these are listed in 
14.27.a) and the axiom 0 =fi 1. Let ~} be the formula "0 = 1;" thus ~} is one of our axioms. 
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The formulas z = 1 and z r 1 are negations of each other, but neither of these formulas 
is a valid formula in any interpretat ion of the language, since each can be falsified by at 
least one valuation i.e., by at least one choice of the value of z. Let 9. be either one of 
these two formulas (it doesn't  mat te r  which). Then neither 9. nor 79" has a model, hence 
neither is a semantic theorem, hence neither is a syntactic theorem. 

Since there are no models of 9", we can say (vacuously) that  every model of 9" is also a 
model of S. That  is, 9" ~ ~. 

If 9" ~ S were a syntactic theorem, then its contrapositive, (-,S) ~ (~9.) would also be 
a theorem. Then (~9.) would also be a theorem, by modus ponens, since ( ~ )  is one of our 
axioms. But we already know that  (-,9") is not a theorem. Thus, 9" ~ ~ is not a syntactic 
theorem i.e., we dO not have k (9" ~ ~). 

14.61.  Following are two more equivalents of UF: 

(UF16) for Propositional Logic: 
(UF17) for Predicate Logic: 

Compactness Principle. If E is a set of formulas, every finite subset of which 
has a model, then E has a model. 

Remarks. The name "Compactness Principle" stems from some topological considerations 
described in 17.25. A nonlogicians' variant of the Compactness Principle is given by (UF2) 

see the remarks in 6.35. 

Proof of ( U F l l ) = ~  ( U F 1 6 ) a n d  proof of ( U F 1 2 ) = ~  (UF17). Immediate  from the 
observation about  finite character, in 14.31. 

Proof of (UF17) ~ (UF16). Propositional logic is a special case of predicate logic. 

Proof of (UF16) =~ (UF8). Let X be a nondegenerate Boolean algebra; it suffices to 
show that  the dual of X is nonempty i.e., we are to show the existence of a function 
f : X  ~ {0, 1} tha t  satisfies 

f ( x  V y) = f (x)  V f(y),  f(Cx) = ef(x),  f(1)  = 1 (!) 

for all x, y E X. Let ~B ~ e be an abbreviation for the formula (~B ~ e )m (e ---, ~B). Define 
a propositional calculus that  has one primitive proposition symbol Px for each x E X, and 
let E be the set of formulas 

for all z, y E X. Then a model of E is the same thing as a function f satisfying (!). 
We shall apply (UF16); thus it suffices to show that  each finite subset of E has at least 

one model. Any finite subset �9 c_ E involves only finitely many z 's  and y's. Let X0 be the 
nondegenerate Boolean subalgebra of X generated by those z 's  and y's. Then the dual of 
X0 is nonempty, by 13.20. Thus there exists a Boolean homomorphism f ' X o  ~ {0, 1}. 
Now 

true if x ~ X 0  or f ( x ) - i  
interpret Px as false if x E X0 and f (x)  -O.  
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This is a model of (I). 

14.62. Let us emphasize the difference between a model and a quasimodel. A model 
"answers every question" that  can be expressed in the formal language by assigning a t ru th  
value of "true" or "false" (1 or 0) to every closed formula. A quasimodel does not give 
such a definite answer, since its t ruth  values may range through a Boolean algebra. The 
Lindenbaum algebra, which yields a quasimodel as in 14.56, plays this special role: It tells 
us which formulas are provable or disprovable, by assigning them the t ruth  values of 1 or 
0. Some formulas may be neither provable nor disprovable the Lindenbaum algebra may 
have other values besides 1 and 0. We can answer some of the unanswered questions by 
adding more axioms, but we would have to keep adding more axioms; that  will be evident 
from G6del's Incompleteness Theorem, described below. 

If we really want to have an answer to every question, the Completeness Theorem gives 
us one way to accomplish that.  Any consistent theory has a (not necessarily unique) model 
and thus a (not necessarily unique) method for assigning the value "true" or "false" to every 
closed formula. 

We can even make each closed formula provable or disprovable, in this rather contrived 
fashion: Form a model, and then use that  model's valid formulas as the axioms for a new 
theory. The new theory extends the old one, is consistent, and has Lindenbaum algebra 
equal to {0, 1}. However, this formulation is not constructive, since the Completeness 
Theorem is not constructively provable. The resulting axiom system is extremely large and 
not recursive. 

G6del's First Incompleteness Theorem, published in 1931, says that  for sufficiently com- 
plicated theories we cannot answer all the questions. Somewhat more precisely: 

Let 9- be a formal theory that  includes arithmetic, and assume that  the axioms 
of 9- can be described in a mechanical fashion (i.e., recursively we shall not 
give a precise definition of this term). Assume the language of 9- includes only 
countably many symbols. Then: 

G S d e l ' s  F i r s t  I n c o m p l e t e n e s s  T h e o r e m .  If 9" is consistent, then there exist 
formulas that  can be formulated in the language of 9-, but cannot be proved or 
disproved within the formal system from the axioms of 9". 

We shall not prove this theorem, but we shall sketch some of the ideas of the proof. The 
remainder of this section is optional; it will not be needed later in the book. 

Let 9- be a theory that  contains arithmetic; say L is the language of 9-. Some properties 
of numbers can be expressed in L for instance, a number x is composite if it satisfies 

3, 1) n (v 1)n (x = 

Now assume that  T s  language L has only countably many symbols, and let g be the set of 
all finite strings of symbols. Then it is possible to number these strings i.e., to define a 
canonical injective mapping # : S --~ N. Statements about strings can be transformed to 
statements about numbers for instance, define a relation c> on the positive integers by 
saying that  m t> n if 

m = # ( S )  and n = # ( T )  for strings S, T such that  S is a proof of T. 
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The relation E> is a purely numerical relation i.e., it is a relation whose graph is a subset 
of N x N. Although we defined t> in terms of the language L and the correspondence r it 
is possible to describe this same relation t> in purely numerical terms, without mentioning 
L o r # .  

When A is a formula, we shall call # ( A )  the GSde l  n u m b e r  of A. Let G be the set of 
all GSdel numbers; it is a subset of N. We shall now outline a proof of: 

Lemma. Let Q be a property of some natural  n u m b e r s -  i.e., assume that  Q(x) 
is true for some natural  numbers x and false for others. Assume, moreover, that  
the statement "x has the property Q" is expressible in the formal language 1;. 
Then there exist a particular number n and a formula A such that  (i) the G5del 
number of A is n, and (ii) A expresses the s tatement  that  "the number n has 
the property Q." 

Sketch of proof of lemma. Let v be some particular free variable, which will not change for 
the remainder of this discussion. Define a special function ~ : C, x N ~ G as follows: To 
evaluate ~(m, n), 

let Sm be the string of symbols with GSdel number m. The number n can 
be expressed in the language L; let T~ be the string of symbols that  expresses 
the number n. Let Um,,~ be the string obtained from Sm by replacing each 
occurrence of v in it with a copy of the string T~; finally, let ~(m, n) be the 
GSdel number of Um,,~. 

The equation z = ~(x,x) is a statement about numbers. GSdel proved that  it can be 
expressed in the formal language L. The map x H p(x,x) is an operation somewhat 
analogous to the operation of quining, which was introduced in 1.12. 

Now, let 9 be the formula that  expresses, in the language L, the s tatement  "~(v, v) has 
the property Q." Say the GSdel number of 9 is p. The number p can be expressed in the 
formal language. Obtain A from 9 by replacing each occurrence of v with the string that  
expresses p, and let n = p(p, p); this proves the lemma. 

Proof of theorem, continued. For property Q(x), GSdel uses a property such as "x is the 
G5del number of a formula that  is not provable in ~." Of course, it is a nontrivial mat ter  
to establish that  the lemma is applicable to this property. The lemma then yields an 
effectively constructible formula that  says, roughly, "I am not provable." (However, it uses 
indirect self-referencing as in Quine's Paradox (1.12), rather than direct self-referencing as 
in Epimenides's Paradox (1.11).) Such a statement cannot be provable and therefore must 
be true and therefore cannot be disprovable either. In this fashion we obtain G6del's First 
Incompleteness Theorem. 

Remarks. Longer informal expositions of this subject can be found in Rosser [1939], 
Nagel and Newman [1958], Hofstadter [1979], and Mac Lane [1986]. More technical and 
detailed expositions can be found in books on logic. 
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NONSTANDARD ANALYSIS 

14.63. No system of first-order properties of N or IR can uniquely determine N or I~. Any 
first-order theory that  can be modeled by N or IR can also be modeled by some system of 
"numbers" that  includes infinitely large members. More precisely, we have this proposition" 

S k o l e m ' s  e x a m p l e  (1934).  Let L be a first-order language that  includes infinitely many 
free variables, the relation symbol " < ", and the constant symbols "1," "2," "3," . . .  (and 
possibly other symbols as well). Let E be a set of axioms in that  language. Suppose that  
N (respectively, IR) is the domain for some model of E, giving the symbols " < " and "1," 
"2," "3," . . .  their usual meanings. Then there exist other models for E, which are not 
isomorphic to N (respectively, IR). In fact, there exists a model that  contains an "infinitely 
large number" i.e., a number that  is greater than all the numbers 1,2,3, . . . .  

Proof. Let c be a constant symbol that  is not already in use in the language L; let L '  = 
L O {c}. By 14.45, the system (L', E) is consistent. Now let A be the set of axioms 

l < c ,  2 < c ,  3 < c ,  . . .  , 

and (for each positive integer n) let An be the first n of these axioms. The first-order theory 
(L', E U An) has a model given by D - N (respectively, D = I~), with c interpreted as n + 1. 

Each finite subset of E U A is contained in some E O An and therefore has a model. By 
the Compactness Principle (UF17) in 14.61, E 0 A has a model. The interpretation of c in 
that  model is an infinitely large number. 

14.64. Historical remarks and overview. In the late 17th century, when Newton and Leib- 
niz were first inventing calculus, part of their theory involved infinitesimals - -  i.e., numbers 
that  are infinitely small but nonzero. A basic idea of Leibniz, now known as Le ibn iz ' s  
P r inc ip l e ,  was that  the larger number system (involving real numbers, infinitesimals, in- 
finitely large numbers, etc.) should somehow have the "same properties" as the real number 
system, but he did not know how to make this principle precise. Among other things, it was 
not entirely clear just which "properties" would fit Leibniz's principle and in retrospect 
it is clear that  some properties cannot fit Leibniz's Principle. Indeed, the conventional real 
number system is Dedekind complete and therefore Archimedean, which essentially means 
that  it lacks infinitesimals (see 10.3); the lack of infinitesimals is not one of the "properties" 
Leibniz had in mind. 

In those days mathematics was more computational and did not involve rigor as we 
know it today. During the next couple of centuries, mathematicians gradually added more 
rigor to their ways of thinking. During the 19th century, Cauchy developed a theory of 
limits, and then Weierstrass restated this theory in terms of epsilon-delta arguments, finally 
putting calculus on a firm foundation. Mathematicians could not find a justification for 
infinitesimals and no longer needed them for calculus, so infinitesimals gradually fell out of 
favor and were used less and less. The epsilon-delta arguments gained wide acceptance and 
are used in nearly all calculus textbooks today. 

Early in this century, Skolem observed that  there must exist nonstandard models of 
arithmetic and analysis. In 1960, Abraham Robinson developed this idea in much greater 
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detail and made Leibniz's Principle precise and rigorous: We specify a particular first-order 
language L that  is suitable for discussing properties of R or properties of *R; then the same 
properties (expressible in that  language) will be valid in either model; this is the T r a n s f e r  
P r inc ip le .  Troublesome properties such as Dedekind completeness cannot be expressed 
directly in the first-order language. It is possible to formulate a property in the first-order 
language that  specializes to Dedekind completeness when interpreted in IR, but that  same 
property does not yield Dedekind completeness when interpreted in *IR. This is discussed 
further in 14.66. 

Robinson gave many applications including a rigorous justification for an infinitesimal 
calculus much like the one envisioned by Newton and Leibniz. Thus nonstandard analysis 
was born. Important  contributions were also made by Zakon, Los, Luxemburg, Kiesler, 
Loeb, and others. We might call this the "monomorphism" school of thought (in contrast 
with IST, discussed below); all of the papers involve a monomorphism mapping S ~-+ *S. 
The monomorphism theory can be presented either 

(i) "axiomatically" 
have, or 

(ii) 

i.e., we list the properties that  a monomorphism must 

"constructively" i.e., we describe how to form a monomorphism, though 
perhaps with the use of ultrapowers or other tools that  Errett  Bishop would 
not have called "constructive." For instance, it can be shown that  the hy- 
perreal line *N (introduced in 10.20.a) is a model of IR that  satisfies Leibniz's 
Transfer Principle, although we shall not prove that  fact in this book. 

The "axiomatic" approach is more concise but it can only be justified by the "constructive" 
approach. 

In 1977 Edward Nelson published a much simpler axiomatic approach, which codifies the 
main ideas of nonstandard analysis without ever mentioning monomorphisms. The approach 
is called "IST," which stands for "Internal Set Theory" and also stands for "Idealization, 
Standardization, and Transfer," Nelson's three main axioms. Nelson's approach is perhaps 
the closest yet to the original conception of Newton and Leibniz. We summarize it in 14.67. 

The term "nonstandard analysis" may be misleading; a more descriptive term would be 
"hyperfinite reasoning." As it is commonly used, nonstandard analysis is a type of reasoning 
that  allows us to treat infinite sets much like finite sets; that  should be particularly evident 
in the Enlargement Principle in 9.54. This "hyperfinite reasoning" was developed and used 
first in analysis, but it also applies to other branches of mathematics. 

It is provable (in logic) that  nonstandard mathematics is a c o n s e r v a t i v e  extension of 
conventional (standard) mathematics. This means that  any statement that  can be formu- 
lated in conventional mathematics and proved in nonstandard mathematics can also be 
proved in conventional mathematics. In fact, any proof in nonstandard mathematics can 
be converted into a proof in conventional mathematics, in a largely mechanical fashion. 

Generally, the standard proof requires clever choices of ultrafilters or other abstract 
tools. One advantage of nonstandard mathematics is that  cleverness with ultrafilters is not 
required: The relevant properties of ultrafilters are already built into the basic principles of 
nonstandard m a t h e m a t i c s -  the Transfer Principle, etc. Thus, the working mathematician 
is freed to concentrate on other difficulties that  are more specific to the problem. 
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The advantage of nonstandard mathematics is that its intuition is sometimes helpful; 
some proofs in nonstandard mathematics may be easier to find or to understand than the 
corresponding proofs in conventional mathematics. Indeed, Leibniz and Newton had in- 
finitesimals in mind when they invented calculus; surely this is a testimony to the usefulness 
of the intuition of nonstandard mathematics. 

Leibniz viewed the derivative dy/dx as the quotient of two infinitesimals hence his 
notation, which is still in use today. In today's conventional mathematics (i.e., in the 
Cauchy-Weierstrass epsilon-delta approach), it is customary to define the derivative as a 
limit of quotients, not as an actual quotient. In general, limit arguments can be converted 
to nonstandard terms for instance, a function f :I~ ~ ~ satisfies limx-~xo f (x)  = L if 
and only if, whenever e is a nonzero infinitesimal, then *f(xo + c) is infinitely close to L. 
(We proved a result of this sort in 10.37.) However, it must be noted that a similar type of 
intuition can also be obtained from other tools, e.g., convergent nets; see 15.14(A). 

14.65. Construction of superstructures. The "constructive" approach to monomorphisms, 
alluded to in 14.64(ii), does not require so much formal logic, but it uses more set theory. 
We define the monomorphism S H *S as a mapping from ~;~(~) into ~;~ (*I~) or, more gen- 
erally, from So~(X) into S~(*X)  where X is any infinite set of interest. The superstructures 
S~(A) are defined as follows: 

Let A be an infinite set. Recursively define 

S0(A) - A, S (A) - �9 Sk(A) , Soo(A) = Sk(A),  
\ k = 0  k=0 

where ~P(X) = {subsets of X}. (We emphasize that this procedure is only iterated countably 
many times, unlike the procedures in 5.53 and 5.54.) The set S~(A) is called the s upe r -  
s t r u c t u r e  over A. The members of A are called the ind iv idua l s  or a t o m s  in this context; 
the members of S~(A) \ A - [.Jk~__l ~;k(A) are called the en t i t i e s  of the superstructure. 

The collection of entities is closed under most set-theoretical operations. For instance, if 
a is an entity, then [3 a = {p : p E q for some q E a} is also an entity. Any subset of an entity 
is an entity. If a and b are entities then (a, b) is an entity, since we follow the convention of 
reading (a, b) as {{a}, {a, b}}. If f :  X --~ Y is a function and X, Y are entities, then f is 
an entity; here we identify a function with its graph. Even the Axiom of Choice is modeled 
by the collection of entities: If g : X ~ Y is a function, X is an entity, Y is an entity, and 
g(x) is an entity for each x c X, then there exists some function f : X --~ [.JY such that 
f (x)  E g(x) for each x and f is an entity. 

S~(It~) is only a set, not a proper class, and thus it is much smaller than the von 
Neumann universe V developed in 5.53. Nevertheless, S~(I~) is large enough to include 
all of the objects used in real analysis. Indeed, it includes all subsets of I~, sets of subsets 
of I~, and all sets of subsets of subsets of II~, etc. It includes ordered pairs, functions, etc. 
The superstructure S~(I~) is a transitive set, and it is also closed under intersection, finite 
union, and finite Cartesian products. However, S~(R) is not closed under countable union 
or countable Cartesian products: If $1, $2,5 '3, . . .  are entities, then $1 U $2 U $3 U . . .  and 
S1 • $2 • $3 X . . -  are not necessarily entities. 

For each entity S in S~(It~), there is a corresponding entity *S in S~(*I~). The corre- 
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spondence is complicated, so we shall not describe it in full detail; it can be found in books 
on nonstandard analysis. However, we shall mention a couple of its features: (i) When 

E ~1 (1~), then *S is just the ultrapower described in 9.41. (ii) In 2.7 we subscribed to the 
convention that  the forward image function associated with a given function f is generally 
denoted by the same letter f;  thus f ( S )  = { f ( s ) : s  E S}. However, that  convention cannot 
be applied to the monomorphism mapping: in general *S is not equal to {*T : T E S}. 

14.66. The mapping S ~ *S, from goo(IR) into go~(*R), is not surjective. A member of 
its range i.e., an object of the form *S is called a s t a n d a r d  object in g~(*R);  any 
other member of g~(*R)  is called a n o n s t a n d a r d  object. Since the mapping S H *S is 
injective, the collection of all standard objects is an isomorphic copy of 8~(R)  inside the 
nonstandard universe g~(*R) .  Some important sets are not standard for instance, the 
set of all infinitesimals and the set of all standard sets. 

An i n t e r n a l  o b j e c t  is a member of a standard set - -  i.e., it is an object x that  satisfies 
x E *S for some standard entity *S. The internal object x may or may not be standard. 
An e x t e r n a l  o b j e c t  is a member of 8~(*R)  that  is not internal. 

For any set A in the standard universe, we have ~P(*A) _D *~P(A), and in many cases 
~P(*A) D *~P(A). Observe that  ~P(*A) is the collection of all subsets of *A; it can be shown 
that  *[P(A) is the collection of all internal subsets of *A. 

Internal sets arise naturally in uses of the Transfer Principle. For instance, consider the 
following true statement.  

For each set S c_ I ~ -  that  is, for each S E [P(R) if S has an upper bound in 
R, then S has a least upper bound in R. Thus: IR is Dedekind complete. 

If we use the Transfer Principle naively, without understanding what we are doing, we might 
end up with this" 

(Incorrect and false statement.) For each set T c *N that  is, for each T E 
~P(*IR) - -  if T has an upper bound in *R, then T has a least upper bound in *R. 
Thus, *R is Dedekind complete. 

But in 10.19 we saw that  *R generally is not Dedekind complete. If we apply the Transfer 
Principle correctly, we obtain the folowing statement,  which is less interesting but has the 
advantage of being correct and true. 

For each set T E *~P(R) that  is, for each internal set T C_ *R if T has an 
upper bound in *R, then T has a least upper bound in *R. 

14.67. A sketch of IST. In 1977 Edward Nelson published a new approach to nonstandard 
analysis, which reaches the applications quickly without first building up so much machinery. 
In Nelson's theory, we start from conventional mathematics and then add a new word: 
s t a n d a r d .  This word is left undefined - -  i.e., it is not defined in terms of our old vocabulary 

but the permitted uses of this word are governed by several new axioms and syntactic 
instructions. 

Actually, we need two new words, but only "standard" is an undefined word added to our 
mathematical  ("inner") system. We also add the word "classical" to our metamathematical  
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("outer") system, and it has a very simple definition: An expression is c lass ical  if it does 
not, either explicitly or implicitly, involve the word "standard." 

Other words can be defined using the term "standard." For instance, a real or complex 
number ~ is an i n f in i t e s ima l  if I~1 < y for every positive standard number y. Note that  any 
expression that  uses the word "infinitesimal" is a nonclassical expression, since it implicitly 
involves the Word "standard." 

We shall not list the new axioms and syntactic instructions here; they can be found in 
books on IST for instance, Robert [1988]. 

The term "standard" can only be used in accordance with the new axioms and syntactic 
instructions; it cannot be bandied about freely. For instance, in conventional ZF set theory, 
the Axiom of Comprehension says that  if P is a property formulated in the first-order 
language and X is a set, then {x c X : g(x) is true} is also a set. In IST's version of 
set theory, we must add the further restriction that  the property P is classical i.e., P 
can be formulated in the first-order language without mentioning the words "standard," 
"infinitesimal," etc. If P does not meet that  specification, then {x c X : P(x) is true} may 
be a proper class, rather than a set. 

14.68. IST's new systems of numbers. Because of the restrictions made on the language, 
"classical" mathematics  cannot be used to prove the existence or nonexistence of infinitely 
large or infinitely small numbers. However, IST's new axioms can be used to prove the 
existence of such numbers. The resulting number system is not called the hyperreal numbers; 
rather, it is called the real numbers. In effect, we view the real number system as containing 
not only the classical real numbers discussed by Weierstrass et al., but also some other 
numbers infinitesimals, etc. that  we had not noticed before. Presumably they were 
there all along. This new use of old terminology may prove disconcerting to some beginners. 

Here are a few comparisons between IST and conventional mathematics: 

a. The ordinary Principle of Induction says that  every nonempty subset of N has a smallest 
element. This is true in IST, but we must emphasize that  what is needed is a subset 
of N, not just a subclass. 

b. The real number system is Dedekind complete i.e., if S is a subset of I~ that  is 
bounded above by a real, then S has a least upper bound. This remains valid in IST, 
but in that  setting we require that  S be a subset of I~ and not just a subclass of I~. 

c. The real number system is an Archimedean field. That  is, if a and b are positive real 
numbers, then there exists a positive integer n such that  nb ~ a. In IST this remains 
valid, but we point out that  in IST the positive integer n might be infinitely large 
i.e., its reciprocal might be an infinitesimal. 

The "new" real number system of IST should not be confused with the hyperreal number 
system introduced in 10.18. Both are ordered fields that  include infinitesimals, but those 
infinitesimals are "detected" using different methods of reasoning, in the context of different 
kinds of logic and set theory. The hyperreal number system, introduced in 10.18 in the 
setting of conventional set theory, is neither Dedekind complete nor Archimedean. 

14.69. The connection between monomorphisms and IST. The terminology of IST is rather 
different from the terminology of monomorphisms. Most papers in nonstandard analysis 
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today use either monomorphisms or IST, but not both. The two schools of thought are 
nearly equivalent: Most ideas expressed in either system can be translated into the other 
system, by a method that,  though not effortless, is mostly mechanical. 

Nelson's IST can be described "constructively" in terms of monomorphisms (i.e., not 
in Nelson's terms), roughly as follows: Since *IR contains an isomorphic copy of R, let's 
just work with that  isomorphic copy and forget about the original copy; then we have 
one less object to worry about. When we want to work with real numbers and related 
objects, we'll just work with subsets of *R. We have some axioms that  describe our number 
system, including axioms about infinitesimals and other nonstandard objects. The axioms 
for *IR are quite similar to classical axioms for R which is not surprising, in view of 
the Transfer Principle we have already discussed but *IR does contain infinitesimals and 
other nonstandard objects. Now let's change our notation and drop the asterisk; we'll 
write our number system as "IR," and call it "the real numbers." The result is a new 
"real number system," which contains infinitesimals and other new objects. Similarly, the 
symbols N = {natural numbers} and Z = {integers} both take new meanings; both these 
sets now contain infinite members. The objects that  are called "standard" in IST are those 
in the image of the monomorphism mapping. 

SUMMARY OF SOME CONSISTENCY RESULTS 

14.70. The quest for certainty. Is it possible to build mathematics on a completely reliable 
foundation? When consistency of a theory is proved by a fully detailed but finite argument, 
as in 14.10, we say that  a b s o l u t e  c o n s i s t e n c y  is established. Truths may vary from one 
logical system to another, depending on our axiom system, but can we at least prove that  
our axiom system is absolutely consistent? 

In some very simple cases we can. For instance, the axioms of classical propositional 
logic can be proved absolutely consistent (though this may not be readily apparent from this 
book's exposition since we have mixed that  elementary result with more advanced results). 

In 14.7 we described how GSdel used the consistency of ZF to prove the consistency of 
ZF + AC + GCH. This result and earlier, more elementary results of a similar n a t u r e -  
show that  we can sometimes "bootstrap" our way up, using some weak consistency results 
to prove other, stronger consistency results. 

Mathematicians around 1900, encouraged by a few successes in proving consistency, 
began to hope that  all of mathematics could be put on a firm foundation. The search 
for absolute proofs of consistency was promoted especially by David Hilbert, and so it is 
sometimes known as H i l b e r t ' s  p r o g r a m ;  see the discussion by Kreisel [1976]. 

However, in 1931 GSdel published his Incompleteness Theorems; the second of these 
tells us that  Hilbert's program cannot be carried out for larger portions of mathematics.  In 
fact, it cannot be carried out for any system that  is sufficiently sophisticated to yield all of 
arithmetic. 

GSdel's proof is too complicated to present here; even a precise statement of his results 
is too complicated to present here. However, here is a partial statement of his results: 



400 Chapter 14: Logic and Intangibles 

Let ff be a formal theory that  includes arithmetic, and assume that  the axioms 
of ff can be described in a mechanical fashion (i.e., recursively we shall not 
give a precise definition of this term). Assume the language of ff includes only 
countably many symbols. Then: 

G 6 d e l ' s  S e c o n d  I n c o m p l e t e n e s s  T h e o r e m .  The statement "9" is consistent" 
can be encoded as a formula expressed in the language of g'; but that  formula 
is not a theorem of 9 ~ - -  i.e., that  formula about ~ cannot be proved inside ft. 

The proof uses many of the same ideas indicated in 14.62. 

14.71. Fundamental uncertainty. One particular consequence of GSdel's Second Incom- 
pleteness Theorem is: 

Absolute consistency cannot be proved for any formal system that  includes arith- 
metic. In particular, absolute consistency cannot be proved for ZF. 

Thus, mathematics  has lost its innocence: A kind of uncertainty is inherent in the foundation 
of mathematics  and cannot be exorcised. The age of supreme confidence, which began when 
Isaac Newton explained the movements of the heavens with a few simple equations, ended 
with Kurt  GSdel's Second Incompleteness Theorem. 

This should not be entirely surprising. On a more fundamental level, we cannot use the 
basic techniques of reasoning to prove that  the basic techniques of reasoning are reliable. 
Such circular reasoning would be worthless. Perhaps we are all really quite mad and merely 
imagine ourselves to be rational. Even a mathematician must accept certain some things 
on faith or learn to live with uncertainty. 

And there is even disagreement on such matters of faith! For instance, as we noted in 
6.4, most mathematicians are comfortable with proof by contradiction and the Law of the 
Excluded Middle (and we use such proofs freely in this book), but to constructivists such 
proofs are taboo. 

Actually, many researchers in branches of mathematics outside of logic are not aware 
that  the age of certainty has ended. GSdel's Second Incompleteness Theorem has no effect 
on such simple certainties as 2 + 2 = 4, and it does not diminish the extraordinary success 
mathematics has brought to technology. Very clever computations were required to create 
radio and television, or to land human beings on the moon and then return them safely to 
earth. Those computations do not actually rely on ZF set theory. For all practical purposes, 
applied mathematics is a system that  "works," and it will continue to work even if an 
inconsistency someday is found in the most popular formalization of abstract mathematics.  
It is convenient, and perhaps reassuring, to explain differential equations in terms of set 
theory, but it is not absolutely necessary. If our explanation of subsets is someday discovered 
to be inconsistent, researchers in differential equations will not immediately resign from their 
jobs en masse. 

14.72. If we cannot establish absolute consistency, what is the next best thing? What  
shall we use for the basis of our reasoning? 
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First of all, there is empi r i ca l  c o n s i s t e n c y  i.e., that which is based on evidence, 
but not on a complete proof. For instance, mathematicians have now used ZF for nearly a 
century and have not yet proved any contradictions from it. Thus, ZF seems to be consistent, 
based on empirical evidence, if we accept conventional rules of reasoning. Similarly, 

ZF + AC + IC is empirically consistent (so far), 

where AC is the Axiom of Choice and IC is the statement that "there exists an inaccessible 
cardinal" (introduced in 2.21). However, the accumulated evidence is less for this axiom 
system than for ZF, as this system has not been studied quite so extensively. 

Second, there is r e l a t ive  cons i s t ency :  We may prove that if one set of formulas E is 
consistent, then another set �9 is consistent or, more briefly, 

Con(E) => Con(G). 

The problem of consistency is not removed altogether we may not be certain of the 
consistency of E or �9 - -  but the problem may be relocated to a more manageable place: in 
many cases, E is simpler or more intuitively "believable" than O. When relative consistency 
is proved, then �9 inherits all of E's plausibility. 

Although the absolute consistency of ZF is not attainable, at least ZF is empirically 
consistent. Hence we may use the consistency of ZF as a plausible hypothesis in our relative 
consistency arguments. 

14.73. The relative consistency of Choice. The most famous consistency result relative to 
ZF is GSdel's result: Con(ZF) => Con(ZF + AC + GCH), which we have already discussed 
in 14.7. By GSdel's result, it is "safe" to add the Axiom of Choice and the Continuum 
Hypothesis to set theory if this generates any contradictions, then contradictions were 
already present in ZF anyway. The various pathologies generated by Choice such as 
the Banach-Tarski Decomposition, in 6.16 may cause us to question that axiom and to 
consider alternatives, but none of those pathologies actually lead to a contradiction (unless 
ZF is already corrupt), and so none of them can actually force us to give up the Axiom of 
Choice. 

We emphasize that GSdel's result does not say that ZF implies AC. Quite the contrary; 
in 1963 Cohen showed that 

if ZF is consistent, then ZF + not-AC + not-CH is also consistent. 

Thus ZF does not imply AC or CH (the Continuum Hypothesis). 

14.74. Equiconsistent alternatives to ZF. Since Cohen's breakthrough, several other math- 
ematicians have subsequently proved the relative consistency of more specific negations of 
the Axiom of Choice. They have proved that certain statements that contradict AC, such 
a s  

BP 

LM 

= "every subset of IR has the Baire property" 

= "every subset of R is Lebesgue measurable" 
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(discussed, respectively, in Chapters 20 and 21) are consistent with certain weak conse- 
quences of Choice, such as 

DC = Dependent Choice 
CC = Countable Choice 

UF = Ultrafilter Principle 
HB = Hahn-Banach Theorem 

(discussed in Chapters 6 and and 12). Specifically, if ZF is consistent, then so is each of the 
following sets of axioms: 

�9 ZF + BP + LM (Solovay [1964/1965]) 

�9 ZF + UF + not-CC (Halpern and Levy [1971]) 

�9 ZF + DC + HB + "all ultrafilters are fixed" (Pincus and Solovay [1977]) 

�9 ZF + DC + BP (Shelah [1984]) 

�9 ZF + DC + BP + not-LM (Stern [1985]) 

These consistency results will not be proved in this book; the ambitious reader will find the 
proofs elsewhere in the literature. Many of these results were proved by forcing. Earlier 
in this chapter we have suggested some of the ingredients of consistency proofs, but those 
suggestions are far from actually being a proof. The consistency of conventional set theory 
(ZF + AC) and the consistency of Shelah's alternative (ZF + DC + BP) will be assumed 
throughout this book; the importance of Shelah's alternative will be explained in 14.77. 

The Axiom of Choice and its negation cannot coexist in one proof, but they can cer- 
tainly coexist in one mind. It may be convenient to accept AC on some days e.g., for 
compactness arguments and to accept some alternative reality, such as ZF + DC + BP 
on other days e.g., for thinking about complete metric spaces. 

Each of the axiom systems listed above includes ZF, and thus each system is equ icon-  
s i s t en t  with ZF - -  i.e., its consistency is equivalent to the consistency of ZF. Another way 
to say this is that the various axiom systems have the same c o n s i s t e n c y  s t r e n g t h .  Hence 
each of these alternative set theories is as plausible as conventional set theory. The theolo- 
gian Kierkegaard might have put it this way: To believe that ZF is consistent requires a 
certain leap of faith, but to believe the consistency of any of these larger systems of axioms 
requires no larger leap of faith. 

14.75. Axiom systems that are not equiconsistent with ZF. Let IC be the statement that 
"there exists an inaccessible cardinal." As we have remarked earlier, ZF + AC + IC is em- 
pirically consistent (so far). That  is, no contradictions have yet been established as con- 
sequences of ZF + AC + IC, even after considerable scrutiny by set theorists. Hence it is 
reasonable to take Con(ZF + AC + IC) as a hypothesis in certain arguments (where "Con" 
stands for "consistency of"). 

Obviously Con(ZF + AC + IC) ~ Con(ZF + AC). However, Con(ZF + AC) does not 
imply Con(ZF + AC + IC). That fact can be proved along the following lines: We can use 
an inaccessible cardinal to form a set ~ such that we can prove inside ZF § A C § IC that 
?v[ is a model of the axioms of ZF + AC (in the sense of 14.6). The Soundness Theorem 
can also be proved in this setting; thus, inside ZF + AC + IC we can prove the consistency 
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of ZF + AC. Now GSdel's Second Incompleteness Theorem tells us that Con(ZF + AC) =~ 
Con(ZF + AC + IC) cannot be proved inside ZF + AC, or even inside ZF + AC + IC. For 
further details of this argument, see Shoenfield [1967], page 306. 

Thus, ZF + AC + IC is not equiconsistent with ZF, or ZF + AC, or all the other axiom 
systems listed in 14.74. We say that ZF + AC + IC has greater consistency strength than 
does ZF or ZF + AC. 

Results of Solovay [1970], Shelah [1984, 1985], and Stern [1985] imply that the follow- 
ing sets of axioms are equiconsistent i.e., consistency of any one of these sets implies 
consistency of all the others. 

�9 ZF + AC + IC 

�9 ZF + CC + LM 

�9 ZF + DC + LM 

�9 Z F + D C + L M + B P  

�9 ZF + DC + LM + not-BP 

These results show that Lebesgue measurability in IR a set of "ordinary" size is 
inextricably connected to questions about inaccessible cardinals i.e., sets so enormous 
that they are very hard to imagine. 

This equiconsistency result came as something of a surprise to mathematicians. There 
is an extensive analogy between Lebesgue measurability (in measure theory) and the Baire 
property (in topology), as shown by Oxtoby [1980] and Morgan [1990]. However, the analogy 
breaks down when we study equiconsistency: ZF + DC + BP is equiconsistent with ZF, but 
ZF + DC + LM is not. 

QUASICONSTRUCTIVISM AND INTANGIBLES 

14.76. Dependent Choice, introduced in 6.28, is generally considered to be constructive. 
In fact, it is the strongest form of Choice that is accepted by most schools of constructivism. 
It is fairly strong, as we can see from the fact that the constructivists have been able to 
translate so much of classical mathematics into their viewpoint (see 6.8). 

Most existence proofs in this book use conventional set theory that is, Zermelo- 
Fraenkel set theory plus the Axiom of Choice (ZF + AC). Much of this book is concerned 
with mere existence proofs, but we also give explicit examples when we can. There is 
no standard meaning for "explicit example," but many mathematicians would attach a 
narrower meaning to that phrase than they do to "existence proof." 

How can we make the phrase "explicit example" more precise? Some possible interpre- 
tations are: 

�9 an object that can be constructed in the sense of Bishop, as in 6.2; 

�9 an object that can be constructed in the sense of G6del, as in 5.54; or 
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�9 an object that is definable in the sense of predicate logic, as in 6.11. 

However, all these interpretations involve ideas that are quite far away from mainstream 
mathematics; they would require us to restructure our entire language and methods of 
reasoning. 

Instead, we shall now propose a compromise between constructivist mathematics and 
mainstream mathematics, which should be easily understood by most analysts and other 
"ordinary" m a t h e m a t i c i a n s -  i.e., it is not accessible only to logicians. By q u a s i c o n s t r u c -  
t i r e  mathematics we shall mean mathematics that permits the use of conventional rules 
of reasoning plus ZF + DC, but no stronger forms of Choice. (This kind of reasoning was 
called "agnostic" mathematics by Garnir [1974], referring to the fact that the user of this 
mathematics assumes neither the Axiom of Choice nor its negations such as BP or LM.) 
In this book, an expl ic i t  e x a m p l e  of an object will mean 2 a quasiconstructive proof of 
existence of that object. Most of this book uses classical, conventional set theory (ZF + 
AC), but occasionally we shall work with the more restrictive viewpoint of quasiconstruc- 
tive mathematics to study the presence or absence of explicit examples. We emphasize 
that  constructive mathematics (in the sense of Bishop) is even more restrictive: It pro- 
hibits proofs by contradiction and the Axiom of Regularity, both of which are permitted in 
quasiconstructive mathematics. 

14.77. By an in tangib le ,  we shall mean an object that "exists" but has no "explicit 
examples" i.e., an object whose existence can be proved in conventional mathematics 
(ZF + AC) but not in quasiconstructive mathematics (ZF + DC). Throughout this book, 
we shall assume the consistency of ZF; we shall use that assumption to prove that certain 
objects are intangibles. 

For instance, certain subsets of a topological space have the Baire property, discussed 
in Chapter 20. Let BP be the statement that "every subset of R has the Baire property." 
As we stated without proof in 14.74, the consistency of ZF implies the consistency of ZF + 
DC + BP. Later in this book we shall prove that ZF + AC implies not-BP. Thus, 

subsets of R that lack the Baire property are intangibles 

- -  such sets "exist," but there are no "explicit examples" of such sets. 
Strictly speaking, it is not the particular set S lacking the Baire property that is in- 

tangible; rather, it is the property of being such a set that is intangible. If we could quasi- 
constructively get our hands on a particular set S that lacked the Baire property, then S 
would not be an intangible! We can make our language more precise by saying something 
like this: "the negation of the Baire property is an intangible property." But it is more 
convenient and more intuitively appealing to say, somewhat imprecisely, that "the subsets 
of R that lack the Baire property are intangibles;" the intended meaning should be clear. 

Actually, in some situations we can "get our hands on" a particular intangible object 
but not quasiconstructively. Consider the following illustration: 3 Let pl (x) and p2(x) 

2Admittedly, the phrase "explicit example" has been used in different ways in the literature, and some 
mathematicians may not agree with the particular meaning attached to that  phrase by this book. However, 
it is this author ' s  feeling that  many mathematicians will agree with it. At any rate, the definition given 
here has the advantage that  it leads to some interesting theorems. 

3Suggested by an anonymous referee. 
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be, respectively, the statements "z = 0" and "the Axiom of Choice is true." (The latter 
predicate actually does not depend on z.) Then in conventional mathematics  (ZF + AC), 
the set S = {z : p l (z)  and p2(z)} is nonempty. In fact, it has exactly one element, and 
we know what that  element is: 0. The issue here is not whether we can find a particular 
member of S, but rather, whether we can prove that  the object belongs to S. In quasi- 
constructive mathematics,  it is clear that  S is either ~ or {0}, but we cannot determine 
which. Thus, 0 is an intangible or more precisely, the property of being a member of 
S is an intangible property. This illustration shows that  our simple and precise definitions 
of "explicit example" and "intangible" match only approximately with the usual imprecise 
intuitive meanings of those, terms. 

Later we shall prove that  these objects are also intangibles: free ultrafilters, nontrivial 
universal nets, well orderings of R, inequivalent complete norms on a vector space, finitely 
additive probabilities that  are not countably additive, and members of (t~oo)* \ t~l. Some 
classical texts may give one the impression that  these peculiar objects are somehow already 
present and the Axiom of Choice is used merely to "detect" them. However, it is more 
accurate to say that  these objects are created by our acceptance of the Axiom of Choice. 
They disappear if we replace conventional set theory (ZF + AC) with some of its alternatives 
(such as ZF + DC + BP). 

A special role is played by the negation of the Baire property: It is a "weaker" intangible 
than most other intangibles that  we shall consider in this book, in the following sense. If we 
assume that  the other intangible object exists, we can (and shall, elsewhere in this book) 
use it to prove the existence of a non-BP set, without recourse to formal logic or to any 
form of Choice stronger than DC. Hence Shelah's result, Con(ZF) =~ Con(ZF + DC + 
BP), is the only result we need from formal logic for most of our intangibility proofs. 

14.78. Intangibles in a wider sense. The "intangibles" defined above might be named 
more descriptively as "AC/DC intangibles" i.e., objects whose existence is implied by 
ZF + AC but not by ZF + DC. That  is the only kind of intangible considered in most of 
this book. However, many more objects are "intangible" if that  term is given the broader 
meaning of "anything that  exists but lacks explicit examples," where "exist" and "explicit 
example" are given any reasonable interpretations. Different interpretations yield different 
kinds of intangibles. We now mention four kinds of "intangibles" not covered by our AC/DC 
theory: 

a. If we replace conventional set theory ZF + AC with Shelah's ZF + DC + BP, then many 
of the classic pathological objects of analysis cease to exist. However, they are replaced 
by a new collection of intangibles, for BP is also a nonconstructive postulate of exis- 
tence. Indeed, it asserts that  every subset of R can be represented in the form M A G 
for some meager M and open G, without giving any clue about how to find such a 
representation. 

b. As we remarked in 6.3 and 6.4, the Axiom of Choice is not the only source of non- 
constructive reasoning in conventional mathematics; two other sources are the Axiom 
of Foundation and the Law of the Excluded Middle. These sources yield their own 
collections of intangibles. 

c. For some objects, even the Axiom of Choice is too weak to prove existence. The 
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following example assumes familiarity with some concepts of algebra and functional 
analysis introduced later in this book. Let K be a compact Hausdorff space, and 
consider the algebra C(K, C) = {continuous functions from K into C}. An a l g e b r a  
n o r m  on C(K,C) is a vector space norm II II with the additional property that  
Ilfg]l <- I[f]l ]lgl], where the product fg is defined pointwise: (fg)(x) = f(x)g(x) for 
x E K. The sup norm on C(K, C) is complete, and any other complete algebra norm 
on C(K, C) is equivalent to the sup norm. Do there exist any incomplete algebra 
norms on C(K, C)? This question cannot be answered in ZF+AC; it can be answered 
affirmatively or negatively depending on what further axioms we add to ZF+AC. For 
a full discussion, see Dales and Woodin [1987]. 

Lebesgue unmeasurable sets constitute a different sort of "intangible." Indeed, all the 
axiom systems mentioned in the last few paragraphs are equiconsistent with ZF, as we 
noted in 14.74. However, the axiom systems described in 14.75 have greater consistency 
strength. In particular, that is the case for ZF + DC + LM, where LM is the statement 
that "every subset of R is Lebesgue measurable." Thus, 

�9 the existence of Lebesgue nonmeasurable sets can be proved in conventional set 
theory (ZF + AC) and in fact we shall give such a proof in 21.22; 

�9 empirically, it seems to be impossible to give an explicitly constructible example 
of such a nonmeasurable set i.e., mathematicians have been unable (so far) to 
prove the existence of Lebesgue nonmeasurable sets using just ZF + DC, so the 
axiom system ZF + DC + LM seems to be consistent; but 

�9 proving the impossibility of such an explicit construction (i.e., proving the con- 
sistency of ZF + DC + LM) requires a stronger assumption than our usual gospel 
of Con(ZF). 
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Chapter 15 

Topological Spaces 

15.1. Remarks. We now resume the study of topological spaces, which we began in 
Chapters 5 and 9. Our study will also use some material from Chapter  7. 

Many of the most basic properties of topological spaces are actually valid in the more 
general setting of pretopological spaces, so we shall begin in that  setting. Admittedly, that  
setting is more general than one usually encounters in textbooks on topology. However, (i) 
the greater generality gives us some extra insights into topological spaces, as in 15.10; and 
(ii) it doesn't  really require extra work, since the properties of pretopological spaces that  
we shall study are properties of topological spaces that  we would have had to study anyway. 

PRETOPOLOGICAL SPACES 

15.2. Let X be a set. A n e i g h b o r h o o d  s y s t e m  for a p r e t o p o l o g y  on X is a system 
of filters {N(x) �9 x E X} such that  x is a member of each member of N(x). A member of 
N(x) will be called a n e i g h b o r h o o d  of x; thus N(x) is called the f i l ter  of  n e i g h b o r h o o d s  
or the n e i g h b o r h o o d  f i l ter  at x. A set X equipped with such a neighborhood system is 
called a p r e t o p o l o g i c a l  space .  A convergence is defined on X as follows: for nets, 

x~ ~ x ' '- x~ is eventually in each neighborhood of x 

or, equivalently, for proper filters, 

~ x ~ ~ _~ N ( x ) .  

In particular, the neighborhood filter itself converges to x. Clearly, the convergence is 
centered and isotone, as defined in 7.34. 

15.3. Some basic properties. Let X be a pretopological space. Then: 

a. The convergence on X is Hausdorff (in the sense of 7.36) if and only if any two distinct 
points in X have disjoint neighborhoods. 

Hints" The convergence has nonunique limits if and only if there exist distinct 
points y, z E X and a proper filter 5[ such that  9" ~ y and 9= ~ z that  is, such 
that  9 ~ D N(y) and 9 ~ _D N(z). In view of 7.18(E), that  can happen if and only if every 
member of N(y) meets every member of N(z). 

409 
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b. X has the "star property:" 

If z C X and (x~) is a net tha t  does not converge to z, then (x~) has a 
subnet (yZ) tha t  stays out of some neighborhood of z; hence no subnet of 
(yZ) converges to z. 

Also, X h ~s the "sequential star  property '"  

If z E X and (Xn) is a sequence that  does not converge to z, then (Xn) 
has a subsequence (Yn) tha t  stays out of some neighborhood of z; hence no 
subsequence of (Yn) converges to z (and in fact, no subnet of (Yn) converges 
to z). 

Hints" Assume the net (x~ �9 c~ E A) does not converge to z. Then there is some 
neighborhood N of z such that  x~ is not eventually in N. Thus, ~ - {c~ E A �9 x~ ~ N} 
is a frequent subset of A, and so the frequent subnet (x~ �9 c~ E ]~) has the desired 
properties. For the sequential result, recall from 7.16.d tha t  any frequent subnet of a 
sequence is actually a subsequence. 

Remark. We shall see in 21.43 that  some complete lattices have order convergences 
that  lack the sequential star property and therefore are not pretopological convergences. 

c. If (x~) and (yz) ale nets in a set S c_ X, both converging to some limit z E X, then 
(x~) and (yz) are subnets of a single net in S which also converges to z. 

Hint: Let the given nets have eventuality filters 5 and ~}. Then 9" N S is a proper 
filter tha t  contains {S} U N(z). 

d. Let p "  X ~ Y be a mapping from one pretopological space into another. Then p is 
convergence-preserving (defined as in 7.33) if and only if p has this property: 

Whenever N is a neighborhood of p(x) in Y, then p - l ( N )  is a neighborhood 
of x in X. 

15.4. Definitions. Let (X, lim) be a pretopological convergence space, with neighborhood 
filters ?/(x). We define two maps from T(X)  into itself, the c o n v e r g e n c e  c l o s u r e  o p e r a t o r  
and the c o n v e r g e n c e  i n t e r i o r  o p e r a t o r ,  by 

cl(S) = {z E X �9 S is a member  of some filter that  converges to z} 

= {z E X �9 some net that  converges to z is eventually in S} 

= {z c X �9 S meets every neighborhood of z}, and 

int(S) -- {z c X �9 S is a member  of every filter tha t  converges to z} 

= {z c X �9 every net that  converges to z is eventually in S} 

= {z ~ X �9 S is a neighborhood of z}. 

Then the closure and interior are related by: 

i n t ( X \ S )  - X \ e l ( S ) .  

Thus, closures and interiors are dual notions, in the sense of 1.7. In practice, however, 
closures and interiors are commonly used in different ways. Typically, the closure of a set 
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S is used if S itself does not contain enough points for some purpose e.g., if S is not 
closed under some sort of operation of taking limits. The interior of a set S may be used 
as part  of an argument to show that  S or some other related set is nonempty, and thus to 
prove the existence of certain mathemat ica l  objects. 

15.5. Further properties of pretopological closures. 
a. c l ( e ) - 2 ~ ,  SC_cl(S) ,  a n d S C _ T  ~ cl(S) C_cl(T). 

b. cl(S U T) - c l (S)U cl(T). More generally, el U~- i  sj  - Uj=l cl(Sj) for any finite n. 

(For a slight generalization, see 16.23.c.) 

c. c l ( S ) \ c l ( T )  - c l ( S \ T )  \ cl(T) C_ c l ( S \ T ) .  
Hint" From S - (S A T ) U  ( S \  T), we obtain cl(S) - cl(S A T ) U c l ( S \  T). Intersect 

both sides of this equation with the complement of cl(T), to obtain cl(S) \ cl(T) - 
cl(S \ T) \ c l ( r ) .  This argument  is taken from Kuratowski [1948]. 

Remarks. The closure of a pretopological space does not necessarily satisfy the idempotence 
condition cl (cl(S)) - cl(S). Tha t  is the one condition it still needs to be a Moore closure 
(see 4.5.a) or a topological closure (see 5.19, 15.6, 15.7, and 15.10(E)). 

15.6. Example: a pretopological closure that is not idempotent. We exhibit a space in 
which cl(cl(S)) may differ from cl(S). 

The underlying set will be R 2. For each (x, y) E R 2 and each number c > 0, let 

/ < 7 ( x , y )  - {(x,y')cR=.ly 
(This is a plus-shaped set centered at (x, y); each of its four arms has length c.) Now define 
the neighborhood filter N(x, y) to be the filter {S c_ R 2 �9 S D_ K~(x, 9) for some c > 0}. 
The resulting convergence is as follows: A proper filter 9" on R 2 converges to a limit (x, y) 
if and only if K~(x, y) c 9: for every c > 0. Equivalently, a net (x~, y~) in IR 2 converges to 
a limit (x, y) if and only if for each c > 0, we have eventually (x~, Y~) c K~(x, y). Finally, 
let S - { ( x , y )  E R  2 �9 x > 0 a n d y > 0 } .  Verify that  

but 

cl(S) - {(x, y) E R 2 

cl(cl(S)) = {(x, y) c R 2 

�9 x _> o y o y) # (o, 0)}, 
�9 x _ > 0 a n d y > _ 0 }  is strictly larger. 

T O P O L O G I C A L  S P A C E S  A N D  T H E I R  
C O N V E R G E N C E S  

15.7. Definitions. Let (X, 9 0 be a topological space, as defined in 5.12. Recall from 5.16.a 
that  a set N c X is a neighborhood of a point p if p E G c_ N for some open set G. Then 



412 Chapter 15: Topological Spaces 

N(p) - { N  N is a neighborhood of p} is a filter, called the neighborhood filter at p. The 
N(p) 's  form a system of neighborhood filters for a pretopology, as defined in 15.2. Thus, 

a topological space is a special type of pretopological space. 

Convergence is defined as in 15.2. However, in a topological space (X, g~), the definition 
of convergence can be reformulated in terms of open sets. It is easy to show that  for filters, 

9" --, z if and only if every open set containing z is a member  of 9-. 

The equivalent condition for nets is: 

x~ ~ z if and only if for each open set (7 containing z, eventually x~ E G. 

The convergence given by either of these rules is the c o n v e r g e n c e  d e t e r m i n e d  by  t h e  
t o p o l o g y .  Every topological space is understood to be equipped with this convergence, 
unless some other arrangement  is specified. A convergence rule that  can be determined by 
some topology is called a t o p o l o g i c a l  c o n v e r g e n c e .  

Of course, any sequence is also a net, and so all our results for nets will apply to 
sequences. We shall work with sequences rather  than with nets or filters whenever possible, 
since sequences are conceptually simpler. 

15.8. A few basic properties of topological convergences. Let (X, 9 ~) be a topological space. 
Show that  

a. A set is open if and only if it is a neighborhood of each of its points. 

b. A set S C_ X is open if and only if it has this property for nets: 

C. 

d. 

Whenever x~ ---+ z and z E S, then eventually z~ E S. 

An equivalent property in terms of filters is" 

Whenever 9--+ z and z C S, then S E 9-. 

From either of these characterizations, we see that  the topology g" can be recovered from 
its convergence rule; two distinct topologies on X cannot have the same convergence 
rule. (However, not every convergence rule is determined by a topology. In 15.10 we 
shall characterize just which convergences are topological.) 

A set S C_ X is closed if and only if it has this property: If z~ ~ z and eventually 
x~ E S, then z E S. An equivalent property is: If 9- --+ z and S E :T, then z E S. 

In a topological space, the topological closure and interior (defined in 5.16.b and 5.16.c) 
are the same as the pretopological convergence closure and interior (defined in 15.4). 

Remark. Any topological closure is idempotent  (see 5.19), but not every pretopo- 
logical convergence closure is idempotent  (see 15.6). We shall see in 15.10(E) that  a 
pretopological convergence closure is a topological closure if and only if it is idempo- 
tent. 

15.9. Elementary examples of convergence. Some of the following examples are based on 
5.15. Let X be any set. Then: 
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a. Recall t ha t  the indiscrete topology on X is {2~,X}. W i t h  this topology, every net  in 
X and every filter on X converge to every point  of X.  

b. Recall  t ha t  the  discrete topology on X is ~P(X). W i t h  this topology, a net  (x~) con- 
verges to a limit z if and only if eventual ly  x~ = z, and a filter :T converges to a limit 
z if and only if :T is the  ultrafi l ter  fixed at z. 

c. Recall tha t  the  cofinite topology on X is 

g" - { S C _ X  �9 ei ther  S is empty  or CS is finite}. 

d" 

e .  

Show tha t  if X has the  cofinite topology and (x,~) is a sequence in X with  the  p roper ty  
tha t  no point  s c E X appears  in the  sequence infinitely many  times, then  (x~) converges 
to every point  of X.  

Let Y be a topological  space, and let X C_ Y. T h e n  a net  (x~) converges to a limit p 
in the  relative topology on X ( in t roduced in 5.15.e and 9.20) if and only if (i) x~ -+ p 
in Y, and (ii) p and  all the  x, , 's  lie in the  set X.  

A net (x(~) converges to a limit z with respect  to the  topology genera ted  by a collection 

of sets 9 if and only if 

z C G E ~ =~ eventual ly  x(~ C G. 

In par t icular ,  if z r Uce~3 G, then  every net in X converges to z. 

f. Let (X, d) be a pseudomet r ic  space; the  topology of such spaces was descr ibed in 5.15.g. 
Show tha t  a filter 9" converges to a limit p in this space if and only if Bd(p, c) E ~ for 
each c > 0. Equivalently,  a net  (x~) converges to p if and only if for each c > 0 we 
have eventual ly  d(x,,, p) < c. 

In par t icular ,  let R have its pseudomet r ic  topology; then  a net  of real numbers  
(r,~) converges to a real number  s if and only if for each c > 0 we have eventual ly  

Observe tha t  the  convergence in any pseudomet r ic  space (X, d) can be character ized 
in te rms  of convergence of distances,  which are real numbers :  

w~--+p  in (X ,d )  < > d ( x ~ , p ) ~ O  in R. 

15.10. Theorem characterizing topological convergences (optional). Let X be a 
convergence space whose convergence is centered and isotone (as defined in 7.34). Then  the 
following condi t ions are equivalent.  

(A) 

(B) 

(c) 

Tile convergence on X is topological  i.e., given by a topology. 

(Iterated Net Condition.) Let (y~" ~ c D) be a net  in X converging to 
a limit z. For each ~ c D, let (x~ �9 c E E~) be a net  in X converging to y~. 
Let F - I - I~  D E~ have tile p roduc t  ordering,  and let D • F have the p roduc t  

ordering.  T h e n  the net (x~(~)" (& f )  E D • F )  converges to z. 

(Cook-Fischer Iterated Filter Condition.) Let ~ be a filter on a set I, 
and let v "  I ---+ X be some function. Assume the fil terbase v(~) - {v(G) �9 
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G E ~}} converges to some point z in X. For each i E I, suppose s(i) is a filter 
on X converging to v(i). Then the filter * - UaE~ ~ i E a  s(i) converges to z. 

(D) ( K o w a l s k y ' s  C o n d i t i o n s . )  The convergence is pretopological (as defined in 
15.2). Furthermore,  suppose ~} is a filter on X converging to some point z in 
X. For each x E X, assume that  s(x) is a filter on X converging to x. Then 
the filter : K -  UaE~ NiEa s(i)converges to z. 

(E) ( G h e r m a n ' s  C o n d i t i o n s . )  The convergence is pretopological. Moreover, 
the closure operator defined in 15.4 is idempotent  - -  i.e., it satisfies el(el(S)) = 
c~(S). 

Bibliographical remarks. Earlier, more complicated versions of parts of this theorem were 
given by Kelley [1955//1975] and Cook and Fischer [1967]; those versions assumed a "star 
property" like that  in 15.3.b. The star property assumption was removed independently, 
in different fashions, by Aarnes and Andenms [1972] and Gherman [1980]. It should be 
emphasized that  our definition of "isotone" is based on Aarnes-Anden~es subnets i.e., 
we assume condition 7.31(*). Kelley studied nets without assuming that  condition and 
without considering filters. Wi th  his formulation the star property cannot be omitted; that  
was shown by Aarnes and Anden~es [1972]. 

Hints for (A) ~ (B). Let N be an open neighborhood of z; it suffices to show that  
eventually 5 X f(5) E N. 

Outline of (B) ~ (C). We shall begin by constructing a net that  is somewhat like the 
canonical net of v(~), but is also parametrized by elements of I. Let ~} be ordered by reverse 
inclusion (see 7.4), let X and I have the universal ordering (see 3.9.g), and let products 
have product  ordering. Let 

D = {(i,G) E I •  : l E G } .  

Then D is a frequent subset of I • 9, hence directed. For 5 = (i, G) in D, let y5 = v(i). 
The net (Y5 :~ E D) converges to z since its eventuality filter includes v(9). 

For each ~ = (i ,G) in D, let 85 = s(i); thus 85 is a filter on X that  converges to 
v(i) = yh. The canonical net of 85 is 

(xf �9 e E E s ) ,  where E5 - {(w,S)  E X •  " w E S }  and x~w,s ) - w ;  

this net also converges to v(i) = yh. 
Define F - I-IhED E5 as in the s ta tement  of (B). Then the net (x~(5)" ((~ , f )  E D • F)  

converges to z by the assumed condition (B). Hence its eventuality filter ~ also converges 
to z. We wish to show that  K ~ z; it suffices to show that  K D ~. 

- f (  Let A E ~; we are to show that  A E 9~. Since A is an eventual set of (xf(5) 
5 

D •  E D a n d f A  E F s u c h t h a t h ~ ( ~ A ,  f ~ fA ~ xs(5 ) E A .  Say 

~A = (iA, CA). 
Temporari ly fix any i E CA, and let ~ = (i, CA). Then ~ is a member of D that  satisfies 

5 ~ ~A and therefore x~(5) E A for all f ~ fA. Thus x~ E A for all c E E5 such that  
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c ~ fa(6) .  Thus the net (x~ �9 c c E ~ )  is eventually i n A ,  so A is a member of that  net 's 
eventuality filter, which is g5 - s(i). 

Thus A C ["l.ieca s(i) C_ K. 

Outline of (C) ~ (D). Easily, condition (C) implies the iterated filter condition in (D). 
It suffices to show (C) implies the convergence is pretopological. Fix any z c X; let N(z) 
be the intersection of all the filters that  converge to z; we wish to show 2r -0 z. Let 
I -  {filters on X that  converge to z} and ( 7 -  {I}. Define s(i) - i  and v(i) - z for all 
i c I. The hypotheses of the Cook-Fischer condition are satisfied, and therefore K ~ z. 
Unwinding the notation, we find that  : X -  N(z). 

Outline of (D) =~ (E). Let I - cl(S); we wish to show cl(I) - I. Clearly, I c_ cl(I). Let 
z E cl(I); it suffices to show z E I. 

When z C I, then S meets every element of N(z); let N ( z ) V  {S} denote the filter 
generated by N (z )U  {S} (see 5.5.i). Define s" X ~ {filters on X} as follows: 

N(z) if z ~ I 
s(x) - N(x) V{S} i f x E I .  

In either case, s(x) is a filter that  converges to x. 
Since z E cl(I), some filter ~ converges to z and contains I. By the assumed condition 

(D), Kowalsky's iterated filter K -  U c ~  ~ a  s(i) converges to z. Since I E 9, we have 

S c ~ i c I  s(i) c_ X.  Since S c X and X ---, z, we have z c c l ( S ) -  I. 

Hint for (E) ~ (A)" Let o denote the convergence originally given on X; we are to prove 

that  o is a topological convergence. Condition (E) tells us that  the convergence closure 
operator defined in 15.4 satisfies Kuratowski 's axioms 5.19 and thus is the closure operator 
for some topology 8" on X. Since int(CS) - e(cl(S)) ,  the convergence interior operator 

g- 
defined in 15.4 is the interior operator for that  topology ft. Let ~ be the convergence of 

that  topology. Now, both o and g'~ are pretopological, and they have the same interior 
operator, hence the same neighborhood filters. Being pretopological, they satisfy 

:y o z .: > 5r _~ N(z) ., :- :y O" z. 

That  is, the two convergences are the same. Hence o is a topological convergence. 

MORE ABOUT TOPOLOGICAL CLOSURES 

15.11. The closure operator is isotone 
therefore it satisfies 

i.e., it satisfies S c_ T =~ cl(S) c_ cl(T) 

AEA AEA 

and 



416 Chapter 15: Topological Spaces 

as we noted in 4.29.c. Neither of these inclusions is necessarily reversible, as we shall now 
show with simple examples. For both examples, take X - R with its usual topology; let 
Q -  {rational numbers}. Then 

A E R  A E R  

U cl(Sx) c c l (  U S)~) i f S a - { A }  ~: 

15.12. Relativization of closures. Let Y be a topological space, let X c_ Y, and let X be 
equipped with the relative topology. Let cly and clx denote closures in the topology of Y 
and the topology of X. Then for any set S c_ X, we have 

clx (S) - X Ch cly (S). 

15.13. A subset S is dense  in a topological space X if cl(S) - X. A topological space X 
is s e p a r a b l e  if it has a countable dense subset. Show that  

a. A set S c_ X is dense if and only if it meets every nonempty open subset of X. 

b. If G is an open subset of a topological space X, and Y is a dense subset of X, then 
c c_ cl(a n v).  

c. The intersection of finitely many open dense sets is open and dense. 

d. Any subset of a separable metric space is separable. 

e. Any open subset of any separable space is separable. 

f. However, separability is not a hereditary property i.e., not every subspace of a 
separable space is necessarily separable. 

Example. Let ~ be some particular member of an uncountable set X (for instance, 
take 0 E R). Let X be given the topology ~ -  {S c_ X ' ~  E S or S - ~}. Show that  
X is separable, but the relative topology on X \ {~} is not separable. 

g. Let (X,d) be a separable metric space. Then there is a sequence (x~) in X with the 
property that  every point in X is the limit of some subsequence of (x~). In fact, we 
can choose the subsequence canonically (i.e., without any arbitrary choices). 

Hints" Repetitions are permitted. If (uk) is a countable dense set, let (x,~) be the 
sequence 

~tl, Ul ,  U2, Ul ,  U2, U3, Ul ,  ~t2~ ~3, ~4~ ~tl, ~2,  ~3,  U4, U5, - - .  

Given any point p E X, we can choose a subsequence ( z~ )  of (x~) canonically as 
follows: Take n l  - -  1. Thereafter, let n~ be the first integer greater than n~-i that  
satisfies d(x~, p) < 1 ' i" 
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CONTINUITY 

15.14. Definition. Let (X, g) and (Y,g') be any topological spaces, let x0 c X, and let 
f : X -+ Y be a function. Then the following conditions are equivalent; if any (hence all) 
are satisfied, we say f is c o n t i n u o u s  a t  t h e  p o i n t  Xo. 

(A) f is "convergence-preserving" at 2?o. That  is, whenever (x~) i s  a net converg- 
ing to a limit 2?0 in X, then also f(x~) --+ f(27o) in Y. (Compare this with 
condition 15.14(E), which is intuitively similar but removes the concept of 
"time" from our convergence.) 

(B) Whenever (B is a filterbase converging to a limit x0 in X, then the filterbase 
(B - { f (B)  �9 B E (B} converges to the limit f(27o)in Y. 

(C) The inverse image of each neighborhood of f(xo) is a neighborhood of x0. 

If the topologies on X and Y are given by gauges D and E, then an equivalent condition 
is: 

(D) For each pseudometric e C E and each number c > 0, there exists some finite 
set D'  C D and some number ~5 > 0 such that  

max d(xo,X) < ~ 
dED'  

We emphasize that  the choice of (5 and D'  may depend on all of c, c, and x0, but not Oil 2?; 
this should be contrasted with the definition of uniform continuity in 18.8(C). Of course, 
the preceding condition simplifies slightly if X is a pseudometric space with singleton gauge 
D = {d} or, more generally, if D is a gauge that  is directed (as defined in 4.4.c). 

If X = Y = R, and H = *R is the hyperreal line constructed as in 10.20.a, then the 
conditions above are also equivalent to this condition: 

(E) Whenever { is a hyperreal number that  is infinitely close to x0 (defined in 
10.18.c), then . f ( c )  is infinitely close to f(xo). (Here *f  : H ---+ H is defined 
as in 9.49. Compare this condition with 15.14(A).) 

15.15. Let (X, g) and (Y, ~) be any topological spaces, and let f "  X ---+ Y be a function. 
Then the following conditions are equivalent; if any (hence all) are satisfied, we say f is 
c o n t i n u o u s .  

(A) Inverse images of open sets are open; that  is, T C 9" => f - l ( T )  E g. (This 
definition of continuity was used in 9.8.) 

(B) The inverse image of each closed set is closed. 

(C) For each set S c_ X, we have f(c l (S))  c_ cl(f(S)) .  

(D) For each set T C_ Y, we have c l ( f - l ( T ) )  C_ f - l ( c l ( T ) ) .  

(E) f is continuous at each point x0 in X, as defined in several equivalent ways in 
15.14. In particular, using the formulation in 15.14(A), we obtain the condi- 
tion that  f is convergence-preserv ing-  i.e., whenever (x~,) is a net converging 



418 Chapter 15: Topological Spaces 

to any limit x0 in X,  then also f(x~) ~ f(xo) in Y. (This generalizes 7.33 
and 15.3.d.) 

A h o m e o m o r p h i s m  from one topological space to another  is a continuous bijection whose 
inverse is also continuous. Thus it is an isomorphism in the category of topological spaces. 

15.16.  Additional characterization. A mapping f �9 X ~ Y, from one topological space 
into another,  is continuous if and only if f is "locally continuous" in the following sense: 

I each point in X has a neighborhood N such tha t  the restriction f N N ~ Y is continuous 

(where N is given the relative topology, defined in 5.15.e). 

15.17. Degenerate examples of continuity. 
a. Any map from a topological space into an indiscrete space is continuous. 

b. Any map from a discrete space into a topological space is continuous. 

15.18.  Exercise. If f �9 X -~ Y is a continuous map from one topological space into another  
and S C_ X is connected (defined in 5.12), then f(S) c_ Y is also connected. 

15.19.  Remarks. To say tha t  f is continuous is to say, roughly, tha t  f carries any set 
of points near x to a set of points near f(z). Here are two ways in which this notion is 
important :  

(a) In many applied mathemat ics  problems, some data  x is based on a measurement ,  
and a decision or consequence f(x) is then computed.  Any measurement  of x inevitably 
involves small errors. If f is continuous, then at least the small errors in x will not have 
catastrophic effects on the decisions and consequences f(x). On the other hand, if f is 
discontinuous, then even a tiny error in x may make our computed  value of f(x) highly 
erroneous, and thus the computa t ion  may be al together worthless. 

(b) In some problems we may intentionally introduce an error: x may represent a very 
difficult problem, while x t may represent a "nearby" problem that  is much easier to solve. 
For instance, 

�9 perhaps x is 7r, while x ~ is 3.1416; or 

�9 perhaps x is a complicated function, while x t is a polynomial  or other simple function 
tha t  approximates  x; or 

�9 perhaps x stands for a complicated differential equation, while x ~ denotes a similar 
equat ion obtained by dropping one troublesome nonlinear term that ,  hopefully, only 
represents a small quantity. 

Let y = f(x) be the solution tha t  we are not able to find, and let y' = f(x') be the solution 
tha t  we are able to find. If f is continuous at x, then y~ should be near to y. Of course, 
in some of the examples cited functions, differential equations, etc. the appropr ia te  
notion of "near" may be quite complicated, hence the relevant topologies may be quite 
complicated. 

For real-valued functions of a real variable, this informal definition of continuity is some- 
times suggested in calculus books: "A function is continuous if its graph is an unbroken 
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curve i.e., if its graph can be drawn without lifting the pencil from the page." But this 
presupposes that  the function can be drawn at all. Some functions are just too pathological 
to be drawn with any reasonable degree of accuracy; see for instance 25.19. 

15.20. We now caution the reader about some subtle distinctions concerning continuity. 
Let f �9 X ~ Y be some mapping (not necessarily continuous) from one topological 

space into another, and let S c_ X. The phrase " f  is continuous on S" has two possible 
interpretations: 

(i) f is continuous at each point of S, or 

(ii) the restriction f l s  is continuous. 

These are not the same! It is easy to prove that  (i) ~ (ii). When the set S is open, then 
we can easily prove that  (ii) =~ (i) also (exercise). However, in general (ii) does not imply 
(i). Indeed, this is obvious in one extreme case: if S is just a singleton, then (ii) is always 
true, but if f is not continuous then we can choose the singleton so that  (i) is false. 

In deciding whether a function is continuous, we only need to consider the behavior of 
that  function on its domain, not elsewhere. Thus, the sign function (defined as in 2.2.c) is 
not continuous on R, but its restriction to R \ {0} is continuous i.e., the function 

f (x )  - { 1 if x > 0  
- 1  if x < 0 (*) 

is continuous, since its domain is R\{0}.  
The definition of "continuity" that  we have given in this chapter is the s tandard one. It 

(or an equivalent definition) is used by all research mathemat ic ians  who work with conti- 
nuity. Unfortunately, some calculus textbooks do not conform to this usage. These books 
concern themselves only with real-valued functions defined on subintervals of R, and so 
they use ad hoc definitions that  are easily manageable in that  context. They may go astray 
when dealing with functions defined on more complicated sets. For instance, some calculus 
textbooks would assert that  the function f defined in ( ,)  is not continuous, because it is 
undefined at 0. The student who wishes to proceed to higher mathemat ics  will first need 
to unlearn the not-quite-correct definitions of continuity given in these calculus books. 

15.21.  Definitions of one-sided limits and one-sided continuity. Let X be a subinterval of 
[ -oc,  +oc], equipped with its relative topology; let Y be any Hausdorff topological space 
(or more generally, any Hausdorff pretopological space). Let f : X + Y be some function. 
Let x0 E X; assume that  X contains some other points higher than x0. We say that  a point 
y0 c Y is the l imi t  f r o m  t h e  r i g h t  of f at x0, or y0 is the r i g h t - h a n d  l imi t  of f at x0, 
if it satisfies this condition: 

for each neighborhood N of Y0, there is some number 6 > 0 such that  x E 
(xo, xo + 6) => f (x) c N 

or, equivalently, this condition: 

whenever (x~) is a decreasing sequence in X that  converges to x0, then the 
sequence (f(x,~)) converges to Y0 in Y. 
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(Another equivalent condition is obtained if we use nets instead of sequences.) 
conditions can be abbreviated 

These 

y0 - lira f (x) or y0 - lira f (x) or Y0 - f (x0 +).  
x~xo x ~ x o +  

We say f is c o n t i n u o u s  f r o m  t h e  r i gh t  at x0, or r i g h t - c o n t i n u o u s  at x0, if f(xo) - 
f(xo+).  

Analogously, we may define the l imi t  f r o m  t h e  left, or the l e f t - h a n d  l imi t ,  writ ten 
lim~Tx o f (x )  or limx-,xo- f (x)  or f ( x 0 - ) ;  we say f is c o n t i n u o u s  f r o m  t h e  left  at x0 or 
l e f t - c o n t i n u o u s  at x0 if f(xo) - f ( x o - ) .  

The right- and left-hand limits are called o n e - s i d e d  l imi ts .  

Exercises. 
a. Suppose the domain of f is an interval [a, b]. Then: 

( i )  y 0  - l imx~a f (x)  means the same thing as Y0 - l imx+a  f (x) ,  and 

(ii) f is continuous at a if and only if f is right-continuous at a. 

Also show analogous results at b, with left-hand limits and left-continuity. 

b. Suppose the interval X contains some points below x0 and also some points above x0. 
Then: 

(i) Y0 - limx~xo f (x)  if and only if both the one-sided limits exist and are 
equal to Y0, and 

(ii) f is continuous at x0 if and only if f is both right- and left-continuous 
at x0. 

c. Suppose J c_ IR is an open interval and g �9 J -+ IR is an increasing function. Then g 
has one-sided limits 

g(t+) -- lira g(s) g ( t - )  -- lira g(s) 
s$t ' sTt 

at every t, and g is discontinuous at at most countably many points of J.  
Hints" See 7.40.c, to prove that  g(t+) and g( t - )  both exist. For the cardinality 

result use an argument similar to 10.40. 

d. Let J c_ R be an interval with sup(J)  ~ J. Assume that  the right-hand limit f ( x+)  - 
limu~x f (u)  exists at every x E J.  Define g "  J ~ IK by setting g(x) - f ( x+)  for 
all x. Show that  g is right-continuous on J and g - f at every point where f is 
right-continuous. 

15.22.  Let X be a topological space, and let f "  X ---, [ -oc,  +oc] be some function. Theft 
the following conditions are equivalent; if any (hence all) of them are satisfied, we say f is 
l ower  s e m i c o n t i n u o u s  (abbreviated 1.s.c.): 

(A) f (x )  <_ l iminf f (x~)  whenever x~ --+ x in X. 

(B) For each b c [ -oc ,+oc] ,  the set {x e X : f (x)  > b} is open i.e., the set 
{x e X :  f (x) <_ b} is closed. 
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(c) For each b c IR, the set {x E X ' f ( x )  > b} is open 
f (x) <_ b} is closed. 

i.e., the set {x E X "  

Proof of equivalence. The proofs of (A) => (B) => (C) are easy. It suffices to show 
(C) => (A). Suppose that  (C) holds but f (x)  > liminfx(~ for some net (x(~) converging to 
some limit x in X. Then (regardless of whether one, both, or neither of the numbers f(x),  
l iminfx~ is finite) there is some finite nmnber r such that  f (x)  > r > lim inf x , .  By (C) 
the set {u E X : f(u) < r} is closed. It contains all the x(,'s after some c~0, but not the 
point x, contradicting the fact that  x,, --+ x. 

Dual notion. Let X be a topological space, and let f "  X + [-oc,  +oc] be some function. 
Then the following conditions are equivalent; if any (hence all) of them are satisfied, we say 
f is upper semicont inuous (abbreviated u.s.c.)" 

(A) f (x)  _> lilnsup f(x,,) whenever x,~ ---+ x in X. 

(B) For each b c [-oc,  +oc], the set {z c X "  f (x)  < b} is open i.e., the set 
{x c X " f (x) >_ b} is closed. 

(C) For each b c R, the set {x c X ' I ( x )  < b} is open i.e., the set {x c X "  
f (x)  _> b} is closed. 

Remarks. Seinicontinuity is a sort of "almost-continuity" condition. It can often be used in 
proofs in place of continuity, especially when limits are replaced with upper or lower limits; 
see 7.46. 

15.23. Further properties of semicontinuity. Let X be a topological space. 

a. A function f : X  ~ [-oc,  +oc] is 1.s.c. if and only if - f  is u.s.c. 

b. A function f : X --, [ -oc,  +oc] is continuous if and only if it is both 1.s.c. and u.s.c. 

c. Any pointwise infimum of continuous functions on X (or, more generally, any pointwise 
infimmn of u.s.c, functions) is u.s.c. 

d. Any pointwise supremum of continuous functions on X (or, more generally, any point- 
wise supremum of 1.s.c. functions) is 1.s.c. 

A partial converse to the last result is given in 16.16(D). Compare also 12.21.d. 

MORE ABOUT INITIAL AND PRODUCT TOPOLOGIES 

15.24. Convergence in initial topologies. Let (X, S) have the initial topology determined 
by some mappings ~2~ : X ~ (Y~, g~) that  is, suppose g is the weakest topology that  
makes all the px's continuous (see 9.15 and 9.16). (It is also sometimes known as the weak 
topology.) Show that  

a. A set N C_ X is a neighborhood of a point p c X if and only if there exists a finite 
, , . . A Z ~ '  1 family of sets TJ E 7 ~  (j - 1 2,3 . , rn)  such that  p c ,  ,j=l ~ j  (Tj) c_ N. 
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(Hint: Use the characterization of neighborhoods in 5.23.b and the characterization 
of a generating collection of sets in 9.16.) 

b. A net (x~) converges to a limit p in (X,g) if and only if 9~(x~) ~ 9~a(P) in each 

15.25. Following are some important instances of convergence in initial topologies. 

a. Convergence in the relative topology was characterized in 15.9.d. 

b. If X = 1-IxEA Ya is a product of topological spaces, with the product topology, then 
members of X may be viewed as functions f defined on A, satisfying f(A) E Yx for each 
A. Then f~ ~ f in X if and only if f~ (A) ~ f(A) in Yx for each A. Convergence in the 
product topology is sometimes called po in twi se  convergence ,  or c o m p o n e n t w i s e  
convergence ,  or c o o r d i n a t e w i s e  convergence .  

c. Let g be the supremum of a collection of topologies 0"~ on a set X. (This is the initial 
topology obtained by taking all the ~x's equal to the identity map.) Then x~ ---, p in 
(X, g) if and only if z~ ~ p in each (X, ~Yx). 

d. Let (X, D) be a gauge space. The gauge topology 9"0 is the supremum of the pseudo- 
metric topologies {0"a : d E D}. Hence x~ ~ p in ( X , D )  if and only if d(z~ ,p )  ~ 0 
for each d E D. (We emphasize that this condition does not say supaEu d(x~ ,p)  ---, 0.) 

15.26. Let X - HXEA YX be a product of topological spaces, with the product topology. 
Show that 

a. A set S c_ X is a neighborhood of a point u E X ( in the  product topology) if and only 
if there exist a finite set L C A and open sets Ta C_ Ya (A E L) such that 

b. 

C. 

d" 

(This is a special case of the neighborhood characterization at the beginning of 15.24.) 
Thus, S must be "fat" in all but finitely many directions. 

Use the preceding characterization of neighborhoods together with 15.8.a to show that 
each of the coordinate projection mappings 7rx �9 X ~ Yx is an open mapping i.e., 
show that if S c_ X is an open set, then 7ra (S) is an open subset of Ya. 

The coordinate projections need not be closed mappings i.e., if S c_ X is a closed 
set, it does not necessarily fo!low that 7ra(S) is a closed subset of Ya. For instance, 
when IR 2 has its usual topology, then {(x, y) E R 2 �9 xy _> 1} is a closed set, but its 
projection onto the first coordinate is {x E R" x r 0}, which is not closed. 

Let qa �9 X ~ Y be any mapping from one set to another (without any topology or 
other structure necessarily specified). If S is a topological space, then we can define a 
mapping S ~ " S Y ~ S x by setting 

S ~ ( A ) - A o ~  �9 X - - + S  for any A ' Y ~ S  in S v.  
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Show tha t  S ~ is continuous, when S Y and S X are equipped with their product  topolo- 
gies. Hint" 15.25.b. 

e. Let f~ be a set. Identify each set S c_ ft with its characteristic function l s  " ft ~ {0, 1}; 
then the l s ' s  are members  of 2 ~. Show tha t  the order convergence of sets S~ described 

'S in 7.48 is the same as the convergence of the l s~ given by the product  topology on 
2 a (where 2 -  {0, 1} has the discrete topology, as usual). 

15.27.  T h e o r e m .  If {X~ �9 a E A} is a collection of separable topological spaces with 
card(A) _< card(R),  then I-I~cA X(~ (with the product  topology) is separable. 

Proof. The product  topology is not affected if we replace the index set A with another  index 
set of the same cardinality; hence we may assume A c_ R. Let P - I - I ~ a  X~. For each 
c~ E A, let x~, x~, x ~ , . . ,  be a dense sequence in X~. Let J be the collection of all closed 
subintervals of R tha t  have rational endpoints  and positive, finite length. For each positive 
integer m, each finite sequence J1, J 2 , . . . ,  J,~, of disjoint members  of ~J, each finite sequence 
rt l ,  r t 2 , . . . ,  nrn of positive integers, and each c~ E A, define 

P f f l  . . . . .  f f , n , ~ l  . . . . .  l t m ( O g )  

x ~ if c~ C J1 
7 t l  

x ~ if c~ c J2 Tt2 

x ~ if c~ c Jm 
T i m  ? I t  

.?  if c~ E d \ UJ~=I &- 

The function p& . . . . .  J m , n  I . . . . .  ?tm maps each c~ to some member  of X(~, so P.]I ...... 1,~.?,1 ..... r, .... is 
actually a member  of P. There  are only countably many such functions p, since J and N are 
countable�9 It suffices to show the functions p are dense in P.  Let any nonempty  open set 
G C_ P be given; it suffices to show G contains one of the functions p. For each/3 C A, let 

�9 . _ N " ~  71--1(V/) fro P -+ X~ be the /3 th  coordinate projection; by 15.26 a we know tha t  G D,  ,i=l ~, 
for some distinct numbers  C~l,. . . ,  c~,~ E A and some nonempty  open sets Vi c_ X ~ .  Choose 
disjoint sets J1, J 2 , . . . ,  J,~ E J such tha t  c~i E Ji, and choose some numbers  n~ such tha t  
x ~ E Vi Unwinding all the nota t ion verify tha t  p&, ,]m,l"tl, ,,~m is a member  of G. This ?-ti �9 , . . . ,  . . .  

proof follows Willard [1970]; further references are also given by Willard. 

15.28.  Let X = l-I~ea Y~ be a product  of topological spaces, equipped with the product  
topology�9 A point in X may be seen as an "ordered A-tuple" (x~,x;~,x.r, . . . )  (see 1�9 
Hence a mapping h : X + Z, from X into some other topological space Z, may be wri t ten 
as z = h(x~, x~,x.r, .�9 �9 Ordinary continuity from X (with the product  topology) to Z is 
sometimes called j o i n t  c o n t i n u i t y ,  to emphasize tha t  the variables x~, x/~, x~,.  �9 are being 
considered together,  not separately. A slightly weaker condition is separate continuity; we 
say tha t  the mapping z = h(x(~, x;~, x.y,�9149 �9 is s e p a r a t e l y  c o n t i n u o u s  if z is continuous as 
a function of each one of the arguments  x~ whenever all the other arguments  are held fixed. 

Examples. 
a. Let (X, 0") be a topological space, and let d :  X x X --+ [0, +or be a pseudometric 

on X (not necessarily associated with the topology ~). Let X • X have the product  
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topology, and let R have its usual topology. Then d is separately continuous from 
X x X into R if and only if d is jointly continuous. (Hint: 2.12.e.) Thus, the phrase 
"a continuous pseudometric" is not really ambiguous. 

b. Define f : R  x R --+ R by 

xy when(x, y ) #  (0 0) 
f (x, y) - x 2 + y2 

0 when (x, y) - (0, 0). 

Show f is separately continuous but not jointly continuous. Hints: 15.14(A) and 
15.25.b. 

c. In 1.17 we defined the extended real numbers and their arithmetic operations. For many 
purposes particularly in the theory of measure and integration it is convenient 
to define the product of 0 and +oc to be 0. That  causes confusion for some students, 
because it seems to be contrary to what they would expect from their experience with 
calculus. We shall now take a closer look at this. 

Most of the multiplication rules would make multiplication a jointly continuous 
operation from [-oc,  +oc] x [-oc,  +oc] into [-oc,  +oc]. That  is, if (x~) and (y~) are 
nets converging to some limits x and y, then x~y~ --, xy. For instance, if x~ ~ 3 and 
y~ ---, +oc, then x~y~ --+ 3. (+oc) = +oc. This behavior is very reassuring: it tells us 
that  +oc are very much like ordinary real numbers. 

The only exceptions are when we multiply 0 times +oc. If x~ ~ 0 and y~ ~ +oc, 
then the product x~y~ could converge to anything or not converge at all. For instance, 
take the directed set to be H, so that  our nets are sequences. Then 

1 n 2 --~ +oc ,  1 1 . . . .  n ~ 1, . n  ~ 0  
~2 7~ /1, 2 ' 

1 and (g sin n ) .  n does not converge at all. This state of affairs can be summarized as 
follows: 

Multiplication, considered as a binary operation on [-oc,  +oc], is jointly 
continuous everywhere except at the ordered pairs (0, +oc) and (+oc, 0). It 
cannot be made jointly continuous at those ordered pairs, no mat ter  how 
we define the products at those pairs. Still, for some purposes in the theory 
of measure and integration (not involving limits of this sort), it is conve- 
nient to define 0.  oc = 0 and accept multiplication as an operation that  is 
discontinuous at that  ordered pair. 

15.29.  A topological equivalent of choice (optional). We shall show that  AC (introduced 
in 6.12, 6.20, and 6.22) is equivalent to the following assertion, from Schechter [1992]: 

( A C 1 9 )  P r o d u c t  of  C lo su re s .  For each A in some index set A, let Sa be a 
subset of some topological space Xa. Then cl(I-Iaca Sa) = I-IA6A cl(SA). 

In this equation, the first "cl" denotes closure in the product topology on I-IA6A XA, while 
the second "cl" denotes closure in Xx. 
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Actually, the inclusion cl(l-Ixca &) c_ Hx~A cl(Sx) is provable in ZF (i.e., without AC). 

To see this, just note that  I-I,xEA cl(S,x) - N,XEA 71"~-I(cl(S,k)) is closed (where rrx is the ,~th 
coordinate projection). Thus, it remains to show that the inclusion 

(AC20)  

is equivalent to AC. Refer to 6.12. 
To prove (AC3) ~ (AC20), let any f c I-IXEA cl(Sa) be given; we wish to show that 

f c cl(l-Ia~A Sx). It suffices to show that 1-IxeA Sa meets every neighborhood of f.  Let 
G be any neighborhood of f; then f c I-IxcA Ga c G where Gx is some open subset of 
Xx. Since f(A) E cl(Sa), the set Sa meets every neighborhood of f(A) in Xa. Thus the set 
Gx N Sx is nonempty. Choose any element za c Gx N Sx. Now the function z, defined by 
z(A) = za, is an element of G N I-IAEA SA. 

To prove (AC20) ~ (AC3), let A, S~, ~ ,  X~, X, ~ be as in 6.24. Let X~ be 
equipped with the indiscrete topology, i.e., in which the only open sets are ~ and X~. Then 
~ c X~ = cl(S~). Hence the function ( is an element of 1-I~A cl(S~). Now apply (AC20); 
this tells us cl(1-I~A S~) is nonempty, and therefore the set 1-I~A S~ is nonempty. 

QUOTIENT TOPOLOGIES 

15.30. Definition. Let (X, g) be a topological space, let Q be a set, and let r~ : X -+ Q be 
a surjective mapping. The resulting q u o t i e n t  t o p o l o g y  (or identification topology) on Q 
is defined to be 

g" -- { T C Q  : 7r-l(T) Eg}.  

We saw in 5.40.b that this collection 9" is a topology on Q. (In fact, 5.40.b shows that ff is a 
topology regardless of whether rr is surjective, but surjectivity of r~ is part of the definition 
of a quotient topology.) 

When Q is equipped with the quotient topology, then rr will be called a t opo log ica l  
q u o t i e n t  m a p  (or topological identification map). The terminology stems from the fact 
that Q is the quotient set of X, determined by the mapping r~ (see 3.11). Alternatively, 
points of Q are obtained by identifying with each other (i.e., merging) those points of X 
that have the salne image under rr. 

In general, convergence of nets and filters in the quotient topology does not have a 
simple characterization analogous to that of 15.24.b. A partial result in that direction is 
given in 22.13.e. 

Our treatment of quotients is based partly on Dugundji [1966]. 

15.31. Basic properties of the quotient topology. 
a. Let r~ : X -+ Y be a topological quotient map. Then a set T is open in Y if and only 

if 7r-l(T) is open in X. (This is just a restatement of the definition.) 

b. Let r~ : X -+ Y be a topological quotient map. Then a set T is closed in Y if and only 
if r r - l (T)  is closed in X. 
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c. (Composition property.) If 77 �9 X + Q is a topological quotient map and g " Q + Z 
is some mapping such that  the composition g o 77 �9 X ---, Z is continuous, then g is 
continuous. 

In fact, a continuous surjective map 77 �9 X + Q is a topological quotient map if 
and only if it has that  composition property. For this reason the quotient topology is 
sometimes called the f inal  t o p o l o g y -  it has some properties analogous to the initial 
topology (introduced in 9.15 and 9.16), but with the arrows reversed. 

d. Let X be a topological space and let 77 �9 X ---, Q be a surjective mapping. Then 
the quotient topology on Q makes 77 continuous. In fact, the quotient topology is the 
strongest (i.e., largest) topology on Q that  makes 77 continuous. 

e. Recall tha t  a mapping is open if the forward image of each open set is open, or closed 
if the forward image of each closed set is closed. 

Show that  if 77 �9 X ---, Y is a continuous surjective map that  is either open or closed, 
then 77 is a topological quotient map. 

Several of the most important  topological quotient maps are open maps (see 16.5 
and 22.13.e), but this is not a property of all topological quotient maps. 

f. Let 77" X ~ Q be a topological quotient map. Recall from 4.4.e that  the 77-saturation 
of a set S C_ X is the set 77-1(77(S)) c_ X. Show that  

77 is an open map if and only if the 77-saturation of each open subset of X is 
open. 

77 is a closed map if and only if the 77-saturation of each closed subset of X 
is closed. 

g. Example. If X = I-I,xEA Q,x is a product of topological spaces with the product topology, 
then each of the coordinate projections 77a : X ~ Qa is a topological quotient map. 
Hint: 15.26.b. 

h. Example. Let (X, d) and (Q, e) be pseudometric spaces. Let 77: X ~ Q be a surjective 
mapping that  is distance-preserving i.e., that  satisfies e(77(Xl),77(x2)) = d(xl ,x2).  
Then the mapping 77 is open, closed, and a topological quotient map. 

More generally, let (X, D) and (Q, E) be gauge spaces, with gauges D = {da:  ,~ E 
A} and E = {ca : ~ E A} parametr ized by the same index set A. Suppose 77: X ~ Q 
is a surjective mapping that  is "distance-preserving" in the following sense: 

e,k (71"(Xl), 77(X2)) --  d.x(Xl,X2) for all Xl,X2 E X and ,~ E A. 

Then 77 is open, closed, and a topological quotient map. A slight specialization of this 
result is given in 16.21. 

NEIGHBORHOOD BASES AND TOPOLOGY BASES' 

15.32. Let X be a topological space (or, more generally, a pretopological space), and let 
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x E X. A base  of  n e i g h b o r h o o d s  at x, or a n e i g h b o r h o o d  base  at x, is any filterbase 
that  generates the neighborhood filter N(x). In other words, it is any collection ~ C_ N(x) 

with the property that  every member of N(x) is a superset of some member of ~. 

15.33. Examples of neighborhood bases. Let (X, 9") be a topological space, and let x c X. 
Let N(x) be the neighborhood filter at x. 

a. Trivially, N(x) itself is a neighborhood base at x. 

b. Another neighborhood base at x is given by N(x)N 9-, the collection of open neighbor- 
hoods of X. 

More generally, an open neighborhood base means any neighborhood base, all of 
whose members are open sets. Thus, it is a neighborhood base :B c_ N(x) N 9-. 

c. A closed neighborhood base means a neighborhood base, all of whose members are closed 
sets. A topological space is called r e g u l a r  if every point has a closed neighborhood 
base. Regular spaces will be investigated further in 16.13. 

Exercise. Every gauge space (X,D) is regular. Hint" Let Bd and Kd denote 
the open and closed d-balls, as in 5.15.g. If N is a neighborhood of x, then N _D 
~d~C Bd(x, r) D_ ~dCC Kd(x, r/2) for some finite set C C_ D and some r > 0. 

Other examples of neighborhood bases will be given in Chapters 26 through 28. 

15.34. A topological space is f irst  c o u n t a b l e  if each neighborhood filter N(x) is generated 
by some countable filterbase ~(x)  i.e., if for each x there is some countable collection 
~(x)  C N(x) such that  each member of N(x) is contained in some member of ~(x) .  

As shown by some of the exercises below, in a first countable space, sequential arguments 
are sufficient for many purposes; nets are very seldom needed. However, the Principle of 
Countable Choice is needed for many of these sequential arguments i.e., the proofs may 
require a sequence of arbitrary choices, since there is no "canonical sequence" analogous to 
the canonical nets developed in 7.11. 

Sequential arguments are also sufficient in a few special situations in spaces that  are 
not first countable; that  is the content of the deep theorems 17.50 and 28.36. For a more 
elementary example of sequences sufficing in a space that  is not first countable, consider 
the characterizations of closures and continuity when X is an infinite set equipped with the 
cofinite topology (see 5.15.c and 15.9.c). 

Exercises. 

a. Any pseudometric space (X,d)  is a first countable space. A countable, open neigh- 
borhood base at x is given by the open balls B(x, 1) _ {u E X �9 d(u,x) < 1} for 
h E N .  

In particular, R is first countable. 

Remark. Actually, first countable is only a very slight generalization of pseu- 
dometrizable. Most spaces of interest to analysts are subsets of topological vector 
spaces; among such spaces, first countable is the same as pseudometrizable see 
26.32. 
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b. In any first countable space X, cl(S) is equal to the sequential closure of S 
the set 

{x E X �9 x is a limit of some sequence in S}. 

- -  tha t  is, 

c. In a first countable space, if some subnet of a sequence (xm) converges to a limit z, 
then some subsequence (xk~ : n  = 1, 2, 3 , . . . )  also converges to z. 

Hints: Let {B1,B2, B3,. . .} be a neighborhood base at z; we may assume B1 _D 
B2 _D B3 _D . . . .  (Why?) Let k0 = 0. Thereafter,  show that  there exists an integer k~ 
that  satisfies both k~ > k~_l and xk~ E B~. 

d. Let X and Y be topological spaces; assume X is first countable. Then a mapping 
p : X ~ Y is continuous if and only if it preserves sequential convergences i.e., if 
and only if it satisfies 

x n ~ x i n X  ~ p(xn) ~ p(x) in Y 

regardless of whether Y is first countable. 
Hints: Assume p preserves sequential convergences. Let N be a neighborhood 

of p(z0) in Y; we wish to show that  p - l ( N )  is a neighborhood of z0 in X. Let 
{B1, B2, B 3 , . . . }  be a neighborhood base at z0 in X; we may assume B1 _D B2 D B3 _D 
�9 .. ; we wish to show that  p - l ( N )  contains some By. Suppose not. Then there exist 
points zj E By \ p- l (N) .  The sequence (zj)  converges to z0, hence p(z j )  ~ p(x0), 
hence for j sufficiently large we have p(z j )  c N, a contradiction. 

15.35.  Another way to describe topologies is in  terms of bases for topologies. Let (X, 7) 
be a topological space, and let ~B c_ ~r. We say 1 that  ~B is a b a s e  for t h e  t o p o l o g y  ~r if 

every member  of 9" is a union of members of ~B. 

(The union may be of finitely or infinitely many members of ~B. It may also be of no 
members  of ~B; thus we automatical ly get ~ as a union.) Trivially, the topology ~r itself is 
a base; other bases are sometimes convenient. Some examples are: 

a. In a pseudometric space, the collection of all open balls forms a base for the topology. 

b. In any poset, the principal lower sets form a base for the lower set topology. 

c. Let X be a chain. Then a base for the interval topology (defined in 5.15.f) is given by 
the sets of the forms 

S a - { x E X ' x > a } ,  s b - { x E X ' x < b } ,  s b - - { x C X ' a < x < b } ,  

for points a, b c X. Note that  these sets are full, as defined in 4.4.a. Show that  if G 
is an open subset of X, then the full components of G (defined as in 4.4.a(ii)) are also 
open. 

d. Let X = l--[~i  Y~ be a product of topological spaces. By a bas ic  r e c t a n g l e  we shall 
mean a subset of X of the form I-I~ci G~ where 

(i) each G~ is an open subset of Y~, and 

1 Caution: Some texts define "base" a little differently. 
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(ii) G a -/= Ya for at most finitely many A'.s 

(When A is a finite set, condition (ii) can be omitted from this definition, since it is 
satisfied automatically.) Show that  the basic rectangles form a base for the product 
topology (hence their name). These basic rectangles may also be called basic open 
rectangles, to distinguish them from another sort of "basic rectangle" introduced in 
21.40. 

1 5 . 3 6 .  Further properties of bases. 

a. Let (X, 7) be a topological space, and let 5 be a collection of subsets of X. Then 
~B is a base for the topology 9- if and only if for each x E X, the collection of sets 
~B(x) -  {B c ~B �9 x c B} is an open neighborhood base at x. 

b. Let X be a set (without any topology specified yet), and let ~B be a collection of 
subsets of X. Then {B is a base for some topology 9- on X if and only if this condition 
is satisfied: for each x E X, the collection of sets { B ( x ) -  {B c ~B �9 x c B} is 
a filterbase on X. In that  case, the resulting topology is uniquely determined; it is 
9- - { S C _ X  �9 S i s a u n i o n o f m e m b e r s o f 5 } .  

c. Let ~3 be any collection of subsets of X. Let 5 - {B c_ X �9 B is an intersection of 
finitely many members of f}}. (Here X c ~B, since by convention X is the intersection 
of no members of 9.) Show that  5 and ~ generate (in the sense of 5.23.b) the same 
topology 9-, and 5 is a base for that  topology. Thus, the topology 9- generated by ~3 is 
equal to the collection of all unions of finite intersections of members of ~}. 

d. Let (X, 9") be a topological space with base 5 .  Show that  a net (x~) converges to a 
limit z in (X, 9-) if and only if for each B E :B that  contains z, we have eventually 
x ~ C B .  

15.37. Cardinality and metric spaces. 

a. If (X, d) is a separable metric space, then card(X) _< card(2 •) = card(R). 
Proof. Let (x,~) be a sequence such as in 15.13.g. For each p E X, there is a 

subsequence (x~,~) that  converges to p, and in fact we can choose it canonically. Thus 
we obtain a function p ~ (hi), from X into {strictly increasing sequences of pos- 
itive integers}, with x ~  + p. Obviously the mapping is injective, so card(X) _< 
card({strictly increasing sequences of positive integers}) <_ card(~P(N)). 

b. Every separable metric space has a countable base. 
IBnts: If (ms) is a dense sequence, show that  the set of open balls {B(x,,, 1/k)  : 

n ,k  E N} is a base. 

c. Let X be a separable metric space satisfying card(X) = card(R). (For instance, R 
itself is one such space; many others occur in analysis as well.) Use the preceding 
results to show that  most subsets of X are neither open nor closed i.e., show that  

card({S c_ X �9 S is open or closed}) < card( {subsets of X}). 

d. Every open subset of R can be writ ten as a union of countably many disjoint open 
intervals. 
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Hints" Let G c R be open. By an argument similar to 4.4.a(ii), show that  G is a 
union of disjoint open intervals. There are at most countably many of these intervals, 
since each contains a rational number and there are only countably many rational 
numbers. 

e. Let J c_ R be an interval (possibly all of R). Let A be the collection of all unions of 
finitely many subintervals of J (where singletons are considered to be intervals, and 
the empty set is also a member of A by convention). Then A is an algebra of subsets 
of J,  and the a-algebra that  it generates is the a-algebra of Borel sets. 

CLUSTER POINTS 

15.38. Definition. Let X be a topological space. Let (x~ : ct E A) be a net in X, and 
let 9-be its eventuality filter. Let ~B be any filterbase that  generates 9" (e.g., we may take 
~B = 9-). Let z E X. Then the following conditions are equivalent. If any, hence all, are 
satisfied, we say z is a c l u s t e r  p o i n t  of (x~) or 9- or ~B. 

(A) 

(B) 

(c) 

(D) 
(E) 
(F) 

(O) 
(H) 
(I) 

(J) 

z is a limit of some superfilter of 2V. 

z is a limit of some subnet of ( x ~ )  
7.15.a). 

that  is, an AA subnet (as defined in 

z is a limit of some Kelley subnet of (as)  (defined as in 7.15.b). 

z is a limit of some Willard subnet of (x~) (defined as in 7.15.c. 

Some proper filter contains both 9" and :N(z). 

Every member of 9" meets every member of :N(z). 

Every member of ~B meets every member of N(z). 

z E (BE~B cl(B). 

z E NFEg-cl(F).  
/ \ 

Z E cl({z;~ "fl , ct}). That  is, z is in the closure of each tail set of the 
\ 

(K) Each neighborhood of z is a frequent set for the net (x~). 

(The interchangeability of the three types of subnets follows from 7.19.) Note that  the set 
of cluster points is always a closed set since it is an intersection of closed sets. 

Remarks. For some purposes, a cluster point can be used as an "almost limit" i.e., 
it has many of the properties of limits; it can sometimes be used in place of a limit when a 
limit is not available. 

Caution: Some mathematicians have another meaning for the term "cluster point:" Let 
S be a subset of a topological space X; then z is a cluster point of S if z E c l ( S \  {z}). That  
meaning will not be used in this book, however. 
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15.39.  Exercise. Show tha t  if ~ is proper  filter on a topological space X,  then C = {cl(E) : 
E E ~} is a filterbase on X,  and the filter generated by ~ has the same cluster points as 
does. 

15.40.  The  definition of "cluster point" also applies to sequences, since they are also nets. 
By definition, a point z is a cluster point of a sequence (xn) if some subnet  of tha t  sequence 
converges to z but  tha t  subnet  is not necessarily a sequence. The  point z may possibly 
satisfy a s t ronger  condition. 

We say z is a s e q u e n t i a l  c l u s t e r  p o i n t  of the sequence (x~) if the following equivalent 
conditions hold. (Equivalence follows from 7.27.) 

(A) z is a limit of a subsequence of (x~). 

(B) 

(c) 

(D) 

z i s  a limit of a sequence ( u k )  tha t  is a subnet  of (ms) 
(as defined in 7.15.a). 

tha t  is, an AA subnet  

z is  a limit of a sequence (uk) tha t  is a Kelley subnet  of (an) (defined as in 
7.15.b). 

z is  a limit of a sequence (uk) tha t  is a Wil lard  subnet  of (x~) (defined as in 
7.15.c). 

Further observation. In general, the cluster points of a sequence and the sequential  cluster 
points of tha t  sequence need not be the same. But  they are the same if the topological 
space is first countable  see 15.34.c. 

MORE ABOUT INTERVALS 

15.41.  Proposition. Let (X, <_) be a chain. Then  the topological convergence de te rmined  
by the order interval topology (defined in 5.15.f) is the same as the order convergence (as 
character ized in 7.38, 7.40.d, or 7.41). 

15 .42.  Corollary. Let (X, _<) be a chain, equipped with the convergence described above. 
Let (x~) be a net in X,  and let z c X.  Then  z is a cluster point of (x~) if and only if these 
three conditions are satisfied for all cr and ~- in X: 

(i) if z > c~, then frequently x~ > ~; 

(ii) if z < 7-, then frequently x(~ < T; and 

(iii) if ~ < z < ~-, then  frequently cr < x~ < T. 

15 .43.  Important examples. The metr ic  topologies and order interval topologies are the 
same, on R or on [ -oc ,  +oc]. 

15 .44.  Optional example. Let 9" be a free ultrafi l ter  on N; thus *R = RN//9 " is a chain 
ordered field. Let *R be equipped with its order interval topology and order convergence. 
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Show that  every convergent sequence in *IK is eventually constant. 

Hints: Suppose not. Say (un) is a sequence converging to v in *R, and (un) is not eventually 
equal to v. Replacing (un) with a subsequence, we may assume that  none of the u~'s 
are equal to v. By 10.20.c, the sequence ((un - v ) - i  " n c N) is order bounded; obtain a 
contradiction. This result is from Takeuchi [1984]. 

15.45.  Proposition. Let X and Y be chains equipped with their interval topologies. Let 
f "  X -~ Y be some mapping. Then 

(A) f is continuous and increasing, if and only if 

(B) f is sup-preserving and inf-preserving. 

Proof. (B) =~ (A) was proved in a slightly more general setting in 7.40.h. For (A) =~ (B), 
let S be a nonempty subset of X,  and suppose a = sup(S). Consider S itself as a directed 
set. The identity is  : S ~ S is a net that  increases to the limit or. Hence f o is  : S ~ Y 
is a net that  increases to the limit f(cr). Thus f(cr) = sup( f (S) ) ,  so f is sup-preserving. 
Similarly we show that  f is inf-preserving. 

15.46.  Corollaries" relativization and the interval topology. Let (Y, g') be a chain equipped 
with the order interval topology, and let X C_ Y. Let J and :~ be, respectively, the order 
interval topology determined on X by its ordering, and the relative topology determined 
on X by (Y, g 0. Show that  

a. ~ D i J .  

b. ~ 3 if and only if the inclusion X c - -> Y is continuous when X and Y are equipped 

with the interval topologies; that  occurs if and only if the inclusion X c_, Y is sup- 
preserving and inf-preserving. 

c. If X is full (as defined in 4.4.a), then : ~ -  :J. (In particular, the interval topology on R 
is the same as the relative topology that  R inherits from [-cx~, +cx~].) 

d. If X is not full, then the relative topology on X may or may not be the same as the 
interval topology. For instance, take Y - R; show that  

(i) The two topologies agree in the case of X - Z. 

(ii) The two topologies disagree, in the case of X - [0, 1] U (2, 3]. Hint: X is 
disconnected when given the relative topology, but X is order isomorphic 
to [0, 2]. 

e. A set X C IR (equipped with the relative topology) is connected if and only if it is full 
(as defined in 4.4.a) i.e., if and only if X is an interval. 

f. Optional. Let Y be a chain equipped wi th  the order topology. Then Y is connected 
if and only if Y is Dedekind complete and between any two elements of Y there is 
another element of Y. 

15.47.  Exercises on continuity in R. Prove that  
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a. If J c_ R is an interval and f �9 d ~ ]R is continuous, then  f ( J )  is an interval. Hint" 
15.46.e and 15.18. 

b. I n t e r m e d i a t e  V a l u e  T h e o r e m .  Let f �9 [a, b] --* R be a continuous function. If m is 
a number  between f (a)  and f(b),  then there  exists at least one number  c c [a, b] such 

tha t  f (c )  - m. 

c. A partial converse. Let f �9 [a, b] ~ R be an increasing function whose range is an 

interval. Then  f is continuous. Hint" 15.21.c. 

15 .48.  The In te rmedia te  Value Theorem,  as s ta ted  above, is not constructive;  we may be 
unable to find the nmnber  c whose existence is asser ted by tha t  theorem.  Indeed, for a weak 
("Brouwerian")  counterexample ,  consider the myster ious "Goldbach number"  F described 
in 10.46. It is a nmnber  tha t  is known to be quite close to zero, and in fact it can be 
approx imated  as accurately  as one may wish, but  we do not yet know whether  this number  
is positive, negative,  or zero. Use it to define a piecewise-affine function f as in the following 
diagram. This function is well-defined and continuous, and we can evaluate it with as much 
accuracy as we may wish. It satisfies f (0)  < 0 < f (3) .  Finding an exact solution c E [0, 3] 
of f (c)  - 0 would tell us much about  F" if c < 1, then  F > 0; if 1 <_ c _< 2, then F - 0; if 
c > 2, then F < 0. At. present,  we are unable to find c exactly. 

- l + ( F + l ) t  (0_< t_< 1) 

f ( t ) -  r (1 <_t<_2)  
(1 - r ) ( t -  2 ) +  F (2 _< t _< 3) 

m 

1 2 3 t 

However, the following variant  of the In te rmedia te  Value Theorem is construct ively 

provable" 

A p p r o x i m a t e  I n t e r m e d i a t e  V a l u e  T h e o r e m .  If f'[a, b] ~ R is continuous 
and m is a number  between f (a)  and f(b),  then  for each c > 0 we can find some 

number  c c [a, b] such tha t  I f ( c ) -  m I < c. 

(We shall not present  the proof here. For fur ther  discussion see Troels t ra  and Dalen [1988, 

pages 292-293].) 
The viewpoint  of numerical  analysis is somewhat  similar to tha t  of construct ivism,  and 

again gives reason for replacing the classical In te rmedia te  Value Theorem by the Approxi- 
ma te  In te rmedia te  Value Theorem.  Our values for the function f or the constant  m may 
be based on measuremen t s  or on the results of some numerical  computa t ion ;  they are not 

completely  accurate.  Our computed  value of f ( z )  or m may differ only very slightly from 
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the  "true" value, but  t ha t  may yield large errors in the compu ted  value of the  ezact solut ion 
c of the  equa t ion  f ( c )  = m. For instance,  take f ( z )  = O.O01z and m = O; let us t ry  to 
solve f ( c )  = m for c. The  desired solut ion c changes greatly if we change m to 0.001 or if 

we change the  funct ion to f ( z )  = 0.001 + O.O01z. Thus  (with ~ denot ing  "approx imate ly  

equal") ,  we ir ay not  be able to find an approx ima t ion  ~" ~ c to the  exact  solut ion c of 

f ( c )  = m,  but  ,ve can find a number  ~" such tha t  f(~) ~ m. 



Chapter 16 

Separation and Regularity Axioms 

16.1. Preview. This chapter considers conditions under which points and/or  closed sets 
can be separated by open sets and/or  continuous functions. The chart below shows the 
relations between the main separation conditions. The chart has implications downward; 
for instance, every Ta space is also a T2 space, and every preregular space is also a symmetric 
space. 

pseudometrizable 

paracompact (partitions of unity) 

normal and symmetric (shrinkings 
Urysohn functions, plus symmetric) 

and 

completely regular (gauges, uniformities) 

regular (closed neighborhood bases; exten- 
sions by continuity) 

preregular (limits are unique, up to topo- 
logical distinguishability) 

symmetric (the closures of points form a 
partition of X) 

(arbitrary topological space) 

metrizable 

paracompact and To 

T4 - normal and T1 

T3.5 = Tychonov (has Hausdorff 
compactifications) 

7'3 - regular and separated 

T2 - Hausdorff (has unique limits) 

T1 - F%chet (points are closed) 

To - Kolmogorov (points are topologi- 
cally distinguishable) 

The two entries in each row of the chart are closely related: a space satisfies the condition 
in the right column if and only if the space is Kolmogorov and satisfies the condition in the 
left column in the same row. For instance, a topological space is Hausdorff if and only if it 
is both Kolmogorov and preregular. We can move from the left column to the right column 
by taking the Kolmogorov quotient of a space, as in 16.5. 

Normality is an interesting condition by i t s e l f -  we shall introduce it in 16.26 but 
it fits in the chart only in conjunction with the symmetry condition, since normal by itself 
does not imply completely regular. 

435 
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The long list of conditions may be daunting to beginners, or it may seem like hair- 
splitting to some readers. The beginner will find it helpful to concentrate on pseudometriz- 
able spaces and completely regular spaces; those will play the greatest role in this book. 
Most spaces arising in applications in analysis are at least T3.5 spaces, but the abstract the- 
ory can be developed more clearly if we classify properties according to the various axioms 
in the chart. It is possible to decrease the emphasis on some of these properties, but it is 
not possible to omit them altogether. For instance, some textbooks omit mentioning T1 
spaces at all, but give as an exercise the fact that  points in a T2 space are closed. 

The terminology To, T1, T2, etc., follows the literature, but the reader is cautioned 
that  the literature varies slightly on its definitions of T3 and T3.5; some mathematicians 
interchange some of the terms in the two columns in our chart. Even mathematicians who 
agree with our terminology may use it in different ways; for instance, the phrases "Tychonov 
space," "completely regular To space," and "completely regular Hausdorff space" are used 
interchangeably in the literature; they all describe the same thing. 

Most of the separation and regularity axioms are well known and can be found in any 
topology book. However, "symmetric spaces" and "preregular spaces" are not so well known. 
They are the same (respectively) as the "Ro spaces" and "R1 spaces" introduced by Davis 
[1961]. Symmetric spaces were introduced earlier by Shanin [1943]. This book owes a debt 
to Murdeshwar [1983], who investigated those spaces systematically. 

Our choice of emphases is determined by the needs of later chapters. For instance, many 
topology books concern themselves solely with Hausdorff spaces. This book considers the 
non-Hausdorff case as well, because one of the best ways to describe a weak topology on 
a topological vector space (generally Hausdorff, in applications) is as the supremum of a 
collection of pseudometric topologies (each of which is not Hausdorff). 

KOLMOGOROV (T-ZERO) TOPOLOGIES AND 
QUOTIENTS 

16.2. Let x, y be points in a topological space (X, 7). Then the following conditions are 
equivalent. When one, hence all, of these conditions holds, we shall say that  x and y are 
t o p o l o g i c a l l y  i n d i s t i n g u i s h a b l e .  This is clearly an equivalence relation on X. 

(A) The topology 9" cannot distinguish between x and y. That  is, every open set 
that  contains either of x, y also contains the other. 

(B) Every closed set that  contains either of x, y also contains the other. 

(C) cl({x}) = cl({y}). 

(D) N(x) = :N(y). That  is, any neighborhood of either point is also a neighborhood 
of the other point. 

(E) Any filter or net that  converges to either of the points x, y must also converge 
to the other. 
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(F) Any filter or net that  has either of the points x, y as a cluster point must also 
have the other as a cluster point. 

16.3. Definition. A topological space (X, 7) is called a To space ,  also known as a Kol-  
m o g o r o v  space ,  if it satisfies either of the following equivalent conditions: 

(A) If x and y are topologically indistinguishable (in the sense of 16.2), then x = y. 

(B) Given any distinct points Xl,X2 c X, at least one of these two conditions is 
satisfied: 

(i) There exists an open set G1 that  contains Xl but not x2. 

(ii) There exists an open set G2 that  contains x2 but not Xl. 

(Compare the last condition with 16.7(C) and 16.11(D).) 

16.4. Examples. 
a. Let (X,d) be a pseudometric space. Then two points x,y  c X are topologically 

indistinguishable if and only if d(x, y) = 0. Hence X is a Kolmogorov space if and only 
if the pseudometric d is a metric. This result is generalized in 16.17. 

b. The indiscrete topology on a set X is not a Kolmogorov space if card(X) > 2. 

c. The knob topology on X (see 5.34.c) is not a Kolmogorov topology if card(X) > 3. 

16.5. Let (X, g) be a topological space. Then "x is topologically indistinguishable from 
y," defined as in 16.2, is an equivalence relation on X. Let Q be the resulting quotient set 

i.e., the set of equivalence classes. Thus, Q is obtained by identifying with each other 
(i.e., merging into one point) any points of X that  are topologically indistinguishable in 
(x, s). 

Let 7r : X --~ Q be the quotient mapping (see 3.11). Let Q be equipped with the quotient 
topology i.e., the strongest topology on Q that  makes 7r continuous (see 15.30). Then: 

a. Every closed subset of X is 7r-saturated (see 4.4.e). 

b. Every open subset of X is 7r-saturated. 

c. The quotient map 7r: X -~ Q is both open and closed. Hint: 15.31.f 

d. The forward image mapping S ~ 7r(S) gives a bijection from {open subsets of X} onto 
{open subsets of Q} and from {closed subsets of X} onto {closed subsets of Q}. This 
bijection preserves unions and intersections. The lattice of open sets of X (described 
in 5.21) is lattice isomorphic to the lattice of open sets of Q. 

Let x, Xl, X2 C X and let S, T be 7r-saturated subsets of X. Then 

s c 

f. S c_ T ,,e-->, 7r(S) C_ 7r(T). 

g. S and T are disjoint if and only if 7r(S) and 7r(T) are disjoint. 

h. S is an X-neighborhood of x if and only if 7r(x) is a Q-neighborhood of 7r(S). 

i. Xl E clx({x2}) if and only if 7r(Xl) E clQ ({Tr(x2)}). 
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j. The quotient space Q constructed in this fashion is a Kolmogorov space. 

We may call Q the K o l m o g o r o v  q u o t i e n t  space  of X or To q u o t i e n t  space  of X. It 
preserves many of the properties of X, and so for many purposes we can replace X with 
Q. For this reason, much of the mathematical literature does not concern itself with spaces 
that are not Kolmogorov. 

SYMMETRIC AND FRt CHET (T-ONE) TOPOLOGIES 

16.6. Definition and proposition. Let X be a topological space (not necessarily Kol- 
mogorov). We shall say X is a s y m m e t r i c  space  if it satisfies any of the following equiv- 
alent conditions: 

(A) The relation x E cl(y) is a symmetric relation between x and y that is, 

(B) If G is an open neighborhood of x, then G _D cl({x}). 

(c) If F is a closed set and x E X \ 
disjoint. 

F,  then the closed sets F and cl({x}) are 

(D) The set {u E X �9 u is topologically indistinguishable from x} is equal to 
cl({x}), for each x E X. (See 16.2 for definition.) 

(E) The sets of the form cl({x}), for x C X, form a partition of X; that is, any 
two such sets cl({xl}) and cl({x2}) are either identical or disjoint. 

The proof of equivalence is an easy exercise. 

16.7. Definition and proposition. A topological space (X, 7) is called a Ti space  if any of 
the following equivalent conditions are satisfied: 

(A) For each x E X, the singleton {x} is a closed set. 

(B) X is a Kolmogorov, symmetric space (defined in 16.3 and 16.6). 

(C) Given any distinct points Xl, x2 c X, both of these conditions are satisfied: 

(i) There exists an open set G1 that contains Xl but not x2. 

(ii) There exists an open set G2 that contains x2 but not Xl. 

(Compare the last condition with 16.3(B) and 16.11(D).) 
A T1 topology is sometimes called a Fr~che t  t opo logy .  However, this usage is uncom- 

mon in functional analysis books, since the term "Fr(~chet space" has another meaning; see 
26.14. 

16.8. Examples. 
a. Finite sets are usually equipped with the discrete topology. 

topology on a finite set is the discrete topology. 
Show that the only T1 
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b. (Optional exercise.) Let (X, 7) be a T1 topological space. If the topological closure is 
also an algebraic closure (defined in 4.8), show that  X has the discrete topology 
that  is, g" = ~P(X). 

c. The indiscrete topology on a set X with more than one point is a symmetric  space (in 
fact, a pseudometrizable space), but not Kolmogorov. 

d. The set N, equipped with either the lower set topology II or the upper set topology V 
given in 5.15.d, is Kolmogorov but not T1; hence it is not a symmetric  space. 

e. (Optional.) More generally: Let (X, 4)  be a preordered set. Then the lower set 
topology on X is a Kolmogorov topology if and only if ~ is a partial  order. The 
lower set topology is T1 if and only if ~ is the equality relation (=), in which case the 
resulting topology is the discrete topology. 

f. Let X be a topological space, and let Q be its Kolmogorov quotient (as defined in 
16.5). Then X is a symmetr ic  space ~ Q is a symmetr ic  space ,*---> Q is T1. 

P R E R E G U L A R  AND H A U S D O R F F  (T-Two) 
T O P O L O G I E S  

16.9. Proposition and notation. Let X be a topological space (not necessarily Kolmogorov). 
Let x, y E X. Then the following conditions are equivalent; in the next section we shall 
abbreviate this relationship as xOy. 

(A) x is a cluster point of X(y). 

(B) y is a cluster point of X(x). 

(C) Some filter (or net) converges to both x and y. 

(D) Some proper filter contains both :N(x) and :N(y). 

(E) Every neighborhood of x meets every neighborhood of y. 

Clearly, ~ is both reflexive and symmetric.  However, we do not assert that  it is transitive; 
i.e., we do not assert that  O is an equivalence relation on X. 

Note that  if x c cl({y}), then xOy, since the constant net y then converges to both x 
and y. 

16.10. Definition and proposition. Let X be a topological space (not necessarily Kol- 
mogorov). Let C be defined as in 16.9. We shall say X is a p r e r e g u l a r  s p a c e  if it satisfies 
any of the following equivalent conditions: 

(A) y c 
(B) xCy ~ y e cl({x}). In other words, cl({x}) is equal to the set {y �9 X : 

xOy}. (Note that  this condition implies the symmetry  condition 16.6(A). 
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Also, it implies that  ~ is a transitive relation�9 That  fact, together with the 
observations in 16.9, tell us that  ~ is an equivalence relation�9 

(C) If x is one of the limits of a filter or a net, then the set of all limits of tha t  
filter or net is equal to cl({x}). 

(D) Each filter or net has at most one limit, up to topological indistinguishability. 
In other words, if x and y are two limits of a filter or a net, then x and y are 
topologically indistinguishable (as defined in 16.2). 

Proof of equivalence is left as an exercise. 

16.11.  Definition and proposition. A topological space (X, 7) is called a T2 space ,  or a 
H a u s d o r f f  space ,  if any of the following equivalent conditions are satisfied: 

(A) When X is equipped with the topological convergence (defined as in 15.2 or 
15.7), then X is Hausdorff in the sense of convergence spaces (defined in 7.36) 

i.e., any net or filter has at most one limit. 

(B) X is a preregular Kolmogorov space. 

(C) Let W be any topological space, let W0 be a dense subset of W, and let 
f0 : W0 ~ X be continuous. Then f0 has at most one extension f : W ~ X 
that  is continuous. 

(D) Any two distinct points in X have disjoint neighborhoods. In other words, 
given any distinct points Xl, x2 c X, there exist disjoint open sets G1 and G2 
such that  

(i) G1 contains Xl but not x2, and 

(ii) G2 contains x2 but not Xl. 

(Compare the last condition with 16.3(B) and 16.7(C).) 
Hausdorff spaces, or T2 spaces, are also sometimes known as s e p a r a t e d  spaces .  Tha t  

term should not be confused with separable spaces, introduced in 15.13. 

Proof of equivalence. The equivalence of (A), (B), (D) and the implication (A) =~ (C) are 
easy exercises (with 15.3.a as a hint). It remains for us to present a proof of of (C) 
(D) or more precisely, a proof that  not-(D) implies not-(C). Suppose xo,xl are distinct 
points in X tha t  do not have disjoint neighborhoods. Let W = {x0,xl},  equipped with the 

relative topology. The inclusion j W c �9 -> X is then continuous. The open subsets of W 
are ~,  W, and perhaps one of {x0}, {Xl}, but not both of these singletons. By relabeling if 
necessary, we may assume that  {Xl} is not an open subset of W. Then W0 = {x0} is dense 

in l?~z, since every neighborhood of Xl meets W0. The inclusion j0 " W0 c> X is continuous. 
Two different continuous extensions of it are the map j (already noted) and the constant 
function x0 (since any constant function is continuous). 

16.12.  Exercises. 
a. If X is an infinite set, then the cofinite topology on X (defined in 5.15.c) is T1 but not 

T2; hence it is a symmetric  space but not preregular. 
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b. Let X be a topological space, and let Q be its Kolmogorov quotient (as defined in 
16.5). Then X is preregular ~ Q is preregular ~ Q is T2. 

c. Technical lemma. Let (Y, d) be a pseudometric space, and assume the resulting topol- 
ogy is not the indiscrete topology. Let Y0 E Y. Then there exist another point Yl E Y 
and open disjoint sets So, S1 c_ Y such that  y0 E So and Yl E S 1. (This exercise will 
be used in 18.20.) 

Hint: First show that  there exists some yl such that  d(yo, Yl) > O. 

REGULAR AND T-THREE TOPOLOGIES 

16.13. Definition and proposition. Let X be a topological space (not necessarily Kol- 
mogorov). We shall say X is r e g u l a r  if any, hence all, of the following equivalent conditions 
are satisfied: 

(A) Any point and any closed set not containing that  point are contained in dis- 
joint open sets. 

(B) If x E G and G is open, then there exists an open set H such that  x E H c_ 
cl(H) c G. 

(C) Each point has a neighborhood base consisting of closed sets. 

The proof of equivalence is an easy exercise. 
A topological space is sometimes called T 3 if it is both Kolmogorov and regular. 

16.14. Exercises. 
a. Any regular space is also a preregular space (hence any T3 space is also a T2 space). 

b. Let X be a topological space, and let Q be its Kolmogorov quotient (as defined in 
16.5). Then X is regular ~ Q is regular ~ Q is T3. 

c. (Optional.) Look in Steen and Seebach [1970], and find an example of a topological 
space that  is T2 but not Ta. 

16.15. T h e o r e m  on e x t e n s i o n  by  con t inu i ty .  Let X and Y be topological spaces; 
assume Y is regular. For each x E X, let N(x) be the neighborhood filter at x. Let D be a 
dense subset of X, and let f "  D -+ Y be continuous. Then 

onN(.) = {onN: 

is a filter on D for each x E X. Moreover, f can be extended to a continuous function 
F : X --+ Y if and only if for each x E X the filterbase 

is convergent in Y, in which case we can take F(x) (for x E X \ D) to be any of the limits 
o f f ( D A N ( x ) ) .  
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Note tha t  if Y is T3, then F is uniquely determined. 

Proof of theorem (following Dugundji [1966]). That  D n N(z) is a filter on D follows easily 
from the fact tha t  D is dense in X. 

Suppose f has a continuous extension F.  Then for each z E X the filter N(z) converges 
to z, hence the filterbase F(N(z)) converges to F(z), and it is easy to verify tha t  the 
filterbase f(D n iN(z)) also converges to F(z). 

Conversely, suppose that  f(D N N(z)) is convergent for each z E X; we shall prove the 
existence of a continuous extension. When z E D, then one of the limits of f(D n N(z)) 
is f (z ) ,  since f is continuous on D. For each z E X, let F(z) be any one of the limits of 
f(D N N(z));  it suffices to show that  F is continuous. Fix any z0 E X; we shall show F 
is continuous at z0. Let Y0 be any neighborhood of F(zo) in Y; it suffices to show that  
F- I (Y0)  is a neighborhood of z0 in X. Since Y is regular, there is some open set Y1 with 
F(zo) C_ Y1 C_ el(Y1) C_ Yo. Since f(D n N(zo)) --, F(zo), there is some open neighborhood 
Xo of zo in X such that  I(D n Xo) C_ Y1. It sumces to show that  f(Xo) C_ Yo. 

For each z c Xo, we claim that  the collection 

' ~z  = {Yi O f ( D  O M )  �9 M E N'(z)} 
is a filterbase on Y. To see this, observe that  i f z  E X0 and M E N(z), then X o G M  
is a neighborhood of z, hence it contains a nonempty open set, hence it meets D (which 
is dense); thus X o N D N M  is nonempty. Then f ( X o N D N M )  C_ Y1 N f ( D N M ) ,  so 
Y1 O f(D n M) is nonempty. Our claim follows easily. 

Any limit of the filterbase f(D n N(z)) is clearly also a limit of the filterbase ~Bz. Thus, 
in particular,  iBz ~ F(z). Since all the members of iBz are subsets of Y1, it follows that  
F(z) E cl(Y1) C_ Y0. This shows F(Xo) C_ Yo and completes the proof. 

COMPLETELY REGULAR AND TYCHONOV 
(T-THREE AND a HALF) TOPOLOGIES 

16.16.  T h e o r e m .  Let (X, ~r) be a topological space. Then the following conditions are 
equivalent" 

(A) 
(B) 
(c) 

~r is gaugeable - -  i.e., given by a gauge, in the sense of 5.15.h. 

9" is uniformizable i.e., given by a uniformity, in the sense of 5.33. 

9" is c o m p l e t e l y  r e g u l a r  i.e., it has this property: for each point z and 
each closed set F not containing that  point, there exists a continuous function 
~"  X ~ [0, 1] such that  p(z) - 1 and p vanishes everywhere on F.  

(D) Every lower semicontinuous function f "  X ~ [-oc,  +oc] is the pointwise 
supremum of a collection of continuous functions from X into [ -oc,  +oc]. 

Hints" The proof of (A) ~ (B) is an easy exercise that  was already posed at the end of 
5.33. For (B) ~ (A), let II be a g i v e n  uniformity on X, and let 171 c_ X x X  be any 
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given symmetric  entourage. Let V0 - X x X. By 5.35.c, for each positive integer n we 
may choose some symmetr ic  entourage V~+I c_ E~ such tha t  3 Vn+l C_ Vn. (This choosing 
is an application of the Principle of Dependent Choice, introduced in 6.28.) Apply Weil's 
Lemma 4.44; there is some pseudometric d on X that  satisfies 

{(x,y) c x  c c {(x,y) e x  d(x,v)_<2 

for all positive integers n. Let D be the collection of all pseudometrics d that  are determined 
in this fashion, for all choices of V1 and the E~'s. Show that  the uniformity determined by 
D is equal to 11. 

To prove (C) =v (A), for each continuous function f "  X ~ [0, 1] define a corresponding 
pseudometric df(z,  y) - I f ( z ) -  f(Y)l. Show that  the gauge consisting of all such df's yields 
the topology 7. 

For (A) =~ (C), note that  if z ~ F,  then r - dista(z,F) > 0 for some pseudometric d 
in the gauge. Then ~(z) - rain{l,  i d i s t a (z  F)}  has the required properties 

T' ~ 

For (D) ~ (C), let V - CF; then V is open. Hence its characteristic function l v  is 
lower semicontinuous. Also, l v ( z )  - 1. By (D), then, there is some continuous function 
g"  X ~ [ -oc ,+oc ]  such that  g_< l v  and a - g ( z )  > 0. T h e n ~ - m i n { 1 ,  Ig+}  has the a 

required properties. 
For (C) =v (D), let f "  X ~ [-oc,  +oc] be a lower semicontinuous function. Replacing 

f by ~ arctan f ,  we may assume Range(f )  c [-1,  1]. (explain). It suffices to show that ,  for 
each z0 C X and each number a < f(z0) ,  there is some continuous function g" X ~ [-1,  1] 
such that  g < f and g(xo) > a. If a < - 1 ,  then take g to be the constant function - 1 ,  
and we are done. Thus, we may assume - 1  < a < f(xo). Since f is lower semicontinuous, 
there is some open neighborhood V of x0 on which f > a. Since X is completely regular, 
there is some continuous function h "  X ~ [0, 11 that  vanishes at x0 and takes the value 
1 everywhere on CV. Then the function g(z) - a -  (a + 1)h(x) satisfies the requirements. 
This argument  follows Bourbaki [1966]. 

16.17.  More definitions. A completely regular Kolmogorov space is also known as a 
T y c h o n o v  space ,  or sometimes as a T3. 5 space .  Another characterization of Tychonov 
spaces will be given in 17.23. 

Let (X, D) be a gauge space, let II be the resulting uniformity, and let 7 be the resulting 
topology (see 5.33). Then two points x, y C X are topologically indistinguishable if and 
only if d(x, y) = 0 for every d c D. Show that  the following conditions are equivalent: 

(A) The gauge D is separating, as defined in 2.13. 

(B) The topology 9" is Kolmogorov that  is, any two distinct points are topo- 
logically distinguishable so (X, 9") is a Tychonov space. 

(C) ~u~11 U is the diagonal set I - {(x, x ) ' x  E X}.  That  is, if x, y are any two 
distinct points in X, then there exists some U E 11 such that  (x, y) ~ U. A 
uniformity satisfying this condition is said to be a s e p a r a t i n g  u n i f o r m i t y .  

16.18.  Remarks: regular versus completely regular. It is an easy exercise that  every 
completely regular space is regular; thus any Tychonov space is also T3. 
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There exist topological spaces that  are regular but not completely regular; likewise, 
spaces that  are T3 but not T3.5. All known examples of such spaces are very complicated; 
we shall not present one here. The ambitious reader can find such examples in Steen and 
Seebach [1970]. 

In fact, most topologies used in analysis are completely regular. Two elementary topolo- 
gies that  are not completely regular are the lower set topology on N (see 16.8.d) and the 
cofinite topology on an infinite set (see 16.12.a), but these are not regular either, and they 
are somewhat contrived: they are not typical of the topologies used in analysis. 

16.19. Remarks: gauge versus uniformity. By Weil's Theorem, gauge spaces (X, D) and 
uniform spaces (X, Ii) are in some sense "the same thing." Technically, there is a slight 
difference: A uniform space is equipped with a uniform equivalence class of gauges, whereas 
a gauge space is equipped with one particular gauge D from that  uniform equivalence 
class. In practice, it is often convenient to represent a uniformity l~ by working with some 
particular gauge D that  determines that  uniformity. Although the gauge is more specific 
than the uniformity, most of the properties of interest to us are actually uniform properties 
- -  i.e., they are preserved if we replace the gauge with any other uniformly equivalent gauge. 
Thus, when we discuss a gauge space (X, D), in most cases we are actually concerned with 
the associated uniform space (X, ll). For most purposes we can and will use gauges and 
uniformities interchangeably. Each has its conceptual advantages. 

16.20. Further exercise. Let (r be a completely regular topology. Then the largest gauge 
that  is compatible with ~r (as defined in 5.15.h) is the set of all pseudometrics d : X x X --~ 
[0, +oc) that  are jointly continuous i.e., continuous when X x X is given its product 
topology and [0, +oc) is given its usual topology. 

Contrast this with 18.12; also see the specialization in 26.31. 

16.21. Let X be a topological space, and let Q be its Kolmogorov quotient (as defined in 
16.5). Then X is completely regular ~ Q is completely regular ~ Q is Ta.a. In fact, 
a gauge on either space can be used to produce a corresponding gauge on the other space; 
the pseudometrics d on X and e on Q correspond to each other by this formula: 

d ( x l , x 2 )  - e (7l-(Xl), 7i-(x2)) . 

Two points X l , X 2  in X are topologically indistinguishable if and only if d(x l ,x2)  = 0 for 
every pseudometric d c D. This is a slight specialization of the observations in 15.31.h. 

If X is a pseudometric space i.e., if the gauge on X consists of just a single pseudo- 
metric then Q is a metric space. 

PARTITIONS OF UNITY 

16.22. Definition. Let X be a topological space. A collection g = {So : a c A} of subsets 
of X is called 
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p o i n t  f in i te  if each point of X belongs to only finitely many S~'s; 

loca l ly  f in i te  (or neighborhood finite) if each point of X has a neighborhood 
that  meets at most finitely many S~'s. 

16.23.  Basic properties. 
a. Any finite collection of sets is locally finite. 

On the other hand, a locally finite collection of sets need not be finite. For a trivial 
example, let X be an infinite set with the discrete topology, and consider the singletons 
of X. For an example in a more familiar setting, let X be the real line with its usual 
topology; then the intervals [n, n + 1] (for integers n) form an infinite collection of sets 
that  is locally finite. 

b. Any locally finite collection of sets is point finite. 
On the other hand, a point finite collection of sets need not be locally finite. For 

a trivial example, let X be an infinite set with the indiscrete topology; consider the 
singletons of X. For an example in a more familiar setting, let X be the real line 
with its usual topology; then each point of X is in at most one of the open intervals 
[,@7, 1] (for integers n > 0), but any neighborhood of 0 contains infinitely many of 
those intervals. 

c. If S = {S,  : a E A} is a locally finite collection of sets, then {cl(S,)  : c~ E A} is also 
locally finite, and [-J~A cl(S~) - cl ([.J,~A S~). (This generalizes 15.5.b slightly.) 

d. If ~ is an open cover of X and X can also be covered by a locally finite open refinement 
of 9, then X can also be covered by a locally finite open precise refinement of ~3 (with 
definitions as in 1.26). 

Hint: Let 9 = {G;~ : /3 c A} be the given cover, and let 8 = {S,~ : a  E B}  be 
a locally finite open refinement that  covers X that  is, g covers X, and each So is 
contained in some G;~. Use the Axiom of Choice to define a function "7 : A ---+ B such 
that  S,, c_ G,(~). Now let T/~ - I,.J,~,r_l(;~)S,,; then {T;~ �9 /3 c B} is a locally finite 
open cover of X and T/3 C_ Gf~ for each/3. 

16.24.  Definition. Let X be a topological space. A p a r t i t i o n  of  u n i t y  on X is a collection 
{fi~ : c~ c A} of continuous functions from X into [0,1], satisfying ~ - ~ A  f~(x)  -- 1 for each 
x E X, and such that  the sets 

f ,71((0,1])  - {x E X �9 f,~(x) > O} (a E A) 

form a locally finite collection. Note that  the sets f(71 ((0, 1]) must then form a cover 

i.e., their union is equal to X. 
\ / 

The part i t ion of unity {fi~ : a C A} is said to be s u b o r d i n a t e d  to a given cover 

{Tf~ �9 ~3 c t3} if each set f(7 -1 ((0, 1]) - is contained in some T/~. The part i t ion of unity {f,~} 
is p r e c i s e l y  s u b o r d i n a t e d  to the given cover {Tf~} if, moreover, it is parametr ized by the 

index set ( that  is, A -  B), and f~71 ((0, 1]~ C T~ for each same Ct. 
k / 
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Some conditions for the existence of partitions of unity will be considered in 16.26(D) 
and 16.29. 

16.25. Basic properties of partitions of unity. 
a. Typical use of partitions of unity. Let {f~ : c~ C A} be a partit ion of unity that  is 

precisely subordinated to a covering {T~ : c~ c A}. For each c~, let g~ : X ~ IR be 
some given continuous function. Show that  a continuous function g : X ~ IR can be 
defined by g(x )=  ~-~cA f~(x)g~(x). 

We say that  g is formed by p a t c h i n g  t o g e t h e r  the g~'s. Note that  for each x, 
g(x) is a convex combination of finitely many g~(x)'s. In many cases of interest, g 
inherits many of the properties of the g~'s. See for instance 18.6. 

b. Availability of precise partitions. If X has a partit ion of unity subordinated to a given 
cover {Tz : ~ c B}, then X also has a partit ion of unity that  is precisely subordinated 
to that  cover (as defined in 16.24). 

Hint: This is similar to 16.23.d. Let {f~ : (~ E A} be the given parti t ion of unity. 

Use the Axiom of Choice to define a function "7" A ---, B such that  f~-l((0,  1]) 
% 

c_ 
\ / 

Show that  the functions g/~ - } - - ~ - l ( Z )  f~ satisfy the requirements. 

c. Making the sum come out right. Let {f~ : c~ E A} be a collection of continuous functions 

from X into [0, oo), such that  the sets f~--1 ((0, OO)) form a locally finite cover of X. 

If }--~ f~ = 1, then {f~ } is a parti t ion of unity. If we do not have E ~  f~ = 1, we can 
J 

modify the f~'s to obtain a parti t ion of unity, as follows: 

Using the fact that  the sets f~-l((0,  oc)) form a locally finite cover, prove that  

the function s(x) = }-~eA f~(x) is continuous and positive. Then define g~(x) = 
f~(x)/s(x) .  The g~'s form the desired partit ion of unity. 

NORMAL TOPOLOGIES 

16.26. Definition and proposition. A topological space X is n o r m a l  if it satisfies any of 
the following equivalent conditions: 

(A) Any two disjoint closed sets are contained in disjoint open sets. 

(B) ( T h e  S h r i n k i n g  L e m m a . )  Let ~ = {T~ : a E A} be an open cover of X 
that  is point finite (see 16.22). Then g" has a s h r i n k i n g  i.e., there exists 
an open cover 8 = {S~:  a E A} such that  cl(S~) c_ T~ for each a. 

(c) ( U r y s o h n ' s  L e m m a . )  If A and B are disjoint closed subsets of X, then there 
exists a continuous function a : X ~ [0, 1] that  takes the value 0 everywhere 
on A and the value 1 everywhere on B. 

(D) For each locally finite open cover of X, there exists a partit ion of unity pre- 
cisely subordinated to that  cover. 
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Proof of (B) ~ (A). Let F1 and F2 be disjoint closed sets. Then CF1 and CF2 form an 
open cover of X, which is finite and hence point finite. Let G1, G2 be a shrinking i.e., 
let {G1, G2} be an open cover with cl(G~) c_ CF~ for each i. Then Cd(al), ed(a ) are open 
disjoint sets that contain F1, F2, respectively. 

Proof of (A) =~ (B). Let ~r = {T~ : a  E A} be a given open, point finite cover of X. By 
the Well Ordering Principle (see 6.20), let 4 be a well ordering of A. We shall define the 
sets S~ by transfinite recursion (see 3.40). 

Let any /3 E A be given. Assume that open sets S~ have been chosen for all a -~ /3, 
satisfying cl(S~) C_ T~ and also satisfying 

u = X. 

(In other words, replacing the T~' 
having a cover of X.) We now wish to choose S~. Let 

s with S~'s for all c~ -</3 does not cost us the property of 

�9 

Then FZ is a closed subset of TZ. Since X is normal, there is some open set SZ such that 
FZ C_ SZ c_ cl(Sz) c_ TZ. Then (X \ FZ) U SZ - X, completing our recursive construction. 

To show that the sets S~ form a cover of X, let any x E X be given. Since the T~'s 
are a point finite cover, there are just finitely many indices ~1 -~ ~/2 M " ' "  -~ ~/n that satisfy 

n 
x E T~j. Then x must be a member of Uj=l  s ~ .  

1 1 21])  are Proof of (C) =~ (A). If such a function cr exists, then cr-l([0, 5)) and or- ((5, 
disjoint open sets containing A and B, respectively. 

Proof of (A) ~ (C). Let F0 - A. Use (A) to find some closed set F1 such that F0 C_ 
int (F1) C_ F1 C_ X \ B. 

Let D be the set of all dyadic rationals in [0,1]; that is, 

D - { 2 - k m E  [0,1] �9 m, kENu{O}} .  

We shall now recursively construct closed sets F~ for r E D, chosen so that r < s =~ F~ C_ 
int (F~). The construction will be in stages. After no stages, we already have the sets F0 
and Fa. After k stages, we shall have closed sets F~ for all r in the finite sequence 

( 1 2 3  2 k - 2  2 k - 1  ) 
Sk -- 0, 2k, 2k , 2k , . . . ,  2k , 2k , 1 . 

To construct the next stage, let r and s be any two consecutive numbers in Sk. Since 
F~ C_ int (Fs), we may use (A) to choose some closed set F(~+s)/2 that  satisfies 

F~ c_ int (F(~+~)/2) C_ F(~+~)/2 C int (F~). 



448 Chapter 16: Separation and Regularity Axioms 

(This choosing is an application of the Principle of Dependent Choice 6.28.) In this fashion 
we choose closed sets Ft for all t E Sk+l \ Sk; that  completes the recursion. Now we may 
define 

~(x) - ~ i n f { r E D  �9 x E F ~ }  i f x e F 1 ,  
[ 1 i fx  ~ F1. 

Observe that  

{x C X �9 ~(x) < p} C_ int (Fp) C_ Fp C_ {x e X �9 p(x) < p}. 

It remains to show that  ~ is continuous; we leave the details as an exercise. 

Proof of (D) =~ (C). If F1 and F2 are disjoint closed sets, then {CF1, CF2} is an open 
cover of X. Let ~1, ~2 be a precisely subordinated partition of unity; then pj vanishes on 
Fj (j - 1, 2). Hence ~1 takes the value 1 on F2 and vanishes on F1. 

Proof that (B) and (C) together imply (D). Let ~ = {Ta :(~ e A} be a given locally finite 
open cover. Let g = {S~ : (~ E A} be a shrinking of that  cover, as in (B). For each c~, by 
(C) there is some continuous function f~ : X ~ [0, 1] that  takes the value 1 on S~ and the 
value 0 outside cl(T~). Now form a partition of unity {g~} as in 16.25.c. 

16.27. Remarks and examples. Normality is most useful when it occurs in conjunction 
with the symmetric condition. Normality does not imply symmetric. For instance, the 
spaces X = {1, 2} with topology 7 = {O, {1}, {1, 2}} and Y = {1, 2, 3} with topology 

= {0, {1}, {1,2,3}} are both normal; neither is a symmetric space. (The topology 9 ~ is 
Kolmogorov; the topology It is not.) 

It is easy to see that  any normal symmetric space is also completely regular. But normal 
plus symmetric is strictly stronger than completely regular; in 17.39 we shall give an example 
of a space that  is T3.5 but not normal. 

16.28. Examples and corollaries. 
a. Any pseudometric space (X, d) is normal. Hint: If F0, F1 are disjoint nonempty closed 

sets, let 

Gj = {x e X �9 dist(x, Fj) < dist(x, F l_ j )}  (j - 1,2). 

Other important examples. In 17.7.g we shall show that any compact preregular space 
is normal. 

b. A normal, T1 space is commonly known as a T 4 space.  Show that  any normal, sym- 
metric space is completely regular, hence T4 =v T3.5. 

PARACOMPACTNESS 

16.29.  
ment." 

Definition. Recall from 1.26 the definitions of "refinement" and "precise refine- 
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Let X be a preregular topological space. Then the following conditions are equivalent. 
If any, hence all, are satisfied, we say X is p a r a c o m p a c t .  

(A) Every open cover of X has a locally finite refinement. 

(B) Every open cover of X has a precise locally finite refinement. 

(C) For each open cover of X, there exists a partition of unity subordinated to 
that cover. 

(D) For each open cover of X, there exists a partition of unity precisely subordi- 
nated to that cover. 

Remarks. It is clear from 16.26(D) that 

every paracompact space is normal 

at least, using our definition of "paracompact." Hence any paracompact space is also 
regular and completely regular. (In 17.38 we give an example of a T4 space that is not 
paracompact.) 

The reader is cautioned that the definition of "paracompact" varies in the literature. 
Most mathematicians make either regularity or Hausdorffness (that is, regular or T2) a 
part of the definition. Note that either of these implies preregular, so any space that 
satisfies either of those definitions of "paracompact" is also paracompact by our definition. 
On the other hand, a few mathematicians omit any such assumptions and simply take 
condition (A) as the definition of "paracompact;" they then speak about spaces that are 
"both paracompact and regular." 

Proof of theorem. Obviously ( B ) = ~  ( A ) a n d  ( D ) = ~  (C). The implications ( A ) = ~  (B) 
and (C) =~ (D) follow from 16.23.d and 16.25.b. The implications (C) =~ (A) or (D) =~ 
(B) follow from the definition of partition of unity i.e., if {f~ �9 c~ E A} is a partition of 
unity, then f~-l((0, 1]) �9 c~ E A} is a locally finite collection of sets. 

In view of 16.26(D), it suffices to show that conditions (B) and preregular imply normal. 
We shall show, by one argument, that 

(i) preregular and (B) imply regular, and 

(ii) regular and (B) imply normal. 

Let some disjoint sets A and B be given, where B is a closed set; for (i) we assume A is a 
singleton, and for (ii) we assume A is a closed set. We are to show that 

(*) A and B are contained in disjoint open sets. 

Temporarily fix any b E B. We shall first show that 

(**) the sets A and {b} are contained in some disjoint open sets Gb and Hb, respectively. 

This is clear in case (ii). In case (i) we have cl({b}) C_ B and hence a ~ cl({b}); our claim 
now follows from 16.10(D). In either case, we have established (**). 

Cover X by the open sets Hb and X \ B. By our assumption (B), this open cover has 
a precise locally finite refinement consisting of open sets Jb C_ Hb and N C_ X \ B. Let 
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J - UbEB Jb. Then J and Ccl(J) are disjoint open sets. We shall show that  B c_ J and 
A c_ Ccl(J). 

Since {Jb" b E B} U {N} is a cover of X, and g C_ X \ B, we must have B c_ J.  On the 
other hand, since the collection of sets { Jb} is locally finite, we have 

cl(') - U cl(Jb) bEBU cl(Hb) C bEBU ~ b  -- ~ (b~B~b) 

hence A c_ ~bEB Gb C_ eel(J). This completes our proof of (*). 

16.30. D o w k e r ' s  S a n d w i c h  T h e o r e m  (op t iona l ) .  Let X be a paracompact space. Let 
a, b: X ~ IR be functions such that  a is lower semicontinuous, b is upper semicontinuous, 
and a(x) > b(x) for every x E Z .  Then there is some continuous g :  Z ~ IR such that  
a(x) > g(x) > b(x) for every x E X. (Remark. It is interesting to compare this result with 
(HB6) in 12.31.) 

Proof of theorem. For real numbers r let Gr - {x E X �9 a(x) > r > b(x)}. The sets Gr 
(r E R) form an open cover of X. Let {f~ �9 r E R} be a subordinated parti t ion of unity; 
show that  g(x) - E~ER rf~(x) has the required properties. 

I6 .31 .  T h e o r e m  (A. H. S t one ,  1948) .  Every pseudometric space is paracompact.  

Proof. Our proof follows Rudin [1969]. Let (X, d) be a pseudometric space. Let B(x, r) 
denote the open ball with center x and radius r - -  that  is, the set {u E X : d(x, u) < r}. 

We know (X,d)  is regular, by 16.16. Let {Ca : c~ E A} be an open cover of X; we 
shall construct a locally finite open refinement {Da,n : ct E A, n E N}. By the Well 
Ordering Principle (in 6.20), let ~ be a well ordering of the set A. Let A z N be given this 
lexicographical ordering: (a, n) -~ (a', n') if either 

(a) n < n ' ,  or  

(b) n = n' and a -~ a'. 

Then A z N is also well ordered; this is a special case of 3.44.a(ii). We shall define the 
Dc~,n'S recursively in that  order that  is, first we define all the D~,l'S (in order of c~'s); 
then we define all the D~,2's; then all the Dc~,3's; etc. 

To define D~,n, assume that  all the preceding D's have already been defined (an as- 
sumption that  is trivially satisfied when we begin the defining process, since then there are 
no preceding D's). Let Ea,n be the set of all x's that  satisfy: 

(i) c~ is the first member of A satisfying x E Ca, 

(ii) n is large enough so that  B(x, 22-~) C Ca, and 

(iii) x is not a member of any previous D. 

Then let 
Da,n - U B(x, 2-n) . (.)  

xE Ec~,n 
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Each set Da,~ is a union of open balls, hence is open. Also, each of those balls is contained 
in Ca, hence the collection of open sets {Da,,~ " c~ E A, n E N} refines the open cover 
{Ca �9 c~ c A}. To show that  {Da,n} covers X, let any x E X be given. Then there is a first 
c~ E A satisfying x c Ca, and there is some n large enough so that  B(x, 22-n) _c Ca. Then 
x E Uj<_~ U~A DZ,j. 

It remains only to show that  {Da,~} is locally finite. Let any ~ E X be given; we shall 
exhibit a neighborhood G of X that  meets only finitely many of the Da,~'s. Choose some 
,/ and m such that  ~ is in the open set Da,m. Then choose some positive integer j large 
enough so that  B(~, 2 - j )  c_ Dx,~.  We shall use G - B(~, 2-m-J). The proof consists of 
showing that  (1) G does not meet any Da,~ with n > m + j ,  and (2) for each positive 
integer n < m + j - 1 there is at most one c~ such that  G meets Da,~. 

Proof of (1). The set Ea,~ is disjoint from Da,m; this follows from (iii) and the fact that  
n > m + j > m. For any y E Ea,~, we have d(~, y) > 2 - j  since B(~, 2 - j )  c_ D~,m. Since 
m + j  > j + l  a n d n  > j + l ,  we haveGNB(y ,  2 -~) c_ B(~,2-J-1)NB(y ,  2-J -1) - ;g. The 
set Da,~ is the union of such balls B(y, 2 -~)  and therefore is disjoint from G. 

Proof of (2). S u p p o s e p  c G N D a , ~  and q E G N D z , n  where n < m + j  and c~ =/=/3; 
we shall obtain a contradiction. We may assume c~ -< /9. By the definition ( .) ,  we have 
d(p,p') < 2 -~ and d(q, q') < 2 -~ for some p' E Ea,n and q' E EZ,~. By (i), since/3 >- c~, 
we have q' ~ Ca. By (ii), B(p',22-~) C_ Ca. Thus d(p',q') >_ dist(p',Cc~) > 2 2-~, and 
therefore 

d(p,q) > d (p ' , q ' ) -d (p ,p ' ) -d (q ,q ' )  > 2 - ~ ( 4 - 1 - 1 ) -  2 -n+l  ~ 2 -m- j+2 .  

This contradicts the fact that  p, q both lie in G -  B(~, 2 -m- j )  and completes the proof of 
the theorem. 

HEREDITARY AND PRODUCTIVE PROPERTIES 

16.32.  Definitions. A property P is h e r e d i t a r y  if, whenever Y is a topological space 
with property P and X is a subset of Y equipped with the relative topology, then X also 
has property P.  For instance, Hausdorff is a hereditary property, since any subspace of a 
Hausdorff space is also Hausdorff when equipped with the relative topology. 

A property P is p r o d u c t i v e  if, whenever X = I-Ix~A Ya is a product of topological 
spaces and the Ya's all have property P,  then X (equipped with the product  topology) also 
has property P.  

A property P is an in i t i a l  p r o p e r t y  if, whenever X has the initial topology determined 
by a collection of mappings f : X ~ Yx, and the Ya's are topological spaces with property 
P,  then X also has property P. Note that  any initial property is also a hereditary property 
and a productive property, since the relative and product  topologies are special cases of 
initial topologies. 

16.33.  Exercises and remarks. 
a. All the following separation axioms are initial properties" symmetric,  preregular, reg- 
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ular, completely regular. The verification of these facts are fairly straightforward ex- 
ercises; we shall omit the details. 

b. All the separation axioms Tn, for n = 0, 1,2,3,3.5, are hereditary and productive 
properties. In fact, if X has the initial topology determined by a collection of mappings 
f : X ~ Y~, and that collection of mappings separates points of X, and the Y~'s have 
one of the properties To, T1, T2, T3, T3.5, then X also has that property. 

c. Normalcy and paracompactness are not hereditary; we shall prove that via an example 
in 17.40.a. 

do 

e .  

Normalcy is not productive; we shall prove that by an example in 17.40.b. 

Paracompactness is not productive. Indeed, let X be the real line equipped with the 
topology generated by all sets of the form {x E I~ �9 a ~_ x < b}, for a, b E I~. (This 
is called the r igh t  ha l f -open  in te rva l  t opo logy ,  or the lower l imit  t opo logy . )  It 
can be shown that X is a paracompact Hausdorff space, but X • X (with the product 
topology) is not paracompact. (In fact, X • X is not normal; this gives another proof 
that normalcy is not productive.) We omit the details of the proof, which can be found 
in topology books. 



Chapter 17 

Compactness 

17'.1. Preview. In R n, a set is compact if and only if it is closed and bounded. That  
notion is generalized in this and the next few chapters. The following chart shows relations 
between some of the main relatives of compactness. 

CHARACTERIZATIONS IN TERMS OF 
CONVERGENCES 

17.2. Definition and exercise. Let (X, 9") be a topological space. We say that  X is compact 
if any of the following equivalent conditions are satisfied. (Examples will be given later in 
the chapter.) 

(A) Every open cover of X has a finite subcover. That  is, if S = {Ga : A E 
A} is a cover of X consisting of open sets, then some finite subcollection 
{G)~I , GA2, . . .  , G)~ n } is also a cover of X. (This is the most common definition 
of compactness in the mathematical literature.) 

(B) Every filter subbase consisting of closed subsets of X is fixed. That  is, when- 
ever g = {Sa : A c A} is a collection of closed subsets of X that  has the finite 
intersection property, then  NAEA S)~ is nonempty. 

(C) Every net in X has a cluster point i.e., every net has a convergent subnet. 

(D) If 9" is a proper filter on X, then the set AF~9"cl(F) -- {cluster points of 9"} 
is nonempty. 

Remarks. In view of 7.19 and 15.38, it does not matter  which kind of subnet we use in (C). 
Also, the equation ~ F c g ' c l ( F )  = {cluster points of 9"} was noted in 15.38 (regardless of 
compactness). 

Proof of equivalence. The equivalence of (A) and (B) follows from taking complements 
i.e., take Ga = X \ Sx. The equivalence of (C) and (D) is just the correspondence between 
nets and proper filters (see 7.9, 7.11, and 7.31). For (D) ~ (B), let 9"be the filter generated 
byg .  For (B) => ( D ) , l e t g = { c l ( F ) : F c g ' } .  

453 
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17.3. More definitions. A subset K of a topological space Y is said to be a compact  set if 
K is a compact space when equipped with the relative topology induced by Y. This notion 
is so important that we shall now reformulate all four of the conditions stated in 17.2; the 
formulations below are occasionally more convenient than those given in 17.2. A set K C_ Y 
is a compact set if one (hence all) of the following conditions is satisfied. 

(A) 

(B) 

Whenever {GA " A E A} is a collection of open subsets of Y with union 
containing K, then UaEL GA _D K for some finite set L C A. 

Whenever {Fa �9 A E A} is a collection of closed subsets of Y such that the 
collection {K n Fa �9 A E A} has the finite intersection property, then r'~AEA FA 
meets K. 

(C) Every net in K has a cluster point in K i.e., every net in K has a subnet 
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that converges to a point in K. 

(D) If 9" is a proper filter on Y and K E 9:, then 9" has a superfilter that converges 
to some point in K. 

Although these conditions refer to the topology of Y, they do not actually depend on Y, 
except insofar as it determines the relative topology on K. Thus, if K C_ Y O Z, where Y 
and Z are two topological spaces that determine the same relative topology on K, then K 
is compact ~ K is a compact subset of Y ~ K is a compact subset of Z. 

17.4. The preceding definitions of compactness and their proof of equivalence did not 
require the Axiom of Choice or any weakened form of Choice. 

Following is another characterization of compactness; this statement is equivalent to the 
Ultrafilter Principle. 

(UF18)  Let X be a topological space. Then X is compact if (and only if) 
every ultrafilter on X converges to some limit or equivalently, if (and only if) 
every universal net in X converges to some limit. 

In fact, this statement is equivalent to the Ultrafilter Principle with or without the paren- 
thesized "and only if" part. It follows from the definitions of "ultrafilter" and "compact" 
that if X is compact, then every ultrafilter on X converges; this implication does not require 
any arbitrary choices and thus is valid in ZF. We assert that our earlier versions of UF are 
equivalent to the remaining statement that 

(*) X is compact if every ultrafilter on X converges. 

Indeed, (*) follows easily from (UF3) in 7.24, together with the definition of "compact." A 
proof that (*) implies (UF1) will be given in 17.22. 

17.5. Let f : A --+ X be a mapping from a set A (without any topology necessarily 
specified) into a compact Hausdorff space X. 

(i) Suppose (As) is a universal net in A. Then (f(A~)) is a universal net in X, which 
converges to a unique limit. We say that f conve rges  a long  t he  un ive r sa l  ne t  (As) to 
that limit. 

(ii) Equivalently, let II be an ultrafilter on A. Then {f(U) : U E 11} is a filterbase on 
X, and the filter it generates is an ultrafilter. That  ultrafilter converges to a unique limit 
in X. We say that f conve rges  a long  t he  u l t r a f i l t e r  II to that limit. Let us denote that 
limit by limll f.  We may restate its definition: limll f is the unique point in X with the 
property that each neighborhood N of limll f contains some set f(U) with U E ll;. (This 
notion is discussed also by Bourbaki [1966].) 

We have lira11 f = lira11 g whenever f and g are ll-equivalent in the sense of 9.41, and 
so lim11 is in fact well defined on the quotient space xA / l l  i.e., on the ultrapower *X. 

17.6. (Optional.) The Ultrafilter Principle implies the Hahn-Banach Theorem. We shall 
show that (UF1) ~ (HB1). Let (A, ~) be a directed set. Let 2) be the filter of eventual 
subsets of A that is, let 

�9 - { S C _ A  �9 S _ D { ~ E A ' ~ ( 5 0 }  f o r s o m e ~ 0 E A } .  
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By (UF1), let 1 /be  an ultrafilter on A that  extends �9 If f : A ~ IR is a bounded function, 
then f may be viewed as a map into the compact Hausdorff space [a, b] for some a, b c R. 
Hence we may define limll f E R as in 17.5. Obviously the map f H limll f is positive 
and linear. It is easy to verify that  if f : A ---, R is a bounded function such that  the net 
{f(5) : 5 E A} converges to a limit L, then that  limit is equal to limll f .  Thus limll is a 
Banach limit. 

Remark. Actually, Pincus [1972] showed that  the Hahn-Banach Theorem is strictly 
weaker than the Ultrafilter Principle, but the proof of that  fact is beyond the scope of this 
book. 

BASIC PROPERTIES OF COMPACTNESS 

17.7. Elementary examples and properties. 
a. Any finite subset of any topological space is compact. In particular, O is compact. 

b. The union of finitely many compact sets is compact. 

c. Let X be a topological space. Then 

:J - { S C _ X  �9 S C_ K for some compact set K } 

is an ideal on X. Thus, for some purposes, we may view the members of :J as "small" 
subsets of X, in the sense of 5.3. 

d. Let 8 and 9" be two topologies on a set X. Then the weaker topology has more 
compact sets or at least as many. That  is, if 8 C 9", then every ~r-compact set is 
also 8-compact. It is possible for 8 and ~Y to yield the same collections of compact sets 
even if if 8 ~ 9"; see the second and third examples below. 

(i) 

(ii) 

(iii) 

The discrete topology on X is the strongest topology, so it should have 
the fewest compact sets. Show that  a subset of X is compact, for the 
discrete topology if and only if that  subset is finite. 

The indiscrete topology on X is the weakest topology, so it has the most 
compact sets. In fact, with the indiscrete topology, every subset of X is 
compact. 

The cofinite topology is strictly stronger than the indiscrete topology 
(unless card(X) < 2), but the cofinite topology also makes every subset 
of X compact. 

e. If (Xl, X2, X3,...) is a sequence converging to a limit x0 in a topological space, then the 
set {xo,xl,x2,x3,. . .} is compact. (This result does not generalize to nets.) 

f. In any topological space, the intersection of a closed set and a compact set is compact. 
In a compact topological space, any closed set is compact. In a Hausdorff topological 
space, any compact set is closed. 
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g. Any compact preregular space is paracompact  (hence normal and completely regular). 
Proof. Given an open cover, any finite subcover is a locally finite refinement. 

h. The continuous image of a compact set is compact.  Tha t  is, if f �9 X + Y is a 
continuous map from one topological space into another, and K C_ X is compact,  then 
f ( K )  is compact.  

i. Any upper semicontinuous function from a compact set into [ -oc ,  +oc] assumes a 
maximum. 

D i n i ' s  M o n o t o n e  C o n v e r g e n c e  T h e o r e m .  Let (g~ : c~ E A) be a net of continuous 
functions (or more generally, upper semicontinuous functions) from a compact topolog- 
ical space X into R. Assume that  g~ I 0 p o i n t w i s e -  i.e., assume that  for each x c X 
the net (g~(x)) is decreasing and converges to O. Then the convergence is uniform 
i.e., l i m ~ A  sup:r~X g~ (x) = 0. 

IBnt: Let c > 0 be given. If none of the closed sets F~ = {x c X : f~(x) >_ e} is 
empty, show that  the collection of F~'s has the finite intersection property. 

17.8. P r o p o s i t i o n .  Let (X, _<) be a chain ordered set (for instance, a subset of [ -oc,  +oc]), 
and let 9" be the interval topology on X (defined in 5.15.f). Then (X, 9") is compact if and 
only if (X, <) is order complete. 

Furthermore,  if (x~ :c~ E A) is a net in an order complete chain, then lim inf x~ is the 
smallest cluster point of the net, and lim sup x~ is the largest cluster point of the net. 

Proof. First, suppose that  X is order complete. It follows easily from 15.42 that  l iminf  x~ 
and lira sup x~ are cluster points of (x~). It follows from 7.47.a that  any other cluster points 
must lie between those two. 

On the other hand, suppose X is not order complete; we shall show X is not compact.  
Assume D is a nonempty subset of X such that  sup(D) does not exist in (X, <).  Consider 
D itself as a directed set; we shall show that  the inclusion map i : D --~ X is a net with 
no cluster point. To put our notat ion in a more familiar form, we shall write the net as 
(i~ : 8 E D), where in fact i~ = 6. Consider any z E X; we shall show z cannot be a cluster 
point of X. We consider two cases: 

(i) z is not an upper bound of D. In this case there is some 60 C D with 8o > z. The 
set {x ~ X : x < 80} contains z b u t i s n o t  a f r equen t  set for the net (i~), s o z i s n o t  a 
cluster point. 

(ii) z is an upper bound of D, but is not the least upper bound. Thus D has some upper 
bound b < z. Then the set {x c X : x  > b} contains z but is not a frequent set for the net 
(i~), so z is not a cluster point. 

17.9. Corollaries. 
a. The extended real line [ - ~ ,  +oc] is compact when equipped with its usual topology. 

(That  topology will be discussed further in 18.24.) 

b. A subset of R is compact if and only if it is closed and bounded. In particular,  any 
interval [a, b] C_ R (where - o c  < a < b < +oc)  is compact.  

17.10. Compactness and Hausdorff spaces. 
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a. Let S be a subset of a Hausdorff topological space. Then S is compact if and only if 
S is closed and S is contained in a compact set. 

b. Let S be a subset of a compact Hausdorff space. Then S is compact if and only if S is 
closed. 

c. If X is a compact space, Y is a Hausdorff space, and f : X ~ Y is continuous, then f 
is a closed mapping i.e., the image of a closed subset of X is a closed subset of Y. 

If, furthermore, f is a bijection, then f - 1  is also continuous that  is, f is a 
. , .  

homeomorphism. 

d. No Hausdorff topology on a set can be strictly weaker than a compact topology on 
that  set. In other words, it is not possible for a set to have two topologies S ~ 9"where 
S is Hausdorff and 9" is compact. 

17.11. We shall say that  a topological space X is loca l ly  c o m p a c t  if each point has a 
compact neighborhood. Following are some examples. 

a. Any compact space is locally compact. 

b. Any set with the discrete topology is a locally compact Hausdorff space. 

c. 1~ is locally compact. 

Preview of further results. In 17.17 we shall see that  ]~n is a locally compact Hausdorff 
space, when equipped with the product topology. In 27.17 we shall see that  no infinite 
dimensional Hausdorff topological vector space is locally compact. 

In 17.14.d we shall see that  any locally compact preregular space is completely regular. 

REGULARITY AND COMPACTNESS 

17.12.  If X is a symmetric space and x E X, then cl({x}) is compact. 
Proof. Any open cover of cl({x}) has a finite subcover; that  is immediate from 16.6(B). 

17.13.  Let X be a preregular space, and let K be a compact subset of X. Then: 

a. If p C X with cl({p}) disjoint .from K, then K and cl({p}) are contained in disjoint 
open sets. 

Proof. For each x c K,  we have x ~ cl({p}). By 16.10, p and x are contained in 
disjoint open sets Ax and Bx, respectively. Then {Bx �9 x C K} is an open cover of the 
compact set K,  so it has a finite subcover; we have K C_ B - Ux~I Bx for some finite 
set I c_ K.  Then p is in the open set A - ~xcI Ax. 

b. If L is closed and compact, and K and L are disjoint, then K and L are contained in 
disjoint open sets. 

Proof. For each p c L, the sets cl({p}) and K are contained in disjoint open sets Ap 
and Bp, respectively. The sets Ap form an open cover of L. Choose a finite subcover 
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of the Ap's, and take their union for an open set containing L. The intersection of the 
corresponding Bp's is an open set containing K. 

c. cl(K) - U x c s  cl({x}). 
Proof. We have cl(K) D [.Jx~K cl({x}) if K is any subset of any topological space. 

For the reverse inclusion, let p e cl(K); we wish to show that  p e [-JxeK cl({x}). Since 
p E cl(K),  we know that  K meets every neighborhood of p. Hence by the preceding 
exercise, cl({p}) is not disjoint from K. Say x e cl({p})N K. By 16.10, then, also 
p e cl({x}), as required. 

d. If K is contained in an open set G, then cl(K) C_ G also. 
Proof. Use the preceding exercise and 16.6(B). 

e. cl(K) is compact.  More generally, if K C_ T C_ cl(K),  then T is compact.  
Hints" Any open cover of T is also an open cover of K; use the preceding exercise. 

f. If S c_ K,  then cl(S) is compact.  
Proof. cl(S) - c l (S)N cl(K) is the intersection of a closed set and a compact set; 

apply 17.7.f. 

17.14.  Let X be a locally compact  preregular space. Then: 

a. (Neighborhoods of points.) Each point has a neighborhood base consisting of closed 
compact sets (and hence X is regular). 

Proof. Any x E X has a compact neighborhood, hence (by 17.13.e) has a closed 
compact neighborhood K. Then K is a compact preregular space, hence (by 17.7.g) 
K is a regular space. Hence z has a neighborhood basis in K consisting of closed sets. 
Since K is a neighborhood of z in X, those same sets also form a neighborhood basis 
for x in X. Those sets are also closed and compact in X. 

b. (Neighborhoods of compact sets.) Let K C_ G with K compact and G open in X. Then 
there exists some open set H whose closure is compact,  such that  K c_ H c_ cl(H) C_ G. 

Proof. By 17.14.a, each x E K is contained in some open set Ax whose closure is 
a compact set contained in G. Then the compact set K has open cover {Ax �9 x E 
K}, hence some finite subcover {Ax �9 z E F}. Let H - [-Jx~FAx" Then cl(H) - 
[-Jxep cl(Ax) by 15.5.b or 16.23.c; hence el(H) is a compact subset of G. 

n c. (Local partitions of unity.) Suppose K C_ [-Jj=l Gj, where K is compact and the Gj's 
/I ,  

are open. Then there exist continuous functions ~j �9 X ~ [0, 1] such that  }--~j=l ~J - 1 
on K,  and each ~j vanishes outside some compact subset of Gj. 

n Proof. Let G - I.Jj=l Gj. By two applications of 17.14.b, we may find open sets 
G ~, G '~ such that  

c G" c r c G' C c G 

and cl(G'), cl(G") are compact sets. The set cl(G'), equipped with the relative topology, 
is compact and a preregular space, hence paracompact  (see 17.7.g). Let Tj = G" N Gj 
for j = 1, 2 , . . . ,  n, and let To = cl(G') \ K.  These sets are relatively open in cl(G'), 
and they form a cover of c l (a ' ) .  Let (s~ : j = 0,1,  2 , . . . ,  n) be a shrinking of (Tj) 
that  is, let the Sj's be another cover of cl(G ~) consisting of relatively open sets, such 
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that  cl(Sj) c_ Tj. Form a partit ion of unity on cl(G') that  is precisely subordinated 
to (Sj); say ~0,~al ,qa2, . . . ,~n are continuous functions from c l ( G ' ) i n t o  [0, 1] such 

n 
that  }-~j=o ~J - 1 and ~O vanishes outside S o. Since K C_ cl(G') \ So, we must have 

n 
}-~-j=l qPJ -- 1 on K. For 1 _< j _< n, extend ~j to all of X by defining qaj - 0 outside 
of cl(G'). Note that  V)O vanishes outside el(S0) , which is a compact subset of G o. It 
suffices to show that  ~j is continuous on X. Note that  X is the union of the open sets 
G' and Ccl(G"), and PO is continuous on each of those sets, since ~O vanishes on the 
latter set. 

d. Corollary. Any locally compact preregular space is completely regular. 

Proof. Let any open set G and any point x E G be given. Then K - cl({x}) is a 
compact subset of G, by 16.6(B) and 17.12. Apply the preceding exercise with n -  1. 

17.15. Definition and proposition. Let S be a subset of a topological space X. Following 
are three closely related conditions on S: 

(A) cl(S) is compact. (It is then customary to say that  S is r e l a t i v e l y  c o m p a c t . )  

(B) S is a subset of a compact set. (As we noted in 17.7.c, the sets satisfying this 
condition form an ideal.) 

(C) Every net in S (or every proper filter on X that  contains S) has a cluster 
point in X. 

We have the following implications" 

In any topological space, ( A ) = >  ( B ) = >  (C). (Obvious.) 

In any preregular space, (B) => (A), and so those two conditions are equivalent. 
(Proved in 17.13.f.) 

In any regular space, (C) ~ (A), and so all three conditions are equivalent. 
(Proved in the paragraphs below.) 

Proof. Assume regular and (C). Let ~3 be any proper filter on X with cl(S) E 9; we must 
show 9 has a cluster point. Assume not; we shall obtain a contradiction. 

For each x E X, since x is not a cluster point of 9, there is some neighborhood Nx of 
x that  is disjoint from some member of 9, and hence X \ Nx E 9. These conditions are 
preserved if we replace Nx with a smaller neighborhood of x; since X is regular, we may 
assume Nx is closed. Then the set Gx - X \ Nx is open and a member of ~3. 

Since ~3 is closed under finite intersection, for any finite set A c_ X the set cl(S)N~aCA (Ta 
is a member of ~3 and hence nonempty. By 5.17.e, the set S A AaEA ea is nonempty. Thus 
the collection of sets g - {S} U {Gx �9 x E X }  has the finite intersection property and 
therefore is contained in a proper filter 9". By our assumption on S, that  filter 9: has some 
cluster point ~ E X. Now N~ is a neighborhood of ~, hence N~ meets every member of 9", 
hence N~ meets G~, a contradiction. 
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TYCHONOV'S T HEOREM 

17.16. Recall that  the Axiom of Choice, in one form, asserts that  a product l--[XEi Sa of 
nonempty sets is nonempty (see (AC3) in 6.12). That  result bears some resemblance to: 

(AC21)  Tychonov  P r o d u c t  Theorem.  
topological spaces is compact. 

Any product IIx~A Y~ of compact 

Here it is understood that  the product space is equipped with the product topology. In 
contrast with (AC3), however, the Tychonov Product Theorem does not assert that  the 
product is nonempty. (An empty set is a perfectly acceptable compact topological space!) 
Thus, it may be surprising that  the Tychonov Product Theorem is equivalent to the Axiom 
of Choice. 

Proof of (AC3) ~ (AC21). We shall make use of (UF18), which we already know to be 
a consequence of the Axiom of Choice. Let (x~ : c~ E A) be a universal net in 1-IAEA Y)~; 
we must show that  (x~ : c~ c A) is convergent. Let 7r~ : X ~ Y~ be the Ath coordinate 
projection. The net (Trx(x~) : c~ E A) is universal in Y~. Let Sx = {y E Y~ : 7rx(x~) ~ y}. 
Then each Sa is nonempty. Hence 1-[AEA SA is nonempty, by (AC3). If z E I-IAEA S)~, then 
Xa- - -~Z .  

The proof of (AC21) ~ (AC3) will be given in 17.20. 

17.17. Corollary. Let n be a positive integer, and let IR n have its product topology. A 
subset of R ~ is compact if and only if it is closed and bounded, where "bounded" has its 
usual meaning (see 3.15 and 2.12.a). Hence R ~ is locally compact. 

17.18. An auxiliary construction. This observation will be used occasionally e.g., in 
26.9 and in 26.10. 

Let ft be an open subset of R n. Then there exists a sequence (Gn) of open sets whose 
union is ft, such that  each G~ is contained in a compact subset of ft. We remark: 

a. One way to construct such a sequence (G~) is as follows: The rational numbers are 
countable (see 2.20.f). Consider all the open balls G = B(x,r) with the property 
that  r and all the coordinates of x are rational numbers, and the closure of B(x, r) is 
contained in ft. There are only countably many such balls; let them be the G~'s. 

b. In most applications of such a sequence, the particular choice of the G~'s is not im- 
portant. Any other such sequence H~ will do just as well, because (exercise) each Gn 
is contained in the union of finitely many of the H~'s, and vice versa. 

COMPACTNESS AND CHOICE (OPTIONAL) 

17.19. Remarks. This subchapter is optional. It is concerned with showing that  cer- 
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tain propositions imply either the Axiom of Choice or weakened forms of Choice. Many 
mathematicians take the viewpoint that the Axiom of Choice is simply "true;" with that 
viewpoint, this subchapter is of no interest. 

17.20. Compactness equivalents of A C. We shall prove that the Axiom of Choice is equiva- 
lent, not only to Tychonov's Theorem, but also to several other principles that are seemingly 
weaker: 

(AC22)  Any product of compact gauge spaces is compact. 

(AC23)  Any product of knob spaces is compact. 

(AC24)  Any product of T1 compact topological spaces is compact. 

(AC25)  Any product of topological spaces, each equipped with the cofinite 
topology, is compact. 

(Gauge topologies and knob topologies were introduced in 5.15.h and 5.34.c, respectively.) 

Intermediate proofs. Any knob space is a compact gauge space, and any space with the 
cofinite topology is a compact T1 space. Thus, the proofs of (AC21) ~ (AC22) 
(AC23) and (AC21) =~ (AC24) =~ (AC25)are obvious. 

Proof of (AC23)=~ (AC3)and (AC25)=~ (AC3). This argument is from Kelley [1950]. 
Define S~, ~ ,  etc., as in 6.24. Equip each Y~ with either the knob topology or the cofinite 
topology. In either case, the set S~ is closed. Hence 9" is a filterbase consisting of closed 
subsets of X. By assumption, X is compact; hence the intersection of the members of 9" is 
nonempty - -  completing the proof indicated in 6.24. 

Further remarks. The Axiom of Choice is equivalent to Tychonov's Theorem, if we use 
any of the usual definitions of compactness, given in 17.2. An alternate approach is taken 
by Comfort [1968]. Comfort suggests a different definition of compactness, which is more 
complicated than the usual definitions but has this interesting property: we can prove that 
the product of Comfort-compact spaces is Comfort-compact without using the Axiom of 
Choice. But we haven't really eliminated AC; it turns out that AC is equivalent to the 
statement that a space is compact (in the usual sense) if and only if it is Comfort-compact. 

17.21. We have established that the Axiom of Choice is needed to prove Tychonov's 
Theorem i.e., that the product of arbitrarily many arbitrary compact sets is compact. 
But it is not needed for certain weakened forms of Tychonov's Theorem. For instance, 
arbitrary choices are not needed for: 

Tychonov  T h e o r e m  (finite vers ion) .  Let Y1, Y2,. . . ,  Yn be compact topo- 
logical spaces. Then X = Y1 x ]I2 x .. .  x Yn, with the product topology, is also 
compact. 

[ \ 
Proof. It suffices to prove this for n - 2, and then apply induction. Let [(u~, v~) �9 c~ E A} 

\ / 

be any net in Y1 x Y2. Then (us : c~ E A) is a n e t  in the compact space Y1; hence it 
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has a convergent subnet. By 7.19, (us : c~ E A) also has a convergent Kelley subnet 
(u~(~) : /3 E IB). Now, (v~(~) : /3 E IB) is a net in the compact space Y2; hence it has 
a convergent Kelley subnet (v~(~(~)): ~/ E C). Then ((u~(~(~)),v~(~(~))): ~/ E C) is a 
convergent net in Y1 x Y2, and it is a subnet of the given net. (Optional exercise: Shorten 
this proof, using the notational convention of 7.21.) 

17.22. Compactness equivalents of UF. The Ultrafilter Principle was introduced in 6.32. 
We shall now show that it is equivalent to (UF18) (introduced in 17.4) and the following 
principles. 

(UF19)  Any product of compact Hausdorff spaces is compact. 

(UF20)  (S tone- l~ech  C o m p a c t i f i c a t i o n  T h e o r e m . )  Let X be a completely 
regular Hausdorff space. Then there exists a topological space ~(X) (called the 
S tone- l~ech  c o m p a c t i f i c a t i o n  of X) with these properties: (i) /3(X) is a 
compact Hausdorff space, (ii) X is a dense subset of ~(X),  and (iii) if K is 
another compact Hausdorff space and f : X + K is a continuous map, then f 
extends uniquely to a continuous map F : ~(X) + K. 

(UF21)  Let 2 = {0, 1} be equipped with the discrete topology. Then for any 
set X, the set 2 x (with the product topology) is compact. 

Remarks. (UF19) and (UF21) are just (AC21) and (AC23) specialized to the case of Haus- 
dorff spaces. Most topological spaces of interest in applications are Hausdorff, hence most 
applications of (AC21) or (AC23) actually follow from (UF19) or (UF21). 

A set of the form 2 X, with the product topology, is sometimes known as a C a n t o r  space.  
However, that name is more often used for the "middle thirds" set C = Co N C1 N C2 N. . . ,  

1 2S1~~ 1 2 3  [~ 7 8 where Co [0, 1], C1 = [0, 3] U [3 - C2 = [0, 9] U [9, 9] U it can , 9] U [9, 1], etc. Actually, 
be proved that the middle thirds is homeomorphic to , but we shall omit the proof. 

From property (UF20)(iii) it follows easily that the Stone-(~ech compactification is 
unique up to homeomorphism. 

S~oofof (UF18) =~ (UF19). Just modify the proof of (AC3)~ (AC21)given in 17.16. 
If each Yx is a compact Hausdorff space, then each Sx is a singleton, and so the Axiom of 
Choice is not needed to prove I-I)~EA SA is nonempty. 

Proof of (UF19) ~ (UF20). Let I = [0, 1] and let C(X,I )  = {continuous functions 
from X into I}. Any x E X determines an evaluation mapping Tx : C(X, I) ~ I, defined 
by Tx(Z) = f(x) for each f E C(X,I) .  Use the fact that X is a completely regular 
Hausdorff space, to show that the mapping x ~ Tx from X into I C(X'I) is injective and is 
a homeomorphism onto its range. Identifying X with its image, we may view X as a subset 
of I C(x'~) By (UF7), I C(X'I) is a compact Hausdorff space. Let /3(X) be the closure of X 
in IC(X'I); then ~(X) is compact and X is a dense subset. 

The uniqueness of the extension F follows from the fact that X is dense in ~(X).  To 
prove the existence of the extension F, let any continuous f : X ~ K be given. Whenever 

E C(K, I), then p o f E C(X, I). Hence, if A is any mapping from C(X, I) into I, then 
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H A(~ o f ) i s  a mapping from C(K,I ) in to  I, which we shall denote by F(A). The 
mapping A H F(A), from I C(X,I) into I C(K,I), is easily seen to be a continuous extension 
of f .  Moreover, F(/3(X)) = F(c l (X))  C_ c l (F(X))  = c l ( f (X))  C_ K. 

The equivalence of (UF19) with other forms of UF apparently was first proved by Lo~ 
and Ryll-Nardzewski [1954]. However, the proof given above is based on Mycielski [1964]. 

Proof of (UF20) ~ (UF21). Let A be any set, and let X = 21 be equipped with the product  
topology. Let 3 (X)  be its Stone-Cech compactification. Then each coordinate projection 
7ra : X  ---, 2 (for A E A) extends uniquely to a continuous function Pa : 3 (X)  ---, 2. Define 
a mapping P : /3(X) ~ 21 coordinatewise, so that  7ra o P = Pa. Then P is a continuous 
function from the compact space/3(X) onto X. By 17.7.h, X is compact. 

The equivalence of (UF20) with other forms of UF was apparently first announced by 
Rubin and Scott [1954]; the proof given here is based on Gillman and Jerison [1960]. 

Proof of (UF21) =~ (UF1) (based on Mycielski [1964]). Let X be any given set, and let 
s be a given proper filter on X; we wish to show that  s is included in an ultrafilter. Let 
E = {subsets of X}. Then ~P(E) = {subsets of E} may be identified with 2 r" = {mappings 
from E into {0, 1}}, as usual. Any 9" E [P(E) = 2 r' is a collection of subsets of X, and 
any S E E is a subset of X. Let 2 r" have the product topology; then the S th  coordinate 
projection 7rs :2 r" ~ 2, defined by 

1 i f S  E 9- 
7rs(9") - 0 if S ~ 9", 

is continuous (as with any product topology). Now define the sets 

D = {9"E2 r" 

E = {grE 2 r" 

r s  = {9 ~ ~ 2 r~ 

�9 9" is a proper filter on X}, 

�9 9 ~_D s and 

�9 S E g " o r X \ S E g " }  

for each S c X. Show that  

D = A { 
A , B C X  

- - - o ) ,  

E = N {9" E 2 r~ " [1 - 7rA(9")]~a(s -- 0}, and 
A C X  

r s  = {St E 2 r~ �9 7rs(9") + 7rx\s(~) >_ 1}. 

Since the 7rs's are continuous, conclude that  D, E, Fs  are closed. Hence (I)s - D N E N Fs 
is also closed. 

.Note that  (I)s - {9" �9 9" is a proper filter on X that  includes s and contains at least 
one of S or X \ S}. Using 5.5.i and the "Finite Axiom of Choice" (in 6.14), show that  
the collection of closed sets {~s  " S c_ X} has the finite intersection property. By our 
assumption of (UF21), 2 r" is compact; hence there exists some 9" E ~ s c x  ~s. Then 9 ~ is an 
ultrafilter extending s 
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17.23.  Corollary (optional). Let X be a topological space. Then X has a Hausdorff 
compactification (i.e., X is homeomorphic to a dense subset of a compact Hausdorff space) 
if and only if X is a Tychonov space (defined as in 16.17). 

17.24.  Proposition (optional). Let X be a chain, equipped with the interval topology (as 
defined in 5.15.f). Then X is a T4 space (i.e., a normal Hausdorff space). 

Proof (taken from Gillman and Jerison [1960]). Any order convergence is Hausdorff, as we 
noted in 7.40.g. We shall show that  X is completely regular, and use that  fact to help us 
prove X is normal. 

Let Y be the MacNeille completion of X,  as described in 4.36.c. Then Y is a chain tha t  
is order complete. Let Y have the interval topology. By 17.8, Y is a compact Hausdorff 
space. Hence Y is a Tychonov space i.e., a T3.5 space. Any subspace of a Tychonov 
space is another Tychonov space, when equipped with the relative topology. By 15.46.b, 
the relative topology on X coincides with the interval topology. Thus, X is a Tychonov 
space. 

To show X is normal, let any disjoint closed sets A, B be given. We shall define a 
continuous function ~ : X ~ [0, 1] that  takes the value 0 on A and 1 on B. It suffices 
to show how to define p on the open set G = X \ ( A U B ) .  Let {Ga : ~ E A} be the 
convex components of G, as defined in 4.4.a(ii). Those components are also open, as noted 
in 15.35.c. We shall define p separately on each G x. 

Each Gx is a convex open subset of the chain X. Since the Gx's are disjoint open sets, 
we have cl(Gx) \ Gx c_ A t2 B. We claim that ,  moreover, 

cl(c/x) \ Gx contains at most two points. 

To see this, suppose X l , X 2 , X 3  are three distinct points of cl(c/a) \ C/h; say Xl < X2 < X3. 

Since C/x is convex and the xi 's  do not belong to C/h, no xi can lie between two members of 
Gx. Thus each xi must lie above or below all of C/x. Hence at least two of the xi 's  (perhaps 
all three) lie on the same side of C/x. Say Xl,X2 both lie below all members of Gx (the 
proof is similar for the other case). Then Xl lies in the open set {u E X : u < x2}, which is 
disjoint from Gx, contradicting the assumption that  Xl E cl(c/x). This proves our claim. 

To make ~ continuous, it suffices to define ~ on each open set C/x so tha t  (i) ~ is 
continuous at each point of C/h, and (ii) if (x~) is a net in Gx which converges to some 
point z E cl(Gx) \ Gx, then ~(x~) ~ ~(z). 

If cl(Gx) \ Gx is empty  or contains only points of A, take ~ = 0 on Gx. If cl(Gx) \ Gx 
contains only points of B, take p = 1 on G x. 

Finally, suppose cl(Gx) \Gx  consists of one point z0 c A and another point Zl E B. Since 
X is completely regular, there exists a continuous function ~x : X ~ [0, 1] tha t  vanishes on 
all of A and satisfies ~X(Zl) = 1. Take p = ~x on Gx. This completes our construction of 
p, and our proof of the normali ty of X. 

17.25.  Compactness in logic (optional). We now explain why the term "compactness" 
is used in naming the Compactness Principle of Sentential Logic, (UF16) in 14.61. This 
explanation follows Johnstone [1987]. 

Our terminology follows tha t  of 14.24 and 14.51. Let [P b e t h e  collection of primitive 
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propositions for a sentential calculus, and let 9" be the collection of all sentences (i.e., 
compound propositions formed from elements of [P). 

An interpretation of the language is an assigning of "true" or "false" to each member 
of ~P. By labeling "true" and "false" respectively as 1 and 0, we may identify the set of all 

interpretations with the set 2 T. For each T E ~, define the set 

U(T) - { f  E 2 ~p �9 f ( T )  - l} - {models ofT}.  

Show that 

a. Each U(T) is nonempty. This can be proved by considerations of finite Boolean alge- 
bras, without use of the Axiom of Choice or any of its weaker relatives. 

b. U(T1) n U(T2) = U(T1 A T2). 

c. ~ - {U(T)"  T E ~r} is a base for a topology on 2 [P. (Recall the relevant definitions 

and properties in 15.35 and 15.36. Thus each open subset of 2 ~P is a union of U(T)'s.) 

d. The topology determined by that base is the same as the product topology, where 2 
has the discrete topology. 

Hints: Refer to the characterizations of convergences in 15.25.b and 15.36.d. We 
have f~ ~ f in the topology determined by the base ~B if and only if 

(,) for each T E g~ such that f ( T )  = 1, we have eventually f~(T)  = 1. 

On the other hand, f~ --~ f in the product topology if and only if 

eo 

(**) for each P E [P, we have f~ (P)  ---, f ( P ) .  

To see that (,) =~ (**), use either T -  P or T -  -~P, depending on whether f ( P )  is 
1 or 0. To see that (**) =~ (,), let P1, P2 , . . . ,  Pn be the primitive propositions used 
in forming T; then for all c~ sufficiently large we have f~(Pj)  - f (P j )  for all j ,  and 
therefore (since f~ and f are Boolean homomorphisms) f~(T)  - f ( T ) .  
Let E C_ 7. Show that E is unsatisfiable (that is, E implies a contradiction in each 

interpretation of the language) if and only if {U(--T) �9 T E E} is a cover of 2 [P Note 
that it is then an open cover. 

Show that the Compactness Principle (UF16) is equivalent to the statement that the 

product topology on 2 T is compact i.e., that every open cover of 2 ~P has a finite 
subcover. 

COMPACTNESS, MAXIMA~ AND SEQUENCES 

17.26. Definitions: A few more kinds of compactness. 
a. A topological space X is p s e u d o c o m p a c t  if either of the following equivalent condi- 

tions holds" 

(A) Every continuous function from X into I~ is bounded above. 
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(B) Every continuous function from X into [-oc, +oc] assumes a maximum 
on X. 

Clearly, any compact space is pseudocompact. 
Proof of equivalence. Obviously ( B ) = ~  (A). For (A) =~ (B), let f "  X 

[-oc, +oc] be continuous. We may replace f ( z )  with max{0, f(z)};  hence we may 
assume f >_ 0. Let cr - sup f ( X ) .  If cr is merely a supremum, and not a maximum, 
define g" X ~ [0, +oc) by g(z) - tan (7rf(z)/2a). Show that g is continuous but not 
bounded above. 

b. A topological space X is c o u n t a b l y  c o m p a c t  if any of the following equivalent con- 
ditions holds: 

(A) Every covering of X by countably many open sets has a finite subcover. 

(B) If F1 _D F2 _D Fa _D .. . ,  where the Fi' 
O<3 

~ i= l  Fi is nonempty. 
s are nonempty closed sets, then 

(C) Every sequence in X has a cluster point, i.e., has a convergent subnet. 

Proof of equivalence. For (A) =~ (B), show that if Ni~ f i  -- 2J, then the sets G~ = 
X \ Fi form a countable open cover with no finite subcover. For (B) ~ (C), the set of 

Co 

o O  
cluster points of any sequence (an) is the set Ai=I cl({zi ,z i+l ,Zi+2, . . .}) ,  by 15.38. For 
(C) =~ (A), if {G1, G2, G3, . . .}  is a countable open cover of X with no finite subcover, 
form a sequence (an) with no cluster point by choosing z~ E X \ (G1 U G2 t2. . .  LJ Gn). 
(This uses Countable Choice, not the full strength of AC.) 

A topological space X is s equen t i a l l y  c o m p a c t  if every sequence in X has a conver- 
gent subsequence or equivalently, if every sequence in X has a convergent subnet 
that happens to be a sequence. (This equivalence follows from 7.27 or 15.40.) 

17.27. Proposition. The product of countably many sequentially compact spaces (when 
equipped with the product topology) is sequentially compact. 

Remarks and proof. The argument used here is a d i agona l  s u b s e q u e n c e  a r g u m e n t .  A 
similar argument is used in several other contexts in mathematics. 

Let Y1, Y2, Y3,... be sequentially compact spaces; we wish to show X - HneC=l Yn  is se- 
quentially compact. Let 7rn : X -+Yn be the nth coordinate projection. Let (xl, x2 ,x3 , . . . )  
be a given sequence in X; we wish to produce a convergent subsequence (vk). Recursively 
define Un,j'S in X as follows. For j = 1 ,2 ,3 , . . . ,  let Uo,j = xj. Now, after a sequence 
(ttn-l,1, Un-l,2, Un-l ,3 , - - . )  has been specified in X, let (Un,1, Un,2, Un,3, . . .)  be a sub- 
sequence or it with the property that the sequence (rr~(U~,l), rcn(u~,2), rr~(u~,3), . . . ) i s  
convergent in Y,~. This completes the recursion. Now define a d i agona l  s u b s e q u e n c e  
vk = uk,~, (k = 1, 2, 3 , . . . ) .  For each n, verify that (v~, V~+l, vn+2, . . .)  is a subsequence of 
(Un,1, Un,2, U~.3,.. .),  and therefore the sequence (rr~(Vl), rr~(v2), rr~(v3), . . .)  is convergent 
in Y.. 

17.28. Proposition. If card(U) >_ card(R), then 2 U is not sequentially compact. 
Proof. Let 7rj �9 N ~ ~ N be the j t h  coordinate projection, so 7rj(al,a2,a3,. . .)  - aj. Let 

A - {strictly increasing sequences of positive integers}. Let En - {a E A" n occurs at an 
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even position in the sequence a} - Uk~l ~-2-k 1 (n). 
Any member of A may be viewed as a subset of N; thus card(A) = card([P(N)) = 

card(R) _< card(U). Let ~ :  A --+ U be some injective function. Define a sequence (fn) in 
2 U by taking fn : U ----+ {0, 1} to be the characteristic function of the set ~(E~). We claim 
that  (fn) has no convergent subsequence. 

Indeed, let (fnj) be any subsequence of (fn). Then (nj) is a member of A. Let us denote 
it by a, and let u = ~(a). Observe that  

f~j (u) = 1 ,,r u E ~(E,~ ) z, ;, a E Enj 
e, > nj = n2k for some k r j is even, 

since the functions p and j ~-+ nj are injective. Thus the sequence (f~, ( u ) ' j  E N) does not 
converge. This proof follows the presentation of Wilansky [1970]. 

17.29. Example of the inadequacy of frequent subnets. In 7.19 and 15.38 we saw that  
Willard subnets, Kelley subnets, and AA subnets can be used interchangeably for most 
purposes in topology. We now show that  frequent subnets (defined in 7.16.c) cannot be 
used interchangeably with those other types of subnets. 

Let X be any topological space that  is compact but not sequentially compact (e.g., the 
space in 17.28). Let (xn) be a sequence in X that  has no convergent subsequence. Then 
(xn) has a convergent subnet (u~). Any frequent subnet of (x~) is a subsequence (see 
7.16.d). Any net that  is equivalent to (u~) must have the same limit(s) as (u~). Thus, (u~) 
is a subnet of (xn), but it is not equivalent (in the sense of 7.17.c) to a frequent subnet of 

Other examples of the inadequacy of frequent subnets have been given by Wolk [1982] 
and other papers cited by Wolk. 

17.30. Relations between different kinds of compactness. 
a. Any countably compact, first countable space is sequentially compact. (Recall that  

a topological space is first countable if the neighborhood filter at each point has a 
countable filterbase.) Hint: 15.34.c. 

b. Any countably compact space is pseudocompact. 
Hint" Let f "  X --+ IR be continuous; consider whether the set  N,nCX~=l{X E X "  f ( x )  >_ 

n} is nonempty. 

c. (Optional.) Any paracompact, pseudocompact space is compact. 
Proof. Suppose X is paracompact but not compact. Let ~} = {G~ : a E A} be an 

open cover with no finite subcover. Let {f~ : c~ E A} be a partition of unity that  is 
precisely subordinated to the given cover. Then the sets Ha = {x E X :  f~(x)  # 0} C_ 
G~ also form an open cover with no finite subcover. Recursively choose a sequence (xn) 
in X and a sequence (c~(n)) in A such that  xn ~ H~(1)U.-.  U H~(n-1) and xn E H~(n). 
Define 

oc fo~(n)(X) g(x) = n 

n = l  fc~(n)(Xn) 

Then g : X  ~ IR is continuous but g(xn) > n, so X is not pseudocompact. 
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17.31. Remarks. We have considered three types of compactness tha t  can be described in 
terms of convergences. A topological space is 

compact if every net has a convergent subnet; 

countably compact if every sequence has a convergent subnet; 

sequentially compact if every sequence has a convergent subsequence. 

It is easy to see that  any compact space is countably compact,  and any sequentially compact 
space is countably compact.  In general, no other implications hold between these three kinds 
of compactness the example in 17.38 shows that  sequential compactness does not imply 
compactness, and the example in 17.28 shows that  compactness does not imply sequential 
compactness. However, under certain additional hypotheses, all three kinds of compactness 
are equivalent, as we shall see in 17.33 and 17.51. 

Optional. It is interesting to consider a fourth type of compactness. Say that  a topological 
space is 

s u p e r s e q u e n t i a l l y  c o m p a c t  if every net has a convergent subnet that  is a 
sequence. 

Clearly, this implies the other three kinds of compactness. Supersequential compactness is 
not necessarily a useful notion; we introduce it only to illustrate certain ideas about  subnets. 
It turns out that  supersequential compactness depends, not on the topology of X, but only 
on the cardinality of X and on which definition of "subnet" we use. Let X be a nonempty 
set. Then: 

a. If we use Aarnes-Anden~es subnets, then every finite set X is supersequentially com- 
pact, no mat te r  what  topology we equip it with. Indeed, if (:co : c~ E A) is a net in a 
finite set X, then there is at least one point p E X such that  the constant sequence 
( p , p , p , . . . )  is an Aarnes-Anden~es subnet of (x~ :ct E A). The sequence (p, p, p, . . .) 
converges to p, no mat te r  how X is topologized. 

b. If X is an infinite set, or if we use Kelley subnets, then X is not supersequentially 
compact.  In fact, regardless of convergences, there exists a net (x~) in X that  has no 
subnets that  are sequences; this was established in 7.28. 

17.32.  L e b e s g u e ' s  C o v e r i n g  L e m m a .  Let (X, d) be a compact metric space - -  or more 
generally, a countably compact pseudometric space. Let {G~ : ,~ E A} be an open cover of 
X. Then there exists a number p > 0 with the following property: Each open ball B(x, p) 
is contained in one of the G~'s. (Such a number p is called a L e b e s g u e  n u m b e r  for the 
covering.) 

Proof. Suppose there is no such p. Then there exist open balls B(xn, pn) with p~ $ 0, and 
such that  B(x~, p~) is not contained in any G~. The sequence (x~) has a cluster point z in 
X. Since {G~} is an open cover, we have B(z, r) C G• for some r > 0 and # c A. Since z is 

l r ) .  For sutficiently a cluster point of (xn), there exist n's arbitrarily large with x~ E B(z,-~ 
1 large n we have also p~ < ~r, and hence B(x~, p~) c_ B(z, r) C_ G , ,  a contradiction. 
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Remarks. The existence of Lebesgue numbers does not imply compactness, even in a metric 
space. For instance, let Z = {the integers} have its usual metric; then Z is not compact but 
every open cover of Z has a Lebesgue number. The existence or nonexistence of Lebesgue 
numbers is discussed further by Arala-Chaves [1985]. 

17.33. T h e o r e m  (Gros s  a n d  Hausdor f f ,  1914).  Let X be a pseudometric space. Then 
the following conditions are equivalent. 

(A) X is compact i.e., every net has a convergent subnet. 

(B) X is sequentially compact i.e., every sequence has a convergent subse- 
quence. 

(C) X is countably compact i.e., every sequence has a convergent subnet. 

(D) Every upper semicontinuous function from X into [ - ~ ,  +oc] assumes a max- 
imum. 

(E) X is pseudocompact i.e., every continuous, real-valued function assumes a 
maximum. 

Proof. The implications (A) =~ (C) and (B) =~ (C) and (D) =~ (E) are obvious. The 
implication (C) => (B) is a special case of an exercise in 17.30.a. The implication (A) =~ 
(D) is an easy result that  was noted in 17.7.i. We proved (C) => (E) in 17.30.b. We shall 
complete the proof in two different ways, according to the background of the reader. If the 
reader is familiar with paracompactness and Stone's Theorem (16.31), then (E) ~ (A) 
follows from 17.30.c, and we are done. For readers not familiar with Stone's Theorem, we 
shall give more elementary proofs of (E) =~ (B) and (C) =~ (A) below. 

Outline of (E) =~ (B). Assume (E), and suppose (Xn) is a sequence in X with no convergent 
subsequence; we shall obtain a contradiction. Replacing (Xn) with a subsequence, we may 
delete r e p e t i t i o n s -  i.e., we may assume the xn's are all distinct. For each n, since xn is not 
a limit of a subsequence of the sequence, the number rn - �89 infm#n d(x~, xm) is positive. 
Hence the balls B(xn,rn) are all disjoint. Let 

f ( u ) -  {nmax{O,l_d(u, x n ) } O  rn whenWhenuEB(xn'rn)(nEN)u ~ Un~__l B(Xn, rn). 

Show that f is continuous and not bounded above. 

Outline of. (C) =~ (A). Let {G~ : A E A} be any open cover of X. Let p be a Lebesgue 
number for the cover (see 17.32). Each open ball B(x,p) (for x E X ) i s  contained in 
some G~, so it suffices to show that X can be covered by finitely many of the B(x,p)'s. 
Suppose not. Recursively choose (using (DC2), in 6.28) a sequence (xn) in X such that 
Xn+l ~ B(xl,p) UB(x2,p)U'" .UB(x~,p). The sequence (x~) has some cluster point z E X. 
The open ball B(z 1 , ~p) is a frequent set for the sequence (xn), so it contains xm,Xn for some 
distinct numbers m and n. Then d(xm, Xn) < p, a contradiction. 

17.34. Proposition. Any compact pseudometric space is separable. 
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Pro@ The open balls of radius 1 form an open cover; hence the space X can be covered n 
by finitely many of them. Say 

X 
( 1 )  ( 1 )  ( 1 )  

B x n , 1 , -  U B x n , 2 , -  U . . .  U B x n , k ~ , -  �9 
n n n 

Then {Xn,j  " n C l~, 1 < j < k n }  is a countable dense subset of X. 

17.35. Existence of a closest point. Let (X, d) be a pseudometric space. Let K c_ X be a 
compact set (or, more generally, a pseudocompact set). Let x E X \ K. Then there exists at 
least one point in K that  is closest to x. That  is, there exists some q E K (not necessarily 
unique) such that  d(x, q ) -  dist(x, K).  

Hint" The function q H d(x, q) is continuous and real-valued. 
Remark. Other conditions for existence and/or  uniqueness of a closest point will be 

given in 22.39(D), 22.45, and 28.41(E). 

17 .36 .  F u n d a m e n t a l  T h e o r e m  o f  A l g e b r a .  Let P(z) be a polynomial of degree n > 0 
with complex coefficients i.e., suppose that  

�9 . . Z n - 1  Z n P(z) - ao + a l z  + a2 z2 + -V a n - x  -t- an 

where the ak's are complex numbers, n > 0, and an r 0. 
Then P(z) has a root in the complex numbers i.e., we have P(~) - 0 for some ~ E C. 

Proof. Show that  P is continuous�9 Also, show that  limlzl__, ~ I P ( z ) l  - oc (that is, show 
limr__,~ i n f { I P ( z ) l ' z  E C, Izl >_ r} - o~). From these two facts, plus the fact that  closed 
bounded subsets of C are compact, conclude that  IP(.)l assumes a minimum at some point 

E C. Replacing the function P(z) with the function P(z + ~), we may assume ~ - 0 
that  is, we may assume Ir(0)l  _< IP(z)l for all complex numbers z. We wish to show that  
P(o) - o .  

We may assume P(O) - ao -r O. Let k be the first positive integer for which ak =/= O; 
thus P(z) - ao +akz k + zk+lQ(z) for some polynomial Q. As in 10.29, the nonzero number 
-ao/ak has n distinct n th  roots in C; let w be any one of those. Since Q is continuous, for 
It[ sufficiently small we have ]twk+lQ(tw)[ < a0[�9 Choose such a value of t, satisfying also 
0 < t < l .  Then 

IP( tw) l  - la0 + a k ( t w )  k + ( tw )k+lQ( tw) l  - I(1 - tk)ao + ( tw ) k+ lQ ( tw) l  

_%< (1 - tk)Jaol + t k l t w k + l Q ( t w ) l  < (1 - tk ) lao l  + tk lao]  - IP(O)I ,  

a contradiction. 
This proof goes back at least as far as Argand (1806). It has been rediscovered many 

times; some references are given by Brualdi [1977]. 

C o r o l l a r y .  Let P(z) be a polynomial of degree n with complex coefficients. Then P(z) = 
a,~ (z - ~l)(z - ~2)""  (z - ~n) for some complex numbers ~1, ~2, �9 �9 �9 ~n. 
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PATHOLOGICAL EXAMPLES" ORDINAL SPACES 
(OPTIONAL) 

17.37.  Let Ft be the first uncountable ordinal. (see 5.44); thus Ft is the set of all countable 
ordinals. Let Ft be equipped with its usual ordering. Also, let K = Ft U {~} for some object 

that  is not a member of ft; make K into a chain by taking a~ < ~ for all a~ E ft. 
Let the sets Ft and K be equipped with their interval topologies (see 5.15.0; thus they 

are normal Hausdorff spaces (see 17.24). We shall use these and related spaces for some 
pathological examples - -  e.g., to show that  paracompactness is not hereditary or productive. 
Such results are not really essential to abstract  analysis; they are included here merely to 
round out our introduction to general topology. 

(We remark that  the particular choice of ~ does not matter ,  so long as ~ ~ Ft. Hence 
we may take ~ = Ft, and thus K = ft U {F t }  is the next ordinal after ft; this is customary 
in the study of ordinals. However, we shall not specify ~ in that  fashion, because it is not 
necessary to do so for the purposes below, and it may be distracting to have ft appearing 
as both an element and a subset of K.)  

This presentation is based on Steen and Seebach [1970]. 

17.38.  Basic properties. With ft and K as above: 

a. Ft is an initial ordinal (see 5.47), hence a limit ordinal (see 5.46.j), hence has no greatest 
element. 

b. Any sequence in Ft has a supremum in Ft. 
Proof. The supremum of any collection of ordinals in ft is their union. If (xn) is a 

sequence in Ft, then Un=l x~ is a countable union of countable sets, so it is countable 
(see 6.26). Thus it is a countable ordinal, and hence a member of Ft. 

c. A neighborhood base for the point ~ in the space K is given by the sets of the form 
N~ = {x E K : z > cz}, for points a~ E Ft. 

d. ft is dense in K (hence our notation). 
Proof. For each a~ E Ft, there is some strictly larger element cz ~ E ft; then cz I E 

N~ C? ft. Thus the set Ft meets every neighborhood of the point ~. 

e. K is compact, but ft is not compact. 
Proof. K is order complete, but ft is not order complete. Now apply 17.8. 

f. ft is first countable, but K is not. 
Proof. Let any x E f~ be given. Then a neighborhood base at x is given by the sets 

{a~ E Ft :a~ > v} for points v < x (of which there are only countably many) and the 
set {~ E f~ : ~  < x +}, where x + is the first element after x. 

The space K is not first countable, because ~ does not have a countable neighbor- 
hood base. Indeed, if (Bj : j E N) were such a basis, then each Bj would have to 
contain some set of the form N~(j). Since K is a Hausdorff space, the sole member of 

O(3 Nj=I  N~0) is the point ~. Let a be the supremum of the a~(j)'s, and let ~- be some 
(X3 

strictly larger member of ft. Then ~- E Nj=I N~(j), a contradiction. 
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g. ft is countably compact .  

Proof. Let (an) be a sequence in ft, and let a be its supremum.  Then  (zn) is also 
a sequence in the smaller ordinal {co E f l  �9 co <__ or}, which is compact  by 17.8, hence 
countably  compact .  Thus  (zn) has a subnet  tha t  converges to a limit in {co E t2"co _< 
or}, hence in ft. 

h. ft is pseudocompact ,  sequentially compact ,  and normal,  but  not paracompac t .  

Proof. 17.30.b, 17.30.a, 17.24, and 17.30.c. 

17 .39.  Proposition. Let ft and K be as above. Then  F t x  K,  with  the product  topology, 
is T3.5 but  not normal.  

Proof. The nota t ion  (z, y) will refer to ordered pairs, not intervals. 
Both  ft and K are T3.5 spaces, hence are K x K and ft x K.  The  set {(z, z ) ' z  E K} 

is closed in K x K,  hence the set A - {(c~,c~) �9 c~ E Ft} - { ( z , z )  �9 x E K} N (ft x K)  is 
closed in ft x K.  Also the set B - f t x  {~} is closed in ft x K.  These two closed sets are 
disjoint. Suppose tha t  there exist disjoint open sets U _D A and V _D B, in f t x  K;  we shall 
obtain  a contradict ion.  

For each x E f t ,  we have (x , r  E B C_ V, hence (x,~) ~ cl(U). Therefore the set 
{(x, A ) ' x  < A < ~} is not contained in U. Let A(x) be the first member  of ft tha t  satisfies 
x < ,k and (x, ,k) r U. 

Let x0 be the first member  of ft, and thereaf ter  let Xn+l - ,~(xn). The  sequence (Xn) 
has a sup remum cr in ft, as we noted in 17.38. Since ,~(x) > x for each x, the sequence (xn) 
is increasing, and therefore converges to (7. Hence ( x n , x n + l )  ~ (a, a)  E A C_ U. However, 
(Xn, X,~+l) is in 0U, which is a closed set. This  is a contradict ion.  

17 .40.  Corollaries. 
a. f t x  K is not normal,  but  it is a subset  of the compact  Hausdorff  space K x K.  Thus  

nei ther  normal  nor pa racompac t  is a heredi ta ry  property.  

b. ft x K is a product  of two normal  spaces, but  it is not normal.  Thus  the proper ty  of 
being normal  is not productive.  

BOOLEAN SPACES 

17.41.  Definitions. Recall tha t  a set is clopen if it is bo th  closed and open. A topological 
space is z e r o - d i m e n s i o n a l  if it has a base consisting of clopen sets i.e., if every open 
set can be expressed as a union of clopen sets. 

A B o o l e a n  s p a c e  (or S t o n e  s p a c e )  is a zero-dimensional,  compact  Hausdorff  space. 
Remarks. Such a prevalence of clopen sets may seem highly pathological  to analys ts ,  

since the topological spaces X most  commonly  used by analysts  have no clopen subsets other  
than  2~ and X itself. However, Boolean spaces are useful in logic and related topics. Also, 
zero-dimensional  spaces (not necessarily compact)  will be s tudied fur ther  in Chap te r  20 
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where they will be useful in the study of certain spaces that are not zero-dimensional; see 
especially 20.27 through 20.30. 

17.42. Examples. 
a. Any set with the discrete topology is a zero-dimensional space. Any finite set with the 

discrete topology is a Boolean space. In particular, 2 = {0, 1} is a Boolean space. 

b. Any subset of a zero-dimensional space is zero-dimensional, when equipped with the 
relative topology. Any closed subset of a Boolean space is a Boolean space. 

c. The set Q = {rational numbers}, topologized as a subset of I~, is a zero-dimensional 
space. A clopen base for it is given by the intervals (a, b) a Q for irrational numbers 
a,b. 

d. The set I~\Q = {irrational numbers}, topologized as a subset of R, is a zero-dimensional 
space. A clopen base for it is given by the intervals (a, b)n (R \ Q) for rational numbers 
a,b. 

e. Any product X = 1-Ix Yx of zero-dimensional spaces is zero-dimensional. 
Hints: For each I ,  let ~x be a base for the topology of Y~ consisting of clopen sets. 

Show that a clopen base for the product topology on X is given by the sets of the form 

Bx) (1-IX~A\F Yx) where F is a finite subset of A and each B~ is a member 
\ 

x 
\ / 

of ~ .  

f. Further examples are given by these two principles, which are both equivalent to the 
Ultrafilter Principle: 

(UF22) Any product of Boolean spaces is a Boolean space. 

(UF23) 2 A is a Boolean space, for any set A. 

Proof of equivalence. Refer to 17.22. It is easy to see that (UF19) ~ (UF22) 
(UF23) ~ (UF21). 

g. (Optional.) Let a be some ordinal, and let X - {x < a ' x  is an ordinal). Let X have 
the order interval topology (described in 5.15. 0. Then it can be shown that X is a 
Boolean space. We omit the proof. 

17.43. The remainder of this subchapter is optional; it will not be used later in this book. 
In the sections below we shall show that the categories of 

Boolean spaces (with continuous maps) 

and 
Boolean algebras (with Boolean homomorphisms) 

are dual to each other, in the sense of 9.55. All of the conclusions stated below are conse- 
quences of the Ultrafilter Principle and its various equivalents. 

17.44. Definitions of the dual objects. For the set A described in 9.55, we shall use 
2 - {0, 1}, which may be viewed both as a Boolean algebra (with the obvious ordering 
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0 < 1) and as a Boolean space (with the discrete topology). Thus, for any object X in 
either category, the d u a l  set is 

X* = {morphisms from X into 2}. 

The d u a l  of  a B o o l e a n  a l g e b r a  A is the set of two-valued homomorphisms on A, 
defined as in 13.19. It is a subset of 2 A - {maps from A into {0, 1}}. We equip 2 A with 
the product topology and equip A* with the resulting relative topology. We know that  2 A 
is a Boolean space (see (UF23), in 17.42.0, and it is easy to show that  A* is a closed subset 
of 2 A (exercise). Thus, by 17.42.b, A* is a Boolean space. Recall from (UF5) that  A* 
separates points of A. 

The simplest way to define the dual of a Boolean space S is to use clop(S), the algebra 
of clopen subsets; this is an algebra of sets, and thus a Boolean algebra with fundamental  
operations U, N, C, 2~, S. However, for our study of duality, it will be convenient to replace 
those clopen sets with their characteristic functions. Thus, the d u a l  of  a B o o l e a n  s p a c e  
S is defined to be the set 

S* = {characteristic functions of clopen subsets of S} 

= {continuous functions from S into {0, 1}}. 

(Exercise. Prove those two sets are equal; here {0, 1} has the discrete topology, as usual.) 
The Boolean algebra S* has smallest and greatest elements equal to the constant functions 
0 and 1; its other fundamental  operations are 

f V g - max{f ,  g}, f A g -- min{f ,  g}, Cf -- 1 - f. 

Since S is a Boolean space, it is easy to see that  S* separates points of S. 

17.45.  Dual morphisms. Let X and Y be objects in either category (Boolean spaces or 
Boolean algebras), and let f : X ~ Y be a morphism in that  category (i.e., a continuous map 
or a Boolean homomorphism).  Then we may define a corresponding function f*  : Y* ~ X* 
as in 9.55, called the dual of f ,  by defining f*(A) = A o f : X ~ 2 for each A : Y ~ 2 in Y* 
We shall show that  it is a morphism in the other category. Thus the mappings X H X* 
and f H f*  define a contravariant functor. 

a .  

b" 

If f : X  ~ Y is a Boolean homomorphism between Boolean algebras, then f*  : Y* --, 
X* is a continuous map; that  is just  a special case of 15.26.d. 

If f : X  ~ Y is a continuous map between Boolean spaces, then f*  : Y* ~ X* is the 
restriction to Y* of the inverse image map f - 1  : T ( y )  ~ T(X)  that  was defined in 
2.8 and studied further in 9.32. As we saw in 2.8, the inverse image map preserves all 
the basic set operations, and so it is a homomorphism of algebras of sets. Thus it is a 
Boolean homomorphism. Then its restriction f*  is, too. 

17.46.  Reflexivity. Let X be an object in either category. Then X* is a collection of 
mappings from X into 2 = {0, 1}. Conversely, each x E X may be viewed as a mapping Tx 
from X* into 2, defined by Tx(f)  = f (x) .  Since X* separates points of X, the members 
of X may be viewed as distinct mappings from X* into 2. Thus T may be viewed as an 

inclusion X c 2x," We shall show that  
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each mapping Tx �9 X* ~ 2 is actually a morphism, and thus a member of X**,  
so tha t  T maps X into X**. Moreover, T is a morphism in the category in 
which X and X** are objects. In fact, T is an isomorphism from X onto X**. 

a. First, suppose X is a Boolean algebra; thus its dual X* is a Boolean space and X** 
is another Boolean algebra. If we unwind the notation, we find that  

Tx �9 X* --~ 2 is the characteristic function of the set S( z )  c_ X *  defined by 
the Stone map S"  X -~ | as in 13.21. 

S is an isomorphism of Boolean algebras, from X onto | - Range(S),  by (UF6). 
Thus, it remains only to show that  a subset of X* is clopen if and only if it belongs to 
| 

First we show that  every member of | is clopen. It is easy to show that  each 
mapping Tx is continuous from X* into 2 e.g., by considering the product topology 
on 2 x characterized in terms of convergence of nets in 2 x .  Hence each set S( z )  - 
T~-I(1) is the inverse image, under a continuous map, of a clopen set; hence each S( z )  
is clopen. 

Finally, we shall show that  any clopen subset of X* belongs to | For each z E X, 
let 7rx �9 2 x ~ 2 be the z th  coordinate projection. Each 7r~ is continuous, hence each 
set of the f o r m  71-x 1 (0) or  7r~-l(1) is clopen. A basic rectangle in 2 x is an intersection of 
finitely many of these sets; hence it is also clopen. The basic rectangles form a base for 
the topology of 2x; hence I]3 - {B N X* �9 B is a basic rectangle in 2 x } is a base for the 
topology of X*. Observe that  S(x )  - 7r~-l(1) n X* and S(Cx) - CS(x) - 7r~-1(0) n X* 
and 

S(X1) AS(X2) n ' "  nS(xn) -- S(Xl AX2 A ' "  Axn);  

hence each member of ~B can be writ ten in the form S(x )  for some x E X. Since 23 is 
a base for the topology of X*,  each open subset of X* is a union of S(x) 's.  Since X* 
is compact, any clopen subset of X* is compact, and therefore is a union of finitely 
many of the S(x) 's.  But also 

S(x,) u S(x ) u . . .  u S(x ) - s (x, v v . . .  v x , ) ,  

so each clopen subset of X* is in the range of S. 

b. Conversely, suppose X is a Boolean space. Then its dual X* is a Boolean algebra, and 
X** is another Boolean space. It is tedious but straightforward to verify that  each 
mapping Tx : X* ~ 2 is a Boolean homomorphism and thus a member of X**; we 
omit the details. Also, the mapping T �9 X ~ X** given by z H Tx is continuous. 
(Hint: Use 15 .15(E)and 15.25.b.) 

It remains to show that  T : X ~ X** is surjective. This can be proved directly 
(using the Ultrafilter Theorem or one of its equivalents); such a proof is given by Monk 
[1989], for instance. However, a slightly shorter and more transparent  proof in Halmos 
[1963] uses 17.46.a: Since X is compact, X** is Hausdorff, and T is continuous, the 
range of T is compact and therefore closed. Thus it suffices to show that  the range 
of T is dense in X**. Since X** is a Boolean space, its clopen sets form a base. Let 
G be any nonempty clopen subset of X**; it suffices to show that  Range(T) meets 
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G. The function l a  " X** ~ 2 is a member  of X***. We have already proved in 
17.46.a that  any Boolean algebra is reflexive, so X* - X*** or, more precisely, 
X* and X*** act the same on X**.  Thus there is some clopen set C c_ X such 
that  the mapping 1c " X ---, 2 a member  of X* acts the same as 1G on the 
set X** Since G is nonempty, it follows easily that  l a  is not the zero function, 
hence 1c is not the zero function, hence C is not empty. Choose any z E C. Then 
1 - 1c(z)  - T x ( 1 c ) -  l a (Tx) ,  so T~ C G that  is, Range(T) meets G. 

17.47.  Further duality results. Many properties of X correspond to properties of X*. A 
few of these results are listed below, without proof. (These results are not recommended 
as exercises; some of them are too difficult without further hints. Proofs can be found in 
Halmos [1963], Monk [1989], and other books and papers cited by those two books. 

Let A be a Boolean algebra and let S be a Boolean space, with A* - S and S* - A. 
Then" 

a. A is finite ~ S is finite <--->, the topology on S is discrete ~ the Stone map 
(introduced in 13.21) is an isomorphism from A to ~P(Ult(A)), where Ult(A) - {Boolean 
ultrafilters in A}. 

b. A is countable ~ S is metrizable. 

c. By an a t o m  in A we mean an element z >- 0 such tha t  {a E A" 0 -< a -< z} is empty. 
There is a natural  correspondence between the atoms of A and the isolated points of 
S, as follows: If s E S is an isolated point, then the singleton {s} is a clopen subset of 
S, hence its characteristic function is a member  of A; this mapping s ~-, l{s} gives a 
bijection from {isolated points of S} onto {atoms of A}. 

d. For any open set G C S and any ideal I C_ A, define 

G* - {1c �9 C i s a c l o p e n s u b s e t o f G } ,  I* = U c .  
i 

C clopen, 
CC_S, 1 c C I  

e .  

Then the maps G ~-+ G* and I H I* are inverses of each other, and they give a bijection 
between the open subsets of S and the ideals in A. The maps G H G* and I H I* 
are both order-preserving (where order is given by C_); thus they give an isomorphism 
between the lattice of open subsets of S and the lattice of ideals in A. Furthermore,  
the set S \ G = {s c S : s  ~ G} (with the relative topology) is a Boolean space, and 
the corresponding Boolean algebra is isomorphic to the quotient algebra A/(G*). 
A morphism f : X + Y (in either category i.e., a continuous map or a Boolean 
homomorphism) is injective if and only if f*  is surjective. 

EBERLEIN-SMULIAN THEOREM 

17.48. The presentation in this subchapter  is modified from Kelley and Namioka [1976] 
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and Wilansky [1970]. The results of this subchapter  may be postponed; they will not be 
needed until Chapter  28. 

17.49.  Proposition. Let S be a compact topological space, let (M,d)  be a metric space, 
and let M s be equipped with the product topology. Let (I) be a collection of continuous 
functions from S into M,  and let ~ :  S ~ M also be continuous. Suppose that  ~ E cl((I)). 
Then r is a cluster point of some sequence in (I) - -  i.e., ~ is a limit of a subnet of a sequence 
in (I). 

Proof. First note tha t  one neighborhood base at ~ in M s is given by the sets of the form 

G~ - {g E M s �9 1} 
max d [r g(si)] < - 

l < i < n  ' n 

for n E N and ( 7 -  (S l ,S2 , . . . ,Sn )  E S n. 

Hence we may choose some ~ E (I)M G~. For any T E S n, since r and ~ are continuous, 
the set 

1 
H T  - -  {(7 E S n �9 ~PT E G a }  - -  {(Sl,S2,... , 8 n )  E S n �9 max d[r ~pr < - }  

l < i < n  ' n 

is an open neighborhood of ~- in S n. Since S n is compact,  it is contained in the union of 
the sets H~ (~- E An), for some finite set An C_ S n. 

Let (I)n = { ~  : 7- E An}. Note that  for each positive integer n and each a E S n, the set 
G~ meets (I)n. In fact, G~ meets (I)m for every m _> n, since G~, c_ G~ whenever a '  is an 
extension of a. 

Each (I)n is a finite set, which we now arrange in any order. Form a sequence (gk) by 
taking the element of (I)l, then the elements of (I)2, then the elements of (I)3, etc. Then each 
G~ is a frequent set for the sequence (gk). Since the G~'s form a neighborhood base ~B for 
~, the sequence (ga) has ~ as a cluster point. 

17 .50 .  E b e r l e i n - S m u l i a n  T h e o r e m  ( n o n l i n e a r  v e r s i o n ) .  Let S be a compact  topo- 
logical space and let (M, d) be a compact metric space. The product M S will be topologized 
with the product topology; subsets of M S will be topologized with the relative topology 
thereby determined. In particular,  this applies to 

C(S, M) - {continuous functions from S into M} C_ M S. 

Let (I) C_ C(S, M). Then the following conditions are equivalent" 

(A) (Iterated limit condition.) For every net (p~ �9 (~ E A) in (I) and every net 
(so �9 E I~) in S, we have 

lim lim ~ (s~) -- lim lim ~p~ (s~) 
o~EA ~EB ~EB aEA 

whenever both sides of the equation exist 
limits exist. 

i.e., whenever all the indicated 
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(B) (Sequential iterated limit condition.) For all sequences (~m) in (I) and (s,~) in 
S, we have 

lim lim qPm(sn) - -  lim lim ~m(sn) 
m---+( :X: )  / t - - - -+(X)  Tt----+(X) m - - - + o o  

whenever both sides of the equation exist. 

(C) Every net in �9 has a cluster point in C(S, M). That is, �9 is relatively compact 
in c(s,  M). 

(D) Every sequence in (I) has a cluster point in C(S, M). 
(E) Every sequence in (I) has a sequential cluster point in C(S, M). 
(F) cl((I))c_ C(S,M). 
(G) For each countable set V C_ (I), the set cl(V) is metrizable, and cl(V) C_ 

C(S,M). 
Remarks. Note that M s is a compact Hausdorff space (regardless of the topology of S); 
hence a subset of M s is compact if and only if it is closed. In particular, cl((I)) is compact. 
Those considerations do not depend on the topology of S, but the definition of C(S,M) 
does depend on that topology, and so do the conditions listed in the theorem. In general, 
C(S, M) is not closed in MS; see 18.32.g. Note that M s and its subsets are completely 
regular; hence 17.15 is applicable. 

Outline of Proof. We shall show ( F ) = >  ( C ) = >  ( D ) = >  ( B ) = >  ( A ) = >  (F), and also 
[(A) and (F)] => ( G ) ~  ( E ) = >  (D). 

Proof of (F) => (C). M s is compact. 

Proof of ( C ) = >  (D). Obvious. 

Proof of (D) ~ (B). Show that (~m) has a cluster point ~ and (s~) has a cluster point s. 
Then show that if either iterated limit exists, it is equal to ~(s). 

Proof of (B) ~ (A). By assumption, the limits 

p .  - l i ra  ~ .  ( s  ~ )  q~ - lim qp~ ( s  Z) p ~  - l i ra  p ~ ,  q ~  - l i m  qo; 

all exist in M; we wish to show that p~  = q~. Recursively choose sequences ((~(rn) : m = 
1, 2 ,3 , . . . )  in A and ( /3 (n) :n  = 1 ,2 ,3 , . . . )  in B, as follows: 

Let j be a positive integer. Assume that c~(rn) and/3(n) have already been selected for 
all positive integers m, n < j. (This assumption is free when j = 1 and no selections have 
been made yet.) Now choose some c~(j) in A large enough so that 

(1) d[pa(j),p~] < l / j ,  and 

(2) d[~(j)(sf~(~)), q;~(~)] < 1/j for all positive integers n < j. 

(Again, condition (2) is free when j - 1.) Then choose some fl(j) in B large enough so that 
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(3) d[qa(j) , qoo] < 1/j ,  and 

(4) d[qpc~(m)(Sa(j)),pc~(m) ] < 1/ j  for all positive integers m _< j. 

This completes the recursive definition. (We do not assert that  the sequences ( ~ ( m ) )  and 
(sa(,~)) are subnets of the given nets (p~) and (sa).) Now apply (B) to the sequences 
(~ (m)  " m E N) and ( sa (n ) ' n  E N); this proves p ~  - q~. 

Proof of (A) =~ (F). Suppose ~ E cl(A), and ~ is discontinuous at some point so E S. 
Then some net (p~) in �9 converges to r and some net (sa) in S converges to so and satisfies 
~(sa)  74 ~(s0). Since M is compact, by replacing (sa) with a subnet we may assume that  
(~(sa)) converges to some limit z r ~(s0). This contradicts (A). Thus cl(~) C_ C ( S , M ) .  

Proof that (F) and (A) together imply (G). For any s E S and ~ C V, let [e(s)](~) - ~p(s); 
thus we define c(s) E M v. Observe that  the "evaluation map" c" S -~ M v defined in this 
fashion is continuous. Since M v is a compact metric space, it is separable, and hence there 
is some countable set T C_ S such that  e(T) is dense in c(S). 

We now claim that  

ifg, h E c l ( V )  a n d g - h o n T ,  t h e n g - h o n S .  

To see this, fix any so c S. There is some net (ta) in T such that  e(ta) + e(s0). Replacing 
(ta) with a subnet, we may also assume (g(ta)) and (h(ta)) are convergent. By (A), show 
that  g(so) = lim a g(ta) = lim a h(ta) = h(so). This proves our claim. 

Now, the restriction map 9~ �9 g H glT is continuous from M S onto M T. By 17.10.c, 

that  map gives a homeomorphism of cl(V) onto its image, 9~(cl(V)), which is a subset of 
the metrizable space M T. 

Proof of (G) ~ (E). M S is compact, and any compact metric space is sequentially 
compact. 

17.51. Coro l l a ry .  Assume the conditions of the preceding theorem. Then ~ is compact 
.' '.. (I) is sequentially compact ~ ~ is countably compact. 

Outline of proof. Countable compactness is always implied by either of the other two kinds 
of compactness, so we may assume (I) is countably compact. Then condition (D) of the 
Eberlein-Smulian Theorem is satisfied, hence all the conditions of that  theorem are satisfied. 
It now suffices to show �9 is closed, for then compactness and sequential compactness follow 
from parts (C) and (E )o f  the Eberlein-Smulian Theorem. 

Let ~ E cl((I)); we wish to show ~ E ~. By condition (F) of the theorem, we have 
E C(S, M).  By 17.49, ~ is a cluster point of some sequence (~n) in (I). We know cl({~n}) 

is metrizable, by condition (G) of the Eberlein-Smulian Theorem; hence by 15.34.c, ~ is 
the limit of some subsequence of (~n). Since �9 is Hausdorff and countably compact, any 
sequence in �9 that  converges must have its unique limit in ~; hence r c (I). 
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Uniform Spaces 

18.1. Preview. We now resume the study of uniform spaces, which we began in Chapters 5 
and 9. Our study will also make use of material from Chapters 7 through 17; see especially 
16.16. 

As shown in the following chart, uniform structure fits between topological structure 
and the structure provided by distances, in its degree of detail of information about objects. 
Movement from right to left in this table is given by forgetful functors (discussed in 9.34). 

I less < 

structure: ]l topological 

typical questions: Is f continuous? 
Is S compact? Is 
S' topologically 
complete? 

details about the object 

uniform 

Is f uniformly 
continuous? 
Is S complete? 

> more 

distances 

In metric 
spaces: Is f 
nonexpansive? 
Is S bounded? 

broader T subset of 2 x 

class of objects 

topology 

completely regular 
topology 

pseudometrizable 
topology 

narrower ~ metrizable 
topology 

subset of 2 X x x 

quasi-uniformity 

uniformity 

pseudometrizable 
uniformity 

metrizable 
uniformity 

subset of 
[0, +oc) x •  

quasigauge 

gauge (a set of 
pseudometrics) 

pseudometric 

metric 

These functors are not inclusions of subcategories in categories, because the maps are not 
injective. For instance, each gauge uniquely determines a uniformity. We may "forget" 
which gauge determined the uniformity; different gauges on a set may determine the same or 
different uniformities. Similarly, each uniformity uniquely determines a completely regular 
topology. We may "forget" which uniformity determined the topology; different uniformities 
on a set may determine the same or different completely regular topologies on that set. 

Each category in the table is a full subcategory of the category above it. (Full subcat- 
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egories were introduced in 9.5.) For instance, completely regular topological spaces are a 
full subcategory of topological spaces; in either of these two categories the morphisms are 
the continuous maps. 

LIPSCHITZ MAPPINGS 

18.2. Definitions. Let (X, d) and (Y, e) be metric spaces. A mapping p :  X ~ Y is said 
to be L i p s c h i t z ,  or Lipschitzian, if e(p(xl),p(x2)) <_ ad(Xl,X2) for some finite constant 
and all x l, x2 E X. The smallest such ~ is then called the L i p s c h i t z  c o n s t a n t  of p; it is 
equal to 

<P>Lip = sup{  e(p(xl)'p(x2)) } d(Xl, x2) " Xl,  x2 E X ,  Xl r x2 . 

The set of all Lipschitz mappings from (X, d) into (II, e) will be denoted Lip(X, Y). 
We say p is n o n e x p a n s i v e  if {P>Lip -< 1. The mapping is a s t r i c t  c o n t r a c t i o n  if 

<P)Lip < 1. Caution: This book will not use the term "contraction" by itself. Some math-  

ematicians use that  term for nonexpansive mappings; others use it for strict contractions. 

18 .3 .  
a .  

Examples. 
Let S be a nonempty subset of a metric space (X, d). Then the map x H dist(x, S), 
defined in 4.40, is nonexpansive from X into JR. (See 4.41.b.) 

b. (This example assumes more knowledge of calculus.) Let p : 1R --~ ]R be continuously 
differentiable. Then p is Lipschitz if and only if p~ is bounded, in which case <P}Lip = 

SuPxER Ip'(x)I. (We shall generalize this result in 25.24.) 

c. x H Ixl is Lipschitz on R, but not continuously differentiable. 

d. (Preview.) Let p :  X --, Y be a linear map from one normed vector space to another. 
Then p is continuous if and only if p is Lipschitzian. (See 23.1.) 

e. Suppose (X, p) is a metric space, and f : X ~ X is a mapping with the property that  
for each x E X, the set { f n ( x ) : n  = 0, 1,2, 3 , . . . }  is metrically bounded. Then 

/~(x,y) " sup {p( fn (x ) ,  fn(y))  " n - 0,1,2,3, . . .} 

is a metric on X that  is larger than or equal to p and makes the mapping f nonexpansive 
from (X,~)  into itself. In fact, /3 is the smallest metric on X that  has those two 
properties. (In 19.47.c we shall consider some conditions under which/3 is topologically 
equivalent to p.) 

18.4. Definitions. 
p :  X ~ Y, let 

Let (X,d) and (Y, e) be metric spaces. For a > 0 and mappings 

e(p(xl),p(x2)) } 
<P)c  - -  s u p  d(xl, x 2 )  " Xl ,  x2  E X ,  Xl 7 s x2  �9 
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We say p is H S l d e r  c o n t i n u o u s  w i t h  e x p o n e n t  c~ if (p)~ < oc. We shall denote the class 
of such functions by HSI~(X, Y). Note that  HSll(X, Y ) -  Lip(X, Y), with (P/1 - (P)Lip" 

18.5. Examples  and exercises. 

a. A function p :  X ~ Y is constant if and only if (p)~ = 0. 

b. Let X and Y both be equal to the set [0, +oc) equipped with the usual metric d(x,  y) = 
I x -  Yl. Let a,/3 E (0, 1]. Let p(x)  = x ~. Then 

[ oc if/3 r c~. 

Hint: First show that  ((u + h) ~ - u Z ) / h  ~ is a nonincreasing function of u, for u, h > 0. 

c. Let p : X + Y and q : Y + Z be HSlder continuous with exponents c~ and ,2 
respectively. Then the composition q o p :  X + Z is HSlder continuous with exponent 
c~/3, and in fact {q o p ) ~  _< {p)~ (q)~. 

In particular, the composition of Lipschitzian functions is a Lipschitzian function; 

we have (qP)Lip -< (P)Lip (q)Lip" 

d. Let X and Y be metric spaces, with X metrically bounded. For a > /3  and p : X ~ Y, 
show that  (p};~ _< (p)~(diam(X))  ~ -z  and hence H61~(X, Y) C_ HSlZ(X, Y). 

e. For a > 1, the spaces HS1 ~ (R, Y) are not very interesting, for they contain only constant 
functions. A hint will be given when we generalize this result slightly in 22.18.e. 

18.6. Let X and Y be metric spaces. A function f : X  ~ Y is called loca l ly  L i p s c h i t z  
if any (hence all) of the following equivalent conditions are satisfied: 

(A) f is Lipschitz on a neighborhood of each point, 

(B) f is Lipschitz on each compact set. 

(C) f is Lipschitz on a neighborhood of each compact set. More precisely, if K 
is a compact subset of X,  then there is some number r > 0 such that  the 
restriction of f to the open set {x E X : distd(x, K) < r} is Lipschitz. 

Exercises. 

a. Prove the equivalence. 

Hints: It suffices to show (A) ~ (C). Suppose not. Show that  there exist se- 
' K)  -~ 0 and ' d is td(xn,  K )  --~ O, dis td(x  n quences (x~), ( x ~ ) i n  X such that  xn ~ x~, , , 

( ) , e f ( x ~ ) ,  f ( x ~ )  / d ( x n , x ~ )  ~ oc. Passing to subsequences, we may assume (x~) and 

in K. Show that  x ~  ~ . Then what? (x~) converge to limits x ~  and x ~  - x ~  

b. For any open cover of a metric space X, there exists a part i t ion of unity subordinated 
to that  cover, consisting of locally Lipschitzian functions. 

Hints: Let ~r = {T~ : c~ c A} be a locally finite open cover tha t  is subordinated 
to the given cover (see 16.31 and 16.29). For each c~, define f~ : X ~ [0, +oc) by 
f ~ ( x )  = dist(x, X \ T~). Then define a part i t ion of unity {g~} as in 16.25.c. 
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c. Let X be a metric space, and let f : X ~ R be continuous. Then f can be approx- 
imated uniformly by locally Lipschitz functions i.e., for any c > 0 there exists a 
locally Lipschitz function g :  X ---, IR satisfying suPxEX If(x)  - g(x)l  < c. 

Proof. Each x E X has a neighborhood Nx such that  If(x)-f(y)l < c for all y E N~. 
Choosing smaller N~'s if necessary, we may assume that  the N~'s are all open; then 
they form an open cover of X. Let {p~ : c~ E A} be a locally Lipschitzian parti t ion of 
unity that  is subordinated to the cover {N~ }. For each c~ E A, let v(c~) be some member 
of X such that  {u E X : p~(u) # 0} C_ Nv(~). Show that  g(x) = Ec~EA f(v(c~))p~(x) 
has the required properties. 

Remarks. This argument also works for functions f, g from any metric space X into 
any Banach space B. It will be used for differential equations in 30.11. 

U N I F O R M  C O N T I N U I T Y  

18.7. Notation. Let (X, ll) be a uniform space, with uniformity II determined by gauge 
A) be net in X x X, and let E be its eventuality filter on X x X. D. Let ((x~, x~) �9 c~ r a 

Show that  the following conditions are equivalent. 

(A) ~ c_ ~. 

l (B) For U c we h ve  v  tuany U. 
/ ! 

(C) d(x~, x~) -~ 0 in R for each d E D. We shall abbreviate this as D(x~, x~) -~ O. 
, 

We emphasize that  the last condition does not say supdc D d(x~,x~) ~ O. 

18.8. Definition. Let (X, ll) and (Y, V) be uniform spaces, and let D and E be any gauges 
that  determine the uniformities II and V, respectively. Let p : X ~ Y be some function. 
Then the following conditions are equivalent. If any (hence all) of these conditions hold, we 
say ~ is u n i f o r m l y  c o n t i n u o u s .  

(A) Whenever V E V, then the set 

(~)4 ~ ) - I ( v ) -  {(x, xt)C X x X "  (~)(x),~(xt)) E V} 
is a member of II. That  is, the inverse image of each entourage is an entourage. 
(This is the definition of uniform continuity used in 9.8.) 

/ 
(B) Whenever D(x~,x~) --~ 0 in X, then E (~(x~), p(x~))  ~ 0 in Y. (Notation 

is as in 18.7(C).) 

(C) For each number e > 0 and each pseudometric e E E, there exist some number 
6 > 0 and some finite set D'  c D such that  

max d(xl,x2) < 6 =~ dED' < 

(We emphasize that  the choice of (5 and D'  depends on c and e but not on X l 
or x2. Compare this with 15.14(D).) 
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(D) For each e c E, there exists a finite set D~ c_ D and a function -~ �9 [0, +oc) --+ 
[0, +oc) that  is continuous and increasing, and satisfies %(0) - 0  and 

( )  ( max d(z ,z ' ) ) .  c p(z),p(z') <- ~ dED~ 

Such a system of sets De and functions ?~ will be called a m o d u l u s  of  
u n i f o r m  c o n t i n u i t y  for p. 

Note that  if the gauge D is directed (as defined in 4.4.c), then conditions 18.8(C) and 
18.8(D) can be simplified slightly: the sets D'  and Dc may be taken to be singletons {d}. 

18.9. Examples and related properties. 
a. If the uniformity on X is given by a pseudometric d, then sequences suffice in 18.8(B) 

(regardless of whether Y is pseudometrizable). That  is, a mapping ~ : X --, Y is 
uniformly continuous if and only if 

, ( ') whenever d(z~,z~) -+ 0 in X, then E p(z,~), g)(z~) --+ 0 in Y, 

with notation as in 18.7(C). 

b. Any HSlder-continuous function from one metric space into another is uniformly con- 
tinuous. The converse is false. For instance, define f :[0, e -I] ---+ IR by 

0 when t - 0 
f(t) - - 1 / l n t  w h e n 0 < t _ < e  -1 

Show that  f is not HSlder continuous with any exponent. It is easy to see that  f is 
continuous; then the uniform continuity of f will follow by a compactness argument in 
18.21. 

c. Any uniformly continuous function is continuous (where each uniform space is equipped 
with its uniform topology). This can be proved using uniformities or using gauges; the 
student is urged to give both proofs. 

d. Show that  the function f(t) = 1/t is continuous, but not uniformly continuous, on 
the open interval (0, 1). Use this fact to give two different metrics on (0, 1) that  yield 
different uniformities but that  both yield the usual topology. 

e. (Preview.) Let p : X --+ Y be a linear map from one topological vector space to another 
or more generally, an additive map from one topological Abelian group to another. 

Let X and Y be equipped with their usual uniform structures (see 26.37). If p is 
continuous, then p is uniformly continuous; see 26.36.c. 

f. Let X be a set, let {(Yx,Ea) : ~ C A} be a collection of gauge spaces, and let pa : 
X --+ Yx be some mappings. Show that  the initial uniformity on X determined by the 
px's and Ex's (as in 9.16) is equal to the uniformity on X determined by the gauge 
D = Ua~A {cpa :  e E Ex}, where (e~a)(z,z') = c (pa(z), pa(z')). We may call this the 
in i t ia l  g a u g e  determined by the pa 's  and Ea's  (although any other gauge uniformly 
equivalent to this one will generally do just as well). 
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An important special case: When X = YI)~cA YA and the ~p~'s are the coordinate 
projections, we obtain the p r o d u c t  gauge.  

g. The forgetful functor from uniform spaces to topological spaces preserves the formation 
of initial objects. 

That is, the uniform topology 7-(1/) determined by an initial uniformity 11: deter- 
mined by 7~'s and uniformities V~ is equal to the initial topology determined by the 
7r~'s and the uniform topologies 7-(V~) determined by those uniformities. 

18.10. T h e o r e m  on u n i f o r m  c o n t i n u i t y  of  ex tens ions .  Let X and Y be uniform 
spaces, let X0 C X be dense, let ~ : X ~ Y be continuous, and suppose that the restriction 
of ~ to X0 is uniformly continuous. Then p is uniformly continuous on X. In fact, if some 
gauges are specified for X and Y, then any modulus of uniform continuity for the restriction 
of ~ to X0 is also a modulus of uniform continuity for ~p on X. 

In particular, if p is continuous and the restriction of p to X0 is HSlder continuous or 
Lipschitzian, then ~ is HSlder continuous or Lipschitzian with the same constant. 

( ' )  Hints" Use notation as in 18.8(D). Let any x , x '  E X be given. Choose a net (x~,x~) 

in Xo x X0 that converges to (x, x'). For each c~, we have 

( ) ( ) e ~ ( x ~ ) ~ ( x : )  < % max d(x,  x~) . 
' - -  d C D ~  ' 

Holding e fixed, take limits to obtain a corresponding inequality for (x, x'). 

18.11. C h a r a c t e r i z a t i o n  of u n i f o r m l y  equ iva len t  gauges .  Let D and E be gauges 
on a set X. Then the following conditions are equivalent: 

(A) 

(B) 

(c) 

D and E are uniformly equivalent i.e., they generate the same uniformity. 

The identity map i x  : X ~ X is uniformly continuous in both directions 
between the gauge spaces (X, D) and (X, E). 

For each net ((x~, x~) �9 a E A) in X x X, we have 

' E(x , x ' )  0 D ( x ~ ,  x~ )  ~ 0 ,' ',, 

with notation as in 18.7(C). 

Hint: A uniformity, being a proper filter, is the eventuality filter for some net. 

18.12. Further exercise. Let 1/be a uniformity on a set X. Then the largest gauge that is 
compatible with 11 (as defined in 5.32) is the set of all pseudometrics d:  X x X ~ [0i +oc) 
that are jointly uniformly c o n t i n u o u s -  i.e., uniformly continuous when X x X is given its 
product uniformity and [0, +oc) is given its usual uniformity. (Compare this with 16.20.) 

18.13. If D is any gauge, then D is uniformly equivalent to its max closure and its sum 
closure, defined as in 4.4.c. 



Pseudometrizable Gauges 487 

(Hence it is often possible to replace a gauge with a directed gauge; thus in many 
contexts we may assume a gauge is directed.) 

18.14.  

(i) 
(ii) 

(iii) 

(iv) 

( v )  

Definition. We shall say/3 is a b o u n d e d  r e m e t r i z a t i o n  f u n c t i o n  if: 

/3 is a mapping from [0, +oc) onto a bounded subset of [0, +oc); 

13 is continuous; 

/3 is increasing; that  is, s < t ~ /3(s) </3(t) ;  

/ 3 ( t ) - 0  ~ t - 0 ; a n d  

/3 is subadditive; that  is, 3(s  + t) _</3(s) +/~(t) .  

Show that  

a. arctan(t) ,  tanh(t) ,  min{1, t} ,  and t/(1 + t) are bounded remetrization functions of t. 
(IBnt: See 12.25.e.) Note that  min{1, t}  is not injective. 

b. If/3 is a bounded remetrizat ion function and d is a (pseudo)metric on a set X,  then 
e(x, y) = ~(d(x, y)) defines a (pseudo)metric e = ?od  on X that  is uniformly equivalent 
to d and is bounded. 

c. If/3 is a bounded remetrizat ion function and D is a gauge on a set X,  then {/3 o d"  
d E D} is a gauge on X that  is uniformly equivalent to D and is uniformly bounded 

i.e., we have sup{/3(d(x,y)) �9 x,y E X, d E D} < oe. 

18.15. Example. The usual metric on R is d(x,y) = I x - yl. Another metric, bounded 
and uniformly equivalent to the usual one, is e(x, y) = a r c t a n ( l x -  y]). On the other hand, 
p(x,y) = l a r c t a n ( x ) -  arctan(y)l  is a bounded metric on R that  is equivalent, but not 
uniformly equivalent, to the usual metric. (All three metrics yield the same topology.) 

PSEUDOMETRIZABLE GAUGES 

18.16.  Finite gauges. Any finite gauge { d l , d 2 , . . .  ,dn} on a set X is uniformly equivalent 
to a single pseudometric d. There are many ways to define d(u, v). Two commonly used 
pseudometrics are 

E dj(u, v), max dj(u, v). 
j = l  l<_j<_n 

Hints: The proof of equivalence may be accomplished most easily using 18.11(C). 
For other, more complicated pseudometrics equivalent to these, see 22.11. 

18.17. Any countably infinite gauge {dl,d2,d3,. . .} on a set X is uniformly equivalent to 
a single pseudometric. One such pseudometric is 

- 

j= l  
2 J  arctan 
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More generally, we could use any pseudometric of the form 

d ( u , v ) -  E a j / 3 ( d j ( u , v ) )  
j=l  

where/3 is a bounded remetrization function (see 18.14) and the aj's are positive numbers 
with finite sum. Any such pseudometric d is called a F r6che t  c o m b i n a t i o n  of the dj's. 

These formulas are admittedly rather complicated, but in general they cannot be re- 
placed by a simpler formula. In many applications, the dj's themselves are quite simple, 
and so we may reason in terms of the dj's instead of d. However, in such applications, we 
may sometimes use the fact that the structure of X can be given by some single pseudo- 
metric d, without referring to any particular choice of d. 

For instance, an argument involving a net convergence x~ ~ z can often be replaced by 
an argument involving a sequential convergence x~ ~ z, since the topology is pseudometriz- 
able. Then that convergence Xn ~ z can be represented conveniently by the condition that 
dj (Xn, z) ---+ 0 for each j.  

Fr~chet combinations will be used to give pseudometrics for certain product topologies 
and uniformities, and for uniform convergence on compact sets in certain classes of functions 

continuous, smooth, holomorphic, etc.; see 18.18, 26.6, 26.7, 26.8, and 26.10. 
Remark. Unlike the finite and countable cases, an uncountable gauge generally is not 

uniformly equivalent to a single pseudometric. We shall prove this by an example in 18.20. 

18.18. Product ps(?udom(?trics. If (Y1, (?l), (Y2, (72) , . . . ,  (Yn, (?n) are pseudometric spaces, 
n then the product gauge on X = I-Ij=l YJ is uniformly equivalent to a single pseudometric. 

Two pseudometrics commonly used for this purpose are 

n 

E max (?j(uj, vj) (?j (Uj, Vj ), 1 <_j <_ n 
j= l  

where u = (Ul, U 2 , . . . ,  Un) and v = (Vl, V 2 , . . . ,  l~n). This is a special case of 18.16 obtained 
by taking dj (u, v) = (?j (Trj (u), 7rj (v)). 

If (Y1, el) ,  (Y2, (?2), (Y3, (?3),... is a sequence of pseudometric spaces, then the product 
OO gauge on X - 1-Ij=l Yj is uniformly equivalent to a single pseudometric. We can use any 

pseudometric of the form 

OO 

j= l  

where/3 is a bounded remetrization function and the aj's are positive numbers with finite 
sum; here u = (Ul,U2,U3,...) and v = (Vl,V2,V3,...). This is a special case of 18.17, 
obtairied by taking dj (u, v) = (?j (Try (u), Try (v)). 

The product gauge on an uncountable product generally is not uniformly equivalent to 
a single pseudometric; this will be proved in 18.20. 

18.19.  Further examples and consequences. 
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a. The product gauge on R N - {sequences of reals} is uniformly equivalent to the metric 
(x) d(u, v) - }-~d=l 2 - j  min {1, luj - vjl}. 

b. If Y1, Y2, Y3,. . .  are each equipped with the Kronecker metric, then the product gauge 
CX3 

on 1-Ij=l YJ is also uniformly equivalent to this simple metric" 

( ) 1 
d (y,~),(y~) = min{n  �9 y ,~ r  

Note that  a product of infinitely many discrete spaces generally is not discrete. 

particular, 2 N is not discrete. In fact, no point in 2 N is isolated. 

In 

18.20. T h e o r e m .  Let X = H~cA Ya be a product of topological spaces with the product 
topology, and assume X is nonempty and pseudometrizable. Then (i) each of the Yx's has 
a pseudometrizable topology, and (ii) for all but countably many of the A's, Ya has the 
indiscrete topology. 

(Thus, except for degenerate cases, a product of uncountably many topological spaces 

is not pseudometrizable. For example, the product topology and uniformity on IR R or on 

{0, 1} R cannot be given by a single pseudometric.) 

Proof. As usual, let 7ra : X  ---, Yx be the Ath coordinate projection. Assume the product 
topology is given by a pseudometric d on X. 

To prove (i), fix any p. Since X is nonempty, YIa#, Yx is also nonempty; fix any 
! f E 1-I;~r Y;~- Define a pseudometric d u on Yl, by du(yu , y , )  - d ( (y , ,~) ,  ( y , ,~ ) ) .  Show 

that  this pseudometric yields the given topology on Y,. 
To prove (ii), assume that  the set 

M = {~ E A : the topology of Yx is not the indiscrete topology} 

is uncountable; we shall obtain a contradiction. Fix any point ~ E X. For n = 1, 2, 3 , . . . ,  
let Bn = {x E X : d(~,x)  < l / n } .  Since Bn is an open set containing ~, there exist some 
finite set J,~ C i and open sets Gj c_ Yj (j E J~,) such that  

E ~ 71"j l ( ( ~ j ) C  d~ n 

j E  J,~ 

by 15.26.a. Let J - O n ~  fin; then J is a countable subset of A. Since M is uncountable, 
there is at least one # E M \ J. Fix any such #. By 16.12.c there exist some p c Y, and 
some disjoint open sets S, T C_ Yp such that  7r,(~ c) E S and p E T. Let r /be  the point in X 
defined by 

_ S wh  Xr 
7f/k (7]) 

p when A -  #. 

Then S x I-Ia~, Ya and T x I I x # ,  Yx are disjoint open subsets of X that  contain ~ and 
r/, respectively. The existence of such sets implies that  d(~, r/) > 0. However, # ~ J,  so 
7rj(~) = 7rj(r/) for every j c J. From this it follows that  r/E B~ for each positive integer n 

that  is, d(~, r]) < 1/n for each n, a contradiction. 
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COMPACTNESS AND UNIFORMITY 

18.21. Proposition. Let X and Y be uniform spaces, assume X is compact, and suppose 
f : X  ---, Y is continuous. Then: 

(i) f is uniformly continuous. 

(ii) If f is injective and Y is Hausdorff, then the inverse map f - i :  Range(f)  + X 
is also uniformly continuous; thus f is a uniform isomorphism onto its range. 

Proof of (i). Assume (x~,x~) --. I in X; we must show that  ( f(x~), f(x~))  ~ I in Y. 
Suppose not; then there is some pseudometric e in a gauge for Y such that  e(f(x~), f(x~)) 

/ 
0. Replacing ((x~,x~)) with a subnet, we may assume that  e(f(x~), f(x~)) > p for some 
constant p > 0. Again replacing ((x~, x~)) with a subnet and using the compactness of X, 

I we may assume (x~) converges to some limit v E X. Then x~ ~ v also. By continuity, we 
have f(x~) ~ f(v) and f(x~) ~ f(v), a contradiction. 

Proof of (ii). I ( X ) i s  compact, by 17.7.h. Also, f - l :  Range(f)  ~ X is continuous, by 
17.10.c. Hence it is uniformly continuous, by the argument of the preceding paragraph. 

Remark. There exist metric spaces X that  are not compact, but nevertheless have the prop- 
erty that  any continuous function from X into another metric space is uniformly continuous. 
Indeed, one such space is Z, with its usual metric. Such spaces are discussed further by 
Arala-Chaves [1985]. 

18.22. Corollary. A compact topological space has at most one uniform structure. In 
other words, if 11 and V are uniformities on a set X that  yield the same compact topology, 
then I I -  V. 

18.23. Proposition (optional). Let (X, 112) be a uniform space, let ~ be the uniform 
topology, let X x X be equipped with the product topology, and let I = {(x,x) "x E X}. 
By a "neighborhood of the diagonal" we shall mean a set U c_ X x X such that  U _D G D I 
for some G that  is open in X x X. Show that  

(i) Any entourage is a neighborhood of the diagonal. 

(ii) If (X, 9") is compact, then every neighborhood of the diagonal is an entourage 
i.e., the uniformity 11 is equal to the set of neighborhoods of the diagonal. 

Proof of (i). Given U c II, let V be a symmetric entourage satisfying V o V _c U. For each 
x E X, we know that  V[x] is a neighborhood of x, hence x E Ex C_ V[x] for some open set 
Ex in X. Show that  G - Uxex (Ex x E~) has the required properties. 

Proof of (ii). Let G be an open subset of X x X with G _D I; we must show G c II. For 
each x E X, we know that  G is a neighborhood of (x,x) in X x X. Hence G D_ Bx x Bx, 
where Bx is some neighborhood of x in X. Then Bx D_ U[x] for some entourage U c 11. 
This U may depend on x; let us write it as Ux to reflect this that  is, Bx D_ Ux[x]. Let 
Vx be a symmetric entourage satisfying Vx o Vx c_ Ux. Then V~[x] is a neighborhood of x, 
so the compact set X can be covered by finitely many of the sets {Vx[x]'x E X}. Say we 
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Tt n 
have X - U i = I  Vzi[Xi]. Then W - ~ = 1  V,~ is an entourage. It sumces to show W c_ G. 
Fix any (p,q) E W. Since {Vx~[Xi]" i -  1 , 2 , . . . , n }  is acover  of X, we havep  E Vxj[Xj] 
for some j.  It is now easy to show that (p, q) E Uxj [xo] x U,~ [Xo] C_ G. This presentation 
follows the one of James [1987]. 

18.24. Let f �9 IR --+ R be any continuous, bounded, strictly increasing function; three 
examples are 

X e x -- e -x 

f (x) - 1 + Ixl ' f (x) - arctanx,  f (x) - t anhx  - e x + e - x  

With any of these functions, limx__+_~ f ( x )  and limx__++~ f ( x )  both exist in IR, and so it 
is natural to take those finite numbers as definitions of f ( - o c )  and f (+oc) ,  respectively. 
Then d(x,  y) - I f ( x ) -  I(Y)I defines a metric on the extended real line [-oc, +oc]. Show 
that 

a. The topology determined on [-oc, +oc] in this fashion is the same as the order interval 
topology introduced in 5.15.f, since both topologies have the same convergences. Hint: 
15.41. 

b. f is a distance-preserving and order-preserving map from ([-oc,  +oc], d) onto the met- 
ric space 

( [ f j ( - o c ) ,  f j (+oc ) ] ,  usual metric oflR ).  
\ 

c. The topological space [-oc, +oc], with the order interval topology, is compact. 

d. Any two such functions f yield metrics on [-oc, +oc] that are uniformly equivalent. 
Thus, different choices of f yield different metrics, but the particular choice of f does 
not matter greatly. 

UNIFORM CONVERGENCE 

18.25. Let S be a set, let (Y,e) be a pseudometric space, let (p~ : a E A) be a net in 
yS  = {functions from S into Y}, and let p c yS.  We say that ~ conve rges  u n i f o r m l y  
to ~ on S if 

F 

sup e l ~ ( s ) ,  ~(s) lira O. 
a E A  s E S  [ 

We may refer to this as e -un i fo rm c o n v e r g e n c e  when we need to be more specific. 
We shall show that uniform convergence is given by a pseudometric on y S. Indeed, 

observe that the convergence is unchanged if we replace e with any uniformly equivalent 
pseudometric e'. By 18.14 we may assume that e' is bounded. Show that the uniform 
convergence on S is then given by this pseudometric on yS:  

[ 

s E S  L 
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We shall generalize this notion below. 

18.26. Generalization. Let X be a set, and let g be a collection of subsets of X. Let 
(Is, ll) be a uniform space. A net ( ~ )  in y X  = {functions from X into Y} will be said to 
c o n v e r g e  11-uni formly  on  e l e m e n t s  of  g to a limit ~ E y X  if 

for each S E g and U E II, eventually {(qo,(s), g)(s)) : s E S} C_ U. 

This can be expressed in terms of gauges as well. Let E be any gauge on Y that  yields the 
uniformity ll; then ~ ---, ~ in the sense above if and only if 

F sup e |F~(s) ,  ~(s) 
s E S  k 

--+ 0 for each e E E and S E g. 

(We emphasize that  this condition does not require that  either of the conditions 

sup e [ ~ ( s ) , F ( s ) ]  --~ 0 
e E E  

o r  sup e[p~(s),qD(s)] -~ 0 
s E X  

must hold.) 
We shall show that  ll-uniform convergence on elements of g is the topological convergence 

given by a gauge on y X .  Indeed, observe that  we obtain the same convergence if we 
replace E with any uniformly equivalent gauge E' .  By 18.14 we may assume that  E '  is 
bounded. Show that  ll-uniform convergence on members of g is then given by the gauge 
{ps,e, : S' E g, e' E E'},  with Ps,e' defined as in 18.25. The resulting uniformity on 
y X  could be described as the u n i f o r m i t y  of  u n i f o r m  c o n v e r g e n c e  on  m e m b e r s  of  
g. In some contexts the topology resulting from that  uniformity is called the t o p o l o g y  of  
u n i f o r m  c o n v e r g e n c e  on  m e m b e r s  of  g. That  terminology is especially prevalent in 
contexts where the topology and uniformity determine each other uniquely, as described in 
26.37. 

Of course, different choices of g may yield the same uniform convergences or different 
uniform convergences. Here are some important  choices of g. 

�9 If g contains just the singletons {x} (for x E X),  then uniform convergence on elements 
of g is the same thing as pointwise convergence. Thus, the product topology on y X  
is a special case of uniform convergence topologies. 

�9 When g = {X}, then the uniform convergence topology is called simply the t o p o l o g y  
of  u n i f o r m  c o n v e r g e n c e  on  X. 

�9 When X is a topological space, another important  choice is g = {compact subsets (ff 
X},  resulting in the t o p o l o g y  of  u n i f o r m  c o n v e r g e n c e  on  c o m p a c t  sets .  

Several other important  choices of g will be introduced in 28.9. 
When g is countable or, more generally, when some countably subcollection of g 

covers the union of the members of g then the gauge {Ps, e' : S E g, e' E E '}  can be 
replaced by a single pseudometric; some examples of this are given in 26.8 and 26.10. 
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18.27.  Proposition (optional). A uniformity not only determines, but also is determined 
by, its uniform convergences. More precisely, let II and V be two uniformities on a set Y. 
Then the following conditions are equivalent" 

(A) The uniformity 11 is stronger than the uniformity V that  is, 11 D V. 

(B) For every set S, the topology of 11-uniform convergence on S is stronger than 
the topology of V-uniform convergence on S. Tha t  is, if ( ~ )  is a net in y S 
that  converges 11-uniformly on S to a limit ~, then p~ + p V-uniformly also. 

Proof. Clearly (a )  ~ (B). To show (B) ~ (A), we shall take S = Y x Y that  is, we 

( , ) shall consider functions ~ "  Y x Y - - - , Y .  Let (x~,x~)'c~ c A  b e a n e t  i n Y x Y w i t h  

eventuality filter equal to ~1. (For instance, we could use the filter's canonical net; see 7.11.) 
/ Let D and E be gauges that  determine the uniformities 11 and V. Then D(x~,x~) ~ 0 in 

/ Y, and (in view of observations in 18.7) it sumces to show that  E(x~, x~) ~ 0 in Y. 
Denote S = Y x Y. Define ~(x, x') = x' for all (x, x') E S. Define functions ~ : S --* Y 

by 

~ ( x ,  x') - ~ x~ if x - x~ and x' - x' O~ 

x otherwise. [ 

( ) , For each d E D and s c S we have d p~(s), ~(s) <_ d(x~,x~), which tends to 0 uniformly 

for all choices of s E S; thus ~ + ~ D-uniformly on S. By assumption (B), then, ~ --+ 
E-uniformly on S as well. Fix any e c E. Then 

( ' )  _< sup e(p~(s), ~(s)), 
sCS 

! which tends to 0 as c~ increases. This proves E(x~,x~) ~ O. 

EQUICONTINUITY 

18.28. Let X be a topological space, let (Y, e) be a pseudometric space, and let ~ �9 X --~ Y 
be some mapping. Then the o sc i l l a t i on  of ~ at a point x0 c X with respect to the 
pseudometric e is defined to be the number 

osc(~ (~, x0) = inf 
N~N(xo) 

diam~ ( ~ ( N ) )  : inf sup e(~(x), ~(x)), 
N E N(xo )  x ,x '  E N 

where N(xo) is the neighborhood filter at x0. (We may omit the subscript e if the choice 
of e is understood.) Thus, the oscillation is a number in [0, +oc]. More generally, if 0 is a 
collection of functions from X into Y, the oscillation of �9 at x0 is defined to be the number 

osce((I), * 0 ) -  inf sup diame (g~(N)) 
N~N(xo) ~E(P 

inf 
NEN(xo) ~C~ x.x'EN 

We observe that  
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a. {x E X : oscr x) < c} is an open set, and so oscr X --+ [0, +oc] is an upper 
semicontinuous function. 

b. For a single function qr the number oscc(9~,x0) is 0 if and only if 9~ is continuous at 
x0. Thus, osc~(qa, x0) may be taken as a numerical measurement of the size of the 
discontinuity of 9~ at x0. We shall generalize this result to collections (I) of functions in 
18.29(E), below. 

18.29. Definition. Let X be a topological space, and let x0 E X. Let (Y, V) be a uniform 
space, with uniformity determined by a gauge E. Let (I) be a collection of functions from 
X into Y. Then the following conditions are equivalent. If any (hence all) of them holds, 
we shall say that  (I) is e q u i c o n t i n u o u s  at the point x0. 

Whenever ( ( ~ , x ~ )  �9 a c A) is a net in (I)x X with x~ ~ x0, then (A) 
\ / 

E ( ~ ( x ~ ) ,  ~ ( x 0 ) )  ~ 0 (in the sense of 18.7(C)). 

(B) Whenever x~ ~ x0 in X, then x~(.) ~ xo(.) uniformly on (I), where we define 
x~(~) = ~(x~) and xo(~) = ~(xo). 

(C) For each V E V, there is some neighborhood G of x0 in X such that  

x a ,  r v. 

(D) For each e c E and c > 0, there is some neighborhood H of x0 in X such that  

x H, r < 

(E) The oscillation oscc((I), xo) is equal to 0 for each e c E. (Thus, the oscillation 
of a collection of functions may be taken as a numerical measurement of the 
extent to which the collection fails to be equicontinuous.) 

A collection of mappings (I) : X --+ Y is said to be e q u i c o n t i n u o u s  if it is equicontinuous 
at every point of X. 

18 .30 .  Some immediate observations about equicontinuity. 
a. If X is metrizable or, more generally, if X is a first countable topological space 

then nets can be replaced lay sequences in conditions (A) and (B) above. 

b. Let Y have uniformity given by gauge E. Then a collection �9 of functions is equicon- 
tinuous from the topological space X to the gauge space (Y, E) if and only if (I) is 
equicontinuous from X to the pseudometric space (Y, e) for each e E E. 

c. )tny element of an equicontinuous family is continuous. 

d. Any finite collection of continuous functions is equicontinuous. 

e. The equicontinuous families form an ideal i.e., any subset of an equicontinuous 
family is equicontinuous and the union of finitely many equicontinuous families is 
equicontinuous. 
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f. (Preview.) Let �9 be a collection of continuous linear maps from one normed space into 
another. Let II~ll be the operator norm of ~. Then �9 is equicontinuous if and only if 
sup{]]~]] : ~ E (I)} < ~ .  See 23.1 and 23.12. 

18.31.  Definition. Let (X, U) and (Y, V) be uniform spaces, with uniformities determined 
by gauges D and E, respectively. Let �9 be a collection of functions from X into Y. Then 
the following conditions are equivalent. If any (hence all) of them holds, we shall say tha t  

is uniformly equicontinuous: 
( , ) (A) Whenever (~,x~,x~) �9 a E A is a net in �9 x X x X that  satisfies 

, ( ) D(x~,x~) ~ 0 (in the sense of 18.7(C)), then E ~ ( x ~ ) ,  ~ ( x ~ )  ~ 0. 

(B) For each V E V, there is some U E 1/such that  

(x, x') v, �9 E V. 

(C) For each number c > 0 and each pseudometric e E E, there exists some 
number 5 > 0 and some finite set D ~ C D such that  

max d(x,x')< ~ => sup e(~(x),~(x'))< c. 
dE D '  ~ E  ,I, 

(We emphasize that  the choice of 5 and D'  depends on c and e but not on 
x,x', ~.) 

(D) For each e E E, there exists a finite set De C_ D and a function % : [0, +co) -+ 
[0, +oc)  that  is continuous and increasing, and satisfies %(0) = 0 and 

sup e(~(x),~(x')) <_ %( max d(x,x')). 
~E~ d E De 

In other words, the ~'s  have a common modulus of uniform continuity. 

Clearly, if (I) is uniformly equicontinuous, then �9 is equicontinuous and each member  of (I) 
is uniformly continuous. 

Further exercise. If X and Y are uniform spaces, X is compact,  and �9 : X --, Y is 
equicontinuous, then �9 is uniformly equicontinuous. 

18.32.  Convergence of continuous functions. Suppose X is a topological space and Y is 
a uniform space, with uniformity V determined by gauge E. Let (p~ : a E A) be a net of 
functions from X into Y, and let ~ E yX also. Show that  

a. If ~ ~ p pointwise and the set { ~  : a E A} is equicontinuous at x0, then p is 
continuous at xo. (Hint: Take limits in the inequality osce({p~}, x0) _< c to obtain 
osc(~, x0) _< c.) 

b. If ~ ~ ~ pointwise and the set { ~  } is equicontinuous, then ~ is continuous and 
~ --~ ~ uniformly on compact subsets of X. 

c. If ( ~ )  is equicontinuous, ~ is continuous, and ~ ~ p pointwise on a dense subset of 
X, then ~ ~ p pointwise everywhere on X. 



496 Chapter 18: Uniform Spaces 

d. If p~ ~ F uniformly on X and each ~ is continuous, then the net ( ~ )  is "asymptot-  
ically equicontinuous," in the sense that  

lim o s c ~ ( { ~ Z ' / ~ c ~ }  x0 / - 0 for e a c h x 0 E X a n d e E E  
sEA ' 

Using tha t  fact (or any other means), show that  ~ is continuous. 

e. If (Pn : n E N) is a sequence of continuous functions converging uniformly to a limit 
~, then p is continuous and the set {~n : n E N} is equicontinuous. Hint: Use the 
preceding result on asymptot ic  equicontinuity, plus 18.30.d. 

f. If X is a uniform space, ~ ~ ~ uniformly, and each ~ is uniformly continuous, then 
is uniformly continuous. 

g. Classical example. Let X = Y = [0, 1] with the usual metric, and let pn(X) = x n. 
Then the functions ~n are continuous on [0, 1]; the sequence ( ~ )  is equicontinuous on 
[0, 1) but not at x = 1. The sequence converges pointwise, but not uniformly, to the 
function 

~(x) - { 0 i f 0 < x < l  
1 i f x -  1. 

This function is continuous on [0, 1) but discontinuous at x = 1. 

18.33.  Equicontinuity and the product topology. Let A be a topological space, let Y be a 
uniform space, and let yA be equipped with the product topology. Suppose that  (I) C_ y a  
is equicontinuous. Then: 

a. The closure of (I) in yA (in the product topology) is also equicontinuous. Hint" 18.29(D) 
or 18.29(E). 

b. If A is separable and Y is metrizable, then the relative topology on �9 is metrizable. 
Hints" Let C be a countable dense subset of A. Use 18.32.c to show that  the 

restriction mapping p" yA ___, yC takes (I) homeomorphically onto p(O). 

c. If A and Y are both separable and Y is metrizable, then �9 is also separable. Hint" yC 
is separable, by 15.27. 

18.34.  Equicontinuity and uniform convergence topologies. Let X be a topological space, 
let g be a collection of subsets of X, let Y be a uniform space, and let y X  = {functions 
from X into Y} be equipped with the topology of uniform convergence on elements of S. 
Then the set C(X, Y) = {continuous functions from X into Y} is a closed subset of y X  
provided that  either 

(i) each x E X has a neighborhood that  is a member  of S, or 

(ii) X is metrizable (or more generally, first countable), and each convergent se- 
quence in X is contained in some member  of g. 

Proof. If (f~) is a net in C(X, Y) that  converges uniformly on members of g to some 
f E yX ,  then at least each restriction f I s  will be continuous for S c S, by 18.32.d. Now 

the continuity of f on X follows under hypothesis (i) by 15.16, or under hypothesis (ii) by 
15.34.d. 
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18 .35 .  A r z e l a - A s c o l i  T h e o r e m .  Let X be a topological space, let Y be a uniform space, 
and let C(X, Y) - {continuous functions from X into Y} be given the topology of uniform 
convergence on compact subsets of X. Let (I) c_ C(X, Y). If 

( la) (I) is equicontinuous, and 

(lb) the set (I)(x) = {qp(x): g) E (I)} is relatively compact in Y for each x E X 

then 

(2) (I) is relatively compact in C(X, Y). 
We also have this partial converse: Assume X is locally compact or first countable; then 
(2) => (1). 

Remarks. Since the topologies on Y and C(X, Y) are completely regular, the characteriza- 
tions of "relatively compact" given in 17.15 are applicable. 

Proof of (1) => (2). Let ( ~  : ~ E A) be any universal net in ~; it suffices to show 
( ~ )  converges to a limit in C(X, Y). For each fixed x, observe that  (qp~(x) : c~ E A) is a 
universal net in Y. Hence ( ~ )  converges pointwise to a limit ~. Use the equicontinuity 
of (I) to show that  the limit function is continuous and that  the convergence is uniform on 
compact sets. 

Proof of (2) => (lb). Fix any x E X. Then the singleton {x} is compact. Any net in ~(x)  
can be represented in the form ( ~ ( x )  : c~ E A) for some net (qp, : c~ E A) in O. That  net 
has a subnet converging uniformly on compact sets, hence converging on x. 

Proof of (2) => (la).  Let E be a gauge that  determines the uniform structure of Y. 
Consider any net ((qp~,x~): c~ E A) in (I) • X with x~ -+ x0; in the case where Y is first 
countable, we may assume this net is a sequence. We are to show that  E ( ~ ( x ~ ) ,  ~9~(x0)) -+ 
0 (in the sense of 18.7). 

Suppose, on the contrary, that  e ( ~ ( x ~ ) ,  ~ ( x 0 ) )  -/-+ 0 for some e E E. Replacing the 
given net with a subnet (or replacing the given sequence with a subsequence), we may 
assume that  

e ( ~  (x~), ~ (x0)) _> p for some constant p > 0. ( ,)  

We may assume that  all the x~'s and x0 are contained in some compact set either 
because x0 has a compact neighborhood K that  contains all the x~'s for c~ sufficiently 
large, or because (x~) is a sequence converging to x0 (see 17.7.e). Now use the assumption 
(2). Again passing to a subnet (at this point we no longer need a subsequence), we may 
assume that  ( ~ )  converges to some limit p in C(X, Y) uniformly on compact sets and thus 
uniformly on K. Hence 

e (g)~(x~), ~(x~)) --+ 0 and e ( ~ ( x 0 ) ,  ~(x0)) -+ 0. 

Also e (~(x~), ~(x0)) --+ 0 since ~ itself is continuous. These results contradict (,) .  

18.36.  C o r o l l a r y  ( A r z e l a - A s c o l i  T h e o r e m ,  c lass ical  ve r s i on ) .  Let 

C[0, 11 - (continuous functions from [0, 1] into R} 
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be given the topology of uniform convergence on [0, 1] i.e., the topology determined by 
the metric e(f ,g) - max{If(t  ) - g ( t ) [ "  t E [0, 1]}. Let �9 c_ C[O, 1]. Then �9 is relatively 
compact in C[O, 1] if and only if �9 is uniformly bounded (i.e., supte[0,!] supfee [f(t)l < oo) 
and equicontinuous. 



Chapter  19 

Metric  and Uniform Completeness  

19.1. Introductory remarks. Most applications of Cauchy completeness are in metric spaces, 
but a more general setting is occasionally useful; we shall develop the concept in the setting 
of uniform spaces. (A still more general setting is possible; see the remarks in 19.29.) 

Some important  variants of completeness will be introduced later: Baire spaces, and 
barrelled and ultrabarrelled spaces. 

Many of the ideas in Chapter  18 were based on the category in which the objects were 
uniform spaces and the morphisms were the uniformly continuous maps. Some of the ideas 
in the present chapter arise more natural ly in the category whose objects are uniform spaces 
and whose morphisms are Cauchy continuous maps, introduced in 19.24. 

CAUCHY FILTERS, NETS, AND SEQUENCES 

19.2. Definitions. Let (X, ll) be a uniform space, and let D be any gauge that  determines 
the uniformity II. Let (x~ : c~ c A) be a net in X,  and let 9" be its eventuality filter. Then 
the following conditions are equivalent; if any (hence all) of them are satisfied, we say that  
(x~) and 9-are C a u c h y .  

(A) For each d E D and each number c > 0, there is some F E ~ such that  
d iamd(F)  _< c. 

(B) For each d E D and each number c > 0, there is some "y - ~d,e  E A such tha t  

(C) For each U E li, there is some F E 9" such tha t  F • F C_ U. 

(D) (A two-sided Cauchy condition.) For each entourage U E II, we have eventu- 
ally (x~,xz)  E U. Tha t  is, for each U E 11, there exists some 7u E A such 
t h a t a , / 3 ~ T g  => (x~,xz)  E U .  

(E) (A one-sided Cauchy condition.) For each entourage V E II, there exists some 
-y in A with the property that  a >~ -y => x~ E V[x~]. (Recall from 5.33 that  

= {y : (x, y ) � 9  v} . )  

Proofs. The proofs of equivalence of all the conditions but the last one should be fairly 
straightforward. To prove 19.2(D) => 19.2(E), take U = V -1 and then take /3  = ~. To 
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prove 19.2(E) =~ 19.2(D), choose V so that  V o V -1 C_ U. 

Further observations. The conditions above are unaffected if we replace the gauge D with 
any uniformly equivalent gauge. They may also be unaffected in some cases if we replace 
the gauge with one that  is not uniformly equivalent; see 19.25(ii). 

Observe tha t  (x~) and 9" are Cauchy for the gauge D if and only if they are Cauchy for 
each pseudometric d E D. 

19.3. Sequences are just  a special case of nets, but they are a case important  enough to 
deserve separate mention. Let (X, 112) be a uniform space; let D be a gauge that  yields the 

.uniformity II. Then a sequence (Xn) in X is Cauchy if 

for each U E II, there exists some positive integer Nu such that  m, n > Nu 
(Xm,Xn) CU 

or, equivalently, 

for each d c D and each number c > 0, there is some positive integer N - Nd,~ 
such tha t  m, n > N ~ d(xm, xn) < e. 

19.4. Elementary properties of Cauchy nets. Let X be a uniform space, with uniformity 
II given by gauge D. Show that  

a. Any convergent net is Cauchy; any convergent filter is Cauchy. 

b. Any subnet of a Cauchy net is Cauchy; any superfilter of a Cauchy filter is Cauchy. 

c. Suppose (x~) is a Cauchy net. Then any subnet of (x~) has the same set of limits as 
(x~). Hence, if some subnet of (x~) converges, then so does (x~). 

d. If (x~) is a universal net and some subnet of (x~) is Cauchy, then (x~) itself is Cauchy. 

e. Let X be a set equipped with the initial uniformity determined by some collection of 
mappings into uniform spaces, 7ra : X ---+ Xa (A c A), as defined in 9.15 and 9.16. 
Then a net (x~ : c~ e A) is Cauchy in X if and only if the net (Tr~(x~) : c~ e A) is 
Cauchy in Xa for each ,~ E A. 

In particular,  a net (f~ : c~ E A) in a product I-IAEA YA of uniform spaces is Cauchy 
if and only if it is Cauchy coordinatewise i.e., if and only if the net (f~(,~) : c~ c A) 
is Cauchy for each A c A. 

19.5. Proposition. If (x~) and (yz) are Cauchy nets that  have a common subnet, then 
they also have a common supernet that  is Cauchy i.e., then (x~) and (yz) are subnets 
of a Cauchy net. 

This can be reformulated in terms of filters (see 7.18(E)): Let 9" and ~} be Cauchy filters 
on a uniform space X. Suppose that  every member of 9" meets every member  of 9. Then 
9" A 9 is Cauchy. 

Proof. The proof is easier in terms of filters. Let II be the uniformity on X. Let any U E II 
be given; we wish to find some H E 9" A ~} satisfying H • H C_ U. By 5.35.c, choose some 
symmetr ic  entourage V such that  V o V C_ U. Since 9" and ~ are Cauchy, there exist F E 9" 
a n d G C ~ } s u c h t h a t F x F C _ V a n d G x G C _ V .  Now l e t H - F U G ; s h o w t h a t H x H C _ U .  
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19.6. Observation. A sequence (Xl,X2,x3,...) converges to a point x if and only if the 
sequence (Xl, z, z2, z, z3, x , . . . )  is Cauchy. 

We shall now prove an analogous result for nets. 

Proposition. Let (z~) be a net in X, and let z E X. Then z~ ~ z if and only if (x~) and 
the constant net (z) are subnets of some Cauchy net. 

This can be reformulated more canonically, using filters: 
Let fl ~ be a filter on X, and let e be the ultrafilter fixed at some point z. Then 9" ~ z if 

and only if the filter 9" A e is Cauchy. 

Proof. The proof is easier in terms of filters. Let N(z) be the neighborhood filter at z. 
First, suppose 9" ~ z. Then 9' _D N(z). Hence 9~Ae _D N(z). The filter N(z) is convergent 

to z, hence the filter 9" N e is convergent to z, hence it is Cauchy. 
Conversely, suppose 9-N C is Cauchy, and let any N E N(z) be given; we shall show that  

N E 9". By the construction of the uniform topology, we know that  N D_ U[z] for some 
entourage U in the uniformity II. Since 9" A C(z) is Cauchy, there is some set K E 9- A C 
satisfying K x K C_ U. Since K E C, we have z E K. Therefore 

w ~ K ~ ( ~ , ~ )  ~ K • K C U ~ w ~ U[z] C_ N .  

Thus K C_ N. Since K E 9-, it follows that  N E 9-. 

19.7. Proposition. Let (z~ " a  E A) be a net in a uniform space (X, 11). Suppose that  

(i) for each increasing sequence/3(1) 4/3(2)  4 ~(3) 4 . . .  in A, the sequence (xz(k)" k E 
N) is Cauchy. 

Then 

(ii) the net (x~ " a  E A) is Cauchy. 

(We shall use this result in 29.25.) The converse is false 
does not imply condition (i). 

i.e., in general, condition (ii) 

Proof of (i) =~ (ii). We shall show that  condition 19.2(E) is satisfied. Indeed, suppose not. 
Then there is some entourage V E II for which there is no corresponding { E A. Hence for 
each ~ E A there exists some a > { such that  x~ ~ V[x~]. In this fashion we recursively 
construct an increasing sequence a ( 1 ) , a ( 2 ) , a ( 3 ) , . . ,  satisfying (x~(k),x~(k+l)) ~ V. Such 
a sequence is not Cauchy. 

Counterexample to (ii) =~ (i). Let X - R, with its usual metric. Let A - {(r ,n)  E 
R x N ' i r  I _< 1}.~ Let A be ordered as follows" (rl ,  ?tl) ~ (r2, •2) if 7t I _~ ?t 2 (regardless 
of the values of rl and r2). It is easy to see that  A is a directed set. Let x(~,~) - r; 
then it is clear that  the net (x~ �9 a E A) converges to 0 and thus is Cauchy. However, 
consider the increasing sequence ( a (k ) -  k E N) defined by a(k)  - ( ( - 1 )  k, 1); the sequence 
(x~(k)) - ( - 1 ,  1 , - 1 ,  1 , . . . )  is not Cauchy. 

19.8. More about Cauchyness in metric spaces. Let (X, d) be a pseudometric space. 
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a. Any Cauchy sequence in X is metrically bounded. Any Cauchy net in X is eventually 
metrically bounded. 

b. Any Cauchy sequence (Xn) satisfies d(xn,Xn+l) --+ O. 
The converse is false. For instance, in IR with its usual metric, the sequence Xn = x/~ 

is not Cauchy but satisfies d ( x n , X n + l )  ~ O. 
(Optional.) If (X,d) is an ultrametric space and d(xn,Xn+l) ~ O, then (Xn) is 

Cauchy. 
(XD 

c. ( S u m m a t i o n  p r o p e r t y . )  If a sequence (Yk) satisfies }--~k=l d(yk,Yk+l) < cx~, then 
(Yk) is Cauchy. 

Not every Cauchy sequence has that summation property, but every Cauchy se- 
quence (xn) has a subsequence (yk) with that property. In fact, we may choose (yk) 
so that d(yk, Yk+l) < 2 -k for all k. 

COMPLETE METRICS AND UNIFORMITIES 

19.9. Definitions. A uniform space (X, I1) is c o m p l e t e  if each Cauchy net or filter in 
X has at least one limit. (This condition, which only holds in some uniform spaces, is a 
converse to 19.4.a, which holds in any uniform space.) 

It will be helpful to extend this terminology to subsets of X as well. We say that a set 
S c_ X is c o m p l e t e  (or D is complete on S) if every Cauchy net or filter in S has at least 
one limit in S. 

19.10. Basic properties of completeness. Let (X, ~) be a uniform space. 

a. Let S c_ X. Then S itself is a uniform space, when equipped with the trace of ~ (see 
9.20). Show that S is complete, when viewed as a subset of X, if and only if S is 
complete when viewed as a subset of itself. 

b. Any closed subset of a complete uniform space is complete. 

c. If X is a complete Hausdorff uniform space and S c_ X, then S is complete if and only 
if S is closed. (Contrast this with 20.12.) 

d. We say that a set S c_ X is s equen t i a l l y  c o m p l e t e  if every Cauchy sequence in 
S converges to at least one limit in S. Observe that any complete uniform space is 
sequentially complete. 

Caution: Some mathematicians who are concerned only with sequences omit the 
term "sequentially" here. However, completeness and sequential completeness are not 
equivalent in general. 

19.11. Examples and further properties in pseudometric spaces. Let (X, d) be a pseudo- 
metric space. Then: 

a. If X is sequentially complete, then it is complete. 
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b. ( S u m m a b i l i t y  p r o p e r t y . )  (X,d) is complete if and only if it has this property: 
Whenever (z~) is  a sequence satisfying Erz%l d(ocn,oCn+l) < oo, then (z~)converges. 

c. ( C a u c h y ' s  I n t e r s e c t i o n  p r o p e r t y . )  (X,d) is complete if and only if it has the 
following property: If S1 _D $2 __D Sa _D .. .  and the Sn's are nonempty closed subsets 
of X with lim,~__+~ diam(S~) - 0, then Nn%l Srt is nonempty. (The proof of this fact 
uses Countable Choice (CC).) 

d. On any set, the "Kronecker metric" d(z, y) = 1 -~xy  (defined in 2.12.b) is complete. 
However, see the contrasting result below: 

e. The sets IR and Z are complete when equipped with the usual metric d(z, y) = I z - Yl, 
but not with d(oc, y) = I a r c t a n ( z ) -  arctan(y)I. (Hint: 17.9.b and 19.8.a.) 

Note that these metrics are topologically equivalent but not uniformly equivalent 
i.e., they yield the same topology on IR or on Z, but not the same uniform structure. 

The topology they yield on Z is the discrete topology. Thus, not every discrete metric 
is complete (although "the" discrete metric is complete, as noted in 19.11.d). 

f. Use the completeness of IR to show that the metric space B(A) introduced in 4.41.f is 
complete. The embedding in 4.41.f shows that every metric space may be viewed as a 
subset of a complete metric space. See also 22.14. 

g. As we noted in 18.24, all metrics that yield the usual topology on [-oc, +oc] are 
uniformly equivalent to one another i.e., they yield the same uniformity. That 
uniformity is complete. 

h. Any knob space (defined as in 5.34.c) is complete. 

i. Technical ezercise. Let p and d be metrics on a set X. Suppose that 

(i) p is complete, 

(ii) p is topologically stronger than d, and 

(iii) every d-Cauchy sequence has a subsequence that is p-Cauchy. 

Then p and d are topologically equivalent and d is complete. (This result will be used 
in 19.47.) 

19.12. C o m p l e t e n e s s  of  u n i f o r m  convergence .  If Y is a complete metric space and X 
is any set, then y X  is complete when equipped with the uniformity of uniform convergence 
on X. 

More generally, if Y is a complete uniform space and X is any set, then y X  is complete 
when equipped with the uniformity of uniform convergence on members of S (described in 
18.26) for any collection S C_ [P(X). 

Proof. Let E be a bounded gauge that determines the uniformity of Y. Let y X  be equipped 
with the gauge {Ps,~ : S E S, e E E}, with notation as in 18.25 and 18.26. Let 
(f~ : ct E A) be a Cauchy net in yX;  we must show that (f~) converges to a limit in y X .  

Let T = USES S. We first show that (f~) converges pointwise on T. Fix any t E T. 
Then t E S for some S E S. Fix any e E E. Since ( f~ ) i s  ps,~-Cauchy, the net (f~(t)) is 
e-Cauchy in Y. This applies for each e E E, so the net (f~(t)) is E-Cauchy in Y. Since Y 
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is assumed complete, there is some limit to which (f~(t)) converges. (There may be more 
than one, if the gauge space (Y, E) is not Hausdorff.) Let f( t)  be any limit of (f~(t)). 

Now fix any S E 8, e E E, and c > 0. Since (f~) is Cauchy, there is some 70 c A such 
that a, fl > 70 ~ ps, e(f~, f~) _< c i.e., such that 

9 ,  t e s h ( t ) )  <_ 

Hold a fixed and let/3 increase, and take limits. This shows that 

c ~ 7 0 ,  t E S ~ e( f~( t ) , f ( t ) )  <_ e. 

It follows that f~ ~ f in the topology of uniform convergence on members of S. 

Remarks. In most cases of interest, Y is Hausdorff and U s e s  S - X. Then the complete 

uniform structure on y X  is also Hausdorff, and a set (I) c_ y X  is complete if and only if it 
is closed. Thus it becomes important to know which subsets of y X  are closed; see 18.34. 

19.13. C o m p l e t e n e s s  of  po in tw i se  convergence .  Any product of complete spaces is 
complete, when equipped with the product uniformity. 

In some cases this is easy to verify and does not require the Axiom of Choice. Indeed, 
the product of finitely many or countably many metric spaces is metrizable, wi th  metrics 
given as in 18.16 and 18.17. In particular, R n is complete, and so is any closed subset of 
I~ n. Since C is isomorphic to R 2 as a uniform space, C is also complete. 

For arbitrary products, however, the Axiom of Choice is needed. We shall now show 
that AC (introduced in 6.12, 6.20, 6.22) is equivalent to the two principles below. Recall 
the definition of "knob space," in 5.34.c. 

(AC26)  P r o d u c t  of  C o m p l e t e  Spaces .  For each A in some set A, let Y~ 
be a complete uniform space. Then the product X - I-I~eA Y~, equipped with 
the product uniform structure, is also complete. 

(AC27)  P r o d u c t  of  K n o b  Spaces .  Any product of knob spaces, when 
equipped with the product uniform structure, is complete. 

Proof of (AC3) ~ (AC26). Let 9" be a Cauchy filter on X; we wish to show that 9" has 
at least one limit. For each A, the filterbase 7~(~) is Cauchy in Y~. Since Y~ is complete, 
the set S~ of limits of ~ (9") is nonempty. By the Axiom of Choice (AC3), R - H~cA S~ is 
nonempty; then any element of R is a limit of 9 ~. 

Remark. It should be noted that if all the Y~ 's are Hausdorff, then the Axiom of Choice is 
not needed, since each S~ is a singleton. In this special case, the argument above establishes 
the statement (AC26) using just ZF i.e., set theory without the Axiom of Choice. In 
particular, AC is not needed to prove that 2 A is complete, where 2 - {0, 1} has the discrete 
uniform structure. 

Proof of (AC26) ~ (AC27). As we noted in 19.11.h, every knob space is complete. 

Proof of (AC27) ~ (AC3). Let A, S~, ~ ,  Y~, X,  ~ be as in 6.24, and equip X with topology 
and uniform structure as the product of knob spaces. For each A c A, the filterbase 7h(9") 
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is Cauchy on YA, since it includes the set rra(T{A}) = SA. Since SA is closed in YA, any limit 
of rex (9") must lie in Sa. Since each rrA (9 ~) is Cauchy, the filterbase 9" is Cauchy on X. By 
hypothesis, X is complete, so fir has at least one limit ~ in X. We have rrA(~) c SA for each 
A; thus ~ E I-I~A S~. 

TOTAL BOUNDEDNESS AND PRECOMPACTNESS 

19.14.  Definition. Let (X, 11) be a uniform space, and let D be any gauge that  determines 
the uniformity 11. A set S c_ X is t o t a l l y  b o u n d e d  if 

for each U c ~[, there is some finite set F C_ X such that  S c_ U x c r  U[x] 

or, equivalently, if 

for each number c > 0 and each d E D, there exists some finite set F C_ X such 
that  S c_ Ux~F Bd(X, c). 

The proof of equivalence of these two definitions is left as an exercise. 
different characterization of totally bounded sets will be given in 19.17. 

A substantially 

19 .15 .  
a .  

b" 

Basic properties of total boundedness. 
We obtain an equivalent definition if we replace "finite set F c_ X" with "finite set 
F C S" in either of the conditions above. 

In a pseudometric space, the definition above simplifies slightly. A set is totally 
bounded if and only if, for each c > 0, the set can be covered by finitely many balls of 
radius c. 

C.  If X is a uniform space and S c_ X, then S' is also a uniform space (see 9.20). Show 
that  S is totally bounded, as a subset of X, if and only if S is totally bounded as a 
subset of itself. 

d. Let D be a gauge that  determines the uniformity 11. Then a set S C_ X is totally 
bounded in the uniform space (X, ll) - (X,D)  if and only if S is totally bounded in 
each of the pseudometric spaces (X, d) for d E D. (Hence many questions about  total  
boundedness of uniform spaces can be reduced to questions about  total  boundedness 
of pseudometric spaces.) 

e. Any finite subset of a uniform space is totally bounded. 

f. The totally bounded subsets of a uniform space form an ideal. Tha t  is: any subset of a 
totally bounded set is totally bounded, and the union of finitely many totally bounded 
sets is totally bounded. 

g. If {Y~ �9 A c A} is a collection of totally bounded uniform spaces, and X is equipped 
with an initial uniformity determined by the Y~'s, then X is also totally bounded. 

In particular,  any product  of totally bounded uniform spaces is totally bounded, 
when equipped with the product uniform structure.  
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More particularly, 2 A is totally bounded for any set A. This argument does not 
require the use of the Axiom of Choice or any weakened form of Choice; we shall use 
that  observation in a proof in 19.17. 

h. Let S c_ X. If S is totally bounded, then cl(S) is totally bounded. Hint: 

c, (u  u c, 

k. 

where Kd is the closed ball defined as in 5.15.g. 

If X is totally bounded, then any universal net (or any ultrafilter) in X is Cauchy. 
Hint: 5.8(E) and/or  7.25.d. 

Any totally bounded pseudometric space is separable. Hint: Use a sequence of e's that  
decreases to 0. 

Let X be a uniform space, and let S be a subset with the property that  every sequence 
in S has a cluster point in X. Then S is totally bounded. 

Hints: Suppose not. Then there is some number e > 0 and some pseudometric d in 
a determining gauge, such that  S cannot be covered by finitely many d-balls of radius e. 
Hence we can recursively choose a sequence (xn) in S such that  xn ~ n-1 Uj=I Bd(Xj, C). 
Let z be a cluster point of that  sequence. Show that  Bd(z,c/2) contains infinitely 
many of the Xn'S and hence it contains at least two of them, a contradiction. 

19.16. Let X be a uniform space. In this book we shall say that  X is p r e c o m p a c t  if 
every proper filter on X has a Cauchy superfilter or, equivalently, if every net in X has 
a Cauchy subnet. 

It is easy to see that  

a uniform space is compact if and only if it is complete and precompact. 

This result does not require the Axiom of Choice or any weak form of the Axiom of Choice, 
unlike the results below. 

19.17. The Ultrafilter Principle, introduced in 6.32, is equivalent to the following principles" 

( U F 2 4 )  Let X be equipped with the uniform structure given by a gauge. 
Then X is precompact if and only if X is totally bounded. 

( U F 2 5 )  Let X be equipped with the uniform structure given by a gauge. 
Then X is compact if and only if X is complete and totally bounded. 

Remark. Most mathematicians use the terms "precompact" and "totally bounded" inter- 
changeably. That  is not surprising, since most mathematicians view the Axiom of Choice 
as "true" and therefore view (UF24) as "true." In this book we have distinguished between 
"precompact" and "totally bounded" precisely to see the role of the Ultrafilter Principle as 
a weak form of the Axiom of Choice. 

The equivalence of (UF25) with other forms of UF was first announced by Rubin and 
Scott [1954]. 
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Proof of (UF1) ~ (UF24). If X is totally bounded, then X is precompact; this follows 
immediately from (UF1) and 19.15.i. 

Conversely, we shall show that precompact implies totally bounded. This part of the 
proof does not require UF; it can be proved in ZF. Assume X is precompact but not totally 
bounded; we shall obtain a contradiction. Since X is not totally bounded, there is some 
number e > 0 and some pseudometric d E D such that X cannot be covered by finitely 
many balls Bd(X,C), with centers x E X. Let 

[J - {A c_ X �9 A can be covered by finitely many open balls of radius c}. 

Then ~J is a proper ideal on X. It is dual to the proper filter 9 " -  {X \ A �9 A E J}. 
By assumption, 9" has a Cauchy superfilter 9. Since 9 is Cauchy, it has some member 

G with diameter less than c. Then G can be covered by an open ball of radius c, and so 
G E ~I. This leads to a contradiction. 

Proof of (UF24)==> (UF25). Immediate from 19.16. 

Proof of (UF25) ~ (UF21). By 19.15.g and the remark in 19.13, we know that 2 x 
is totally bounded and complete. Hence 2 x is compact. This proves (UF21), which was 
presented in 17.22. 

19.18. An important special case of (UF25) is: A pseudometric space is compact if and 
only if it is complete and totally bounded. This can be proved without using UF; we omit 
the proof. 

19.19. Definition and exercises. Let (X, d) be a metric space, and let S be a metrically 
bounded subset of X. Then we define K u r a t o w s k i ' s  m e a s u r e  o f  n o n c o m p a c t n e s s  

- 

and H a u s d o r f f '  

9 ( s )  - 

Show that 

inf {r  �9 S can be covered by finitely many sets with diameter <_ r}  

s m e a s u r e  o f  n o n c o m p a c t n e s s  

inf { r "  S can be covered by finitely many balls with radius _< r}.  

a. The two measures are "equivalent," in this sense: /3(S) _< a(S)  _< 2/3(S). Thus one 
measure is small if and only if the other is small. 

b. a(S)  and/3(S) are zero if and only if S is totally bounded. Thus, in a complete metric 
space, a(S)  and ~(S) are zero if and only if S is relatively compact. 

c. /3(S) is the distance from cl(S) to the nearest compact set, in the Hausdorff metric on 
the space of closed, metrically bounded sets (see 5.18.d). 

19 .20 .  N i e m y t z k i - T y c h o n o v  T h e o r e m .  Let (X, 9-) be a topological space; assume the 
topology 9" is pseudometrizable. Then (X, ~) is compact if and only if every pseudometric 
yielding the topology 9" is complete. 
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Proof. This proof is taken from Engelking [1977]. The "only if" par t  follows from 19.18. 
For the "if" part ,  assume tha t  (X, 9") is not compact;  we shall construct  an incomplete 
pseudometr ic  for 9". 

By 17.33, X is not countably compact.  By 17.26.b, there exist nonempty  closed sets 
( X 5  

F1 D F2 D F3 _D . . .  such tha t  the intersection ~ i = l F i  is empty. By 18.14, there is 
some pseudometr ic  a on X tha t  yields the given topology and is bounded by 1. Now for 
i = 1 , 2 , 3 , . . . ,  define 

pi(x,y) = [ ~ i ( x ) -  5i(y)[ +cr(x,y) min{Si(x),~i(y)} where ~ ( x )  = dist~(x, Fi). 

_ oo 2_i (x,y)" verify tha t  p is a Verify tha t  p~ is a pseudometric  on X. Let p(x, y) }--~=1 P~ , 
pseudometr ic  on X.  Show that  p and cr have the same convergent sequences; thus p yields 
the topology 9". Also show tha t  diamp(Fi)  < 2-i ;  by 19.11.c we conclude tha t  p is not 
complete. 

B O UND ED VARIATI ON 

19.21.  Let (X, d) be a metric space, and let p : [a, b] ---. X be some function. The v a r i a t i o n  
of p is the number  

) } V a r ( ~ ,  [a, b]) - s u p  d ~ ( t j _ l )  , ) 9 ( t j )  " a - -  t o < t 1 < . . .  < t n  - -  b . 
" z  

Here the supremum is taken over all part i t ions of [a, b] into finitely many subintervals. (For 
clarification, we may refer to this as the v a r i a t i o n  in t h e  s e n s e  o f  i n t e r v a l s ,  or v a r i a t i o n  
in t h e  c l a s s i ca l  sense ;  another  meaning of "variation" is given in 29.5. In 29.34 we discuss 
the relation between the two notions.) The function ~ has b o u n d e d  v a r i a t i o n  on [a, b] if 
Var(~,  [a, b]) < oc. Some elementary but  impor tan t  propert ies are noted below. 

a. Var(~,  [a, q]) + Var(~,  [q, b]) = Var(~, [a, b]) for a < q < b. 

b. Var(~,  [a, b]) = 0 if and only if ~ is constant  on [a, b]. 
A 

c. If ~ "[3, b] ~ [a, b] is an increasing function or a decreasing function, then Var(~ o 
A 

[a, hi) - hi) .  

d. If ~ : [a, b] ~ X has bounded variation and "7 : X ~ Y is Lipschitzian (where X 
and Y are metric spaces), then -y o ~ : [a, b] ~ Y has bounded variation. In fact, 
Var('), o qp, [a, b]) _< (')'}LipVar(F, [a, b]). 

Remark. Although this result is easy to prove, a harder  proof will not yield a 
s tronger result; tha t  is evident from the converse given in 19.23. 

e. Corollary. If ~ : [a, b] ~ Y is Lipschitzian, then ~ has bounded variation, with 

Var(~,  [a, b]) _< (b - a ) ( / ) L i  p. 

f. Example. Show that  the function f ( t )  - t cos ~ is continuous on [0, 1] but  does not 

have bounded  variation. 
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g. A function with  bounded  variat ion need not be continuous. For instance,  show tha t  
any increasing function from ~ into R has bounded  variation. 

h. A function ~ : [a, b] ~ R has bounded  variat ion on [a, b] if and only if ~ is the difference 
of two increasing functions. (We emphasize  tha t  ~ does not need to be continuous.)  

Hint for the "only if" part: Assume ~ has bounded  variation. Show tha t  p(t) = 
Var(~,  [a, t]) and n(t) = p(t) - ~(t) are increasing functions. 

i. A function ~ :  [a, b] ~ C has bounded  variat ion on [a, b] if and only if Re ~ : [a, b] ~ R 
and Im ~ :[a,  b] ~ R both  have bounded  variation.  

More advanced ideas about  bounded  variat ion will be covered in 22.19 and thereafter .  

19 .22 .  Proposition. Suppose p ' [ a ,  b] ~ X has bounded  variat ion,  where X is a complete 
metr ic  space. Then  p ( t + )  - l im~lt p( t )  exists at every t E [a, b), and ~ ( t - )  - l i m ~ T t  ~(t)  
exists at every t C (a, b], and p is continuous except at countably  many  points of [a, b]. 
In fact, ~ is right or left continuous at each point where the increasing function t H 
Var(~,  [a, t ] ) i s  right or left continuous,  respectively. 

Hints: If ~ is real-valued and increasing, then  these results follow from 15.21.c. If F is 
real-valued, then  these results follow from 19.21.h. Now consider the case where ~ takes 
values in a complete  metr ic  space X.  

Let ~(u)  - Var(p,  [a, u]). Then  ~ is an increasing real-valued function on [a, b], so for 
each t E [a, b) we have the existence of ~ ( t + )  - limpet ~(u) ,  and moreover ~ ( t + )  - ~( t )  
except at countably  many  values of t. 

W h e n  u and v decrease to t, then ~(u)  and ~(v)  bo th  converge to the same limit ~ ( t + ) ;  
since 

d ( ~ ( u ) ,  ~(v))  < Var(~,  [u,v]) - r  - ~p(u), 

it follows tha t  the values of F(u)  and ~(v) form a Cauchy net. Thus  g)(t+) - limpet qp(u) 
exists at every t E [a, b). If ~ is right continuous at t, then we may  apply tha t  a rgument  
above with u - t to show tha t  F is right continuous at t. 

19 .23 .  J o s e p h y ' s  T h e o r e m  ( o p t i o n a l ) .  Let (X, d) and (Y, e) be compact  metr ic  spaces. 
Suppose -7 : X --~ Y has the proper ty  tha t  whenever ~ : [0, 1] ~ X has bounded  variation,  
then 7 o ~ : [0, 1] ~ Y has bounded  variation. Then  7 is Lipschitzian. (This is a converse 
to 19.21.d.) 

Proof. Suppose "7 is not Lipschitzian. Then  there exists a sequence (xn ,x~)  in X x X 
! ' and e (y(x,~), 7 ( x ' ~ ) ) / d ( x n , x ~ )  ~ ~ .  Since Y has finite d iameter ,  we such tha t  x~ r x~ 

have d(x~, x~) ---, O. Since X is compact ,  by passing to a subsequence we may  assume the 
sequences (x~) and (x'~) bo th  converge to some limit x ~  in X.  For simplici ty of nota t ion  

! 
later in the proof, let us also denote x0 - X l. 

Passing to a further  subsequence,  we may assume tha t  

1 1 
> + 1) ' ' ' 
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Now let (~n -- d(xn,  Xtn); then (~n < 2 / n  2. Define ~ ' [ 0 ,  1] ~ X by 

x ~  when t - 0 

Xn 

! X n 

1 1 ] and t - 1 is multiple of (~n when t E W4-7, n /  a 

1 1) a n d t -  1 when t E h--4-T, g h-%-T is not a multiple of 5n 

x0 w h e n t - 1 .  

We shall show tha t  ~ has bounded  variat ion but  3' o ~a does not. It is clear tha t  ~ has left 
and right limits at each point. Since we wish to show tha t  7 o ~a does not have bounded  
variation, we may (arguing by contradict ion) assume tha t  it does; thus we may assume tha t  
7 o ~ also has left and right limits. 

Let ~ be either the identi ty map  or 7; by analyzing the function ~ o ~ we shall simulta- 
neously analyze the two functions ~ and 7 o ~a. Let p be either the metric d or the metric 
e. The function ~ o p has variat ion given by 

Var(~ o p, [0, 1]) 

{ ( 1 ) ~ ~ - ~ - (  [ 1 1 
= lira p ~(~(0)) ~(~a(N + 1 )) + Var L o ~a, , 

N--.~ ' n + l  n n=l  

= p t ( x ~ ) l i m t ( ~ a ( t ) )  + Var ~o~p, ~ , -  . 
' tl0 n + l  n n=l  

1)} 

The te rm involving ~(x~)  is finite; the question is whether  the infinite series converges. 

( [ 1 1 ] ) L e t  Temporar i ly  fix n, and let us analyze Var t o ~a, ~ - i ,  n �9 

1 
r j = n +  1 + j 6 n  for j = 0 , 1 , 2 , . . . , J ,  

with nonnegat ive integer J chosen so tha t  

1 1 
=To < T1 < "'" < TJ < -- ~ TJ+I. 

n + l  n 

1 ~/ it takes the value at The function ~ is a step function on the interval ~--4-i, Xn 
.J 

t each of the points 70, r l ,  r 2 , . . . ,  r j ,  the constant  value x n on each of the open intervals 
1 1 Hence (TO'T1)'(TI'T2)'' ' ' '(TJ--I'TJ)'( TJ' n) '  and the value Xn-1 at ~. 

Var (5 o ~a, 
1 1 

n + l ' n  
I - - (2J+l )P(C(Xn) 'C(x ln ) ) -+P(C(x ln ) 'C(Xn-1) ) "  

1 < , which can be rewri t ten  To es t imate  this quantity,  we shall use the inequality r j  < n -- TJ+I 
1 

as J < n(n+l)5n --< J + 1. 
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We now analyze the two cases separately: When c is the identity function, we obtain 

( 1 11 )  ( 2  ) ( 1  1 ) Var ~, ~ - - (2J + 1)(~n + d(x~n Xn--1) < Jr-~n -Jr- -~- n + l ' n  ' n(n + 1) ~Z ( n -  1) 2 

which is summable over n. On the other hand, when ~ is the function 7, we obtain 

( [ 1 1 )  
Var 7 o ~, , - (2J + 1)e (7(xn), ' ' ~(Xn) ) -~- C (~/(Xn) ~(Xn-1)) n + l  n 

> ( J + l ) ' e ( ~ / ( x ~ )  ~(x~)) >_ ( 1 ) - ' n(n + 1)~n " (n(n + 1)d(xn,x~)) - 1, 

which is not summable over n. This completes the proof. 
For generalizations and further references, see Pierce [1994]. 

C AU CHY C ONTINUITY 

19.24. Definition. Let X and Y be uniform spaces. A mapping f : X --~ Y is C a u c h y  
c o n t i n u o u s  if it has this property: Whenever (x~) is a Cauchy net in X, then ( f (x~))  is a 
Cauchy net in Y. An equivalent formulation in terms of filters is: Whenever 9" is a Cauchy 
filter on X, then the filter generated by the filterbase f(9-) = { f ( F ) :  F E 9"} is Cauchy on 
Y. 

Cauchy continuity will only be studied briefly here; a deeper study can be found in 
Lowen-Colebunders [1989]. 

19.25. Proposition. Let f "  X --~ Y be a map from one uniform space into another. Then 

f is uniformly continuous =~ f is Cauchy continuous =~ f is continuous. 

(Hint: For the second implication, use 19.6.) 
Moreover, neither of these implications is reversible. For instance, let IR and the interval 

( - ~ ,  ~) have the usual metric d(x, y) - I x -  Yl. Show that  

(i) the function f ( x )  - tan(x), from ( - ~ ,  ~) to R, is continuous but not Cauchy 
continuous, and 

(ii) the function f (x )  = x 3, from R to R, is Cauchy continuous but not uniformly 
continuous. 

19.26. Exercise. Let X and Y be uniform spaces; assume X is complete. Let f 
be some mapping. Then f is continuous if and only if f is Cauchy continuous. 

" X ~ Y  

19.27. T h e o r e m .  Let X and Y be complete uniform spaces. Let S c X be dense, and 
let p" S ~ Y be some given function. Then the following conditions are equivalent: 

(A) p extends to a continuous function ~" X ~ Y; 
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(B) p extends to a Ca tchy  continuous function ~" X ~ Y; 

(C) p is Ca t chy  continuous from S into Y. 

Furthermore,  if p is uniformly continuous, then so is any continuous extension ~'; in fact, 
any modulus of uniform continuity for p will also be a modulus of uniform continuity for ~. 

Proof. The conclusion about uniform continuity follows from 18.10. The implication (B) 
=~ (C) is trivial. The implication (A) =~ (B) follows easily from 19.26. Now assume (C); 
it suffices to prove (A). Fix any z E X; let N(z) be its neighborhood filter in X. Then 
S n N(z)  = {S n N : N E N(z)} is the neighborhood filter of z in S. Tha t  filter converges 
to z in S, and therefore that  filter is Catchy.  Since p is Ca tchy  continuous, the filterbase 
p(S n N(z))  = {p(S n N ) :  N C ~ (z )}  is Ca tchy  in Y that  is, the filter it generates 
is Catchy.  Since Y is complete, that  filter is convergent. Now we may apply 16.15; this 
completes the proof. 

19.28.  Definition. Let X be a complete uniform space, and let f : [a, b] -~ X be some func- 
tion. We say f is p i e c e w i s e  c o n t i n u o u s  if it satisfies any of these equivalent conditions. 
(The proof of equivalence uses 19.27.) 

(A) f is continuous except at finitely many points and has left- and r ight-hand 
limits at those points. 

(B) We can form a part i t ion a - to < t l < t2 < . .-  < tn - b such tha t  f is 
uniformly continuous on each open interval (tj-1, tj). 

(c) We can form a part i t ion a - to < t l < t2 < . .-  < tn - b such that  f agrees on 
each open interval (tj-1, tj) with some X-valued function fj that  is continuous 
on the closed subinterval [tj-1, tj]. 

CAUCHY SPACES (OPTIONAL) 

19.29.  Remarks. Some of the ideas covered in this chapter can be extended to a setting 
slightly more general than uniform spaces. A C a t c h y  s p a c e  is a set X equipped with a 
collection e of proper filters on X, called the C a t c h y  f i l ters ,  which satisfy these axioms" 

(i) For each x E X, the  ultrafilter fixed at x is Catchy. 

(ii) If 9", ~ are proper filters, 9" is Catchy,  and 9" C_ ~, then 9 is Catchy. 

(iii) If 9 ~, S are Ca tchy  and each member  of ~ meets each member  of 9, then 
9"n 9 -- {A C_ X "  A E 9" and A c ~} is Catchy.  

A function p : X ~ Y from one Ca tchy  space to another is C a t c h y  c o n t i n u o u s  if 9 ~ is 
Ca tchy  in X implies p(9 ~) is Ca tchy  in Y; this generalizes 19.24. 

Any Ca tchy  space can be made into a convergence space in a natural  way: We say that  
a proper filter 9" c o n v e r g e s  to a point x if 9 ~ n ll(x) is Catchy;  here ~l(x) is the ultrafilter 
fixed at x. Note that ,  with this definition, any convergent filter is Catchy.  
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In the theory of Cauchy spaces, one of the main topics of investigation has been: In what  
ways may we form completions of Cauchy spaces - -  i.e., larger Cauchy spaces in which every 
Cauchy filter converges? That  topic is surveyed in Kent and Richardson [1984]. 

19.30.  Example. It is easy to see that  any uniform space is a Cauchy space i.e., the 
uniform space's Cauchy filters (defined as in 19.2) satisfy the three axioms of 19.29. Indeed, 
those axioms follow from 19.4.a, 19.4.b, and 19.5, respectively. The convergence that  is then 
defined from the Cauchy structure, as in 19.29, coincides with the topological convergence 
determined by the uniformity, as in 5.33 and 15.7; that  fact is just 19.6. 

19.31.  Example. Any lattice group (X, 4) can be made into a Cauchy space in a natural  
way: Say that  a net (z~ �9 c~ E A) or its filter 9" on X is Cauchy if there exists a set S C_ X 
with these three properties: 

(i) 

(ii) 
(iii) 

S is directed downward i.e., for each 81,82 E S there exists s E S with 
s ~ s l A s 2 .  

0 -  inf(S). 

For each s E S, we have eventually /z~ - z;~/ 4 s that  is, there is some 
% E A s u c h t h a t  c ~ , ~ %  =~ / z ~ - x ~ / 4 s .  Equivalently, for e a c h s E S  
there is s o m e F E 9  ~ s u c h t h a t z , x ' E F  =, / z - x ' / 4 s .  

For purposes of the discussion below, we shall then say that  S is a "witness" of the Cauchy- 
ness of 9". 

If we define "Cauchy" in this fashion, then it is very easy to see that  the "Cauchy" filters 
satisfy the first two axioms in 19.29. The "Cauchy" filters also satisfy the third axiom in 
19.29, as we shall now demonstrate.  Let 9: and ~ be two Cauchy filters such that  every 
member of 9" meets every member of ~. Say 9" and ~ have witnesses S and T, respectively (in 
the sense of the preceding paragraph).  Using 8.33.a, verify that  S + T  = {s + t  : s E S, t c T} 
is a witness for the Cauchyness of 9" N ~. 

In the context of lattice groups, the convergence determined by the Cauchy structure 
(as in 19.29) turns out to be precisely the order convergence (as defined in 7.38 and 7.40.d 
and further characterized in 8.44.a); this is easy to verify. 

However, order convergence in a lattice group sometimes is not a topological convergence; 
we see an example of this in 21.43. Thus, the Cauchy structure of a lattice group is not 
necessarily given by a uniformity. 

COMPLETIONS 

19.32.  Definitions. Let X be a uniform space. By a c o m p l e t i o n  (or more specifically, 
a uniform completion) of X we mean a complete uniform space Y with a dense subset 
that  is isomorphic to X. Here "isomorphism" usually means a bijection that  is uniformly 
continuous in both directions; we shall give this term a slightly stronger meaning in 19.36. 
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For pseudometric spaces and metric spaces, the term "completion" has a more specialized 
meaning. Let (A, d) be a (pseudo)metric space. By a c o m p l e t i o n  of A we mean a complete 
(pseudo)metric space Y with a dense subset that is isomorphic to A; but here "isomorphism" 
means a distance-preserving bijection. 

19.33. T h e o r e m :  E x i s t e n c e  of  c o m p l e t i o n s  of  m e t r i c  spaces .  Every metric space 
has a completion. We shall sketch two proofs of this fact. 

a. The first proof is extremely short" Let A be any metric space. Then, as we noted 
in 4.41.f and 19.11.f, A can be embedded isometrically in the complete metric space 
B(A). Hence the closure of A in B(A) is a completion. This proof has the conceptual 
drawback that it relies on already knowing IR is complete. 

b. The second proof is a bit longer, but it contains enough insight to be worth mentioning. 
Let (X, d) be any metric space. Show that if (xn) and (yn) are two Cauchy sequences 
in X, then (d(xn, yn)) is a Cauchy sequence in IR. Since IR is complete, the number 
D((x~), (Yn)) - limn__.~ d(xn,Yn) exists. Show that D, defined in this fashion, is a 
pseudometric on the set of all Cauchy sequences. Call two Cauchy sequences equivalent 
if the distance between them is 0; then D becomes a metric on the set of all equivalence 
classes of Cauchy sequences. Show that that metric is complete and X is a dense subset 
of the resulting metric space, with embedding given by x H (x, x, x , . . . ) .  

c. Cantor's Construction of R, 1883 (optional). A slight modification of the argument 
in the preceding paragraph gives us a construction of N. Let X be the set Q of 
rational numbers, with its usual definition and properties. Define d ' Q  x Q -~ Q by 
d(x, y) - I x -  y .  i sequence (xn) in Q will be called "Cauchy" if for each rational 
number c > 0 there exists some M such that m, n _> N =v IX~n - x~ I < c. Now verify 
lots of things; the quotient space constructed in the preceding paragraph is a Dedekind 
complete, chain ordered field, and thus it is R. 

19.34. Preliminaries on Kolmogorov quotients. Before continuing to the next two sections, 
the reader may find it helpful to briefly review sections 16.5 and 16.21, on Kolmogorov 
quotients. The quotient is formed from a space by %ollapsing together" (i.e., identifying) 
those points that are indistinguishable from one another. It is easy to see that 

a gauge space is complete if and only if its Kolmogorov quotient is complete, 

provided that the Kolmogorov quotient is equipped with the gauge determined as in 16.21. 

19.35. L e m m a .  Every pseudometric space has a (distance-preserving) completion. 

Proof. Let (S,d) be a pseudometric space�9 Let Q be its Kolmogorov quotient; then Q 
is a metric space when metrized as in 16.21�9 The quotient map 7r : S ---, Q is distance- 
preserving and surjective (but not injective unless S is Hausdorff). Let C be a distance- 

preserving Hausdorff completion of Q, formed as in 19.33.a or 19.33.b, and let i Q c �9 - - )  C 

be the inclusion map The composition S ~ Q i �9 ~ C i s  a distance-preserving map into a 
complete metric space, but in general this map is not injective. 



Completions 515 

To overcome that  drawback, we shall form a new space X that  has C as its Kolmogorov 
quotient - -  i.e., we shall reverse the process of forming a Kolmogorov quotient. By relabeling 

if necessary, we may assume C is disjoint from S. We define the set X to be ( C \ i ( Q ) )  US.  
/ \ 

\ / 

To define the pseudometric of X, view X as a modification of C, formed by "uncollapsing" 
the points that  were collapsed together by 7r. For each q E Q, replace the single point 
i(q) E C with a relabeled copy of the set 7r-l(q) C S, all the members of which were 
separated by distance 0 in S and will be separated by distance 0 in the new space X. 

Points in C \ i(Q) are left unaltered in forming the new space X. The inclusion S c - ) X i s  
distance-preserving and injective, with X complete. 

19.36. T h e o r e m :  E x i s t e n c e  of c o m p l e t i o n s  of u n i f o r m  spaces .  Every uniform 
space has a completion. Furthermore, the completion can be given by a distance-preserving 
inclusion, in the following sense: 

Let S be a uniform space whose uniform structure is given by a gauge D. Then there 
exists a complete uniform space X with gauge E, such that  S is a dense subset of X and 
the members of D are just the restrictions of the members of E. 

If S is Hausdorff, then we may choose X Hausdorff as well. 

Proof. The proof may seem long because it involves a great deal of notation; but it is 
conceptually simple and actually involves very little computation. 

For each pseudometric d E D, let (Ta, d) be a completion of the pseudometric space 
(S, d). Here we use the same letter d for the given pseudometric on S and its extension to 
the larger space. The letter D will be used to represent not only the original gauge, but 
also the collection of these extensions. 

Let Y - I-Id~D Td be equipped with the product uniform structure; then Y is complete, 
by (AC26) in 19.13. There may be many gauges on Y that  give that  product uniform 
structure; one particularly convenient gauge is formed as follows" 

For each pseudometr~ d, we define a corresponding pseudometric on Y, which we shall 
denote by d, as follows: d(y, y') - d (Trd(y), 7ra(y')), where 7ra " Y -~ Ta is the dth coordinate 
projection. It follows trivially from 18.11(C) that  the product uniform structure on Y is 

given by the gauge D consisting of all such pseudometrics d. 

Define an inclusion i" S c_> y by taking i(s) - (s, s, s , . . . )  - -  that  is, each member of S 
is m a p p e d t o  the corresponding constant function. Clearly this map is distance-preserving: 
d(s, s') - d(i(s), i(s')).  The closure of i (S)  in Y is a distance-preserving completion of S. 

If the original uniform space (S, D) is Hausdorff, then the construction above may be 
modified to yield a tIausdorff  distance-preserving completion, as follows" Let Q be the 
Kolmogorov quotient of Y. Then the gauge space (Q, D) is complete and Hausdorff. The 
quotient map :r" Y ~ Q is not necessarily injective, but its restriction to i (S)  is injective. 
Thus, the closure of 7c(i(S)) in Q is a distance-preserving Hausdorff completion of S. 

19.37. T h e o r e m "  U n i q u e n e s s  of H a u s d o r f f  c o m p l e t i o n s .  Both of the results below 
follow easily from 19.27, by an argument similar to the uniqueness proof in 4.38; for the 
metric space result, use a suitable modulus of uniform continuity. 

a. Let X be a Hausdorff uniform space. Then the Hausdorff completion of X is unique 
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b" 

up to isomorphism. In other words if il X c , " -> Y1 a n d i 2  X c �9 -~ Y2 are two such 
completions, then the bijection i2 o i l  1 : Range(il)  ~ Range(i2) extends uniquely to a 
bijection $: Y1 ~ Y2 that  is uniformly continuous in both directions�9 

Let X be a metric space. Then the metric completion of X is unique up to isomorphism. 

In other words if i l X c , �9 - ~ Y l a n d i 2  X c �9 -~ Y2 are two such completions, then the 
bijection i2 o i l  1 : Range(il)  ~ Range(i2) extends uniquely to a distance-preserving 
bijection ~':Y1 ---' Y2�9 

19.38. Example and remarks. The Lebesgue space LI[0, 1], defined in 22.28, is a complete 
metric space in which C[0, 1] = {continuous scalar-valued functions on [0, 1]} is dense; those 
properties will be proved in 22.30.d and 22�9 Thus LI[0, 1] is the completion of C[0, 1], 

where the metric used is d(f, g) - f l  if(t ) _ g(t)l dt�9 Although we shall prove that  fact 
as a theorem, it could instead be used as a definition of LI[0, 1]�9 It is perhaps the most 
elementary definition of LI[0, 1]; it does not require any measure theory. 

However, that  definition has several drawbacks. It depends heavily on the topological 
s tructure of the interval [0, 1], and thus it does not generalize readily to the Lebesgue spaces 
L l(p).  Also, it does not give us easy access to the important  theorems that  sometimes make 
LI[0, 1] more useful than C[0, 1] e�9149 theorems such as the Monotone and Dominated 
Convergence Theorems 21�9 and 22.29. Moreover, viewing LI[0, 1] as the completion of 
C[O, 1] does not offer us much insight into the structure of LI[0, 1]: It describes members 
of that  space as equivalence classes of Ca tchy  sequences of members of C[0, 1], where the 
definition of "equivalence" is somewhat complicated; or it identifies LI[0, 1] as a subset of 
the collection of bounded maps from C[0, 1] into R. We would prefer to view the members 
of L 1 [0, 1] as maps from [0, 1] into R. 

We shall follow the usual development of integration theory: We begin with measures 
and measurable functions (in 9.8, 11.37, and Chapter 21). We use linearity to define the 
integrals of simple functions; then we take limits to obtain the integrals of other measurable 
functions. The measure p can be defined on any measurable space ~t; the particular topo- 
logical properties of [0, 1] are not especially relevant in this construction. Two measurable 
functions from Ft into the scalars are equivalent if they differ only on a set of measure 0. The 
members of LP(p) are equivalence classes of measurable functions whose integrals are not 
too big see 22.28. This approach requires an explanation of "measurable function" and 
"measure 0," but it does not involve Catchy  sequences and ultimately it is more insightful. 
For most purposes, we can work with any member of an equivalence class, and so we obtain 
members of L 1[0, 1] as maps from [0, 1] into R. 

BANACH S FIXED POINT THEOREM 

19.39. T h e o r e m  ( B a n a c h ,  C a c c i o p p o l i ) .  If X is a nonempty complete metric space 
and f : X ~ X is a strict contraction, then f has a unique fixed point ~. 

Moreover, ~ = l i m k ~  fk(x)  for every x E X. In fact, we have this estimate of the rate 
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of convergence: 

Lip 

1 - ( f ) L i p  

tBnts" Show d (fJ(x), fJ+l(x)) <_ (f)~ipd(X, f (x))  by induction on j .  Also, 

r n - 1  

d(fn(x),frn(x)) ~ ~ d( fJ(x) , fJ+l(x) )  for re>n, 
j=n 

by repeated use of the triangle inequality. 

Remarks. The Contraction Mapping Theorem is remarkable: It has a short and simple 
proof, and yet it has many applications; see for instance 19.40.c and 30.9. In some respects 
it cannot be improved upon; this is made clear by the two converses given in 19.47 and 

19.50. 

1 9 . 4 0 .  Exercises. 
a. Let (X,d)  be a metric space. Let f �9 X ~ X be a strict contraction 

generally, let f be a self-mapping of X satisfying 

or, more 

d( f (x ) ,  f ( y ) )  < d(x, y) whenever x =/= y. (*) 

Then f has at most one fixed point. 

b. It is possible for a map f "  X ~ X satisfying condition (,)  of the previous exercise to 
have no fixed points even if (X, d) is a nonempty complete metric space. Show this 
with X - [1, +oc) with the usual metric and f (x)  - x + 1. 

x 

c. Show that  the equation cos(x) - x has a unique solution in IR. Then use a calculator 
to find that  solution, correct to five decimal places. 

d. Continuous dependence of fixed points. Let X be a nonempty complete metric space. 
Let (f~) be a sequence of strict contraction self-mappings of X; say ~ is the fixed 
point of f~. Assume sup~N(f~}Lip  < 1, and f~ ~ fo~ pointwise. Then f ~  is a strict 

contraction, with fixed point ~ - l i m ~ ~  ~ .  

e. In the preceding exercise, the assumption sup~N(f~}Lip  < 1 cannot be replaced with 

the weaker assumption that  the f~'s and f ~  are all strict contractions. The following 
example requires some familiarity with t~2 (defined in 22.25). Let X - t~2, and let 
fn(xl x2 x3 ) be the sequence whose n th  component is 1 + ~-___A1 x~ and whose other 

, , �9 " " T t  n 

components are 0. Show that  l i m ~ _ ~  G does not exist in g2. 

f. If we know a strict contraction within some small error, then we also know its fixed 
point within some small error. More precisely, let f l  and f2 be strict contraction self- 

mappings of a nonempty complete metric space (X, d), and suppose d( f l  (x), a ( x ) )  " < 

e for all x c X. Then the distance between the fixed points of f l  and f2 is not greater 

than e/(1 - ( f l ) L i p ) -  
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19.41. Proposition: continuous dependence of fixed points. Let (X, d) be a complete metric 
space, and let f "  X ~ X be a strict contraction. Let (fn) be a sequence of arbi trary self- 
mappings of X (i.e., not necessarily contractions, or even necessarily continuous); assume 
that  fn ~ f uniformly on X. Let x be the unique fixed point of f ,  and for each n suppose 
that  Xn is some (not necessarily unique) fixed point of fn. Then x - limn~o~ xn. 

Proof (modified from Vidossich [1974]). Since fn ~ f uniformly, 

d(xn, f(Xn)) -- d(fn(Xn), f(Xn)) ----+ 0 

Similarly, d(xm, f(Xm)) --+0 as m--+ oc. Then 

I d ( x .  ,Xn) - d( f(Xm) , f (xn))  [ ~ d(xm 

as n---~ oo. 

, f (xm) 9-d(xn, f(Xn)) ---+0 

as m,n  ~ oo. Since d ( f ( x m ) , f ( x n ) )  < t~d(xm,Xn) for some constant ~ - (f}Lip < 1, it 

follows easily (exercise) that  d(xm,Xn) ---+ 0 that  is, the sequence (Xn) is Cauchy. 
Say x~ ~ z. Since f is continuous we have f(Xn) ~ f(z).  On the other hand, 

/ \ 

dlf(Xn),Xn ) ~ O. Hence Xn ~ f(z) .  Therefore z - f(z) .  Since x is the unique fixed 

point of f ,  we have x -  z. 

19.42. Slow Contraction Theorem (optional).  
nondecreasing function. Assume that  

Let 7 " [O,+oc) ~ [O,+oc) be a 

9' is upper semicontinuous and "y(t) < t for each t > 0 (Boyd and Wong [19691) 

or, more generally, assume that  

lim,__+or "yn(t) = 0 for each t E [0, +oc) (Dugundji and Grands [1982]). 

Let (X, d) be a nonempty, complete metric space. Let f be a self-mapping of X that  satisfies 
d[f(x), f(p)] _< "y[d(x, p)] for all x, p E X. Then f is continuous, f has a unique fixed point 
~, and limn--.oo fn(x)  = ~ for each x C X. 

Proof (following Dugundji and Granas [1982]). Since -yn(t) ~ 0 for each t > 0, either 
o'(t) - 0 for some t > 0 or {'y(t) �9 t > 0} contains arbitrarily small positive numbers. In 
either case, since -y is nondecreasing, it follows from d( f (x ) , f (y ) )  < o,(d(x,y)) that  f is 
continuous. 

Next we shall show that .any orbit x, f (x) ,  f2(x), f 3 ( x ) , . . ,  converges. Fix any x = x0 e 
X; let Xn = fn(x)  and C n - -  d(xn, Xn+l). Then Cn < "7 n [d(xo, X l ) ] ,  SO Cn ~ O. 

Suppose (Xn) is not Cauchy. Then there exist c > 0 and integers re(k) and n(k) such 
that  

" k < re(k) < n(k) and bk -- d(xm(k), x~(k)) 2 c 

for k - 1, 2, 3, . . . .  For each k, we may assume that  n(k) is chosen as small as possible; 
hence d(xm(k), Xn(k)-l) < e. Since 

0 < bk - d(xm(k),Xn(k)-l) <_ Cn(k)_ 1 ~ O, 
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it follows that l imk-.~ bk -- c. 
Choose some p large enough so that 7P(2c) < c/3. Then choose some k large enough so 

that bk < 2e and supj_> k cj < c/3p. Now 

c <_ d (xm(k ) , xn (k ) )  
m(k)+p-1 n(k)+p-1 

~-- Z d (xj, Xj+l) + d (Xrn(k)+p,n(k)+p) + Z d (Xj, Xj+l) 
j--m(k) j--n(k) 

C C 
< p. p +.yp(2 )+p.3p < 

a contradiction. 
Thus any sequence of iterates ( f~ ( x ) )  converges to a limit. If f n ( x )  ~ ~ then f~+l(x)  -~ 

also, but fn+l(x)  -~ f(~) by continuity of f; thus ~ is a fixed point. For uniqueness, 
suppose that ~ and V are two fixed points; then d(~, ~7) - d( f~(~) ,  f~(rl)) <_ ~'n(d(~, rl)) ~ O. 

19.43. Remarks  and fur ther  exercise. The so-called "Slow Contraction Theorem" general- 
izes Banach's Contraction Mapping Theorem, since we can take 7(t) - t(f}Lip. However, 

in the Contraction Mapping Theorem, the sequence f n ( x )  converges to the unique fixed 
point at a geometric rate. In contrast, the convergence in the Slow Contraction Theorem 
may be very slow. 

In fact, it may be arbitrarily slow. Assume given any sequence (al, a2, a3 , . . . )  of positive 
numbers decreasing strictly to 0. We shall devise X, f, 7 ,~ ,x  as in the Slow Contraction 
Theorem, satisfying d ( f n ( x ) , ~ )  - -  a n .  

Hints: Let am - 0 ,  and let X - N U {o c}. Define 

d ( m , n ) - { max{am,0 an} i f m - f m :fi n _ j" n + l  i f n c N  
f ( n )  { n if n -- (x~. 

Define ~(r) - an+l when r E (an+l, an]. 

19.44. Further remarks. In a sense, the Slow Contraction Theorem 19.42 really is not 
more general than the Contraction Mapping Theorem. It is easy to show (exercise) that 
if f satisfies the hypotheses of the Slow Contraction Theorem, then f also satisfies the 
hypotheses of Meyer's converse to the Contraction Mapping Theorem, given in 19.47, and 
therefore the given metric can be replaced by a metric that makes f a strict contraction. 
Thus, the Slow Contraction Theorem may be helpful in the initial discovery stages of some 
research, but generally it can be replaced by Banach's Theorem at some later stage of 
that research, and so the Slow Contraction Theorem may go unmentioned in the final 
presentation of that research. 

19.45. C a r i s t i ' s  T h e o r e m  ( B r o w d e r ,  Car i s t i ,  a n d  Ki rk )  (op t iona l ) .  Let (X,d) be 
a complete metric space, let v : X --+ [0, +oc) be some lower semicontinuous function, and 
let f :  X --~ X be some function such that d(t, f ( t ) )  <_ v ( t ) -  v ( f ( t ) )  for all t E X. Then f 
has at least one fixed point. 
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Proof. Define a partial ordering on X by: 

t ~ u if d(t, u) < v ( t ) -  v(u). 

(This is sometimes called the B r S n s t e d  o r d e r i n g . )  By assumption, t ~ f ( t )  for all t E X. 
Let C c_ X be a nonempty 4-chain; we now note some properties of C: 

a. The inclusion map i" C c_> X (considered as a map from (C, 4)  to (X, d)) is a Cauchy 
net. 

Proof. Let ~- - infc~c v(c); then ~- >_ 0. For any c > 0, there is some c~ E C with 
v(c~) < ~- + c. If c E C and c ~ c~, then v(c) > ~- and d(c~, c) < v(c~) - v(c) < c. 

b. If A is the limit of that  net, then A is a 4 -upper  bound for C. 
Proof. For any fixed c E C and for all c' ~ c in C, we have d(c, c') <_ v(c) - v(c'). 

Take limits as c ~ increases; use the fact that  v is lower semicontinuous. 

Now let C be the collection of all nonempty 4-chains. Then C is nonempty since each 
singleton is a member of C. Use C_ to partially order C. By a chain in e we mean a 
collection g C_ C such that  any two sets S1, $2 E g satisfy S1 C $2 or $2 C_ S1. It is easy to 
see that  the union of all the members of g is then a chain in X, and thus a member of C; 
hence it is the supremum of g in the poset (e, c_). 

Define ~"  e ~ e by ~(C) - C U f ( l im C); then p(C)  _D C. By Zermelo's Fixed Point 
Theorem 5.52, ~ has at least one fixed point Co. Thus f ( l im Co) E Co. Since lim Co ~ c 
for all c in Co, we have in particular lim Co ~ f ( l im Co). On the other hand, since t 4 f ( t )  
for all t in X,  we have lim Co 4 f ( l im C0). Thus lim Co is a fixed point of f .  

Remarks. Caristi 's Theorem generalizes the Contraction Mapping Theorem, for if f is a 
strict contraction then we can take v(t) - d(t, f ( t ) ) / ( 1  - { f } L i p ) "  

Our proof of Caristi 's Theorem follows that  of Mafika [1992]. It does not use the Axiom 
of Choice or any weakened form of Choice. Some analysts may prefer to prove Caristi 's The- 
orem by the method indicated in the remarks in 19.51, although that  proof uses Dependent 
Choice. 

MEYERS'S CONVERSE (OPTIONAL) 

19.46.  Motivating exercise. Assume the notations and hypotheses of Banach's Contraction 
Mapping Theorem 19.39. Then f~ ~ ~ uniformly on some neighborhood of ~ that  is, 
SUpxcv d(~, f n ( x ) )  ~ 0 as n ~ oc, for some neighborhood V of ~. 

19.47.  M e y e r s ' s  C o n v e r s e  to  t h e  C o n t r a c t i o n  M a p p i n g  T h e o r e m .  Let f be a 
continuous self-mapping of a nonempty, complete metric space (X, p). Suppose that  ~ is 
a fixed point o f f ,  and f n ( x )  ~ as n ~ oc for e a c h x  c X. Also assume that  fn  ~ 
uniformly on some neighborhood of ~ i.e., assume ~ has some neighborhood V such that  

/ \ 
lim sup p { . f n ( v ) , ( )  - O. 

n - - - , e c  v E  V 
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Then there exists a topologically equivalent, complete metric d on X that  makes f a strict 
contraction. 

Remarks. This proof is taken from Meyers [1967]. A similar result was discovered indepen- 
dently in Leader [1977]. Both proofs were inspired by the t reatment  of the compact case 
given in Janos [1967]. 

Proof of theorem. The proof is in several steps. 

a. By replacing V with a smaller neighborhood of ~, we may assume also that  V is open 
and that  f ( V )  C_ V. 

Hints" Certainly the theorem's hypotheses on V remain satisfied if we replace 
V with any smaller neighborhood of ~. Replacing V with such a neighborhood, we 
may assume V is open. Now choose k large enough so that  f k (V )  C_ V; then let 

k - 1  f _ j  V) set W - f"lj=0 ( . The W has the required properties; we shall relabel it as V. 

b. Some easy observations: U,~__0 f - ~ ( v ) -  x and 

�9 .. _D f - 2 ( V )  _D f - l ( v )  D_ V D_ f ( V )  D_ f2(V) _D . . . .  

/ \ 

For integers n (not necessarily positive), let K~ - c l ( f n ( V ) ) .  
/s 1, and 

Show that  f (K~)  C_ 

�9 .. _D K-2  _D K-1  _D K0 _D K1 _D /s _D . . . .  

Also, Kn + { as n --+ oc that  is, any neighborhood of ~ contains Kn for all n 
sufficiently large. Hence diam(Kn) --+ 0 as n --+ cc if we use the metric p or any 
other metric that  is equivalent to p and ["ln~z K~ = {~}. 

c. By replacing p with an equivalent metric that  is also topologically complete, we may 
assume that  f is a nonexpansive mapping i.e., that  p(f (x) ,  f (y) )  <_ p(x, y). 

IBnts" For any x, y C X, the sequence (p( f~(x) ,  f~(y))  �9 n -  1,2, 3 , . . .  ) consists 
\ / 

of nonnegative numbers converging to 0; hence a maximum exists: 

/3(x, y) = max {p ( fn(x) ,  fn(y))  . n -- O, 1, 2 , . . . } .  

As we noted in 18.3.e, /3 is a metric, uniformly stronger than p, and /3  makes f non- 
expansive. In view of 19.11.i, it suffices to show that  p is topologically stronger 
than /3. Let any x E X and c > 0 be given; we must find a ~ > 0 such that  
p(x,y)  < 6 ~ /3(x,y) < c. Choose N large enough so that  d iamp( fX(v ) )  < c 
and f X  (x) E V. Using the continuity of f in (X, p), show that  there is some ~ > 0 
satisfying 

p(x,y)  <(5 =v fN(y)  E V and max p ( f J ( x ) , f J ( y ) )  < e. 
j < 2 N  

Show that  this f has the right properties. 
We shall now replace p with fl (by relabeling), for simplicity of notation. 
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d. Define 

~ i f x - ~  
#(x) - sup{n E • �9 x c Kn} - a finite integer if x :/: ~. 

Show that  p(f (x))  _> p ( x ) +  1 for all x e X. Moreover, for any sequence (Xm) in X, 

Xm ~ ~ (in the given topology). 

e. Define r(x, y) - 2-min{tt(x)'tt(Y)}p(X, y). (We could replace 2 with any constant real 
number  greater than 1, but we shall use 2 for simplicity.) Verify tha t  r is a mapping 
from X • X into [0, +oc) that  satisfies 

go 

r(x,y)  - O ~ x - y ,  ( ) l r (x ,Y)  r(x, y) - r(y, x), r f (x) ,  f (y) < -~ . 

(The last inequality follows from p(f(x))  _> p ( x ) +  1 and the fact tha t  f is nonexpan- 
sive.) 

Use r to define a pseudometric d(x,y) = inf ~-~i r(ai- l ,ai)  as in 4.42. Show that  

d(x, y) <_ r(x, y) and d( f (x ) ,  f (y ) )  <_ ld(x, y). 

To show d is a metric, let any x, y c X with x ~: y be given; we must show d(x, y) > 0 
(and in doing so we shall also obtain an est imate that  will be useful later). Since we 
cannot have both x and y equal to ~, we may assume x ~: ~, and thus #(x) < c~. Fix 
any integer k _> #(x); then x ~ Ka+I. (For the proof of d(x, y) > 0 we may simply 
take k = #(x),  but other choices of k will be useful later.) 

Consider any sequence ao, al ,a2, . . .  ,am with a0 = x and am = y; we must  obtain 
m 

a positive lower bound for E i - -1  r(ai- l ,ai)  independent of the choice of the sequence 
(ai). We consider two cases. In the first case, #(ai) <_ k for all i. Then 

m m 

E P(ai-l,ai) ~_ E 2 - k p ( a i _ l , a i )  ~_ 2-kp(x,y) ,  
i=1 i=1 

which is positive. In the second case, let j be the first integer that  satisfies p(aj) >_ k + l .  
Then min{p(a i_ l ) ,  p(ai)} _< k for i -  1, 2 , . . .  , j ,  and so 

m 

i=1 

J j 

E r(ai_l, ai) >_ E 2-kp(ai- l '  ai) 
i=1 i=1 

>_ 2-kp(x, aj) :> 2 -kd is tp  (x, Kk+l) , 

which is positive since Kk+l is a closed set that  does not include x. In any case, we 
obtain 

d(x,y) _> 2 -k min {p(x,y), distp ( X , / ( k + l )  } when #(x) <_ k. (**) 
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h. The metric p is stronger than d. 
d Hints" Suppose that  xm P > x; we must show that  xm > x. Fix any positive inte- 

ger k large enough so that  x c f - k (V) .  Since f - k ( V )  is an open set, for m sufficiently 
large we have xm E f - k (V) .  Since f - k ( V )  C K_k, we have min{p(x),p(Xm)} >_ -k ,  
and therefore d(x, xm) <_ r(x, xm) <_ 2kp(x, xm). 

i. Let (x,~) be a sequence in X. If (xm) is d-Cauchy, then some subsequence of (xm) is 
p-Cauchy. 

Hints: Suppose not. Then no subsequence of (xm) is p-convergent. In particular, 
no subsequence of (xm) is p-convergent to ~. Hence, for some M the number R = 

distp (~, {x M,XM +1, X M +2, X M + 3 , . . .  }) is positive. 
\ 

If the p(xm) 's  are unbounded, then there is some subsequence (xm~) such that  
% 

P #(xm~) ~ oc. However, then xmj , ~ by 19.47.d. 
Thus, supra p(xm) < oc. Fix any integer k > supra p(xm) large enough so that  

1 also diamp (Kk+l)  < ~1/~. Then for any m _> M we have distp(xm, Kk_F1 ) > ~/:~. Since 
(x,~) is d-Cauchy, for all m, rn ~ sufficiently large, we have 

d(xm,Xm,) < 2 - k - l R  < 2-kdistp (Xm, K k + l )  . 

It then follows from (**) that  d(xm,xm,) >_ 2--kp(xm,xm,). Thus the sequence (xm) is 
p-Cauchy. 

j .  The two metrics p and d are topologically equivalent, and d is complete. (Immediate 
from 19.11.i.) 

BESSAGA'S CONVERSE AND BRONSTED'S 
PRINCIPLE (OPTIONAL) 

19.48.  Technical lemma: Bessaga-Brunner Metric. We introduce a slightly complicated 
type of metric that  will be used in two long proofs below. 

Let X be a set, and let f : X -~ X and A : X ~ (0, +oc) be some mappings. (We 
emphasize tha t  the values of A are nonzero.) Assume that  f(~) = ~, and assume that  no 
iterate fn  (n > 1) has any fixed point other than ~. We shall use f and A to define a metric 
d o n X .  

For brevity, our arguments  will rely on the following diagram. We denote f~ = x. 
We write x ~ y if there exist nonnegative integers p, q such that  fP(x) = fq(y). It is easy 
to see that  this is an equivalence relation on X. Let So be the equivalence class containing 

We now sketch a graph that  shows the action of f on X. We view each element of X 
as a vertex of the graph, and draw an arrow (i.e., directed line segment) from x to f (x)  for 
each x E X. We shall arrange the graph so tha t  this line segment goes d o w n w a r d -  i.e., so 
that  f (x)  is below x. Because ~ is the only fixed point of any of the iterates of f ,  we see that  
the graph has no closed cycles (i.e., loops) other than the one at ~. The graph consists of 
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A(x3) 

Z(X3, X4 ) ~t~ 

X3 

f(x3)) 

Xl 

A(Xl) 

f ( x l ) (  

A(f(xl ) )  

Z(Xl,X2) 

SO S1 

2 

~(x, 

X4 

2/x"'x'>> ( 
)f2 (X4) i~ $2 

several components: one for each equivalence class. Each component is a simply connected 
tree, with root downward and branches upward. Each tree may go infinitely high or only 
finitely high; the information provided to us is not enough to determine whether some point 
x0 has infinitely many predecessors f - l ( x0 ) ,  f -2(x0) ,  f -3(x0) ,  . . .  or only finitely many. 
The tree representing So coalesces at its bottom to a single root at ~. If there is any other 
equivalence class, then it is rel~resented by a tree that does not coalesce to a single root, but 
instead continues downward through an infinite succession of branches. We may describe 
such a tree as "infinitely deep." 

.Now, for each x E X\{~},  we label the line segment from x to f(x) with the number A(x). 
(The number A(~) will not be used.) We shall take that number A(x) to be the distance 
between x and f(x). In the notation of 4.43, we have r (x , f (x ) )  = r ( f (x ) , x )  = A(x). 
The function r is only defined on the pairs of points that are adjacent in the diagram. 

If x and y are two points in the same equivalence class, then we trace forward through 
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the  g raph  to the  first point  z where  x and y coalesce i.e., we have z = fP(x) = fq(y)  
where the  nonnega t ive  integers p, q are as low as possible, as shown in the  d iagram.  We 
may write p = p(x, y), q = q(x, y), z = z(x, y), to emphas ize  the  dependence  on x and y. 
There  is no shor ter  route  be tween  x and y; there  is no o ther  route  at all except  by re t rac ing 
some steps. The  dis tance be tween  x and y is thus  

p--1 q--1 

d(x ,y)  - d ( x , z ) + d ( y , z )  = E a ( f J ( x ) )  + E A ( f J ( Y ) )  (~) 
j =0 j =0 

where  it is unde r s tood  tha t  an emp ty  sum is 0 (obta ined  when x = z and p = 0, or when 
y = z and q = 0). For example,  in the  i l lustrat ion,  we have 

d(x l ,x2)  = [ A ( x l ) - F  A ( / ( X l ) ) ] - F  A(x2) 

since p(Xl,X2) = 2 and  q(Xl,X2) = 1 for this example.  The  funct ion d defined in this fashion 
is a metr ic  on the  equivalence class (and not  jus t  a pseudometr ic ) ,  since we have assumed 
A(x) is s tr ict ly posit ive for each x. 

If there  is more  t han  one equivalence class - -  i.e., if the  d iagram contains  more t han  one 
tree then  fur ther  considerat ions  are necessary. We shall define f ~ ( x )  = ~ for all x E X.  
(Intuitively, it is helpful to imagine tha t  each "infinitely deep" tree cont inues downward  and 
has ~ at its infinitely deep bo t tom. )  The  formula (~) now becomes meaningful  for all points  
x, y E X (not necessarily in the  same equivalence class), wi th  the  unde r s t a nd ing  tha t  p and 
q are not  necessarily finite. We still choose p and q to be the  lowest values tha t  satisfy 
fP(x) = fq(y).  We find tha t  

some finite number  if x E So or x ~ y 
P - oc i f x ~ S 0 a n d x C y .  

Analogous  condi t ions apply  to q. We define d :  X x X ~ [0, +oc] as in (~). For instance,  
in the  i l lustrat ion,  

d(x3,x4) - [A(x3) + A(f (xa) ) ]  + [ A ( x 4 ) +  A ( f ( x 4 ) ) +  A ( f 2 ( x 4 ) ) + . - - ]  

since in this example  we have p(x3,x4) = 2 and q(xa,x4) = oc. It is easy to show tha t  the  
funct ion d defined in this fashion is a metr ic  if its values are always finite - -  i.e., if the  sums 
in (~) always converge. T h a t  will be t rue  for cer ta in  choices of A and f considered in 19.50. 

19 .49 .  Motivation for Bessaga's converse. Let f be a sel f -mapping of a set X.  Suppose  
tha t  for some k, the  map  fk  has a unique fixed point  {. T h e n  { is also the  unique  fixed 

point  of f .  

19 .50 .  B e s s a g a ' s  C o n v e r s e  t o  t h e  C o n t r a c t i o n  M a p p i n g  T h e o r e m .  Let X be a 

set, let f :  X ---, X be some mapping ,  let f (~)  = ~, and  suppose  tha t  no i tera te  f~  (n > 1) 
has any fixed point  o ther  t han  ~. T h e n  there  exists a comple te  metr ic  A on X tha t  makes 
f a strict  contract ion.  

Proof. We shall define a metr ic  as in 19.48. We shall define A : X + (0, +oc )  by taking 
A(x) = 2 ~(*) for a cer ta in  integer-valued funct ion ,~ specified below. (Actually, we have 
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chosen 2 just for simplicity; we could replace it with any constant real number greater than 
1.) 

We require that  A" X ~ Z have the property that  

A ( f ( x ) ) -  A ( x ) -  1 whenever f (x )  r x (i.e., whenever x r {). 

To show that  there exists such a function A, define equivalence classes and sketch trees as in 
19.48. Choose some representative element zs from each equivalence class S. (This requires 
some form of the Axiom of Choice, if there are infinitely many equivalence classes.) Define 
A(zs) = 0 for each equivalence class S. After that,  A is uniquely determined: add 1 when 
moving up in the tree, and subtract 1 when moving down in the tree. 

As in 19.48, we define f ~ ( x )  = ~ for all x E X and define p, q, z, d as in 19.48. In the 
present application, that  yields 

d(x,y) 
p-I q-1 

-- E 2A(x)-J nu E 2A(Y)-J " 

j =0 j =0 

These sums converge even if p or q is infinite, so d is a metric. From A(f(x))  = A ( x ) -  1 
1 For arguments below, we note that  q(x,~) - 0, and hence it follows that  (f>Lip -< ~" 

CX:) d(x,~) ~_ ~-~d=o 2 ~(x)-j = 2 ~(x)+l 

To show that  the metric is complete, let (Xn) be a Cauchy sequence; we wish to show 
that  (xn) converges. If the numbers A(x~) are not bounded below, then some subsequence 
(Xnk) satisfies A(Xnk) --* --oc and hence d(xnk,~) -~ 0; hence x~ -~ ~ since (xn) is Cauchy. 
Thus we may assume that  A(xn) is bounded below by some finite constant C. Whenever xm 
and xn are distinct members of X, then at least one of the numbers p(xm, xn), q(xm, xn) 
is positive, and so 

d ( x m , X n )  ~_ min{2 x(xm) , 2 ~(xn) }. ~ 2 6 �9 

However, (xn) is Cauchy, so d ( x m , X n )  < 2 C for all m,n  sufficiently large. Thus, for all 
m, n sufficiently large, the points xm and xn are not distinct i.e., the sequence (x~) is 
eventually constant and therefore convergent. 

19.51. We shall show that  the Principle of Dependent Choice, introduced in 6.28, is 
equivalent to the following principles about complete metric spaces" 

( D C 3 )  D a n c s - H e g e d u s - M e d v e g y e v  P r i n c i p l e .  Let (X, d) be a nonempty, 
complete metric space. Let ~ be a partial ordering on X, which is semicontin- 
uous in the following sense: For each x E X, the set F(x) - {y E X ' y  ~ x} is 
closed in the metric space (X, d). Assume also that  d and ~ satisfy the P i c a r d  
cond i t ion :  

w h e n e v e r  (Xn) is a sequence in X wi th  Xl ~ x2 ~ x3 ~ ' '  ", t h e n  

d(xn  , Xn+ l ) ---* O. 
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Then (X, 4)  has a maximal element. 
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( D C 4 )  B r h n s t e d ' s  M a x i m a l  P r i n c i p l e .  Let (X, d) be a nonempty, complete 
metric space, and suppose r �9 X ~ [0, +oc) is lower semicontinuous. Define a 
partial ordering ~ on X by: 

x ~ y  i f  d(x,y)<_r(x)-r(y). 
Then (X, ~) has a maximal element. 

Remarks. Caristi 's Theorem (19.45) follows from Brhnsted's Theorem (DC4) by a one-line 
proof: The maximal point is a fixed point. Also, Brhnsted's Theorem follows from Caristi 's 
Theorem by a one-line proof, if we are permitted to use the Axiom of Choice: Just take 
f to be a suitable choice function. Thus, the two theorems are "equivalent" in a sense 
used by some mathematicians: Each follows easily from the other, if we are permitted 
to use conventional set theory (including the Axiom of Choice). However, Brunner [1987 
Zeitschr.] has pointed out that  the two theorems are not equivalent in the sense of set theory, 
for Brhnsted's Theorem is equivalent to DC (as we shall show), whereas Caristi 's Theorem 
actually follows from just ZF, without DC or any other weakened version of Choice. Further 
discussion of this and related ideas are given by M~nka [1988]. 

Proof of (DC2) ==v (DC3). Note that  u E F(v) ~ F(u) C F(v). Also note that  x E F(x) 
for each x, hence F(x) is nonempty. We may replace d with any uniformly equivalent 
metric; by 18.14 we may assume d is bounded. Then diam(F(x))  is finite. 

For any nonempty set S c_ X and any point x E X and any number c > 0, the set 
ld iam(S)  - c }  is nonempty; this follows easily from the definition of s �9 d ( x , y )  >_ 

diameter. Hence, given any point x~- i  E X, there is some x~ E F(X~_l) satisfying 

1 d(x~_l, x~) > - d i a m  (F ( /~_ I ) )  - 2 -~. 
- 2 

Using (DC2), we construct a sequence (x~ �9 n E N) satisfying this inequality. By the Picard 
condition, then, d(x~,x~_l) --~ 0; hence diam(F(x~))  -~ 0. From x~ E F(xn-1) we obtain 
F(x~) C_ F(x~_l). By 19.11.c, ~ - - 1 F ( x ~ )  contains exactly one point, z. For each n E N, 
we have z E F(x~) and hence F(z) C_ F(x~);  thus F(z) C_ ~n~=l F(xn) - {z}. Therefore z 
is ~-maximal  in X. 

Proof of (DC3) ~ (DC4). Easy exercise. 

Proof of (DC4) ~ (DC1). This proof is a slight simplification of a proof given by Brunner 
[1987 Zeitschr.] 

Let (I) be a function that  contradicts (DC1); we shall use it to construct a contradiction 
of (DC4). Thus, we assume that  we are given a set A and a function 

(I) �9 A ~ {nonempty subsets of A} 

for which there does not exist an infinite choice sequence i.e., an infinite sequence (an) 
satisfying an+l E (~(an) for all n. 
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By a choice sequence of length n we shall mean a finite sequence 

x -  ( x (1 ) , x (2 ) , .  . . , x ( n ) )  

that  satisfies x(k  + 1) E (P(x(k)) for k - 1, 2 , . . . ,  n - 1. Such a sequence may be viewed as a 
function from the set {1, 2 , , . . ,  n} into A. We shall also consider the empty sequence to be 
a choice sequence (of length 0); we shall denote it by ~. By the "Axiom" of Finite Choice 
(in 6.14), any choice sequence can be extended to a longer choice sequence; thus there is no 
maximal choice sequence. 

Let X be the set of all choice sequences. We observe that  X does not contain an infinite 
C_-chain. Indeed, if e were such a chain, then [.Jcce Graph(c) would be the graph of an 
infinite choice sequence. 

For each x E X, let A(x) be the length of x. Also, define the "immediate t runcation 
function" f "  X ~ X by 

f ( x )  - { (x(1) '  x(2)'" i " , x ( n -  1)) if x - ~ . i f x -  ( x ( 1 ) , x ( 2 ) , . . .  , x ( n ) )  

Then )~(f(x)) - A ( x ) -  1 when x is not the empty sequence. 
Let A(x) - 2 -x(x). Define equivalence and the functions p, q, z, d as in 19.48. Note 

that  every point in X is equivalent to the empty sequence, and thus So - X is the only 
equivalence class. Therefore p and q are always finite, the sums in 19.48(~) always converge, 
and d is a metric on X. We restate its formula here" 

d(x, y) - d(x, z) + d(y, z) 
p-1 q-1 

-- E 2-A(x)+J -~- E 2-;~(Y)+J 
j =0 j =0 

where p, q are the smallest nonnegative integers satisfying fP(x)  - fq(y) ,  and z - z(x,  y) 
is the common value of fP(x)  and fq(y) .  The choice sequence z - z ( x , y )  is the longest 
common restriction of x and y; it is the empty sequence if x and y begin with different 
choices. 

Define the Brhnsted ordering ~ as in (DC4), using the function A(x) - 2 -~(x). That  is, 
define 

x ~ y to mean d(x ,y )  <_ 2 -~(x) - 2  -~(y). 

We claim that  the following statements are equivalent" 

(A) the sequence y is an extension of x that  is, z(x,  y) - x; 

(B) d(x, y) - 2 -x(x) - 2-a(Y); 

( c )  x y. ,, 

Indeed, (A) ~ (B) follows from (~), and (B) =~ ( C ) i s  trivial. For (C) ~ (A), 
suppose that  x 4 y. Then 
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hence 2 . 2  -A(z) _< 2 . 2  -~(*), hence A(z) _> A(x). But z is a restriction of x; hence in fact 

Z - - X .  
In particular,  we note that  

d ( f ( y ) ,  y)  - 2 -~(y)+~ - 2 -~(y) - 2 -~(y) 

if y is not the empty sequence. From the illustration in 19.48 it is clear that  the nearest 
points to any choice sequence x are the extensions y obtained by adding one more term at 
the end of sequence x, and those sequences satisfy x - f (y) ;  thus their distance from x is 
2 -x(y) - 2 -a (x) - I  Thus 

w , x  C X,  d (w,x )  < 2 -~(z)- I  => w - x. (1) 

This shows that  the topology determined by the metric d is discrete. It follows that  any 
real-valued function defined on X is continuous and hence lower semicontinuous. 

Obviously, (X, 4)  has no maximal  element. It suffices to show that  d is complete, for this 
will contradict (DC4). Let (x~) be a Cauchy sequence; we shall show that  (x~) converges. 
In view of 19.4.c, it suffices to show that  some subsequence of (x~) converges; thus we may 
replace (x~,) with any subsequence. Via such a replacement, we may assume that  

d ( x j , x k )  < 2 - )  whenever k > j. (2) 

This property will be preserved if we replace (mR) by a further subsequence. 
First consider the case in which (x~) has some subsequence whose lengths are bounded. 

Such a subsequence is eventually constant,  by (1) and (2); hence it is convergent. 
We now consider the remaining case, in which (k(x~)) has no bounded subsequence 

i.e., the case in which l im, j+~  A(x~) = oc. Replacing (x,~) with a subsequence, we may 
assume that  

/~(Xl) < /~(X2) < ~(X3) < "'" and /~(x~) >_ n + 1 (3) 

for all n. 
Let vj - z ( x j , x j+ l ) ;  that  is, vj is the largest common restriction of x o and Xj+l. Then, 

by ( 2 ) a n d  ( 3 ) a n d  (~), 

2 - j  > d ( x j , X j + l )  [2-'~(vJ) _2-'~(xa)]-}-[2-A(vJ) _2-)~(Xj+l)] 
2 - J - 1 1  . 

The inequality 2 - j  > 2 [2 -~(~'~) - 2 - J - l l  simplifies to ,X(vj) > j .  Thus vj, the common 
restriction of xj and Xj+l, has length greater than j.  Tha t  is, the functions v j , x j , x j + l  all 
have domains that  include the set { 1 , 2 , . . . , j } ,  and those functions all agree on that  set. 
Let wj be the function on { 1 , 2 , . . .  , j}  obtained by restricting any of v j , x j , x j + l  to that  set. 
The function wj is a choice sequence, since it is a restriction of a choice sequence. Then 
wj+l, defined analogously, is an extension of wj, since both these functions are restrictions 
of Xj+l. The sequence Wl, w2, w a , . . ,  forms an infinite C_-chain in X, a contradiction. 
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Baire Theory 

20.1. Preview. The name "Baire" is, unfortunately, associated with four distinct notions, 
which can easily be confused: 

�9 sets of the first or second category of Baire; 

�9 Baire spaces; 

�9 sets with the Baire property; and 

�9 Baire sets. 

All are introduced in this chapter. The first three of these notions are closely related and 
will be studied extensively in the following pages. The fourth notion is less important for 
the purposes of this book and will be introduced briefly in 20.34 mainly to prevent the 
beginner from confusing Baire sets with the other "Baire" notions. 

Much of the material in this chapter is taken from Kuratowski [1948], Bourbaki [1966], 
Engelking [1977], Oxtoby [1980], and Vaughan [1988]. 

G-DELTA SETS 

20.2. Terminology. In some older topology books, the letters "F" and "G" are reserved 
for closed sets and open sets, respectively. That convention is no longer widely used. This 
text does not follow that convention in general, but gives those letters preference whenever 
convenient. 

The following related convention is still widely used: The union of countably many 
closed sets is called an "F~ ;" the intersection of countably many open sets is called a "Gs." 
Similarly, the union of countably many Gs's is a Gs~; the intersection of countably many 
F~'s is a F ~ .  

The letters F and a come from feting and sum, French for "closed" and "sum." The let- 
ters G and 5 come from Gebiet and Durchschnitt, German for "open set" and "intersection;" 
see Hocking and Young [1961]. 

530 
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Exercises. 
a. The complement of an F~ is a Ge, and conversely. (Thus any results about  F~'s can 

be restated in terms of G~'s, or conversely.) 

b. The terms "F6" and "G~" are not useful, since the intersection of countably many 
closed sets is a closed set, etc. Likewise, the terms " F ~ "  and "G~"  are not useful: 
the union of countably many F~'s is another F~, etc. 

c. Any F~ is in fact the union of an increasing sequence of closed sets, and any G~ is the 
intersection of a decreasing sequence of open sets. 

Hint" If S - Un~  K n where the Kn's  are closed, then also 

s = K1 u (K lUK2)  u ( K l U / q U K 3 )  u (K uK2uK3uK4)u . . . .  

d. The intersection of finitely many F~'s is another F~; the union of finitely many G6's 
is another G~. 

Hint" If A1 c_ A2 c_ A3 c _ . . .  and B 1 C B2 C B 3 C . . . ,  show that  (U,~__l A n ) n  

(Un~ Bn) - -  Un~ (An N Bn). 
e. In a pseudometric space, every closed set is a G~, and every open set is an F~. 

Hint: If (X,d) is a pseudometric space and H is a closed subset, then H is the 
intersection of the open sets {x e X :  dist(x, H) < 1//n} (for n = 1, 2, 3 , . . . ) .  

MEAGER SETS 

20.3.  Let X be a topological space; for sets S c_ X let CS - X \ S. The b o u n d a r y  (or 
frontier) of a set S is the set e l (S)N cl(CS); it is often denoted by 0S or bdry(S)  or fr(S). 
Note that  O S -  O(CS). Show that  X can be part i t ioned into the three disjoint sets 

int(S),  int(CS), 0S, 

which are open, open, and closed, respectively. Also, S is closed if and only if OS c_ S, and 
S is open if and only if 0S is disjoint from S. 

If S is a sufficiently "nice" set, then OS may be quite small, as in 20.4(C) and 20.4(D). 
However, slightly "nasty" sets may have boundaries that  are quite large. For instance, in 
the real line, the set of rationals has boundary equal to the entire real line. 

20.4.  Let (X, g') be a topological space, and let [1 denote complementat ion in X. Let 
S c_ X. Then the following conditions are equivalent. If any (hence all) of them are 
satisfied, we say S is n o w h e r e - d e n s e  (or rare or nondense). 

(A) 

(B) 
(C) 

(D) 

The closure of S has no interior; that  is, int(cl(S)) - ~. 

The complement of S contains an open dense set; that  is, cl(int(CS)) - X. 

S is contained in the boundary of some open set. 

S is contained in the boundary of some closed set. 
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(E) Every nonempty open subset of X contains a nonempty open set that  is 
disjoint from S. (In other words, there aren't  any nonempty open sets in 
which the trace of S is dense. This explains the name "nowhere-dense.") 

(F) S c_ cl(X \ cl(S)). 

20.5. Further properties and examples. 
a. Any subset of a nowhere-dense set is nowhere-dense. 

b. If A and B are nowhere-dense, then A U B is nowhere-dense. (Hence the nowhere-dense 
sets form an ideal; they may be viewed as the "small" sets for some purposes.) 

Hints" We may replace A and B with their closures; hence we may assume A and 
B are closed. Now apply 15.13.c to CA and CB. 

c. Let X be a topological space, and let X N have the product topology. Let A c_ X N be 
nowhere-dense. By considering our characterization of the topology in terms of basic 
rectangles, we see that  any finite sequence s - (Xl,X2, . . .  ,xm) in X can be extended 
to a longer sequence s' - ( X l , X 2 , . . .  , X m , . . .  ,Xn) having the property that  no infinite 
sequence extending s' is a member of A. 

20.6.  Let X be a topological space. A set S c_ X is m e a g e r ,  or of the first category of 
Baire, if it is the union of countably many nowhere-dense sets. A set that  is not meager is 
called n o n m e a g e r ,  or of the second category of Baire. Thus, every set is of either the first 
or second category. 

A set T is c o m e a g e r  (or residual or generic) if X \ T  is meager equivalently, if T 
contains the intersection of countably many open dense sets. 

Remarks. The collection of meager sets forms an ideal - -  in fact, it is a a-ideal; i.e., it is 
closed under countable union, by 6.26. In the cases of greatest interest, X is a Baire space 
(see 20.15 and sections thereafter), hence X is not a meager subset of itself, and therefore 
the meager sets form a proper ideal. Thus 

we may think of the meager sets as "small" and the comeager sets as "large," 

in the sense of in 5.3. Although "large" is a stronger property than "nonempty," in some 
situations the most convenient way to prove that  some set S is nonempty is by showing the 
set is "large." That  is one of the main ways in which the Baire Category Theorem (20.16) 

gets used. 

20.7.  Some examples in R and other topological spaces. 
a. If x0 is an isolated point in a topological space, then any set containing x0 is nonmeager. 

b. In the real line (or more generally, in any T1 topological space that  has no isolated 
points), every singleton {x} is nowhere-dense, so every countable set is meager. 

c. A countable subset of R must have empty interior. This will follow from 20.16, but it 
can also be proved directly by noting that  any  nondegenerate interval is uncountable. 

d. A countable subset of R may or may not be nowhere-dense. For instance, Z is nowhere- 
dense, but q is dense. 
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GENERIC CONTINUITY THEOREMS 

2 0 . 8 .  B a i r e - O s g o o d  E q u i c o n t i n u i t y  T h e o r e m .  Let ~ be a topological space, let (X, d) 
be a pseudometric space, and let fl ,  f2, f3,. �9 �9 be continuous functions from ~ to X. Assume 
that  limn__+~ f~ (co) exists in X for each co E ~. Then the set 

E - {co E ft �9 (f~) is equicontinuous at co} 

is comeager in ft. 

Remarks. By 18.32.a, the limit function f(co) = limn__+~ f~(co) is continuous at each point 
of E. The theorem is used mainly when f~ is a Baire space (discussed in 20.6 and defined 
in 20.15). In that  setting, {f~} is equicontinuous and hence f is continuous, at "most" 
points of f~. This theorem is a nonlinear version of the Banach-Steinhaus Uniform Bound- 
edness Principle; some linear (or additive) versions of that  principle are given in 23.13 and 
27.26(U5). 

Proof of theorem. For positive integers j and k, let 

{ ( ) 1}  
Cj,k -- M co e a �9 d f m (co), fn (co) <_ 7 " 

r n , n > k  

These sets are closed. Since the sequence ( fm(co) 'm E N) is Cauchy for each fixed co, for 
each fixed j we have ft - U ~ cj  k. k = l  , 

Define oscillation as in 18.28. We wish to show that  the set A - {co c f~ �9 osce(co) > 0} 
is meager. For positive integers j ,  let 

Bj 
{ 1} c ~ "  os~(~)_> j  ; 

then A - U j = l  Bj - -  U j = l  U k = l  (Bj A C5j,k). It suffices to show that  each of the closed 
sets By CI C5j,k has empty interior. 

Fix any j and k, and suppose G is a nonempty open subset of BjAC5j,k. Fix any coo C G. 
The set {fl ,  f2, f 3 , . . . ,  fk} is a finite set of continuous functions, hence it is equicontinuous 
at coo. Thus coo has some open neighborhood N C_ G such that  

( ) 1 
sup d fp(co),fp(coo) < for p - 1  2 . . .  k 

wE N - -  5 j  ' ' ' 

and therefore 

( ) 2 
sup d f;(co),fp(a/) < f o r p - 1  2 , . . .  k. (,) 

w,w'EN - -  5j ' ' 

Now, we know that  sup,~,~_>k d(f,~(co), fn(co)) <_ ~ for any co E C5j,k by the definition 

of that  set. Hence also sup,~_>k d(fm(co), fk(co)) <_ ~ for every co E C5j,k, hence for every 
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cO E N. Similarly, d(fm(cO'), fk(cO')) < ~j for all m _> k. Combine these results with (,)  
(applied at p -  k) to obtain 

( ) 4 
d fm (cO), fm(cO') < 5j for all cO cO' E N and m > k. 

Combine this result with (,) and the fact that  cOo c Bj to obtain 

1 
- _< osc~ (co0) _< sup diam(fm (N)) _< 
j mEN 

4 1 

5j j '  

a contradiction. 

20.9. A C o n t i n u o u s  E x t e n s i o n  T h e o r e m .  Let X be a pseudometric space, and let 
A C_ X be equipped with the relative topology. Let (Y, d) be a complete pseudometric 
space, and let f "  A -~ Y be a continuous map. Then f can be extended to a continuous 
map f "  C -* Y, for some Gs-set C with A c_ C c_ cl(A). In fact, one such set is 

C = {xEc l (A)  " the f i l terbasef (AnN(x))converges} .  

Here N(x) denotes the neighborhood filter of x in X, and f (A  n N(x)) -- { f (A n N) �9 N E 
N(x)} 
Proof of theorem (following Dugundji [1966]). Define C as above. Then A is dense in C, 
since C c_ cl(A). By 16.15, f can be extended to a continuous function from C to Y. It 
suffices to show that  C is a Ge-set in X. For each n C N, let 

{ ( ) 1 } 
An = x c c l ( A )  �9 diam f ( A N U )  < -  for s o m e U E N ( x )  . 

n 

Since Y is complete, a filterbase converges in Y if and only if it is Cauchy; from this it 
follows that  C -  nnC~__l An. 

Note that  if U is an open set with d iam(f(A n U)) < 1 then U N cl(A) C_ An. Any 
n 

neighborhood of x contains an open neighborhood of x; from this it follows that  An is open in 
cl(A). Thus An - cl(A)NGn for some set Gn that  is open in X. Hence C - cl(A)nnn~__i Gn. 
The set cl(A) is a G~ by 20.2.e; thus C is a Ge. 

20.10. V idoss i ch ' s  Generic  F ixed  Point  T h e o r e m .  Let (X,d) be a complete metric 
space, and let ffJ be a collection of continuous maps from X into X. Let ffJ be equipped 
with any metrizable topology stronger than the topology of uniform convergence on compact 
subsets of X. ~' 

Let Ou = {f  c �9 : f has a unique fixed point } ; d e f i n e a m a p p i n g r  : Ou ~ X  by 
letting T(f) be the unique fixed point of f.  Let ~0 be the collection of those f ' s  in ~u with 
this further property: 

If (fn) is a sequence converging in �9 to f and zn is a fixed point (not necessarily 
the only one) of fn for n - 1, 2, 3 , . . . ,  then ~'(f) - l i m n ~ o r  xn. 
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Then ~0 C_ ~*  C_ ~ C_ ~ for some set ~* that  is a Ge-set in ~,  and on which ~- is 
continuous. 

Remarks. In some cases of interest, ~0 is dense in ~. In these cases, ~* is comeager in ~,  
and so we reach this conclusion: "Most" of the continuous functions in �9 have unique fixed 
points and have their fixed points depending continuously on the functions. 

Proof of theorem. The map m is continuous from ~0 to X. By 20.9, "r has an continuous 
extension ~ :  tlJ 1 ----+ X ,  where ~0 c_ II/1 C c l ( t I / 0 )  and III i is a G5-set in ~. 

We claim that  
~(f)  is a fixed point of f 

for each f E ~1. Indeed, since tI/1 C cl(~I/0) , w e  c a n  find a sequence (fn) in ~0 converging 
to f in ~. Let x~ = ~-(f~) = ~(f~) and x = ~(f) ;  by the continuity of ~ we have x~ ~ x. 
Hence the set K = {X, Xl,X2,x3,. . .}  is compact, and fn -~ f uniformly on K. By the 
continuity of f we have f(x~) ~ f(x).  Then 

< 

< 

This proves our claim. 

vEK  

It suffices to exhibit a G5 set ~*  contained in tI/1 n II/u, for on such a set we have r - ?. 

For f E ~1, the set F ( f )  - {fixed points of f}  is nonempty; let 5(f) - d i a m d ( F ( f ) ) .  

Observe that  5(.) - 0 on ~0. 
\ / 

Now consider ~I/1 as  a topological space, equipped with the relative topology. Next we 
claim that  

~(.) is continuous at each point of ~0. 

In other words, 

for each c > 0, each f c ~0 has an open neighborhood Vf,~ in ~I/1 o n  which 
< 

Indeed, suppose not. Since the given topology on �9 and o n  tI/1 is metrizable, there exists a 
sequence ( f n ) i n  ~I/1 converging to f with (~(fn) > c. Then there exist x~, Yn E F(fn) with 
d(x~, y~) > c. By our definition of ~0, both the sequences (x~) and (y~) must converge to 
r( f) .  But then d(x~, y~) ~ 0, a contradiction. This proves the claim. 

Now observe that  W~ - Ufe~o Vf,~ is an open set in ~1 that  contains ~0, and on which 

6(.) < e. Hence ~* - nn~ W1/n is a Ge-set in lI/1 that  contains ~0, and on which ~(.) - 0. 
Since ~* is a G~-set in tI/1 and 1111 is & G~-set in ~, it follows (easy exercise) that  ~* is a 
Gs-set in ~. 

Now consider any f E ~*. Then F(f )  is a nonempty set with diameter 0 (since ~* C 
5-1(0) n ~ l ) .  Since X is a metric space, F(f )  is a singleton; hence f E ~ .  Thus ~* _c 
tI/1 n t I /  u . This completes the proof. 

20.11.  C o r o l l a r y  on  N o n e x p a n s i v e  M a p p i n g s .  Let (X, d) be a complete metric space, 
with the property that  
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(!) the identity map i : X ~ X can be approximated uniformly on X by a 
sequence of strict contractions cn : X ---, X. 

Let �9 be the set of all nonexpansive self-mappings of X, equipped with the topology of 
uniform convergence on X. Then there exists a set ~* that  is comeager in ~, such that  
each f E ~* has a unique fixed point T(f) E X and the mapping T : ~* --~ X is continuous. 
(Thus, most nonexpansive self-mappings of X have unique fixed points, which depend 
continuously on the mappings.) 

Remark. Condition (!) is satisfied by bounded metric spaces that  are not too irregularly 
ghaped. For instance, it is satisfied if X is a closed bounded subset of a Banach space such 
that  X - x0 is a star set (in the sense of 12.3) for some x0 E X. Indeed, in that  case we 

1 ) X _ [  - 1 can take C n ( X )  - -  (1 - ~ ~x0. 

Proof of corollary. We shall apply 20.10. It suffices to show that  the set ~0, defined as in 
that  theorem, is dense in �9 under the hypotheses of the present corollary. If f : X ~ X 
is any nonexpansive mapping, then f is uniformly approximated by the mappings c~ o f ,  
which are strict contractions. By 19.41, every strict contraction is a member of ~o. 

TOPOLOGICAL COMPLETENESS 

20.12. A topological space (X, 9 ~) is topological ly  comple te  (or completely metrizable) 
if its topology is pseudometrizable, and at least one of the pseudometrics that  yields the 
topology 9" is complete. In describing a topologically complete space, we do not necessarily 
specify a particular pseudometric. 

Caution: Some mathematicians apply the term "topologically complete" only to spaces 
that  are metrizable i.e., Hausdorff. 

20.13.  Alexandrof f -Mazurkiewicz  T h e o r e m  on Topological  Comple teness .  Let 
(X, d) be a topologically complete Hausdorff space, and let S c_ X have the relative topology. 
Then S is topologically complete if and only if S is a G~ set in X i.e., the intersection 
of countably many open subsets of X. 

Proof. Let d be a complete metric on X. 
topologically complete. Verify that  

We first show that  any open set G c_ X is 

- + "  1 1 
dist(s, X \ G) dist(t, X \ G) 

(s,t zG) 

is a complete metric on G that  is topologically equivalent to the restriction of d. 
Now suppose S - NneC_l G n  is the intersection of countably many open sets. Then the 

product P - YIn~ G n  has a topology that  can be given by a complete metric, by 19.13. 
Let D be the diagonal set {(xn) E P :  Xl = x2 = x3 . . . .  }. Then D is a closed subset of 
P (why?), hence also complete. Finally, the mapping s H (s, s, s , . . . )  is a homeomorphism 
from S onto D. 
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For the converse, suppose that  S c_ X is topologically complete. Let e be a complete 
metric on S that  is topologically equivalent to the restriction of d. The identity map 
i" (S, d) ~ (S, e) is continuous, so by 20.9 it extends to a continuous map ~" C --~ S, where 
C is a G5-subset of X that  contains S and is defined by 

C = { zEc l x (S )  " thefi l terbasei(SnN(z))  convergesinS}. 

It suffices to show that  C c_ S. Let x0 c C; we wish to show that  x0 E S. Each neighborhood 
of x0 contains a member of S N N(x0), so S n N(xo) converges to x0. By assumption, X is 
Hausdorff, so SNN(xo) converges to no other limit. Since x0 E C, the filterbase i(SNN(xo)) 
converges in S. But i is just the identity map, so we have established that  the filterbase 
S n N(xo) converges in S. Thus its limit, x0, lies in S. 

20.14.  Ezample. Show that  the set R \ Q - {irrational numbers}, topologized as a subset 
of R, is topologically complete. 

BAIRE SPACES AND THE BAIRE CATEGORY 
THEOREM 

20.15.  Let X be a nonempty topological space. Show that  the following conditions on X 
are equivalent. If X possesses any one (hence all) of these properties, we say X is a Baire 
space .  

(A) If G1,G2, Ga,... is a sequence of open dense subsets of X, then the set 
nrt~ (~rt is dense in X. 

(B) If F1, F2, F3 , . . .  is a sequence of closed subsets of X and Un~ F n contains a 
nonempty open set, then at least one of the F~,'s contains a nonempty open 
set. 

(C) Any comeager subset of X is dense in X. 

(D) Any meager subset of X has empty interior. 

(E) Any nonempty open subset of X is nonmeager. 

The last condition implies, in particular, that  X itself is nonmeager, and hence the meager 
sets form a proper c~-ideal on X. 

20.16.  For our purposes, the most important  result about Baire spaces is 

(DC5) Baire Category Theorem. 
space is a Baire space. 

Any complete pseudometric 

For motivation the reader may wish to glance ahead to applications of this theorem, in 
20.29, 23.13, 23.14, 23.15.b, 26.2, 27.18, and 27.25. We shall prove that  the Baire Category 
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Theorem is an equivalent of the Principle of Dependent Choices, which was introduced in 
section 6.28. 

Proof of (DC2) => (DC5). Let (X, d) be a complete pseudometric space, and let any open 
OO dense sets V1, V2, Va,. . .  c_ X be given. We wish to show r}j=l vj is dense. Let Go be any 

OO 
nonempty open subset of X; we are to show that  ["}j=l Vj meets Go. We choose nonempty 
open sets (71, (72, G3, . . .  as follows: Assume Gn-1 has already been chosen (this is clear 
for n = 1). Since Vn is open and dense, (7n-1 A Vn is a nonempty open set. Now (using 
the Principle of Dependent Choice) we may choose a nonempty open set Gn satisfying 
cl((Tn) C_ e n - 1  f"l Vn and also satisfying 

1 
diam(a~)  < - .  (**) 

n 

Let Kn = cl(Gn). Then K1 _D /(2 _D /(3 _D . . . ,  and by Cauchy's Intersection Property (in 
19.11.c) we have RneC=l Kn nonempty. Since also Kn c_ Vn, this completes the proof. 

Proof of (DC5) => (DC1) (optional). This result is from Blair [1977]; it can also be found 
in Oxtoby [19801. 

Let S be a set, and let (I) : S -+ {nonempty subsets of S} be some given function. We 
wish to construct a choice sequence for (I) - -  i.e., a sequence (s,) in S such that  Sn+l c O(s,) 
for each n c N. Let S have the discrete metric, and let X = S N have the product topology. 
Then S and X are both complete (see 19.13 for the latter). Verify that,  for each k c N, the 
set 

- U U U 
l>k sES tEq)(s) 

is open and dense in X. By the Baire Category Theorem, r-)k~=l Ak is nonempty. Choose 
any y E r)~a=l Ak. Let kl - 1. Thereafter, let ki+l be the first integer satisfying ki+l > ki 
and Yki+l C (I)(yki); such an integer exists since y C Ak~. The sequence si = Yk~ is the 
desired choice sequence. 

20.17. Remark. If X is also assumed separable, then the theorem above can be proved 
using just ZF; the Principle of Dependent Choice is not needed. (The details are left as an 
exercise.) 

In particular, 2 N is a Baire space, and that  can be proved in ZF. This fact enters into 
some of our arguments about weak forms of Choice. 

20.18. Proposition. Any locally compact regular space is a Baire space. 
Proof. The proof is similar to that  in 20.16, except that  in place of (**) we impose the 

condition that  cl(Gn) be compact, and instead of the Cauchy Intersection Property 19.11.c 
we use 17.14.a and 17.3(B). 

20.19. Example. Let IR = {real numbers} and Q = {rational numbers} have their usual 
topologies; thus Q is a subspace of IR. Show that 

a. Q is an F~ subset of IR. 
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b. If q E Q, and N is a neighborhood of q in Q, then N contains infinitely many members 
of Q. Hence the singleton {q}, considered as a subset of Q, is a closed set with empty 
interior. 

c. Q is a meager subset of itself. 

d. Q is not a Baire space. 

e. Q is not topologically complete. 

f. Q is not a G~ subset of R. 

ALMOST OPEN SETS 

20.20.  Let X be a topological space. Observe that  an equivalence relation ~ can be defined 
on [P(X) by: 

A ~ B ~' ',, A A B is meager. 

Here A denotes symmetric difference, as in 1.27. 
Let S C_ X. Then the following conditions are equivalent" 

(A) S is equivalent (in the sense defined above) to an open set; i.e., S - G A M 
for some open set G and some meager set M. 

(B) S is equivalent (in the sense defined above) to a closed set; i.e., S - F A M 
for some closed set F and some meager set M. 

(C) There exists a meager set M C_ X such that  S \ M  is a clopen subset of 
the topological space X \ M  (when that  space is equipped with the relative 
topology). 

(Hint" The boundary of an open set is meager see 20.4.) 
If any (hence all) of those conditions is satisfied, we say that  S has the B a i r e  p r o p e r t y ,  

or that  S satisfies the c o n d i t i o n  of  Ba i re ,  or that  S is a l m o s t  open .  (Perhaps a more 
descriptive term would be "almost clopen.") Almost open sets play important  roles in our 
theory of intangibles (in 14.77) and in our study of closed graph theorems; see 27.25, 27.45, 
and 29.38. 

20.21.  Corollary. The almost open subsets of a topological space X form a a-algebra on 
X. Indeed, it is the smallest or-algebra that  contains both  the a-algebra of Borel sets and 
the ideal of meager sets; see 5.28. 

20.22.  T h e o r e m  ( o p t i o n a l ) .  A set has the Baire property if and only if it is equal to 
the union of a G~ set and a meager set. (See also the related remark in 24.35.) 

Proof of theorem. Since the sets with the Baire property form a or-algebra containing all 
open sets and all meager sets, it follows easily that  any union of a G5 and a meager set 
is almost open. Conversely, suppose that  S - G A M where G is open and M is meager. 
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Then M is contained in some meager set K that  is an F~. Now G\K is a G6 and S n K is 
meager, and the union of these two sets is S. 

20.23. Definition and proposition. Let X be a topological space, and let f �9 X -+ IR be 
some function. Then the following conditions are equivalent. If either, hence both, are 
satisfied, we say that  f has the p r o p e r t y  of  Bai re .  

(A) For each open set G c_ IR, the set f - l ( G )  is an almost open subset of X. (In 
other words, f is measurable when X is equipped with its a-algebra of almost 
open sets and IR is equipped with its a-algebra of Borel sets.) 

(B) There exists a meager set M C X such that  the restriction of f to X \ M is 
continuous (when X \ M is equipped with the relative topology). 

Outline of proof of equivalence. The proof of (B) ==> (A) is  an easy exercise; we omit the 
details. For (A) ==> (B), let (Un) be a countable base for the topology of I R -  for instance, 
the open intervals with rational endpoints. Then f - l (Un) - Gn i Mn where Gn is open 
and Mn is meager. Then M - U n % I  M~ is meager. Let r be the restriction of f to X \ M. 
For each n, the set r - l ( u n )  - Gn \ M is open in X \ M; hence r is continuous. This proof 
is taken from Kuratowski [1948]. 

20.24. An application of the Baire theory to Boolean algebras (optional). Let (X, ~) be 
any nondegenerate Boolean algebra. Then (X, ~) can be embedded in a complete Boolean 
algebra (X, ~) in a natural way (so that  the inclusion is inf- and sup-preserving), as follows: 

Let X* be the dual of X, defined as in 13.19 and topologized as in 17.44. It is a Boolean 
space; hence it is a Baire space. Let A = {almost open subsets of X*} and :M: = {meager 
subsets of X*}. Then A is an algebra of subsets of X*, and ~ is an ideal in A; hence we 
can form the quotient Boolean algebra Y = A/JV[ and the quotient mapping rr : A  ~ Y. 

The dual of the Boolean space X* is the Boolean algebra X**, defined as in 17.44 
i.e., the algebra of all clopen subsets of X*. The Stone mapping S : X -+ X**, 

defined in 13.21 and investigated further in 13.22 and 17.46.a, is an isomorphism of Boolean 
algebras. Every clopen set is open, and therefore is almost open; thus we have inclusions 
X** c c - ,  A - ,  ~P(X*). The composition 

�9 X s c 7r X** -~ A ~ Y 

is a homomorphism of Boolean algebras. 
It can be shown that  Y is complete and that  ~ is injective, sup-preserving, and inf- 

preserving. We omit the details of the proof (which are too long for us to recommend them 
as an exercise); they can be found in Rasiowa and Sikorski [1963, page 89]. 

RELATIVIZATION 

20.25. Assume that  X is a topological space, and Y C_ X is equipped with the relative 
topology. Use clx and clz to denote the closures in X and in Y. 
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Let S c_ Y c X. Prove the following list of results. (The list is admit tedly  long and 
tedious, but that  seems to be unavoidable, and these results are needed for later results 
such as 20.30 and 27.45.) 

a. The following are equivalent: 

(A) S is nowhere-dense in Y. 

(B) S c_ c ly(Y \ c ly(S)) .  Hint" 20.4(F). 

(C) S c_ c lx (Y \ c lx(S)) .  Hint" 15.12. 

The last condition has the advantage that  all the closures are with respect to the 
topology on X; this makes some later results easier to prove. 

b. If S is nowhere-dense in Y, then S is nowhere-dense in X. 

c. If S is meager in Y, then S is meager in X. 

d. Suppose Y is dense in X, and S is nowhere-dense in X. Then S is nowhere-dense in 
Y. 

Proof. Let "cl" denote closure in X. We have X - cl(Y) and cl(S) - cl(cl(S)), 
hence by 15.5.c 

X \ cl(S) - cl(Y) \ cl(cl(S)) C cl(Y \ cl(S)). 

The right side is closed, so we may replace the left side by its closure i.e., cl(X \ 
cl(S)) c_ cl(Y \ cl(S)). By 20.4(F) we have S C_ cl(X \ cl(S)). Thus we deduce 
S c_ cl(Y \ cl(S)). Now apply 20.25(C). 

e. Suppose Y is dense in X, and S is meager in X. Then S is meager in Y. 

f. Suppose Y is dense in X, and S is almost open in X. Then S is almost open in Y. 

g. If S is almost open in Y and Y is almost open in X, then S is almost open in X. 
Hint" By assumption, S - M A G, where M is meager in Y hence in X and 

G is open in Y. Then G - Y n H, where H is open in X. Thus S - M A (Y N H),  
where all of M, Y, H are almost open in X. Since the almost open subsets of X form 
a a-algebra, S is almost open in X. 

h. Suppose X is a Baire space and X \ Y is meager in X. Then S is almost open in Y if 
and only if S is almost open in X. 

ALMOST HOMEOMORPHISMS 

20.26.  Recall from 17.41 tha t  a zero-dimensional space is a topological space with a base 
of clopen sets. A few basic properties and examples were given in 17.42. 

2 0 . 2 7 .  A l e x a n d r o f f - U r y s o h n  T h e o r e m  on t h e  I r r a t i o n a l s  (1928) .  Let X be a non- 
empty, separable, zero-dimensional, metrizable, topologically complete space, in which no 
nonempty clopen set is compact.  Then X is homeomorphic to 1N N. 
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In particular, IR \ Q - {the irrational numbers}, topologized as a subset of IR, is home- 
omorphic to N N. 

Proof. We may equip X with a complete metric d. By 18.14, we may assume that  diam(X) < 
1. We first shall show this preliminary result: 

(~) Let Y be a nonempty clopen subset of X, and let any e > 0 be given. Then we may 
write Y - Y1 U Y2 U Y3 U . . . ,  where the Yj's are nonempty, disjoint, clopen sets and 
diam(Yj) < c. 

By assumption, Y is not compact. Since Y is closed, we know by 19.18 that  Y is not totally 
bounded. Thus (replacing e by some smaller number if necessary) we may assume that  Y 
cannot be covered by finitely many sets that  have diameter less than e. Since X is separable 
and zero-dimensional, X has a countable clopen base A1, A2,A3, . . . .  Then the Aj's that  
have diameter less than e also form a countable clopen base. Hence the sets Aj n Y that  
satisfy diam(Aj) < e form a clopen cover of Y. Let those sets be B1,B2,B3, . . . .  Let 
C1 - B1 and 

C n  : B n \ ( B I U B 2 U ' " U B n - 1 )  (n - 2 ,3 ,4 , . . . ) .  

Then the sets Cn are clopen, disjoint, have diameter less than e, and have union equal to Y. 
Finally, let the sequence (Yn) consist of those Cn'S that  are nonempty. There are infinitely 
many Yn'S, by our choice of e. This completes the proof of (~). 

We now define a mapping ~ "  {finite sequences in N} + {nonempty clopen subsets of 
X}, by recursion on the length of the finite sequence, as follows. First, let qp map the empty 
sequence to the whole set X itself. 

Now, assume that  ~ has been defined on all sequences of length k, for some k > 0. Thus, 
for each ( n l , n 2 , . . .  ,nk) E N k, we already have g~(nl ,n2, . . .  ,nk) equal to some nonempty 
clopen subset of X. Applying (~), we can partition that  nonempty clopen subset into a 
countably infinite collection of nonempty clopen subsets, each of which has diameter less 
than 2 -k-1 .  Take those sets to be the values of ~(nl ,  n2 , . . .  ,nk,p), for p - 1,2,3, . . . .  This 
completes the recursive definition of qp. 

Next we define a function ff~ �9 l~l N -+ X, as follows. For any sequence a - (nl, n2, n3 , . . . )  
in N N, consider the sets So(a) - X and 

S1((7) --  gP(nl ) ,  S2(cr)  -- ~ ( n l ,  n 2 ) ,  S3(~7) --  g~(nl ,  n2 ,  n3 ) ,  . . .  

These are clopen subsets of X, satisfying So(a) D_ &(a) D_ S2(a) D_ S3(a) _D . . .  and 
diam(Sn(a))  < 2 -n.  Since the metric space X is complete, nn~=oSn(a) consists of a 
singleton, whose element we now define to be the value of r Using 15.25.b and the 
fact that  the Sn(a)'s are clopen, verify that  the mapping ~ is actually a homeomorphism 
from N N onto X. 

20.28. L e m m a .  Let X be a nonempty, separable, zero-dimensional, complete metric 
space. Let Y c_ X be a G~ set that  is dense in X, such that  X \ Y is also dense in X. Then 
Y is homeomorphic to the irrationals. 

Proof. This result is from Mazurkiewicz [1917-1918]. The set Y is a separable metric space. 
It is zero-dimensional, for if {B~ �9 c~ E A} is a clopen base for X, then {B~ n Y �9 c~ E A} 
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is a clopen base for Y. That  Y is complete follows from Alexandroff's Theorem 20.13. We 
shall apply the Alexandroff-Urysohn Theorem 20.27; it sumces to show that no nonempty 
clopen subset of Y is compact (when we use the relative topology of Y). 

Indeed, suppose K is a nonempty clopen compact set in Y, where we use the relative 
topology of Y; we shall obtain a contradiction. Since K is compact in Y, it is also compact 
in X; thus c lx(K)  - K. Since K is open in Y, we have K - G n Y for some nonempty set 
G which is open in X. Then K - c lx(G n Y) _D G by 15.13.b. Since X \ Y is dense in X, 
the nonempty set G must meet X \ Y - -  contradicting G c_ K C_ Y. 

20.29. T h e o r e m .  Let X be a nonempty, complete, separable metric space, having no 
isolated points. Then there exists a meager set M C_ X and a homeomorphism f from 
X \ M onto the irrational numbers (where the irrationals are topologized as a subset of R). 

Proof. This is from Schechter, Ciesielski, Norden [1993]. For later reference we note that 
the proof of this theorem does not require the Axiom of Choice; at most, it requires DC. 

Since X is a separable metric space, it has a countable base B1, B2, B3, . . . .  Let D be 
the union of the boundaries of the By's; then D is meager. We easily verify that X \ D 
is a nonempty, separable, zero-dimensional metric space. Moreover, it is a G5 subset of a 
complete metric space; hence it is topologically complete by 20.13. 

Let C be any countable dense subset of X \ D. Then any superset of C is also dense in 
X \ D .  The set M = C U D i s m e a g e r i n X \ D ;  h e n c e X \ M i s d e n s e i n X \ D ,  b y t h e  
Baire Category Theorem. Also, M is the union of countably many closed sets, so X \ M is 
a G5 set in X \ D. By the preceding lemma, X \ M is homeomorphic to the irrationals. 

20.30. Coro l l a ry .  Let X 1 and X2 be nonempty, complete, separable metric spaces, that 
have no isolated points. Then there exist meager sets My c_ X j  (j  - 1, 2) such that Xl \ M1 
is homeomorphic to X2 \ 5'/2. 

TAIL SETS 

20.31. Defini t ions .  We consider two different notions of "tail sets." We shall relate them 
in exercise 20.32.c, below. (However, these two notions are unrelated to a third meaning of 
the term, given in 7.7.) 

a. We may sometimes write the set 2 N as {0, 1} N, particularly if we want to emphasize 
that we are viewing it as a collection of sequences of 0s and ls. A set S c_ {0, 1} N is a 
ta i l  set  in {0, 1} N if it has this property: 

Whenever x - ( X l , X 2 , X 3 , . . . )  is a member of S, and y - ( y l , y 2 , y 3 , . . . )  
is another sequence of Os and ls that differs from x in only finitely many 
components, then y is also a member of S. 

(The idea is that x and y are eventually the same; they have the same "tails.") 
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b. A d y a d i c  r a t i o n a l  will mean a number of the form m/2 n, for integers m and n. A 
set S c [0, 1) is a ta i l  se t  in the interval [0, 1) if it has this property: 

Whenever  x is a member of S and y is another point in [0, 1) that  differs 
from x by a dyadic rational, then y is also a member of S. 

2 0 . 3 2 .  
a .  

b" 

C. 

Exercises. Show that  

The two kinds of tail sets can also be described as follows: Say that  two sequences 
of 0s and ls are equivalent if they differ in only finitely many components; or say 
that  two numbers in [0, 1) are equivalent if they differ by a dyadic rational. These are 
equivalence relations on {0, 1} N and on [0, 1), respectively. In either setting, a set is a 
tail set if and only if it is a union of equivalence classes. 

The tail sets in {0, 1} N form an algebra of subsets of {0, 1}N; the tail sets in [0, 1) form 
an algebra of subsets of [0, 1). 

The countable sets 

A 

S 

tail sets in {0, 1} N are 

{x E {0, 1} N �9 xj -- 0 for only finitely many j ' s } ,  

{x E {0, 1} N �9 xj - 1 for only finitely many j ' s}  

The countable set 

D - {y E [0, 1) �9 y is a dyadic rational} 

is a tail set in [0,1). Show that  the mapping 

oo 
E X n  X l  X2 X3 

(Xl ,  X 2 , X 3 , . . . ) ~-> 2 n : - 2  -[- - -4  -nu V - [ - ' ' "  
n = l  

is a homeomorphism from {0, 1}N\ (AUB)  onto [0, 1 ) \ D ,  where {0, 1} has the discrete 
topology, {0, 1} N has the product  topology, [0, 1) has its usual topology, and subsets 
have their relative topologies. 

Show that  a subset of {0, 1}N \ (A O B) is a tail set in {0, 1}N if and only if the 
corresponding subset of [0, 1) \ D is a tail set in [0, 1). 

20.33.  O x t o b y ' s  Z e r o - O n e  Law.  In either {0, 1} N or [0, 1), if S is a tail set that  has 
the Baire property, then S is either meager or comeager. 

Proof. This proof is taken from Miller and Zivaljevi5 [1984]. We first prove this in [0, 1). By 
assumption, S - G A M where G is open and M is meager. We may assume G is nonempty 
(else S -  M and we are done). Take P -  G V / M ;  then P i s  a m e a g e r  subset of G and 
S_~G\F. 

Since G is a nonempty open set, it contains a set of the form [ 2 - ' ~ ( k -  1), 2-ink))  for 
some positive integers m, k, which will be held fixed throughout  the rest of this proof. Let 

Ij = [ J - 1  J ~ for j - - 1  2 2 m 
2,,~ , 2,~ , , . . . ,  . L / 
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With this notation, G _D Ik. Let Pk - Ik C/P; then Pk is a meager subset of Ik and 
s _~ Ik \Pk. 

Let Pj be the translate of Pk that  is a subset of Ij - -  that  is, let Pj - Pk + 2 - m ( j  - k). 
Then Pj is also a meager set, since the operation of translation preserves all the relevant 

2 m 
topological properties�9 Then Uj=I  PJ is a union of finitely many meager sets, and thus is 
meager. Since S is a tail set, we have 

2 rr~ 

S D U(Ij\Pj)- [0 ,1 ) \  ( U 2 : I P j )  
j=l  

which is comeager. This completes the proof in [0, 1). 
We can now use 20.32.c to transfer our conclusions to {0, 1} N as well. Admittedly, the 

mapping considered in 20.32.c is not a homeomorphism between {0, 1} N and [0, 1); it is only 
a homeomorphism between {0, 1} N \ (A U B) and [0, 1) \ D. However, the exceptional sets 
A, B, D are meager tail sets and thus have no effect on our conclusion. 

BAIRE SETS (OPTIONAL) 

20.34. Definition. Let ft be a locally compact Hausdorff space. Then the B a i r e  a-algebra 
on ft is 

the a-algebra ~1 generated by the compact G~'s in ft; or, equivalently, 

the a-algebra ~2 generated by the continuous functions from ft into R that  
have compact support  i.e., thesmal les t  a-algebra on [2 that  makes all such 
functions measurable from ft to R (where R is equipped with its Borel a-algebra). 

The members of this a-algebra are called the B a i r e  sets.  

Proof of equivalence. To show that  ~B2 c_ ~B1, let any continuous f : ft ~ IR with compact 
support  be given. For each real number r > 0, the set {a; E f t :  f(cz) _> r} is compact; also 

1 it is the intersection of the sets {c~ E ft" f(a;) > r -  ; }  (n - 1, 2, 3 , . . . ) ,  which are open. 
Thus the set {a; c f t :  f(a;) _> r} is a member of ~B1. Similarly, the set {a; c f t :  f(a;) _< - r }  
belongs to N1. It follows easily that  f is measurable from (ft, ~B1) to R. 

To show that  ~1 ~ ~2, let K be a compact Ge. Say K = G1 C/G2 C/G3 K1 �9149 �9 where 
the Gj's are open. Since K is compact, finitely many of the Gj's suffice to cover K. By 
17.14.c, there exists a continuous function fj  :f~ ~ [0, 1] with compact support,  such that  
fj - 1 on K and fj vanishes outside Gj Then each fj is measurable from N2 to the reals �9 d , i  

The characteristic function of K is the pointwise iv fimum of the sequence (fj) ,  so it too is 
measurable from ~B2 to the reals. Thus K E N2; it follows that  ~1 C ~2. 

20.35.  Observations and remarks. Every Baire set is a Borel set. In many commonly used 
topological spaces, the Baire and Borel sets are the same. For instance, this is true in any 
compact metric space, by 20.2�9 and 17.7.f�9 
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We shall not need the Baire sets later in this book. We have mentioned them only to 
prevent confusion: Do not confuse the Baire sets with the sets that have the Baire property; 
these are two different a-algebras. In general we have 

{ Baire } { Borel } { setswith } 
sets ~ sets ~ Baire . 

property 

The definition of "Baire set" varies somewhat in the literature. For instance, some 
mathematicians prefer to use the a-ring generated by the compact Ge's, rather than the 
a-algebra (see 5.27). This has certain advantages in the study of regular measures on 
topological spaces; that is the main setting where Baire sets are important. 
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Posit ive  Measure  and Integrat ion 

MEASURABLE FUNCTIONS 

21.1. Definitions, review, and remarks. By a m e a s u r a b l e  space  we mean a pair (~, S) 
consisting of a set ~ and a a-algebra S of subsets of ~t; the members of S are then called 
m e a s u r a b l e  sets .  Recall that  measurable spaces are the objects for a category, with 
measurable mappings for the morphisms. A m e a s u r a b l e  m a p p i n g  f :(~t, ~;) ~ (~',  S') is 
a function f : ~t -~ ~t ~ that  makes the inverse image of each measurable set measurable 
i.e., that  satisfies S ~ E S ~ =~ f - l (S~ )  c S. Recall from 9.8 that  a sumcient condition for 
measurability is that  G ~ E ~ =~ f - l (G~)  E S, where ~ is any collection of subsets of ~t ~ 
that  generates the a-algebra S ~. 

Initial a-algebras and product a-algebras are defined as in 9.15 and 9.18. 
In most cases of interest, the codomain ~ is a topological space. When we speak of a 

measurable function from a measurable space to a topological space, the topological space 
~ will be understood to be equipped with its a-algebra of Borel sets, unless some other 
arrangement is specified. 

An analogous convention is not used for the domain ~t. For the most basic ideas of 
integration theory, developed later in this chapter, a topology is not needed on ~. Even 
when a topology on ~ is present, several different a-algebras on ~ may be useful (e.g., the 
Borel sets, the Lebesgue-measurable sets, or the almost open sets), and so we shall not 
assume any one of them is in use unless it is specified. 

Most of our results about measurable functions f : ~ ~ ~ require some sort of sepa- 
rability condition or small cardinality condition for the topological space ~t ~, as in 21.4 and 
21.7. Without  such assumptions, pathologies may arise, as in 21.8. An interesting exception 
is 21.3, which is valid for pseudometric spaces regardless of separability. 

21.2. Some exercises on measurability. Assume (~,S)  is a measurable space, X is a 
topological space, and f : ~  ~ X is some mapping. 

a. A sumcient condition for measurability of f is that  the inverse image under f of each 
open set, or of each closed set, is measurable. 

In particular, any continuous function is measurable, if the domain is a topological 
space equipped with its Borel a-algebra. 

547 
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b. If f : ~t ~ X is measurable and g : X ~ Y is continuous, then the composition 
g o f :f~ ~ Y is measurable. 

c. A mapping f :  f~ ~ [-oo, +oo] is measurable if and only if the set {a~ E f~: f(a~) < r} is 
measurable for each r E R - - o r ,  equivalently, if and only if the set {a~ E gt: f(cz) <_ r} 
is measurable for each r E R. 

In particular, if ft is a topological space equipped with its Borel a-algebra, and f : 
f~ ~ [-oc,  +oc] is lower semicontinuous or upper semicontinuous, then f is measurable. 

d. If f : ft ---+ [-oc,  +ec] is measurable, then so is the mapping a~ H If(aj)l p, for any 
constant p E (0, +oc). 

21:3. T h e o r e m .  Let (ft,8) be a measurable space, and let (X,d) be a pseudometric 
space (not necessarily separable). Let f l ,  f2, f 3 , . . ,  be measurable functions from ft into X, 
converging pointwise to a limit f .  Then f is also measurable. 

Proof (following Lang [1983]). Let any open set T C_ X be given; we wish to show f - l ( T )  E 
8. We may assume ~ C T C X. We have x E T if and only if dist(x, X \ T) > 0. Consider 

1 the closed sets F p -  {x E X �9 d i s t ( x , X \ T )  > ~} and the open sets Gp {x E X �9 
1 dist(x, X \ T) > p}, for positive integers p. We have 

x E Fp for some p =~ x E T :=~ x E Gp for some p. 

(Actually, both  of those implications are reversible, but we won't  need that  fact for the 
argument below.) For fixed p, use the facts that  Fp is closed, Gp is open, and f(a~) = 
limn__.~ f~ (a~), to show that  

fn(~z) E Fp for all n sufficiently large =~ 
fn(W) E Gp for all n sufficiently large 4== 

f (w) E Fp, and 
f (w) E Gp. 

From this conclude that  

O(3 (X) CX:) (::X) (X:) (X:) 

U U N f n l ( F p )  C f - l ( T )  C U U N (*) 
p=l j= l  n = j  p=l k=l n=k  

However, note that  Gp c_ Fp. 
therefore f - l ( T ) i s  measurable. 

Hence the inclusions in (.) are actually equalities, and 

21.4. Definitions and proposition. Let (ft, 8) be a measurable space, and let (X, d) be a 
pseudometric space equipped with " ebra of Borel sets. 

We shall say that  a mapping j ' Y is f in i te ly  v a l u e d  or c o u n t a b l y  v a l u e d  
or s e p a r a b l y  v a l u e d  if the range c inite set, a countable set, or a separable set, 
respectively. 

Show that  the following conditions are equivalent. 

(A) f is separably valued and measurable. 

(B) f is the uniform limit of a sequence (gn) of countably valued, measurable 
functions. 
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(C) f is the pointwise limit of a sequence (g~) of finitely valued, measurable func- 
tions. 

(D) f is the pointwise limit of a sequence of separably valued, measurable func- 
tions. 

Any function satisfying one, hence all, of these conditions will be called a s t r o n g l y  m e a -  
s u r a b l e  func t ion ;  the collection of all such functions will be denoted SM(g, X). Of course, 
if Y is separable, then SM(g, Y) is just the set of all measurable functions from (f~, g) to 
the Borel subsets of Y. (The use of the term "strongly" is explained in part  by comparison 
with the notion in 23.25.) 

Further properties. If f is a strongly measurable function and the range of f is contained 
in a compact subset of X, then 

(E) f is the uniform limit of a sequence (gn) of finitely valued, measurable func- 
tions. 

Proof of proposition. Obviously (B) ===> (D) and (C) ==~ (D). For (D) ==> (A), use 21.3; 
also show that  Range(f )  c_ cl ([.J~--1 Range(g~)), which is separable. 

It remains to show that  (A) implies both (B) and (C), and also that  (A) implies (E) 
when the range of f is relatively compact. Let (xk : k = 1, 2, 3 , . . . )  be a dense sequence 
in the range of f.  For the compact case, choose the sequence (xk) so that  it has the 

N further property that  for each c > 0, the range of f is covered by [.Jk=l B(xk, c) for some 
N �9 N. Now, for (B) and (E), let g~(w) be the first term in the sequence (xk) that  satisfies 
d(f(a~),xk) <_ 1In. For (C), let g~(a~) be the closest member of {Xl,X2,... ,xn} to f(aJ) 
or more precisely (since there may be a tie), let gn(a~) be the first xk in the finite sequence 
(Xl,X2,. . . ,xn) that  satisfies d(f(a~),xk) = dist(f(c~), {Xl,X2,. . . ,xn}).  We leave it as an 
exercise to prove that,  in each case, g~ is measurable. (The exercise makes use of the fact 
that  we took g~ (a~) to be the first xk with a specified property, rather than simply some xk 
with that  property.) 

21.5. A related result. If f �9 ~ --~ [0, +cx~] is a measurable function, then there exist 
measurable, finitely valued functions gn " ~t ~ [0, +oc) such that  gn $ f pointwise i.e., 
such that  gl _~ g2 _~ g3 _ ~ ' ' "  _~ f and gn(~) ~ f (~ )  for each ~ E ft. 

I~nt" Let g,~(aJ) - max{r  �9 2nr is an integer, r _< n, and r _< f(a~)}. 

JOINT MEASURABILITY 

21.6. Definition. Let (X, g) and (Y, if') be measurable spaces. Recall that  the p r o d u c t  (r- 
a l g e b r a  on X • Y is the product structure, as defined in 9.18, for the category of measurable 
spaces and measurable mappings. Thus, the product a-algebra is the smallest a-algebra 
on X • Y that  makes both of the coordinate projections (x, y) H x and (x, y) H y into 
measurable mappings. Equivalently, it is the smallest a-algebra that  contains the collection 
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{S • T �9 S E S, T E 7}. We shall denote it by S | 9 ~, to emphasize that  in general it is not 
equal to {S • T"  S E S ,T  E ~}. 

P r o p o s i t i o n  on  j o i n t  m e a s u r a b i l i t y .  Let (X, S), (Y, 9~), and (Z, l~) be measurable spaces. 
Let S | ~ be the product a-algebra on X • Y. If f �9 X • Y ~ Z is measurable from S | 9 ~ 
to ~, then 

(i) f ( x ,  .)" Y ~ Z is measurable from 9 ~ to 11 (for each fixed x), and 

(ii) f( . ,  y)" X ~ Z is measurable from S to ~ (for each fixed y). 

In particular, taking Z - {0, 1}, we obtain these important  special cases: If A E S | ~, then 

(i') the set Ax - {y E Y ' ( x ,  y) c A} belongs to ~, for each fixed x, and 

(ii') the set A v - {x c X ' ( x ,  y) E A} belongs to S, for each fixed y. 

Proof. We first prove (i'). Fix any x E X, and define 9"x - {A c_ X x Y ' A ~  E 9~}. It is 
easy to show that  9~ is a a-algebra on X x Y, and that  9~ contains all sets of the form 
S • T for S E S, T E 9 ~. Hence 9~ _D S | 9~; this proves (i'). The proof of (ii') is similar. 

Now to prove (i), let any measurable f "  X • Y ~ Z and any measurable set Q c_ Z be 
given. Then 

f ( x , . ) - l ( Q )  - {y c Y" f ( x , y )  c ~}  - {y c Y" (x,y) E f - l ( Q } }  _ [ f - l ( Q ) ]  x 

is measurable by (it). 

21.7.  Measurability in separable spaces. Let (X, d) be a separable metric space. Then: 

a. The product a-algebra on X • X formed using the Borel a-algebras on both X ' s  is 
equal to the Borel a-algebra determined by the product topology on X. 

Hint: Let ~ be a countable base for the topology on X; then {el  x e 2  : g l ,  B2 C ~} 
is a countable base for the product topology on X • X. 

b. The metric d : X • X ~ [0, + ~ )  is jointly measurable. 

c. Let (~, S) be a measurable space. Consider mappings from Ft into I~ or C or [0, + ~ ]  or 
[ - ~ ,  + ~ ]  (all of which are separable metric spaces). Then the maximum, minimum, 
sum, difference, product,  or quotient of two measurable mappings is measurable, if it is 
d e f i n e d -  i.e., if it does not involve ~ -  ~ or division by 0 or other illegal operations. 
The set of all measurable real- or complex-valued functions is a unital algebra (see 
11.3). 

21.8.  N e d o m a ' s  p a t h o l o g y  (op t i ona l ) .  Let S be a a-algebra on a set X, with card(X) > 
card(It~). Then the diagonal set I - {(x,x) �9 x E X} is not a member of the product a- 
algebra S | S. 

Corollaries. Let X be a set with card(X) > card(R). Let d be a metric on X, let S be the 
resulting Borel a-algebra on X, and let S | S be the product a-algebra. Then the diagonal 
set I does not belong to S | S. Hence 

(i) d:  X • X ~ [0, + ~ )  is not a measurable mapping, if we equip X • X with 
the product a-algebra. 
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(ii) 

(iii) 

In view of 21.7.b, X cannot be equipped with a metric that  makes X separable. 
(We already established this by other means in 15.37.a.) 

On the other hand, the diagonal set I does belong to the or-algebra determined 
by the product topology. Thus the functor that  maps topologies to their Borel 
or-algebras does not preserve product structures (as discussed in 9.35). 

Proof of proposition. This proof is from Nedoma [1957]. Assume that  I E g | g; we shall 
obtain a contradiction. 

By definition in 9.18, g | g is the smallest a-algebra on X x X that  makes both of the 
coordinate projections measurable; this is the same as the smallest a-algebra on X x X 
that  contains all the sets of the form E x F for E, F E g. 

By 5.26.h, we know that  g | g is the union of the a-algebras generated by countable 
subcollections of {E x F �9 E, F E g}. In particular, since I E g | g, we know that  I is a 
member of the a-algebra ff on X x X generated by {E x F �9 E, F E ~} for some countable 
set ~ C_ g. Say s - { E l ,  E2,  E 3 , . . . } .  

For each sequence (/~(1),/3(2),/3(3),...) of 0s and Is, form the set D~ - Nn%l  Ct3(n)farz, 
where ~IE - ~E - X \ E and C~ - E. Then the sets D~ (for/3 E 2 N) form a partition of 
X that  is, D~ A D~, - 25 for/3 r  and the union of the D~'s is X. (Some of the D~'s 
may be empty.) Each member of g is a union of D/~'s. 

The collection of sets {D~ x D~ �9 ~/E 2 N} is a partition of X x X. Hence the sets of 
the form 

M(A) = U (Dz x D . y )  fo rAC_2 N x 2  N 
(/3,-,/) GA 

form a or-algebra 7' of subsets of X x X. Note that  {E x F �9 E, F E 8} C_ 7', and therefore 
7 c 9-'. 

In particular, I E 7', and so I is of the form M(A) - U(Z,~)EA(Dz x D~) for some 

set A c_ 2 N x 2 N. Moreover, any nonempty DZ x D~ contained in I is actually of the form 
D/~ x DZ - D~. Since 

c a r d (  U(Z,Z)~AD~)- card(I) - c a r d ( X )  > card(IR) --card(2Nx2N) >_ card(A) 

at least one of the sets D~ must contain more than one point of I. That  is, there exists 
(/3,/3) E A and u, v E X with u g= v and 

(u, u), (v, v) E D~ - C ~(n)En . 
n = l  

Thus, for every n we have u, v E e/~(n)En. We have (u, v) r I since u -7/: v. But 

a contradiction. This completes the proof. 
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POSITIVE MEASURES AND CHARGES 

21.9.  Remarks about positive charges. Recall from 11.37 that  a p o s i t i v e  c h a r g e  is a 
finitely additive mapping from an algebra of sets to [0, +oc], and a p o s i t i v e  m e a s u r e  is a 
countably additive mapping from a a-algebra of sets to [0, +cx~]. A measurable space is pair 
(f  t, S) consisting of a set ft and a a-algebra S of subsets of f~; a m e a s u r e  space  is a triple 
(ft, S, #), where the third component is a positive measure # on S. 

Let $ be an algebra of subsets of a set ft. Note that  if # is a positive charge on S, then 

A c_ B, A , B  E $ ~ #(A) <_ #(B);  

thus p(A) is a measurement of how "big" A is. The largest value taken by p is p(~t). If 
p (~)  < oc, the charge p is said to be f in i te  or b o u n d e d .  

We can also use p to measure how "big" is the difference between two sets. If p is 
finite, verify that  d(A, B) = p(A A B) is a pseudometric on 8; here A denotes symmetric 
difference. More generally, if p is any positive charge (not necessarily bounded), then 

d(A, B) - arctan [p (A/k  B)] defines a pseudometric d on S. In place of the 
P 

arctangent 
L -  - a  

function, we could use any other bounded remetrization function; see 18.14. 
Remark. We may define an equivalence relation ~ on the algebra S using the.pseudomet- 

ric d as follows: A ~ B r d(A, B) = 0. For many purposes in analysis, equivalent sets 
can be used interchangeably; what is important  is not the particular set but the equivalence 
class to which it belongs. The collection of all equivalence classes i.e., the quotient S /p  

is a Boolean algebra, on which d acts as a metric. This can be verified directly or by 
showing that  3 = {A E 8 : #(A) = 0} is an ideal in the Boolean algebra 8; then 8/# = 8/3. 
The quotient Boolean algebra is sometimes called the m e a s u r e  a lgeb ra .  

21.10.  More definitions. By a p r o b a b i l i t y  c h a r g e  or p r o b a b i l i t y  m e a s u r e  on ft we 
shall mean a positive charge or measure that  satisfies #(ft) = 1. If p is a positive charge 
with 0 < #(f~) < ~ ,  then most ideas about # are unaffected if we replace # with the 
probability charge v defined by v(S) = #(S)/#(f~). Thus, in many contexts we may restrict 
our at tention to probabilities; this restriction often simplifies our notation. 

Note that  a probability charge # has at least the two numbers 0, 1 in its range. A 
t w o - v a l u e d  p r o b a b i l i t y  will mean a probability charge that  has only the two values 0, 1 
for its range. 

21.11.  Some elementary examples. If f~ is any set and p"  f~ ~ [0, +c~] is any function, 
then #(S) - ~-~s~sp(s) defines a positive measure p on the measurable space (ft, T(ft)). 
A measure of this type will be called a d i s c r e t e  m e a s u r e .  Note that  if p(S) < c~, then 
p(s) is nonzero for at most countably many points s in S; see 10.40. A few special kinds of 
discrete measures deserve further note: 

a. C o u n t i n g  m e a s u r e  is the measure # "  [P(fI) ~ {0, 1 , 2 , . . . ,  oc} obtained by using 
p(s) - 1 for all s. Thus, it is the discrete measure defined by 

, ( s ) -  { 
+oc 

if S c f~ is a finite set with n elements 
if S is an infinite subset of f~. 
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Note tha t  counting measure  does not dist inguish between different kinds of infinities. 
For instance,  when # is counting measure  on R, then  #(R) = #(Z) ,  even though 
card(R)  > card(Z)  by results of 10.44.f. 

b. A d i s c r e t e  p r o b a b i l i t y  m e a s u r e  is a discrete measure  tha t  satisfies #(f t )  = 1; tha t  is, 
} - ~  p(s) = 1. Clearly, the function p must  vanish everywhere outside some countable  
set. 

A discrete probabi l i ty  measure  on N may be described as a sequence (pj) of non- 
negative numbers  tha t  have sum equal to 1. 

c. Let f~ be any set, and let ~ c ft. Then  the u n i t  m a s s  a t  ~ is the two-valued probabi l i ty  
measure  # :  [ P ( f t ) ~  {0, 1} defined by 

1 i f ~ E S  
#(S)  - l s (~)  - 0 i f ~ S ;  

here l s is the character is t ic  function of S. Thus,  # is the discrete probabi l i ty  obta ined 
by let t ing p be the character is t ic  function of the singleton {{}. 

Exercise. Let #1, #2 be the unit  masses at two dist inct  points {1,{2. Let >(S)  - 
m a x { # l ( S ) , # 2 ( S ) }  for all S c_ f~. Show tha t  # is not a charge. Thus,  the setwise 
maximum of two measures (or charges) need not be a measure (or a charge). 

21.12 .  Ultrafilters as charges. Let f~ be a set, and let 9- be a collection of subsets of ft. 
Let 19- : [P(ft) + {0, 1} be the character is t ic  function of 9-; tha t  is, 

1 i f S  E 9- 
19-(S) - 0 if S ~ 9-, 

for S c ft. Show tha t  

a. 9- is an ultrafi l ter  on ft if and only if the function 19- : ~P(ft) ~ {0, 1} is a two-valued 
probabi l i ty  charge. 

b. 9- is the fixed ultrafi l ter  at a point ~ C ft if and only if 19- is the unit  mass at ~. 

c. 9 ~ is a free ultrafi l ter  on ft if and only if 19- is a two-valued probabi l i ty  charge tha t  
vanishes on finite subsets of ft. 

d. If 9- is a free ultrafi l ter  on H, then 19- is a charge but  not a measure  - -  i.e., it is finitely 
addit ive but  not countably  additive. 

21 .13 .  Preview. Integrals will be defined later in this chapter .  In 21.38(i) we shall prove 
tha t  if (ft, g ,# )  is a measure  space and h �9 ft ~ [0, +oc] is measurable ,  then  another  
positive measure  u can be defined by t , ( S ) -  f s  h(cz)dp(a~). Here is a typical  example  tha t  
is impor tan t  in applications: Let m be a real number ,  and let s be a positive number .  For 
Lebesgue-measurable  sets T c_ R, we may define 

r,(T) - l:c - dx 
s v / ~  exp 2s 2 

where l r ( . )  is the character is t ic  function of the set T and the integrat ion is with respect 
to Lebesgue measure  (defined later in this chapter) .  Then  ~, is the G a u s s i a n  (or n o r m a l )  
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probabili ty measure with m e a n  m and s t a n d a r d  d e v i a t i o n  s. We omit further details; 
the interested reader is referred to any book on probability and statistics. 

21.14.  Remark. Additional examples of positive measures are given in 21.19 and 21.20. 

NULL SETS 

21.15.  Let (f~, g, p) be a measure space. A set N c_ f~ is a nul l  se t  (also known as a 
negligible set) if N is a subset of some measurable set t ha t  has measure 0. (The set N itself 
is not required to be measurable.) Note tha t  the null sets form a a-ideal (defined as in 5.2). 
It is a proper a-ideal, except in the rather  uninteresting case where p(f~) - 0 .  

A condition on points w E f~ is said to hold t t - a l m o s t  e v e r y w h e r e ,  commonly abbre- 
viated t t -a .e . ,  if the set where it fails to hold is a null set. When p is a probabili ty measure, 
then other terms for "almost everywhere" are a l m o s t  s u r e l y  or p r e s q u e  p a r t o u t  or w i t h  
p r o b a b i l i t y  1, abbreviated a.s. or p.p. or w.p. 1. 

Note tha t  if C1, C2, C3 , . . .  is a sequence of conditions, each of which holds #-almost 
everywhere, then the condition 

C1 and (72 and C3 and . . .  

also holds p-almost  everywhere, since the union of countably many null sets is a null set. 
We emphasize tha t  if {CA : A E A} is an uncountable collection of conditions, each of which 
holds #-almost everywhere, it does not follow that  the "and" of all the C~'s necessarily 
holds #-almost everywhere. 

21.16.  A measure space (ft, S, #) is said to be c o m p l e t e  if every null set is m e a s u r a b l e -  
i.e., if 

A C_ B C_ f~, B E S, # (B)  - O ~ A E S. 

Example. All of our elementary measures in 21.11.a through 21.12 are complete, since they 
are defined on [P(f~). 

Not every measure space is complete, but every measure space (f~, S, #) can be extended 
to a complete measure space (f~, S', #'),  called its c o m p l e t i o n ,  in a natural  way: Let N be 
the a-ideal of null sets. The smallest a-algebra that  includes both S and N is (as in 5.28) 

$' = S A N "  - { S A N  �9 S C S a n d N C N } .  

Then # : S ~ [0, +oc] extends uniquely to a complete measure #' : S /~  N ~ [0, +oc], 
defined by # ' ( S / ~  N) = #(S).  This measure is a complete extension of #. In fact, it is the 
smallest complete extension, if we order measures by inclusion of graphs. 

Exercise. Verify all the assertions above. In particular,  show that  if $1/~ N1 = $2 A N2, 

then #($1 ) = #($2). 

21.17.  Let (f~, g, #) be a positive measure space, and let ~J be the a-ideal of null sets. Let 
X be any set. Two functions f,  g �9 ~t ~ X are e q u a l  / t - a l m o s t  e v e r y w h e r e  if the set 
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where they differ is a null set i.e., if {co E f t :  f(co) 5r g(co)} is contained in a measurable 
set that  has measure 0. It is easy to see that  equal i ty/ t -almost  everywhere is an equivalence 
relation on X a = {functions from f~ into X}; two functions f, g that  are equal /t-almost 
everywhere may also be called t t - equ iva l en t .  

The set of equivalence classes is the reduced power *X = Xa/J, defined as in 9.41. (In 
general it is not an ultrapower, since [J generally is not a maximal ideal i.e., not every 
subset of f~ is either a null set or the complement of a null set.) The members of *X - -  that  
is, the equivalence classes are sometimes called X-valued r a n d o m  var i ab les ,  especially 
if / t  is a probability measure. In particular, members of *R are rea l  r a n d o m  var iab les .  

For many purposes, any function can be replaced with any/t-equivalent  function. Con- 
sequently, we may often identify /t-equivalent functions. By a slight abuse of notation, 
sometimes we may discuss a/t-equivalence class of functions as if it were a function. In such 
a context, a function may be defined arbitrarily on any null set or even left undefined on a 
null set. In particular, if f and g are/t-equivalent,  X is a metric space, and f is strongly 
measurable (defined in 21.4), then for many purposes we may treat  g as if it were strongly 
measurable. 

A function f : ft --+ X is called a l m o s t  s e p a r a b l y  v a l u e d  (with respect to a given 
measure/ t )  if it is/t-equivalent to a separably valued function that  is, if by altering f on 
a set of measure 0 we can make it into a separably valued function. For most purposes, an 
almost separably valued function is just as good as a separably valued function. 

If X is a pseudometric space, then we shall abbreviate 

SM(/t,X) = {~ E *X : ~ meets SM(S,X)}. 

In other words, a member of SM(/t, X) is a/t-equivalence class of functions that  contains 
at least one strongly measurable function from g into X. 

Exercise. Suppose X is a separable metric space, the measure space (ft, g,/t) is complete 
(as defined in 21.16), and two functions f, g : t2 --+ X are/t-equivalent.  Then one of those 
flmctions is strongly measurable if and only if the other one is. 

21.18.  Let (ft, g, #) be a measure space, and let X be a topological space. Let (f~) be a 
net in X fl, and let f E X ft. We say that  (f~) converges t t - a l m o s t  e v e r y w h e r e  to f if the 
statement f~(.) --+ f( . )  is valid almost everywhere - -  i.e., if the set {co E f t :  f~(co) -/+ f(co)} 
is contained in a measurable set that  has measure 0. This condition is also writ ten in 
various other ways, such as f~ -+ f #-a.e., or f~ i , - a . e . f .  The "#" may be omitted 
from the notation if it is understood. This convergence is also called p o i n t w i s e  a l m o s t  
e v e r y w h e r e ,  a l m o s t  s u r e l y  (a.s.),  or p r e s q u e  p a r t o u t  (p.p.) .  

It is easy to verify that  this convergence is centered and isotone, as defined in 7.34. 
However, it is not necessarily topological, or even pretopological; we shall prove that  in 
21.33.c. 

In most cases of interest, the net (f~) is actually a sequence. Then almost everywhere 
convergence is invariant under/t-equivalence: If fn is/t-equivalent to g~ and f is/t-equivalent 
to g, then 

fn ~ f /t-a.e. ": )" gn ~ g /t-a.e. 

Thus, convergence almost everywhere makes sense for sequences of random variables. 
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LEBESGUE MEASURE 

21.19.  Preview of Lebesgue measure. If I i , I2 , . . . , In  are intervals in R, then the n- 
dimensional B o r e l - L e b e s g u e  m e a s u r e  of the "box" 

/~ = I1 x / 2  X . . .  XIn 

is the product  of the lengths of those intervals. Here it is understood that  the empty set 
and a singleton are intervals of length 0, an unbounded interval has length +oc, and 0 times 
oc equals 0. 

The B o r e l  ~ - a l g e b r a  in R n is the smallest a-algebra g that  contains all such boxes B; 
it is also equal to the smallest a-algebra g that  contains all open sets. The volume function 
for boxes extends uniquely to a measure # on g; that  measure is called B o r e l - L e b e s g u e  
m e a s u r e .  Thus, we may think of this measure as the "volume" of a subset of R n. The 
uniqueness of Borel-Lebesgue measure follows easily (exercise) from 21.28. 

Existence of one-dimensional Borel-Lebesgue measure will be proved in 24.35. Then 
n-dimensional Borel-Lebesgue measure is the product of n copies of one-dimensional Borel- 
Lebesgue measure, using the product construction given in 21.40. Then we can take the 
completion of n-dimensional Borel-Lebesgue measure, as in 21.16; the resulting measure is 
called n-dimensional L e b e s g u e  m e a s u r e  and the members of the resulting a-algebra are 
called L e b e s g u e - m e a s u r a b l e  sets .  (They should not be called "Lebesgue sets" that  
term unfortunately has another meaning, given in 25.16.) 

Further properties of Lebesgue measure. As we have indicated, the volume function 
extends in a natural  way, from boxes to a much larger collection of sets. Surprisingly, the 
volume function cannot be extended in a natural  way to all subsets of IRa; we shall prove 
that  fact in 21.22. Thus, we can discuss the volume of a Lebesgue-measurable set, but not 
the volume of an arbi trary subset of R n. That  is our main reason for studying a-algebras. 

It is easy to show (exercise) that  the n-dimensional Lebesgue measure of any countable 
subset of R n is zero. Some uncountable sets also have Lebesgue measure 0; we give examples 
in 24.39 and 25.19. In fact, 24.39 is an example of a comeager set with measure 0. Thus, a 
set can be "large" in one sense and "small" in another sense. 

In 23.16 we shall introduce integrals fa fd# with respect to positive measures. The 
Lebesgue integral fa fd# is equal to the Riemann integral fR~ f (x )dx  when both are defined; 
we shall prove that  fact in 24.36. 

21.20.  Lebesgue measure in n dimensions is (i) translation invariant, and (ii) positive on 
each ball of positive radius. Banach spaces are a natural  generalization of IR '~ introduced 
in the next chapter, but it is easy to show (using 23.22) that  no positive measure on the 
Borel subsets of an infinite-dimensional Banach space can satisfy both (i) and (ii). 

If we do not insist on translation-invariance, some interesting and useful measures do 
exist on infinite-dimensional spaces. The most famous of these is W i e n e r  m e a s u r e ,  which 
we shall now introduce briefly. (The details omitted here are major ones, not intended as 
an exercise.) 

Let C[0, 1] be the Banach space of continuous functions from [0, 1] into R, with its usual 
sup norm (discussed in 22.15), and let f~ = {a~ E C[0, 1]:  a~(0) = 0}; this is an infinite- 
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dimensional vector space. Whenever [al, bl], [a2, bu], . . . ,  [an, bn] are subintervals of IR and 
0 -  to < tl < t2 < . . .  < t n -  1, the measure of the "box" 

B _ _  

n 

i = 1  

�9 w(t i)  - w( t i -1 )  E [ai, bi] } 

is defined to be 

1 
exp dx. 

# ( B )  - H v/27r(ti _ t i -1 )  2(ti - t i -1 )  
i = 1  i 

In the terminology of probability, this says that  the increments w ( t ~ ) - w ( t i - 1 )  are indepen- 
dent Gaussian random variables with mean 0 and variance ti - t i -1 .  It can be shown that  
p extends to a probabili ty measure on the a-algebra generated by these "boxes." 

The functions w" [0, 1] ~ R correspond to the continuous but erratic paths taken by a 
particle s tar t ing from the origin and exhibiting Brownian motion. For any measurable set 
S c_ C[0, 1], the measure p(S)  represents the probabili ty that  the path  w taken by such a 
particle will be an element of S. Although each path w is continuous, it can be shown that  
with probabili ty 1 the continuous function w is nowhere-dif ferentiable.  (It is interesting to 
compare this result with 25.14(ii).) 

More about  Wiener measure can be found in Freedman [1971] or Kuo [1975]. 

21.21.  (Optional.)  Although a translation-invariant Lebesgue measure does not generalize 
natural ly to infinite-dimensional spaces, a translation-invariant notion of sets of  Lebesgue 
measure 0 can be extended to that  setting. 

Definit ion.  Let X be an Abelian group topologized by a complete metric that  is transla- 
tion-invariant (i.e., satisfying d(z + u, y + u) - d(x,  y); such metrics will be studied further 
in the next chapter).  A set S c_ X is called shy  if there exists a positive measure # on the 
Borel sets of X,  with these properties" 

(i) 0 < # ( K )  < oc for some compact set K c_ X; and 

(ii) there exists a Borel set B with S C_ B c X, such that  # ( B  + x) - 0 for every 
x c X .  

The complement of a shy set is a p r e v a l e n t  set. 
We emphasize that  different shy sets may be exhibited using different measures >, which 

may be chosen with part icular  applications in mind. For instance, if X is an infinite- 
dimensional vector space, then # could be a Lebesgue measure on some finite-dimensional 
subset of X. 

Following are some basic properties of shy sets and prevalent sets. We omit the proofs, 
which can be found in Hunt, Sauer, and Yorke [1992]. 

a. The shy sets form a proper a-ideal; the prevalent sets form the corresponding proper 
f-filter. Thus the shy sets form a collection of "small" sets, and the prevalent sets form 
a collection of "large" sets, in the sense of 5.3. 

b. If S is a shy set (respectively, a prevalent set), then each of its t ranslates S + z is shy 
(respectively, prevalent). 
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c. If X = IR n, then a set is shy if and only if its n-dimensional Lebesgue measure is zero. 

d. Every shy set has empty interior; every prevalent set is dense in X. 

e. If X is an infinite-dimensional Banach space (or, more generally, an infinite-dimensional 
F-space), then every compact set is shy. 

Further remarks. Although "shy" is a more complicated notion than "meager," it plays a 
similar role and may be more natural  for some measure-theoretic questions about "small" 
subsets of a topological vector space. 

Here is one particularly interesting application: By 25.16 and 29.36, we know that  any 
Lipschitzian function from I~ into I~ is differentiable almost everywhere. A generalization 
due to Rademacher (not proved in this book) says that  any Lipschitzian function from 
IR n into R n is differentiable except on a set whose n-dimensional Lebesgue measure is 
0. Generalizations due to Christensen and others extend Rademacher 's  result to infinite- 
dimensional Banach spaces, with differentiable replaced by slightly weaker notions and with 
Lebesgue measure 0 replaced by shyness or similar notions. 

Many applications and further references are listed in Hunt, Sauer, and Yorke [1992, 
1993]. 

21.22.  V i t a l i ' s  T h e o r e m .  There exist subsets of I~ that  are not Lebesgue-measurable. 
Furthermore,  one-dimensional Lebesgue measure cannot be extended to a translation-invar- 
iant measure on all the subsets of It~. 

Proof. Suppose # were such a measure; we shall obtain a contradiction. Consider ~t = [0, 1) 
as the circle group, i.e., the reals modulo 1 (introduced in 8.10.e). Then # also acts as a 
translation-invariant measure defined on all subsets of ~t = [0, 1), with #(~)  = 1. 

Define an equivalence relation on [0, 1) by x ~ y if x -  y is a rational number. Let S 
be a set consisting of one element from each equivalence class. (The existence of such a set 
S follows from the Axiom of Choice or from the slightly weaker principle (ACR) given in 
6.12.) 

By 8.23.a, the rationals are countable. Let r l ,  r2, r 3 , . . ,  be an enumeration of the ratio- 
nals in [0, 1). Then the sets rj + S, for j = 1, 2, 3 , . . . ,  form a parti t ion of ~, and they have 
the same measure by translation invariance. Hence 

(X) OO 

1 - #([0,1)) = E # ( r j + S )  - E # ( S )  
j = l  j--1 

but there is no number #(S) in [0, +c~] that  can satisfy this condition. 

21.23.  Further remarks on extensions of Lebesgue measure. Vitali's result, above, shows 
that  Lebesgue measure cannot be extended to a translation-invariant measure on all the 
subsets of IR. Actually, it also shows that  

n-dimensional Lebesgue measure cannot be extended to a translation-invariant 
measure on all the subsets of I~ n, for any n _> 1. 

(Indeed, if # were such a measure on R n for some n > 1, then v(S) - # (S • [0, 1) n - l )  
would define such a measure on I~.) 
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What  about  if we do not require countable additivity? For any n _> 1, there does exist a 
positive charge p on the collection of all subsets of R n, which agrees with Lebesgue measure 
on the Lebesgue-measurable sets; tha t  fact will follow easily from 29.32. The existence 
proof will use the Hahn-Banach Theorem, a weak form of the Axiom of Choice. Of course, 
the charge p "constructed" in this fashion cannot be countably additive, as we have noted 
in the preceding paragraph.  

On the other hand, what  about  translat ion invariance? It can be proved that ,  on IR 1 or 
IR 2, there exists a positive charge p that  agrees with Lebesgue measure on the Lebesgue- 
measurable sets and is translation-invariant;  in fact, p can be chosen to be invariant under 
isometrics. (This includes not only translations, but also reflections, and in the case of 
two dimensions rotations.) The proof is longer and will not be given here; it can be 
found in Wagon [1985]. 

In three or more dimensions, such an invariant charge does not exist. Indeed, in three 
dimensions, this is an obvious consequence of the Banach-Tarski Decomposition, which was 
described (but not proved) in 6.16. In n > 4 dimensions, we may reason as follows" If 
p is a positive charge on defined on all the subsets of R n, invariant under isometry, and 
extending Lebesgue measure, then u(S) - # (S x [0, 1] n-3) defines such a charge u on ]l~ 3, 
contradicting our previous remark. 

For more about  pathological charges, see Moore [1983] and Wagon [1985]. 

SOME COUNTABILITY ARGUMENTS 

21.24.  Let g be an algebra of subsets of a set ~, and let # be a positive charge on g. We 
O ~  

say that  # is a - f i n i t e  if ~ - Uj=l ~j for some sequence of sets ~1, ~2, ~ 3 , . . .  in g, each 
of which satisfies p(~j) < oo. Two important  examples are Lebesgue measure on N m and 
counting measure on N. 

Some basic properties. Suppose # is a a-finite charge on an algebra g of subsets of ft. Show 
that  

a. We can choose (~'~j) to be an increasing s e q u e n c e -  i.e., to satisfy ~1 C ~"~2 C ~3 C . . . .  

Pro@ Replace ( a j )  with the sequence (S j), where Sj - a l  U a2 U. . -U ~j. 

b. Or, if we prefer, we can choose the ~tj's to be disjoint. 

Proof. Assume (~j  " j  E N) is an increasing sequence; let ~t0 - ~; then use the 
sequence (S j), where Sj - ~j \ ~tj_l. 

c. If # is a a-finite measure, then we can write # - Ej~ pj  where each pj is a finite 
measure. 

Proof. Let the ~ j 'S  be disjoint, and let p j ( S )  -- p (S  n ~ j ) .  

d. If # is a a-finite measure, then we can construct a probability measure u that  is positive 
on the same sets as #. 
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(X) 

Proof. Write # -  E j = I  PJ as above, and then let 

. ( s )  - , j ( s )  �9 2J,j( ) ( s  e s).  

Remarks�9 For many purposes in measure and integration theory, a a-finite charge is "as 
good as" a finite one. To prove some result for f~, we can partition f~ into disjoint sets ~'~j 
and prove the result on each of those; putting all the pieces back together is then generally 
easy. This procedure can be applied in a mechanical way in proofs of many theorems. 

21.25. Some properties of positive charges and measures�9 Let S be an algebra of subsets 
of a set f~. 

a. Let #"  S --+ [0, +oo] be a positive charge. Then # is countably additive if and only if 
it satisfies this condition: 

C o n v e r g e n c e  P r o p e r t y  for I n c r e a s i n g  Sequences .  Whenever (An) is 
a sequence in S with A1 c A2 c_ A3 c_ . . .  and with Un~__l An E S, then 

~(Un%l An) - -  limn-~oc #(An) - -  SUPne N p(An).  

b. Let # "  S -+ [0, +oo) be a positive, bounded charge. Then # is countably additive if 
and only if it satisfies this condition: 

C o n v e r g e n c e  P r o p e r t y  for D e c r e a s i n g  Sequences .  Whenever (Bn) is 
a sequence in ~; with B1 _D B2 2 B3 _D .. .  and with On~__l Bn E S, then 
~(Nn%l Bn) - l imn+~ #(Bn) - infneN #(Bn) 

or, equivalently, this condition" 

P r o p e r t y  for D e c r e a s i n g  Free  Sequences .  Whenever (Bn) is a se- 
quence in S with B1 _D B2 _D B3 2 "'" and with 0n%l B n  - -  ~J, then 
0 - limn-+oc #(Bn) - infn~N #(Bn).  

We cannot omit the assumption that #(f~) < oo. For example, take # to be counting 
measure on N, and let Bn = {n, n q- 1, n -+- 2 , . . . } .  

c. Let '# be a bounded positive measure on a measurable space (f~, g). Let (Sn) be any 
sequence of sets in g. Define lim supn__+~ Sn and lim i n f n ~  Sn as in 7.48. Show that 

( l iminf Sn) __~ liminf p(Sn) <_ limsup/Z(Sn) <_ limsup Sn > 
k n - - + ( x )  n----+(x) n - - - + ( x )  \ n - - - + ( x )  

Hence, if Sn ~ S (in the sense of 7.48), then p(Sn) ~ p(S).  

d. Let (p~ : 6 r A) be a net of positive charges on {3, and assume that for each S r S 
the net (p~(S):  f E A) increases to a limit p(S) in [0, +oc]. Then p is also a positive 
charge on S. If each p~ is countably additive, then so is p. 

Hint: Use 21.25.a; observe that sup~ SUpn p~(An) = sup n sup~ p~(An). 
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21.26.  A p p r o x i m a t i o n  L e m m a .  Let (ft, g ,#)  be a measure space, and let A be an 
algebra of subsets of ft that  generates the a-algebra g. Assume # is a-finite on 04 that  
is, assume f~ can be writ ten as the union of countably many members of 04, each of which 
has finite measure. 

Then A is dense in g, in this sense: If S E g with #(S) < oc, and any number c > 0 is 
given, then there exists a set A E 04 with #(A A S) < e. 

Proof. We first prove the proposition under the additional assumption that  #(f~) < oc. 
The measure # defines a pseudometric d on g by d(S, T) = #(S A T). Let cl(A) be the 
closure of the set 04 in the pseudometric space (g,d). Observe that  if (Sn) is an increasing 
sequence in g with union S, or (Sn) is a decreasing sequence in g with intersection S, then 
d(Sn, S) ~ O. Hence any closed subset of (g, d) is a monotone class. In particular, c1(04) is 
a monotone class. By the Monotone Class Theorem 5.29, c1(04) = g. Thus, given any set 
S E g and any e > 0, there exists some A E 04 with p(A A S) < e. 

We turn now to the a-finite case. By assumption, ft - U~__l f tn ,  where each ftn belongs 
to A and has finite measure. We may assume the f~n's are disjoint (see 21.24.b). Fix any 
n. Then An = {A O Ftn : A E A} is an algebra of subsets of ft~, and the a-algebra that  
it generates on ftn is g~ = {S n ft~ : S c g}. Let any S c g be given. Apply the results 
of the preceding paragraph to the set S O ftn E gn; thus there exists some set An E An 
with p(An A (S o f t n ) )  < 2 - n - i t .  Since p is countably additive and the sets S O ft~ form 

a parti t ion of S, we have p (Un~__N+l Sn) < c/2 for sufficiently large N. Let A - UnN=l A n .  

V e r i f y t h a t p ( A A (  N Sn) / 2 a n d  ( (unN1 Un=l ) < 8" /.,t ~n) A ~ )  < E/2 hence/./,(AAS) < 8. 

21.27.  C o r o l l a r y .  Let f~ be an interval in IR (possibly all of R), and let # be a a-finite 
measure on the Borel subsets of ft. Let any positive number c and any Borel set S c_ ft 
with finite measure be given. Then there exists a set T c_ f~ that  is a union of finitely many 
intervals, such that  #(S A T) < c. 

Hints: 15.37.e and 21.26. 

21.28.  U n i q u e n e s s  L e m m a .  Let g be the a-algebra generated on some set ft by some 
algebra of sets 04. Let p and ~, be two positive, a-finite measures on (f~, g); suppose p(A) - 
u(A) for all A E A. Then p -  u on g. 

Pro@ First suppose both p and u are finite. Then the collection 5I - {M c g" #(M) - 
u(M)} is a monotone class; apply the Monotone Class Theorem (5.29). For the general 
case, we may parti t ion ft into countably many sets, on each of which both p and u are 
finite. 

CONVERGENCE IN MEASURE 

21.29.  Definitions. Let (ft, g, #) be a measure space. The o u t e r  m e a s u r e  determined by 
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p is the function p* -  [P(f~t)~ [0, +c~] defined by 

p*(A) - i n f{p (S)  �9 S_DA, S E S }  for every set A c_ ~t. 

The outer measure has some, but not all, the properties of a m e a s u r e -  it is defined on all 
subsets of ~t, but it is not necessarily countably additive. 

Note that  p*(A) - p(A) if A E S. For a slightly abridged reading, the beginner may 
restrict his or her a t tent ion to measurable functions; then all the sets considered below are 
measurable, so the p*'s  can all be wri t ten instead as p's. 

Let (X, d) be a metric space. (We are chiefly interested in the cases where X is either 
[0, +oc] or a normed vector space.) We now introduce two more types of convergences on 
X ~. Let ( f ~ ) b e a n e t i n X  ~ , a n d l e t f E X  ~. 

�9 We say (f~) converges to f in m e a s u r e  if 

p* {a: C O �9 d(f~(~:),f(w)) > s }  ~ Oforeach:>O 

or, equivalently, 

for each:> O, eventually .* {~cFt �9 d(f~(~),f(w)) > :} < :. 

(Exercise. Prove that  equivalence.) This is also called convergence in p r o b a b i l i t y  if 
p ( ~ t ) -  1. 

�9 We say f~ --, f p - a l m o s t  u n i f o r m l y  if 

for each c > 0, there exists a measurable set S c_ gt such tha t  p(f~ \ S) < c 
and f~ ~ f uniformly on S. 

It is easy to verify tha t  each of these is a centered, isotone convergence, as defined in 7.34. 
Convergence in measure actually has much bet ter  properties. We shall see in 21.34 that  

it is determined by a pseudometric or by a metric, if we identify functions that  are 
p-equivalent. 

Almost uniform convergence is not given by a metric. In fact, we shall show in 21.33.c 
tha t  almost uniform convergence is not topological, or even pretopological. 

Observations. Convergence in measure is preserved if we replace functions with equivalent 
functions. Tha t  is, if f~ is p-equivalent to g~ and f is p-equivalent to g, then 

f~ ~ f in measure ,: ;, g~ ~ g in measure. 

Thus, convergence in measure makes sense for equivalence classes of functions. 
Almost uniform convergence makes sense for sequences of equivalence classes of func- 

tions, just  like almost everywhere convergence see 21.18. 

Preview. The following chart summarizes the relations that  we shall establish between the 
three kinds of convergences. 
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convergence 
in measure 

(pass to a 
subsequence) 

convergence 
almost uniformly 

I I 
convergence 

almost everywhere 

(assume f~'s measurable, 
and either p(ft) < oc 

or f~'s dominated) 

21.30. Proposition. If f~ ~ f p-almost uniformly, then f~ ~ f in measure and p-almost 
everywhere. (Proof. Easy exercise.) 

21.31. T h e o r e m .  If g~ ~ g in measure, then the sequence (g~) has a subsequence that  
converges to g p-almost uniformly (and therefore also converges pointwise p-a.e.). 

Hints: F o r e a c h e >  0, e v e n t u a l l y p * ~ w E f t  �9 d(g~(w) ,9(w))  > e }  < e by assumption. 
\ 2, 

Hence (g~) has a subsequence (fk) that  satisfies, for some measurable sets Sk, 

p ( S k ) <  2 - k - I  and Sk _D {a~E ft �9 d(fk(a~),g(a~)) > 2 - k - 1 } .  

Let Tk = Sk U Sk-t-1 [-J Sk+2 U'" "; then p(Tk) < 2 -k. Show that f j  ~ g uniformly on ft \ Tk 
as j - - -~  (x). 

21.32. E g o r o v ' s  T h e o r e m .  Let ( f j)  be a sequence in S M ( 8 ,  X) ,  converging pointwise 
to a limit f : ft ~ X. Assume also p(ft) < ec. Then f j  ~ f p-almost uniformly (hence 
also f j  --, f in measure). 

Remarks. Note that  we must assume the f j ' s  are strongly measurable. See also the related 
result in 26.12.f. 

Hints: Let any c > 0 be given. For positive integers k and m, let 

Bk,m = U 
j = k  

1} 
E ft �9 d ( f j ( w ) , f ( w ) )  > - -  . 

m 

Use the strong measurability of the f j ' s  (see 21.7) to show that  Bk,m is a measurable set. 
For fixed m, show that  P(~k=l  Bk,rn) -- O. Using the fact that  p(ft) < oc, show that  
P(Bk(m),m) < 2-me for some integer k(m).  Let A~ - [-J~=l Bk(,~),m. Then p(A~) < e, and 
f j  --~ f uniformly on ft \ A~. 

21.33. Examples. 
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a. Let (ft, g, #) be the real line with Lebesgue subsets and Lebesgue measure. Let fn be 
the characteristic function of the interval [n, n + �88 Then f~ ~ 0 pointwise and in 
measure, but not #-almost uniformly. 

b. Let (f~, g, #) be the unit interval [0, 1], with Lebesgue subsets and Lebesgue measure; 
thus the measure of an interval is the length of that  interval. Let f l ,  f2, f3 , . . ,  be the 
characteristic functions of the intervals 

, , i , i  

etc., in that  order. 
pointwise #-a.e. 

1 2 [ 1 3 ] [  ol 
' ' 5  ' a , a  

1 11 II II 
Show that  fn --~ 0 in measure, but not #-almost uniformly or 

c. E x a m p l e  of n o n - p r e t o p o l o g i c a l  conve rgence .  Use the preceding example and the 
last few theorems to show that,  in general, almost uniform convergence and almost 
everywhere convergence both lack the sequential star property introduced in 15.3.b. 
Hence, in general, those two convergences are not pretopological. 

21.34. Let (ft, g , # ) b e  a measure space, and let (X,d)  be a pseudometric space. 
f, g E X a, define 

For 

D~(f ,g)  - .>oinf arctan 1~ + #* { w E  ~ �9 d( f (w) ,g (w) )  > (~}]. 

(The arctan function can be replaced by any other bounded remetrization function; see 
18.14.) 

Admittedly, this formula is rather complicated. After we use it below to prove a few 
simple, basic properties, we will generally refer to those simple, basic properties, rather 
than the complicated formula for Du; we will very seldom want to make direct use of that  
formula. Still, the reader will probably find it conceptually helpful to see that  there is some 
explicit formula for the pseudometric. 

Show that  

a. D~ is a pseudometric on X a. 

b. D , ( f ,  g) - 0 if and only if d(f(.) ,  g(.)) - 0 #-almost everywhere. Thus, if d is a metric 
on X, then D ,  is a metric on the quotient space *X - X a / #  i.e., on the set of all 
#-equivalence classes of functions. 

c. The convergence determined by the pseudometric D~ is the same as convergence in 
measure. 

d. S M ( g , X )  (defined in 21.4) is a closed subset of the pseudometric space Xa;  hence 
SM(# ,  X)  (defined in 21.17) is a closed subset of the metric space *X. Hint: 21.3 and 
21.31. 

21.35. T h e o r e m .  If the pseudometric space (X,d) is complete, then the pseudometric 
space (X ~, Du) is complete. 
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Proof. Any D , -Cauchy  sequence has a subsequence (fk) satisfying 

Du(fk,fk+l ) < arctan(2 - k - l )  for k -  1,2,3,. . .  ; 

it suffices to show that  that  subsequence is convergent in measure. By assumption, there 
is a measurable set Sk _~ {co E ft'd(fk(w),fk+l(W)) > 2 - k - l }  with p(Sk) < 2 -k-1 .  Let 
Tk -- Sk U Sk+l O Sk+2 U . . . ;  then p(Tk) < 2 -k.  Since the Tk's form a decreasing sequence, 
we have 

d(fi(a~), fj(a~)) < 2 - j  for a~ E f~ \ Tj and i _> j. (**) 

Fix any k and any co c f t  \ Tk; consider i _> j > k; the preceding est imate shows that  the 
sequence (fk(a~), fk+l (~) ,  fk+9(a~),. . .)  is Cauchy in (X,d). Since that  space is complete, 
the sequence (fi(c~)" i C N) is convergent. Let f(c~) be any of its limits. (This is unique if 
d is a metric on X.)  Take limits in (**) as i -~ oc, to establish 

d(f(a~), fj(a~)) <_ 2 - j  for co E f t  \ Tj. 

Thus for j > k we have 

#* {w E ft " d(f(~), fj(w)) > 2 -k } _< . ( r j )  < 2-~ _ 2 -k 

and therefore fj ~ f in measure. 

INTEGRATION OF POSITIVE FUNCTIONS 

21.36.  Definitions. Let (ft, g, p) be a measure space. Let f :  ft ~ [0, +oc] be a measurable 
function, and let S E g. We shall define a number fs fd# in [0, +oc], the i n t e g r a l  of f over 
S with respect to p, in two stages. 

First, suppose f is a simple function, as defined in 11.42 that  is, f is measurable and 
its range is a finite set. Then we define the integral as in 11.42 that  is, 

x~ [o, +~] x~ Range(f) 

# (S A f - l ( x ) )  x .  

These two summations  are the same because when x c [0, +oc] \ Range(f )  then f - l ( x )  - 2~ 
and so # (S  CI f - l ( x ) )  - 0. 

Second, when f "  ft ---, [0, +oc] is any measurable function, we define 

sup{ l sgd#"  gsimple, O_<g_<f #-a . e . } .  

Here the supremum is over all finitely valued measurable functions g that  satisfy 0 _< g <- f 
#-a.e. on ft or equivalently, that  satisfy 0 _< g _< f >-a.e. on S; this yields the same 
supremum (easy exercise). This supremum is well-defined it is the supremum of a 
nonempty collection of numbers in [0, +oc], since trivially we could take g = 0; much bet ter  
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choices of g were noted in 21.5. Of course, this definition extends the one in the previous 
paragraph, for if f is finitely valued then we can take g = f .  

We may sometimes refer to the integral defined in this fashion as the pos i t i ve  in tegra l ,  
to distinguish it from other kinds of integrals discussed in this book see 11.41. The 
positive integral is also sometimes known as the L e b e s g u e  in tegra l ,  but that  term has 
many other meanings as well. 

A measurable function f :  ~t ~ [0, + ~ ]  is said to be i n t e g r a b l e  if f~ fd#  < ~ .  This 
terminology is unfortunately misleading: Some students may think that  "integrable" means 
"capable of being integrated." But in fact, any measurable function taking values in [0, + ~ ]  
can be integrated to some value in [0, + ~ ] ;  "integrable" means "yielding a finite value for 
its integral." 

21.37.  Observationsabout integrals. Let (~t,S,#) be a measure space. Let f and g be 
measurable functions from ~t into [0, +c~], and let S E S. Then: 

a. f <_g p-a.e. => faf < fag. 

b. f-gp-a.e. => f~f-f~g. 
c. f s  c f  d ,  - c f s  f d ,  for any constant c E [0, + ~ ] .  

d. f s  f dp - f~ ls  f dp, where l s  is the characteristic function of the set S. 

e. f s  fdp  - f s  fdps ,  where Ps is the restriction of p to subsets of S. 

f. p(S) - f~ 1sd,.  
g. ( C h e b y s h e v  I n e q u a l i t y . )  For any r E (0, + ~ ) ,  

1 / ~  fd#  m 
r 

h. fa f dp < cx~ =~ f < o c p - a . e .  

i. fa fdp  - 0 if and only if f - 0 p-a.e. 

j. Let h" ~t --, [0, +oc] be a simple function. Then h is integrable (i.e., satisfies fa hdp < 
cx~) if and only if the set {w E ft �9 h(w) r O} has finite measure and the set 
{w E f~ �9 h(w) - cx~} has measure O. 

k. An equivalent definition of the integral is 

j~sfdp -- sup {j~shdp" h simple, 0 ~ h ~ f , h ~ f w h e r e v e r f  ~0} .  

Hints: To see this, first note that  if g is a simple function with 0 _< g <__ f on some 
measurable set M whose complement has measure 0, then we can replace g with 
the function 1M(.)g(.). Thus we may assume 0 <_ g _< f everywhere. Now we can 
approximate g from below by the sequence of functions hn - ( 1  - 1)g; clearly fs(1 - 
1)gdp T f s g d # .  

21.38.  A theorem in two parts. Let (~t, 8, #) be a measure space. 
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(i) I n t e g r a l s  a r e  m e a s u r e s .  Let h" f~ ~ [0, +oc] be measurable, and for each 
S E g let u(S) - f s  h(co)dp(co). Then u is a measure on g. 

(ii) L e b e s g u e ' s  M o n o t o n e  C o n v e r g e n c e  T h e o r e m .  Let f l ,  f2, f3, . . .  and f 
be measurable functions from fl into [0, +oo]. Suppose that  f~ T f pointwise 
p-a.e. Then f s  f~dp T fs  fdp  for each S E g. 

Remark. An example of (i) is given in 21.13. A variant of (i) for vector-valued integrals is 
given in 29.10. A partial converse to (i) is given in 29.20. 

Proof of theorem. Result (i) is easy when h is a simple function; we leave that  easy case as 
an exercise. We shall now use that  easy case as a step in our proof of (ii); then we shall use 
(ii) to prove (i) in its full generality. 

Fix any S E g. Observe that  the sequence f s  f ld#, f s  f2d#, f s  f3d#, . . ,  is nondecreasing, 
hence converges to some limit L < fs  fd#. Let h"  ~t ~ [0, +cx~) be any simple function 
that  satisfies 0 _< h _< f and satisfies h < f wherever f # 0. By 21.37.k, it suffices to show 
that  L >_ fs  h d#. Alter the f~'s on a set of measure 0, so that  fn T f pointwise everywhere. 
From our choice of h it follows that  for each ~ we have fn(~) >_ h(~o) for all n sufficiently 
large. Define T(n) - {a~ e S "  fn(aJ) >_ h(a~)}. Then T(1) C_ T(2) C_ T(3) C_ . . .  and 
Un%l T(n) -- S. We have fT(n)hd~ ----+ fs hd# by 21.25.a and the special case of (i) already 
proved. Then 

S s f n d # ~ / T f n d # ~ / T  hal#" (n) (n) 

Taking limits, we obtain L >_ fs  hd#, which proves part (ii) of the theorem. 
Finally, part  (i) now follows easily in the general case, by 21.25.a. 

21.39.  Corollaries. Let (~t, S, p) be a measure space. 

a. For any measurable functions f, g �9 f~ ~ [0, +oc] and any constant c >_ 0, we have 
f ( f  + g) - ( f  f )  + ( f  g) and f (cf) - c f f . Hint" Prove this first for simple functions. 

b. I n t e r c h a n g e  of  L i m i t s  (B. Levi ) .  Let f l ,  f2, f 3 , . . . "  ~t ~ [0, +oo] be measurable 
functions. Then f (~-~j fj)  - ~-]j ( f  fj); one side is finite if and only if the other side is. 

c. F a t o u ' s  L e m m a .  Let f l , f2 ,  f 3 , . . . "  ~ ---+ [0, +cx~] be measurable functions. Then 
f lim i n f n ~  fn < lim i n f n ~  f f~. 

Hint" Let gk -- inf{fk, fk+l,  fk+2, . . .} ;  apply the Monotone Convergence Theorem 
to the sequence gl, g2, g3, . . . .  

d. Suppose that  each of g, f l ,  f2, f 3 , . . ,  is an increasing continuous function from [0, 1] 
into [0, +oc).  Also suppose that  

g(x) - f l (x)  + f2(x) + f3(x) + . . .  

for all x in [0, 1). Then that  equation is also valid for x - 1. This result will be used 
in 25.29. 

1 2 3 Then use the Hint" Obtain a sequence of equations, by taking x - 0, 2, 3, 4, . . . .  
Monotone Convergence Theorem with counting measure on N. 
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21.40. P r o d u c t  m e a s u r e s  a n d  Tonel l i ' s  T h e o r e m .  Let (X, S, p) and (Y, 9", ~) be a- 
finite measures spaces. Define S | 9" as in 21.6. Then there exists a unique positive measure 
p | ~ on S | ff that  satisfies 

(# |  = #(S)u(T) for all S E 8 ,  T E g ' .  

That  measure has this further property: If f : X x Y ~ [0, +oc] is jointly measurable, then 
both of the iterated positive integrals 

Ix [/Y f (x' y) d~(Y)l dp(x), /Y [Ix f (x' y) dp(x)l dt,(y) 

exist and are equal to the positive integral fx • Y f d(p| ,). 
Proof. Our presentation is based on Cohn [1980]. By a bas ic  r e c t a n g l e  we shall mean a set 
of the form S • T, where S E S and T E ft. (These basic rectangles may also be called basic 
measurable rectangles, to distinguish them from another sort of "basic rectangle" introduced 
in 15.35.) Let ~ be the collection of unions of finitely many basic rectangles; verify that  
is an algebra of sets. Clearly, the a-algebra generated by ~ is S | 0". 

Define sets Ax and A y as in 21.6. We first show that  the [0, +oc]-valued mapping 
x H t,(Ax) is measurable. By 21.24.c, we may write tJ - ~-~j=l t,j for some finite measures 
t,j; it suffices to show that  each of the mappings x H ~j(Ax) is measurable. Fix any j .  Let 
Nj be the collection of all sets A E S | 0" for which the mapping x ~ t,j (Ax) is measurable. 
Verify that  Nj _~ ~, and that  Nj is a monotone class. Hence, by the Monotone Class 
Theorem 5.29, Nj  ---- ~ | ~'. 

Similarly, the [0, +oc]-valued mapping y H p(A y) is measurable. Thus, for any set 
A E S | 9", the integrals 

I(A) - Ix ~'(Ax) dp(x) and J(A) - / y  p(A y) dL,(y) 

both exist. Verify that  I and J are countably additive; thus they are measures on S | 0". 
Also, verify that  I(S • T) = J(S • T) = p(S)L,(T) whenever S E S and T E ~. It follows 
from 21.28 that  I = J on S | ~. Thus, I and J are two different representations for the 
desired measure p | ~. From the equation 

(, , . ) ( A )  - . ( A x )  d , ( x )  - 

we immediately obtain 

~ • y f d(p| tJ) - /x  [/Y f (x, y) dtJ(y)] dp(x) - /y [fix f (x, y) dp(x)] dr(y) 

at least when f is finitely valued. For a general choice of f ,  approximate as in 21.5, and 
use the Monotone Convergence Theorem 21.38(ii). 

21.41.  Exercise (optional). Show that  Tonelli's Theorem (21.40) implies Levi's Theorem 
(21.39.b), by using counting measure for one of the two factor measures. Then show that  
Levi's Theorem implies Lebesgue's Monotone Convergence Theorem 21.38(ii). 



Essential Suprema 569 

ESSENTIAL SUPREMA 

21.42.  Let (~t, S, p) be a a-finite measure space. Let SM(p, [-oo, +~D]) be the collection 
of all p-equivalence classes of measurable functions from f~ into [-oo, +oc]. Where no 
confusion will result, we shall use equivalence classes and members of those equivalence 
classes interchangeably. Let SM(p, [-oo, +oo]) be ordered in the obvious fashion: 

f 4 g means that  f( .)  _< g(.) p-almost everywhere. 

Also, let SM(p, R) and SM(p, [0, 1]) be the collection of equivalence classes of measurable 
functions with ranges in R or in [0, 1], respectively. 

Proposition and definition. The ordered set SM(p, [-oc,  +oc]) is a complete lattice i.e., 
it is a poset in which any nonempty set �9 has a supremum ~ and an infimum @. Those 
functions are known as the e s sen t i a l  s u p r e m u m  and e s sen t i a l  i n f i m u m  of ~; they 
may be abbreviated ess-sup((I)) and ess-inf((I)). They have this further property: ess-sup(~) 
(respectively, ess- inf(~))can be represented as the supremum (respectively, infimum) almost 
everywhere of some countable subcollection of (I). 

Similarly, SM(p, [0, 1]) is a complete lattice, and SM(p,I[~) is a Dedekind complete 
vector lattice. 

Caution: Another meaning for "essential supremum" is given in 22.28. 

Proof of proposition. SM(p, [-oc,  +oc]), SM(p, IR), and SM(p, [0, 1]) are certainly lattices, 
since the max or min of two measurable functions is measurable by 21.7.c. It is easy to 
verify that  SM(p,I[~) is a vector lattice. It remains to prove the assertions about order 
completeness. The Dedekind completeness of SM(p,R) will follow from the completeness 

1 1 of SM(p, [-oc,  +oc]). The transformation @ �9 t H ~ + ~ arctan(t)  is a strictly increas- 
ing bijection from [-oc,  +o~] onto [0, 1], which is continuous (hence measurable) in both 
directions; thus it suffices to prove the order completeness of SM(p, [0, 1]). 

By 21.24.d, we may assume p(~)  < oo (explain). 
The supremum of countably many members of (I) is a measurable function. We may 

replace (P with {sups of countably many members of (I)}, since that  set has the same upper 
bounds as (P does. Thus we may assume (I) is closed under countable sups. 

Let r - sup{f~ fdp:  f E (P}. Then r is some number in [0, p(f~)]. Choose functions 
gl,g2,g3,... E gp with raged# --~ r. Let hn = max{gl,g2,...,gn}; show that  (ha) is an 
increasing sequence in (I) and f~ h~dp ~ r. Let ~ = sup{hl,h2,h3,...}; show that  p E 
and ft~ ~dp = r. 

If some f E (I) does not satisfy f _< p almost everywhere, show that  g = max{f ,  p} is 
a member of (P with integral strictly larger than r, a contradiction. Thus ~ is an upper 
bound for (I). 

If some function/3 satisfies/3 _> f almost everywhere for each f E (P, then in particular 
_> h,~ almost everywhere for each n; hence/3 _> p almost everywhere. Thus ~ is the least 

upper bound for (I). 

21.43.  Further related exercise. Order convergence in a complete lattice was defined in 
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7.45. Show that order convergence in the complete lattice SM(# ,  [-oc, +co]) is the same 
as convergence p-almost everywhere (defined in 21.18). 

Remark. We noted in 21.33.c that this convergence lacks the sequential star property, 
and thus is not topological or even pretopological. 

2 1 . 4 4 .  
in 30.9. 

The following result may be postponed; we shall use it in 22.36 and subsequently 

Technical lemma on integration over compact sets. Let (f/, 8, #) be a a-finite measure space, 
and let (Z, d) be a metric space. Let F" ~ x Z ~ [0, +c~] be a jointly measurable function 

or, more generally, assume that the restriction of F to f~ x Z0 is jointly measurable for 
each separable Borel set Z0 c Z. For each compact set K C Z, assume that the integral 

9f sup F(w,z) dp(w) 
z C K  

exists and is finite. 
Then for each compact set K C_ Z there exist an open set H _D K and a function 

c LI(#) with the property that 

whenever v �9 f~ ~ H is a measurable function with relatively compact range, 
then F(w, v(w)) <_ ~(w) for almost all w. 

Remarks. We emphasize that the set of almost all w may depend on the particular choice 
of v; we do not assert that sup~ F(w, v(w)) _< ~(w) for almost all w. 

The lemma's conclusion is only slightly weaker than the assertion that the integral 
f~ SUpz~ H F(w,z)dp(w) exists and is finite. In other words, if F is bounded (in a gener- 
alized sense) on compact subsets of Z, then F is also bounded on slightly larger subsets 
of Z. The lemma has the advantage that it is applicable even in some situations where 
ff2 SUpz~H F(w, z)dp(w) may not exist or may be infinite. 

Proof of lemma. Fix K. For each number r > 0, define the open set H(r) - {z c Z �9 
dist(z, K) < r}, and let Q(r) be the set of all measurable functions v" f~ ~ H(r) that have 
relatively compact ranges. We know Q(r) is nonempty, since any constant function with 
value in K is a member. 

We first claim that there is some r > 0 such that the number 

= sup f F(w,v(w))dp(w) 
vcO(r) J~ 

is finite. Indeed, suppose not. Then for n - 1 ,2 ,3 , . . .  there exist numbers rn ~ 0 and 
functions Ca e Q(rn) such that f~ F(w, Vn(W))dp(w) > n. However, since the vn's have 
relatively compact ranges and are converging uniformly to K, the union of the ranges of 
the vn's is contained in a single compact set L. Then F(w, vn(w)) < SUpz~ L F(w, z), which 
yields a contradiction as soon as n is larger than f~ SUpz~L F(w,z)d#.  This proves our 
claim. 

Fix r and fl as above; we shall take H - H(r). As explained in 21.42, let ~ be the 
supremum in Meas(#,  [-oc, +oo]) of the set of functions w ~ F(w, v(w)) for v e Q(r). It 
remains only to show that fa ~ dp is finite. 
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By the proposition in 21.42, there is some sequence (vn) in Q(r) such that p is the 
pointwise supremum almost everywhere of the functions F(~, vn(~)). For fixed ~ E ~t and 
n E N, define u~(~) to be that member of the finite sequence (Vl (w), v2(~) , . . . ,  v~(~)) that 
maximizes F(~, .); if there is a tie, choose the first of the vj(~)'s that yields the maximum 
value. Verify that the function u~ is a member of Q(r), hence f~ F(~, u~(~))d#(~) _< 
/3. Since F(w, u~(w)) = max {F(w, Vj(OJ)): 1 _< j _< n}, the functions F(w, u~(w)) increase 
pointwise almost everywhere to p. By Lebesgue's Monotone Convergence Theorem 21.38(ii), 
the numbers fa F(w, un (w)) d#(w) increase to fa ~ d#. Therefore fa ~ d# _</3. 
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Chapter  22 

N o r m s  

22.1. Preview. A Banach space is a complete normed vector space. The following cl.~ 
shows the relations between several types of Banach spaces that will be studied in this and 
later chapters. 

Banach space] 

strictly 
convex 

i reflexive ] / [ ~  

[uniformly convex] 

LB(#) for 1 < p <  oc] 

] L2(#) - Hilbert space I 

(G-) (SEMI)NORMS 
22.2. Definitions. Let X be an additive group. A G - s e m i n o r m  on X is a mapping 
p: X --~ [0, +oc) satisfying p(0) = 0 and these two conditions: 

p(x + y) <_ p(x) + p(y) (subadditive) 

p(-x )  = p(x) (symmetric) 
for all x, y E X. It is a G - n o r m  if it also satisfies 

575 
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x 7~ 0 ~ p(x)  > 0. (positive-definite) 

In applications,  we are usually concerned with either a single G-norm or a collection of 
infinitely many  G-seminorms; see 5.15.h. 

Most of the addit ive groups X considered in this book are actually vector spaces. In 
tha t  setting, a G-seminorm p :  X --~ [0, +oc)  is a s e m i n o r m  if it also satisfies: 

p ( c x )  = Iclp(x) (homogeneous) 

for all scalars c and vectors x, y E X.  It is a n o r m  if it is also positive-definite. Clearly, 
any seminorm is a G-seminorm; any norm is a G-norm. In Chapter  26 we shall s tudy some 
G-(semi)norms tha t  are not (semi)norms. 

Below are some basic propert ies  of G-(semi)norms and (semi)norms. Some readers may 
wish to skip ahead to our extensive collection of examples, which begins in 22.9. 

22.3.  Notat ion.  A norm is usually denoted by II II; tha t  is, we write IIxLI instead of p(x) .  
Different norms on different vector spaces may both  be denoted by the same symbol II II, 
when no confusion will result e.g., we may write Ilxil and IlYll when it is clear tha t  x E X 
and y E Y. When  clarification is necessary we may use subscripts - -  e.g., let vector spaces 

X and Y have norms II IIx and II IIg. 
Norms may also be denoted by l l or L II III. These symbols are used less often in the 

wider l i terature,  but  they will be used freely in this book to make it easier to dist inguish 
between different norms. Most often, we shall use more bars to represent a "higher-order" 
norm i.e., if l l is used for a norm on spaces X or Y, then II II will be used for a 
norm on some subspace of y x  = {functions from X into Y}; likewise, if II II is used for a 
lower-order norm, then III III will be used for the higher-order norm. In part icular ,  III III 
will be used for an operator norm, in t roduced in 23.1. Also, we shall use I I for a norm 
especially when we do not wish to distinguish between a one-dimensional  normed space 
(i.e., the scalar field) and higher-dimensional  normed spaces for instance, in 24.8. 

22.4 .  If p is a G-seminorm on X,  then d(x,  y) = p(x  - y) defines a pseudometr ic  d on X. 
Moreover, this pseudometr ic  is t r a n s l a t i o n - i n v a r i a n t ;  i.e., it satisfies 

d(x  + z, y + z) = d ( x , y )  for a l l x ,  y, z E X .  

Conversely, if d is a t ranslat ion-invariant  pseudometr ic  on an addit ive group X,  then p(x)  = 
d(x,  0) defines a G-seminorm p on X. For any addit ive group X,  this correspondence p ~ d 
is a bijection between the G-seminorms on X and the t ranslat ion-invariant  pseudometr ics  
on X.  Positive-definiteness of p corresponds to tha t  of d tha t  is, p is a G-norm if and 

only if d is a metric. 

Hereafter, each G-seminorm p : X ~ [0, +oc)  will be identified with the corre- 
sponding translat ion- invariant  pseudometr ic  d : X x X ~ [0, +ec) ;  

we will use the two objects interchangeably. This convention will also apply in more spe- 
cialized cases; e.g., a seminorm will be identified with its corresponding pseudometric ,  and 
in later chapters  an F-seminorm will be identified with its corresponding pseudometric .  
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Topologies, uniformities, compactness, completeness, and other notions defined for pseudo- 
metrics will be transferred to G-seminorms in the obvious fashion. 

22.5.  Exercise. Let p and r be G-seminorms on an additive group X. 
following are equivalent. 

(A) 

(B) 
(C) 

(D) 

(E) 

Show that  the 

p is s t r o n g e r  than r i.e., it yields a larger topology. 

p is uniformly stronger than r i.e., it yields a larger uniformity. 

For each number c > 0, there exists a number ~ > 0 such tha t  p(x) < ~ 
< 

For each sequence (x~) in X, if p(x~) ~ 0 then r(x~) ~ O. 

For each net (x~) in X, if p(x~) ~ 0 then r(x~) --+ O. 

If X is a linear space and p and r are seminorms, then the preceding conditions are also 
equivalent to: 

(F) there exists a constant k such that  r(x) <_ kp(x) for all x E X. 

Further definitions. We say p is s t r i c t l y  s t r o n g e r  than r if p is stronger than r and r 
is not stronger than p. The two G-seminorms are e q u i v a l e n t  if they determine the same 
topology i.e., if each is stronger than the other. Note that  they then determine the same 
uniform structure also. Equivalent (G-)(semi)norms can be used interchangeably for most 
purposes, but not for all purposes. 

Further exercise. Two equivalent seminorms on a vector space yield the same collection 
of metrically bounded sets. 

22.6.  Remarks. The term "isomorphic" has different meanings in different parts  of math-  
ematics. Usually (but not always), an isomorphism of normed vector spaces is a linear 
homeomorphism. Occasionally it has the stronger meaning of a linear isometry. 

M a z u r - U l a m  T h e o r e m .  Let X and Y be real normed spaces, and let f : 
X ---, Y be a bijection that  is distance-preserving. Then f is also affine i.e., 
the map f -  f (0)  is linear. 

(The proof is long and will not be given here; it can be found in Banach [1932/1987].) Thus, 
the metric of a normed space is inextricably tied to its linear structure.  Contrast  this with 
the remarks abollt isometries in 22.9.d. 

22.7.  Observations. If (X, p) is a G-seminormed space, then the operation 

x ~ - x  from X into X 

is continuous, and the operation 

(x ,y)  ~ x + y  from X • X into X 
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is jointly continuous. If (X, p) is a seminormed space, then the operation 

(C~ X) ~-~ CX from IF • X into X 

is jointly continuous, where IF is the scalar field. 

22.8.  Definition. A complete normed vector space is called a B a n a c h  space .  
Remarks. For most applications, a normed space can be viewed as a subspace of its 

completion; thus little is lost by restricting our at tention to complete spaces. Much is 
gained: Completeness can be used to prove many theorems that  make the spaces more 
useful or easier to understand. 

In most of our examples of norms in this chapter, a vector space X is given, and a 
complete norm II II is given on X. That  norm (or any norm equivalent to it) is called the 
"usua l  n o r m "  for X: It is the norm used most frequently for X in applications. 

The reader may wonder, though, why each space has only one "usual" norm, up to 
e q u i v a l e n c e -  i.e., why one particular norm (or equivalence class of norms) is preferred and 
singled out as the usual norm. Is this just a mat ter  of custom and tradition? Or would 
some other complete norm be just as useful? 

It turns out that  among the examples one can find in applied analysis, there isn't any 
other complete norm. There are no explicitly constructible examples of inequivalent com- 
plete norms on a vector space. Thus the "usual norm" is determined uniquely (up to 
equivalence). In 27.18(iii) we shall prove the existence of inequivalent complete norms on 
a vector space, but this can only be accomplished by nonconstructive arguments e.g., 
using the Axiom of Choice or some weakened form of AC. Applied mathematics  generally 
is constructive and does not use the Axiom of Choice; thus it cannot produce inequivalent 
complete norms on X. 

Analogous remarks apply to F-norms, a generalization of norms introduced in 26.2 
for metrizable topological vector spaces; there are no explicitly constructible examples of 
inequivalent complete F-norms. Hence we may refer to "the usual F-norm" on a vector 
space. The proofs of these uniqueness results are rather deep; we postpone them until 
27.47.b. 

These uniqueness results do not generalize still further to G-norms. An Abelian group 
may have two explicitly constructible, inequivalent, complete G-norms; see the elementary 
example in 22.9.d. (But the uniqueness results do apply to separable complete G-normed 
groups. That  follows from a version of the Closed Graph Theorem for separable groups, 
which can be found in Banach [1931] or Pettis [1950].) 

BASIC EXAMPLES 

22.9 .  Elementary examples. 
a. Each of the scalar fields R, C is a vector space over itself, and also C is a vector space 

over the scalar field I~. In each of these cases, the absolute value function is a norm, 
and the metric that  it determines is complete. 
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b. If X is a vector space over the field F (either IR or C) and f : X --+ F is a linear map,  
then  p(.) = If( ')l  is a seminorm on X.  If d i m ( X )  > 1 then p(.) = If( ')l  is not a norm. 
Hint: 11.9.j. 

In par t icular ,  the constant  function 0 is a seminorm. 

c. If Pl,P2,... ,Pn are (semi)norms on a vector space X,  then  pl -+- p2 -+-"'" q- Pn and 
max{p l ,  0 2 , . . . ,  P,~} are (semi)norms.  

d. The  Kronecker metr ic  (defined in 2.12.b) is t rans la t ion- invar iant  on any addit ive group, 
and thus it yields the K r o n e c k e r  G - n o r m :  

-- 1-~5,0  = ~ 0 w h e n x - 0  p(x) 
1 when x -J= 0. ( 

e .  

It is complete.  It is not a norm on any vector space X other  t han  {0} in fact, it is 
not equivalent to a norm, since (exercise) scalar mult ipl icat ion is not jointly continuous 
when this G-norm is used. 

Note tha t  the usual metr ic  on IR and the Kronecker metr ic  on R are two inequivalent 
complete  metrics,  bo th  de te rmined  by G-norms.  Contras t  this with  the results for 
norms and F-norms discussed in 22.8. 

The  Kronecker G-norm of a group is not closely tied to its group s t ruc ture  e.g., 
to its group homomorphisms .  For instance, if X and Y are two groups equipped with 
their  Kronecker G-norms,  then  any injective map from X into Y is an isometry (i.e., 
d is tance-preserving map)  from X onto a subset  of Y. Cont ras t  this with  the Mazur- 
Ulam Theorem,  discussed in 22.'6, which shows tha t  any norm on a normed space is 
closely tied to its linear s t ructure .  

Suppose f~ is a set, g is an algebra of subsets of f~, and # is a positive charge on g. As 
we noted in 21.9, we can define a pseudometr ic  on g by d(A, B) = arc tan  #(A/~ B), 
or more simply by d(A,B) = #(A A B) if # is finite. Show tha t  d is a t ransla t ion-  
invariant pseudometr ic  on the commuta t ive  group (g , /k ,  ig,2~) discussed in 8.10.g, 
hence a rc tan  #(.) (or #, if it is finite) is a G-pseudonorm on g. 

22 .10 .  Exercise. Let (X, II II) be a normed space. Show tha t  X has a na tura l  c o m p l e t i o n .  
T h a t  is, show tha t  X is a dense linear subspace of a complete  normed space Y, such tha t  
II II is the restr ict ion of the norm of Y. Show tha t  this complet ion is unique, up to 
i somorphism (where an isomorphism preserves bo th  linear and metr ic  s t ructure) .  

2 2 . 1 1 .  F i n i t e - d i m e n s i o n a l  s p a c e s .  
( X l ,  X 2 ,  �9 �9 �9 , Xn) in IR n or C ~, define 

Let n be a positive integer. For any vector x - 

Ilxll~ = {Iml p+Im21 p+.. .+Ix~p}i /p (o < p < co) 

and x I~ - max{Ix1[, Ix21, . . .  , Ix~l}. Show tha t  the functions II , for 1 _< p _< co, are 
complete norms on IR ~ or C ~, all equivalent to one another  (as defined in 22.5). (Hint" 
Show tha t  I[ [Iv is the Minkowski functional  of the convex, balanced,  absorbing set {x"  
IIxllp <_ 1}; see 12.29.g.) If 0 < p < 1, then  [I lip is not a norm, but  [I ~ is a G-norm 
on IR ~ or C ~ (hint: 12.25.e); in fact, we shall see in Chap te r  26 tha t  it is a special kind of 
G-norm, which we call an F-norm. 
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The functions II lip (1 _< p <__ oc) are sometimes referred to as the u s u a l  n o r m s  on I~ n 
or C ~. They yield the usual product  topology and usual product  uniform s t ructure  (studied 
in later chapters) .  The  norm [[ l]2 is often called the E u c l i d e a n  n o r m  because it gives 
R n the metric of classical Euclidean geometry. Some textbooks  use the nota t ion  E ~ to refer 
to the vector space IR n equipped with the Euclidean norm. 

The normed spaces (]~n, [[ lip) are a special case of the normed spaces (LP(#) ,  [I lip), 
which we shall s tudy in 22.28 and thereafter.  

Addi t ional  exercise. Draw graphs of the "unit circle" 

Cp  --  { ( X l , X 2 )  E I~ 2 �9 [Xl p -Jr-Ix2[ p - 1} 

1 1 4 1, 5 2 5, §  (The values for p < 1 for a few values of p - -  for instance, for p -- g, 3, g, , , 
correspond not to norms but  to F-norms,  which will be studied in 26.4.d.) Observe tha t  
the "unit circle" is not circular when p -7/= 2. In fact, when p = ~ or 0 < p < 1, the "unit 
circle" is not even round; it has corners. 

Hints: First  draw for p = 1, 2, +oo; they' l l  be easiest and they may give you some idea 
of what  to expect for the other  sketches. For the remaining sketches, use the parametr ic  
representa t ion 

Xl  --  I cosOl 2/p, x2 - I sinOl 2/p (0 ~ o < 27v). 

This is a good problem to do on a computer .  If you have only a nongraphing calculator,  
just  plot some points for 0 _< 0 _< 7r/2 and then use symmet ry  to finish the sketch. 

22 .12 .  P r o d u c t  n o r m s .  We now generalize slightly the computa t ions  in 22.11. Let n be a 
positive integer, and let (X1, ] I), (X2, ] I ) , . . . ,  (Xn, I [) be normed spaces. (The norms 
on the n spaces generally are different, but  for simplicity we shall denote them all by the 

n 
same symbol I I.) For any vector x - (Xl ,X2, . . .  ,xn)  in the product  space X - 1-[j=l X j ,  
define 

[[Xl[p --- ~ ~ IXl  p -~-IX2 p n t - ' ' "  n t- ]XnlP}  l i p  (0 ~ p ~ 0(3) 

min{1,p} for 0 < p < oc, and Ilxll~ - max{[xl l ,  [x2 l , . . . ,  IXnl}. Show tha t  the functions l[ [[p , _ 
are G-norms on X,  all equivalent to one another,  and the topology they determine on X is 
the product  topology. When  1 _< p <_ oc, then II p is a norm on X.  

22 .13 .  Q u o t i e n t  n o r m s .  Let X be an Abelian group (wri t ten as an addit ive group); let K 
be a subgroup; let Q - X / K  be the quotient  group; let 7r �9 X --~ Q be the quotient  map. For 
each G-seminorm p" X -~ [0, +co) ,  we may define an associated function f i ' Q  --~ [0, +oc)  
by 

"fi(q) - inf {p(x) �9 x E 7v- l (q)} .  

Show tha t  

a.  ~ is a G-seminorm on Q. In fact, it is the largest G-seminorm on Q tha t  satisfies 
"fi(~(x)) <_ p(x)  for all x c X .  Hint: 4.42. 
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b. if X is a vector space, p is a seminorm, and K is a linear subspace of X, then fi is a 
seminorm on the quotient space X / K .  In some cases it is a norm; then it is called the 
q u o t i e n t  n o r m .  

c. 7r preserves open balls: 

7 r ( { x E X  �9 p(x) < c } )  -- { q E Q  �9 ~(q) < c } .  

d. If p-1 (0) ~ /~, then p is constant on each set of the form 7l -- l (q) ,  and so our definition 
of ~ simplifies to ~(Tr(x)) - p(x).  

e. The map between pseudometric spaces, 7r " (X,  p) ~ (Q, ~), is a topological quotient 
map (defined as in 15.30). 

More generally, let X be topologized by a g a u g e D  consisting of G-seminorms, and 
let Q be topologized by the corresponding gauge D - {fi" p E D}. Suppose that  D 
is directed, in the sense of 4.4.c. Then 7r �9 X ~ Q is an open mapping (by 22.13.c), 
hence it is a topological quotient map (by 15.31.e). 

SuP NORMS 

22.14.  As usual, let F be either R or C. If A is any nonempty set, then 

B(A) - {bounded functions from A into F} 

is a linear space. The usual norm on this space is Ibfll~ - sup{If(~X)l �9 ~x ~ n); this is 
sometimes called the sup norm. It is complete. We have already seen one example of sup 
norms in 22.11. 

The metric on B(A) obtained from this norm is the same as the metric given in 4.41.f. 
The results in 4.41.f show that  

every metric space (A, d) may be viewed as a subset of a Banach space. 

Thus, in principle, metric spaces are not really "more general" than subsets of normed 
spaces. 

However, this embedding is seldom used in applications. The additional linear structure 
of B(A) may be merely distracting and not particularly relevant to the properties of the 
metric space (A, d) that  one may be studying. For instance, we may gain some under- 
standing of the "numbers" +oc by viewing them as elements of the metric space [ -oc,  +oc] 
introduced in 18.24, but that  understanding is not necessarily increased if we study the 
larger and more complicated space B( [ -oc ,  +oc]). 

22.15.  M o r e  s u p - n o r m e d  spaces .  Let ~t be a topological space; then B(ft) - {bounded 
functions from ft into F} is a Banach space when equipped with the sup norm. We now 
consider some interesting subspaces. First of all, 
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B C ( a ) -  {bounded, continuous functions from f~ into F}. 

is a closed linear subspace of B(f~) hence a Banach space, when equipped with the sup 
norm. If f~ is a uniform space, show that  

BUC(f~)- {bounded, uniformly continuous functions from gt into F} 

is a closed subspace of BC(ft). 
Suppose ft is a locally compact Hausdorff space (such as R n, for instance). Then a 

function f "  f~ + F is said to van i sh  a t  inf in i ty  if for each e > 0 the set {x E f~ �9 I / ( x ) l  > c} 
is relatively compact. In this setting, 

C0( f~ ) -  {continuous functions from f~ into F that  vanish at infinity} 

is a closed linear subspace of BC(ft), hence another Banach space. If gt is also equipped 
with a uniform structure, show that  C0(a) c_ BUC(ft) c_ BC(a). Of course, all these 
spaces are the same if ft is a compact Hausdorff space. 

A generalization. For any Banach space (X, I Ix), we can define BC(ft, X), Co(ft, X), 
BUC(ft, X) in an analogous fashion; they are closed linear subspaces of the Banach space 

B(f~,X) - {bounded functions from ft into X} 

with sup norm I[fl[~ - sup{If(w)lx " w e gt}. 

A specialization. Let f~ be the set N = {positive integers}, equipped with this metric: 
d(m,n) = l a r c t a n ( m ) -  arctan(n)l. This gives N its usual topology (i.e., the discrete 
topology), but gives N the uniform structure of a subset of the compact space [0, +oc]. 
Then B(N) = BC(N) (since the topology on N is discrete), and the three Banach spaces 
BC(N),  BUC(N), C0(N) can be rewritten respectively as 

~(:X:) z 

C 

C0 

{bounded sequences of scalars}, 

{convergent sequences of scalars}, 

{sequences of scalars that  converge to 0}, 

all equipped with the sup norm. 

22.16. Exercises. 
a. The sup-normed spaces C{0, 1] and C0(R) are separable. 

Hint: We prove this for real scalars; the proof for complex scalars is similar. By a 
"rational piecewise affine function" we shall mean a continuous function whose graph 
consists of finitely many line segments, each of which has endpoints with rational 
coordinates; in the case of C0(R) we extend such a function by making it equal to 
0 for all sufficiently large or small arguments. Show that  there are only countably 
many rational piecewise atone functions. Show that  members of C[0, 1] or C0(R) are 
uniformly continuous; use that  fact to show that the rational piecewise affine functions 
are dense. 
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b. The sup-normed space BUC(R) is not separable. 
Hints: This is easiest in the case where the scalar field is C tha t  is, in the case 

where BUC(R) represents the space of all bounded,  uniformly continuous functions 
from R into C. In tha t  case, define f~(u) - cis(ru) - c o s ( r u ) +  i sin(ru) for real 
numbers  r and u. Show tha t  f~ - fs ~ - 2 whenever r -# s. 

We can use tha t  result to prove the nonseparabi l i ty  of BUC(R) in the case of real 
scalars as well. Indeed, from the equat ion f~ - / ~ 1 1 ~  - 2 w e  can prove tha t  (r, s) 
must  lie in at least one of the two sets 

A - {(r, s) ER2"suPIc~176 1},  

B - { ( r , s )  E R 2 "  suPlsin(ru)--sin(su)l>--luER }" 

Since { (r, s) E R 2 " r  r s} is uncountable ,  at least one of the two sets A, B is uncount-  
able, and therefore BUC(R) is not separable. 

c. A D o m i n a t e d  C o n v e r g e n c e  T h e o r e m  for  Co. A set S c_ co is relatively compact  
if and only if it is dominated in co i.e., if and only if there exists some sequence 
r -  (rn) E co such tha t  sn[ < r~ for every sequence s -  (Sn) C S and every n E N. 

A sequence of members  of co converges in norm if and only if it is domina ted  and 
converges coordinatewise.  

22 .17 .  L e m m a  o n  s p a c e s  o f  v e c t o r - v a l u e d  f u n c t i o n s .  Let F be a set, and let X be 
a Banach space. Let �9 be a collection of seminorms on the vector space X r .  Assume tha t  
the gauge topology given by (I) is equal to the topology of pointwise convergence on F 
tha t  is, for any net (f~) in X r, 

~(f~  - f )  ---, 0 for each ~ E (I) z ,. f~(7)  ~ f (7 )  for each 7 E F. 

Now define ]]fl] = s u p { ~ ( f )  : ~ E O} for each f E X r ,  and let 

V --- { f  ~ x r  " Ilfll < oc} .  

Then (V, II II) is a Banach  space. 

Remarks. This somewhat  technical lemma will be used several t imes to show tha t  certain 
linear spaces V are Banach spaces; see 22.18.c, 22.19.c, 29.6.c, and 29.29.f. 

We emphasize tha t  F need not be a complete metric space. In fact, F doesn ' t  have to 
be equipped with any metric s t ructure  at all. Also, we emphasize tha t  the convergence 
given by II II or given by the gauge topology from (I) are, respectively, the convergences 
~(f~  - f )  ~ 0 uniformly for all ~ or separately for each ~. 

Proof of lemma. It is easy to verify tha t  (V, If II) is seminormed linear space; tha t  
verification is left as an exercise. We shall show tha t  the seminorm II II is a norm and tha t  
it is complete. 

To see tha t  II II is positive definite, note tha t  if f E X r \ {0}, then ~ ( I )  > 0 for at 
least one ~ E (I) (since the product  topology on X r is a Hausdorff  topology),  so II/11 > 0. 



584 Chapter  22: Norms  

It remains to show that  (V, II II) is complete�9 Let (f~) be a II II-Cauchy sequence in V. 
Thus, for each number c > 0 there is some integer Nc such that  m, n >_ N~ ~ I l f m -  fn  II <-- 
C. Therefore, for each ~ E (I) we have 

_>  (fm- A )  _< c. (,) 

Thus the net (fro - f n "  (m, n) E N x N) converges to 0 pointwise on F. Since X is complete, 
for each ? E F there exists f ( ? )  - limn__,~ fn(~/). Since fn ~ f pointwise, we have 
~(fn - f )  ~ 0 for each ~ E (I). Hold ~ and m fixed and take limits in (,) as n ---, ec; thus 

m > N~ ~ ~ ( f m - f )  _< e. 

In other words, m >_ N~ =~ Ilfm- fll c. This proves that  f C V and that  (fro) converges 
to f in (V, [1 II)- 

22 .18 .  T h e  space  of  H S l d e r  c o n t i n u o u s  func t i ons .  The definition of HSlder continuity, 
given in 18.4, simplifies slightly when the metric space Y is a normed space, with norm ] IY. 
Let (X, d) be any metric space, and let c~ > 0. For functions f "  X ~ Y, we obtain 

sup { If(Xl~xl~x2) - f ( x 2 ) l Y  �9 Xl,X2 E X, Xl # x2) .  

Exercises. Show that  

a. HSI~(X, Y ) =  {f  c y X  : {f}~ < oc} is a linear space. The function {.)~ is not a norm, 
but rather a seminorm on HSI~(X, Y). Indeed, we have {f}~ = 0 if and only if f is a 
constant function. 

b. To get a norm, select any point in X; let us call that  point "0" (although we shall not 
use any additive structure in X).  Then Iif]]~ = (f)~ + If(0)iY defines a norm II II~ 
on HSI~(X, Y)�9 

c. If Y is complete, then H51 ~ (X, Y) (normed as above) is complete, regardless of whether 
X is complete. Hint: This is a special case of 22.17. 

d. If 0 < c~ </3  < 1, show that  

HSlZ([0, 1], Y) c_ HSl~([0, 1], Y) C_ C([0, 1], Y), 

where the last space is the space of continuous functions from [0, 1] into Y, equipped 
with the sup norm. The inclusions are continuous�9 If Y = R n for some positive integer 
n, then the inclusions are compact i.e., a bounded subset of one normed space is a 
relatively compact subset of the next space. 

Hint: Use the Arzela-Ascoli Theorem 18.35. 

e. A related exercise. This time we take the domain, rather than the codomain, to be a 
:$ 

subset of a normed space. 

Let C be a convex subset of a normed space (X, I x) ,  and let (Y, e) be any metric 
space. Show that  if ct > 1, then Hbl ~ (C, Y) contains only constant functions. 
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Hint: Suppose (p}~ - k, and let any u, v E C be given. Let n be a large positive 
integer. Define xj - (1 - -~)u + j v  for j - 0, 1 2 n. Then  

T t  ' ' " " " ' 

( ) ) e p(~) ,p(v)  ~ e p (x j ) , p (X j_ l )  ~ k l X j - - X j - I I ~  -- 7tc~_l 
j = l  j = l  

22 .19 .  Let (X, l I) be a Banach space. Let BV([a, b],X) be the set of all functions from 
[a, b] into X tha t  have bounded  variat ion (as defined in 19.21). Show tha t  

a. BV([a, b],X) is a linear space, and Var(., [a, b]) is a seminorm on BV([a, b],X). 

b. II~llgv = I~(a)lx +V~r(., [a, b]) is a norm on BV([a, b], X). Moreover, II~ll~ -< II~llBv. 

c. BV([a, b],X), normed as above, is complete.  IBnt: This is a special case of 22.17. 

d. We say f :  [a, b I ~ X is a n o r m a l i z e d  f u n c t i o n  o f  b o u n d e d  v a r i a t i o n  on [a, b] 
if f has bounded  variat ion on [a,b], f is right continuous on (a,b), and f (0)  = 0. 
The  collection of such functions will be denoted by NBV([a, b], X); it will play an 
impor t an t  role in 29.34. Note tha t  NBV([a, b], X) is a linear subspace of BV([a, b], X), 
and Var(., [a, b]) acts as a norm on NBV([a, b],X). 

C ONVERGENT S ERIES 

22.20 .  By a s e r i e s  in a normed space (X, II II) we mean  an expression of the form 
1 xj Xl + x2 + x3 +. . . ,  where the xj's are members  of X.  The  s u m  of the series 

N 
is the vector v - l i m N ~  }--~-j=l xj, if this limit exists. If it exists, we say the series is 
c o n v e r g e n t ;  we may  also write v - } - ~  j = l  Xj. 

A series }-~<j=l xj is a b s o l u t e l y  c o n v e r g e n t  if }-~-j=l IlxJ < exp. Any absolutely con- 
vergent series in a Banach  space is convergent; tha t  follows from the completeness  of X.  In 
fact, (exercise) a normed space is complete  if and only if every absolutely convergent series 
in the space is convergent.  

See also the related results in 10.41, 23.26, and 23.27. 

22 .21 .  D i r i c h l e t ' s  t e s t .  Let V be a Banach space. Let }--~k=l vk be a series in V whose 
par t ia l  sums s~ - }-~-k=l vk form a bounded  sequence. Let (bk) be a sequence of real numbers  
decreasing to 0. Then  the series E L 1  bkVk is convergent.  

(A corollary is the Al te rna t ing  Series Test, given in 10.41.g.) 

Proof of Dirichlet's test. For any positive integers m, n with n > m, verify tha t  

~t ~t 

E bkvk -- b n + l S n -  bmsm-1 - E ( b k + l  -- bk)sk" 
k=m k=rn 
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By assumption, S - sup,  ]snI is finite. Hence 

n 

E bkvk 
k=m 

n 

<_ b n + l S  § bmS + E (bk - b k + l ) S  - 2broS. 
k = m  

o o  It follows that the partial sums of the series E k = l  bkvk form a Catchy sequence. 

22.22. Example. If (bk) is any sequence of positive numbers decreasing to 0, then 
sin(kx) E cx)k=l bksin(kx) converges for each real number r. In particular, the series Ekc~~ k 

oc sin(kx) both converge (Contrast this result with 10.43.) and --.,k= 1 ln(k+l) 

Proof. First show that 

( x )  ( ) ( 1 ) 
2 s in~  ( s i n x + s i n 2 x + . . . + s i n n x )  - cos ~x - c o s  ( n + ~ ) x  , 

either directly (using trigonometric identities), or by using the formulas sin0 - (e i ~  
e-i~ cos0 - (e i~ + ei~ Use that formula to show that the partial sums of the series 

�9 1 sin kx form a bounded sequence, for each fixed x Now apply Dirichlet's Test 

22.23. Let (X, II II) be a complex Banach space. Let co,el,c2,.. ,  be some sequence 
in X, and let a be a complex number. (In the simplest case we take a - 0.) Then the 
expression }-'~n~=O Cn(A- a) n is called a power  series c en t e r ed  at  a; the cn's are called 
its coefficients.  Associated with the power series is a number R E [0, +oc] defined by 

1 
= limsup ~/ C nil. 

R n - - +  (x) 

This number R is called the rad ius  of convergence  of the power series, the set {A E C : 
[A- a] < R} is called the disk of convergence ,  and the set {A E C:  ]A- a] = R} is called 
the circle of convergence .  (The following results are also valid with real scalars, with 
intervals for "disks," but for simplicity of notation we shall only consider complex scalars.) 
The series, radius, and disk have these properties: 

a. If only finitely many of the Cn'S are nonzero, and limn__+~ [[Cn[[/llCn+l[[ exists in [0, +oc], 
then that limit is equal to R. 

Remark. The expression limn--.oc []Cn[[/]ICn-+-I[[ is simpler, and thus is preferable in 
those cases where it is applicable. On the other hand, the more complicated expression 
1/limsupn__.c ~ ~/[[Cn[ [ has  the advantage that it is always applicable. 

b. For each complex number A with [A- a < R, the series ~n~=O Cn(A- a) n converges to 
N ()~ a)  n exists in X. The series is absolutely con- a limit that is, limN--+o~ ~n=O Cn -- 

vergent, and the convergence is uniform on compact subsets of the disk of convergence. 
Thus the power series defines a function on that disk; we summarize this by writing 

o o  

f(A) = ~ Cn(A -- a) n (]A -- a[ < R ) .  
n--O 
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Hints" Any compact  subset  is contained in a set of the form {% E C "l A - al < r} for 
some number  r < R. See 10.41.d and 22.20. 

c. The  series }-~ c n ( A -  a) n is divergent (i.e., nonconvergent)  for every % E C with 
[ A -  a[ > R. 

Hint: If the series is convergent for some value of A, then  c ~ ( A -  a) n ~ 0 as 
n ~ oc. Then  for all n sufficiently large, we have I Icn(A-  a)nll < 1. If A J= a, then  

 /ll  ll < 1 / l a -  hi. 

Fur ther  propert ies  of power series are described in 23.29(iii) and 25.27. 

22 .24 .  Elementary examples. A power series }--~.n~__0 c n ( A -  a) n converges inside the circle 
of convergence, and diverges outside tha t  circle. The  behavior  is more complicated on the 
circle of convergence i.e., at  points A satisfying I A - a I - R. A series may converge at 
all, some, or none of these points. Following are a few simple examples with center a - 0 
and with coefficients in X - C .  

a. Any polynomial  (of a complex variable, wi th  complex coefficients) is a power series 
with infinite radius of convergence. It has only finitely many  nonzero coefficients. 

b. The  power series f(%) - ~n~__0 A n - 1 + % + A 2 + % 3 + . . .  has radius of convergence 
equal to 1. Since 

1 + A + A 2 + . . .  + A N = 
1 - A N+I 

1 - A  
when A =/= 1, 

C. 

do 

we easily see tha t  the power series }-~n~ A n converges to ~ when IAI < 1 and diverges 
for every A such tha t  IAI > 1. 

The  power series f (A) -- En~ n -2An A A 2 A 3 -- u + -~- + -6- +''" has radius of convergence 
equal to i. Show that this series converges absolutely at every point on the circle of 
convergence. 

Hardy  gave an example  of a power series tha t  converges uniformly, but  not absolutely, 
on its circle of convergence. Lusin gave an example  of a series }--~--1 a,~ A~ such tha t  
an ~ 0, but  such tha t  the series diverges at every point of the circle of convergence. 
These examples  are much more complicated and will not be given here; they can be 
found in Landau  [1929, pages 68-71]. 

22 .25 .  S e q u e n c e  s p a c e s .  Let F be the scalar field (JR or C). For any sequence of scalars 

X--(Xl,X2,X3~...), define Ilxlloc - s u p  ~ lx l l ,  Ix21, Ix31, . . .  ~ and  
k ) 

Ilxllp = {Ix 11 p + Ix21 p + Ix31 + . . .  (0 < p < oc). 

Then  define 
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Then ep is a linear subspace of F N. If I _< p _< oc, then I] lip is a norm on ep (hint: 12.29.g); 
hence sequences of scalars satisfy M i n k o w s k i ' s  I n e q u a l i t y :  

Ixj + y~ I p <_ I~j p + lyj I p 
j = l  j = l  j = l  

(1 _<p < OC). 

If 0 < p < 1, then II lip generally is not a norm, but II I[ p is a G-norm on ep (hint" 
12.25.e); in fact, we shall see in Chapter  26 that  it is a special kind of G-norm that  we call 
an F-norm. 

The spaces gp are a simple but important  special case of the spaces LP(#, X),  introduced 
in 22.28. The completeness of the spaces ep and LP(p,X) will be proved in 22.31(i). 

The C a u c h y - S c h w a r z  I n e q u a l i t y  states that  Ilxyl[1 < Ilxll211yll2, where xy is the 
sequence whose nth  term is xnyn. For a proof, take limits in 2.10. 

Exercise. L e t 0  < p < oc. Show that  a subset S is relatively compact in gp if and only 
if it is metrically bounded and satisfies l i m N ~  SUPx~S ~k~=N [Xk[ p -- O. 

A generalization. Let J be any nonempty set. For any function x ' J  ~ F, define Ilzll~ - 
supj~j [xj[ and 

{ Ilxllp = ~ Ixj p (o < p < oo). 
jc5 

(Positive sums over arbi trary index sets are defined as in 10.40.) Then define 

ep(S) - {x~XF ~ .  I l x l l p < ~ }  (0 < p _< cx~). 

For 1 _< p _< oc, gp(5) is a linear subspace of F ~ and II 
generalization will be particularly useful in 22.56. 

I p is a norm on that  space. This 

22.26.  T h e  J a m e s  space  J ( o p t i o n a l ) .  For sequences x -- (Xl, X2, X 3 , . . . )  of scalars, let 

I l x l l a  - -  sup { Ix <l> - x <2> + - x <3> I + - X k ( 4 ) I  

_+. . . . _it - [ X k ( n _ 2 )  __ X k ( n - l )  [2 -~- ] X k ( n _ l )  - -  X k ( n ) 1 2  + lxk(n) - Xk(1) [2 } 1/2 

where the supremum is over all positive integers n and all finite increasing sequences k(1) < 
k(2) < . . .  < k ( n ) o f  positive integers. Let J -  {x E co" I]xlla < oc}. This space was 
devised by James [1951] to answer several questions about normed spaces; one of those 
questions will be mentioned in the remarks in 28.41. The space J is discussed further by 
James [1982]. Show 

a. (J, II II J) is ~ Banach space. 

b. g2 ~ J,  and II 
inequality. 

112 is strictly stronger than II IIJ on g2. Hint: Use the Cauchy-Schwarz 

c. J C co, and It IIJ is strictly stronger than the sup norm on J.  



Bochner-Lebesgue Spaces 589 

d. For 2 < p < ec, neither of ep or J includes the other, and neither of II lip or I[ IIJ is 
stronger than the other on ep A J. m~t~: To ~how II~llJ/ll~ll~ is unbounded, consider 

x = (1 -~, 0, 2 -~, 0, 3 - ~ , . . . ,  0, n -~, 0, 0, 0, 0, 0 , . . . )  

1 1 with r E (~, 3)" To show Ilxll /Ix j is unbounded, consider a sequence of n Is followed 
by infinitely many 0s. 

BOCHNER-LEBESGUE SPACES 

22.27.  Let (ft, S) be a measurable space and (X, I l) be a Banach space. Let X be equipped 
with its a-algebra ~ of Borel sets. Show that  

a. The space 

S M ( $ , X )  = {strongly measurable functions from (f~, {3) to (X, ~B)} 

is a linear subspace of X ~. Hint: Use 21.4(C). 

b. The space 
L 0~(8, X) = {f  e SM(g ,  X) : f is bounded} 

is a closed linear subspace of 

B(ft, X) = {bounded functions from ft into X} 

when that  space is equipped with the sup norm; hence L~($ ,  X)  is a Banach space. 
When F is the scalar field, the space L ~ ( g , F )  may be written more briefly as 

L~(g) .  It follows from 21.4(E) that  a dense subset of L ~ ( 8 )  is given by the set of 
simple functions from (ft, $) into F, defined as in 11.42 - -  i.e., the measurable functions 
with finite ranges. 

c. If X is separable, then the set M(S, X) = {measurable functions from ft to X} is equal 
to SM(g,  X); thus it is a linear space subspace of X ~. 

d. If card(X) > card(N), then there exists a measurable space (f~, g) such that  M(S, X) = 
{measurable functions from ft to X} is not a linear space. 

Proof. Let IB be the a-algebra of Borel subsets of X. Let g = ~B | IB denote the 
product a-algebra on ft = X x X. By 21.8, this is not the same as the a-algebra of 
Borel subsets of the product topology on X x X; in fact, the diagonal set belongs to that  
product topology but not to g. Let f ( z ,  y) = z and g(x, y) = y. Then f, g :  ft ---, X 
are measurable but h = f - g  is not, since h - l (0 )  is the diagonal set. This result is 
from Nedoma [1957]. 

e. Remarks. The results above show why we impose separability requirements throughout  
the theory of measure and integration. 

Besides the cases described above, there is still one more case to consider: There 
exist some nonseparable Banach spaces X satisfying card(X) = card(R). (Ezercise. 
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Show that  t ~  is such a space.) It is not presently known whether,  whenever X is such 
a space and (f~, g) is a measurable space, then M ( g , X )  is necessarily a linear space. 
Some related questions are considered by Stone [1976]. 

22.28.  Definitions. Let (~, S, #) be a measure space, and let (X, I I) be a Banach space. 
For each f e SM(S,X),  the function If( ' )["  F~ ~ [0, +oc] is measurable. Hence, using the 
type of integral defined in 21.36, we can define the quantities 

[If[[p = If(w)[Pdfl(w) (0 < p < oc), 

Ilfll~ = in f{r  > 0 �9 If( ')[-< r #-a.e.} 

- -  they are numbers in [0, +oc]. (The case of p - 1 is part icularly simple and important ,  so 
we shall restate it separately: I[flll - fn If(')ld#.) We can also define the set of functions 

LP(p,X) - { f  e S M ( S , X )  �9 [I/lip < oo} (0 < p_< oc). 

Then LP(p,X) is a linear subspace of SM($,X),  for each p E (0, oc]. When 1 _< p < oc, 
then  II is seminorm on that  space. (tEnt: 12.29.g.) When 0 < p _< 1, then II is a 
G-seminorm on tha t  space (hint" 12.25.e); in fact, we shall see in Chapter  26 that  it is an 
F-seminorm. 

Note tha t  L ~ ( g , X )  (defined in 22.27.b) includes only functions that  are bounded, but 
L~(p ,X)  consists of functions that  are bounded almost everywhere. In fact, a function 
belongs to L~(p ,X)  if and only if it agrees almost everywhere with some member  of 

Remarks on membership in the Lebesgue spaces. Some mathemat ic ians  define the spaces 
LP(#, X) a little differently, but in most cases their definitions are equivalent to the one 
given above. Note tha t  f belongs to LB(#, X) if and only if 

1. f is "regular," in the sense that  f belongs to SM(S, X), and 

2. f is "not too big," in the sense that  there exists some function g C LP(#, I~) such tha t  

]/()1 _< g(-). 

These two conditions are entirely different in nature and can be studied separately from 
one another. 

Associated metric spaces. For 0 < p _< oc, in general the spaces LP(p,X) are merely 
pseudometric spaces; we can make them into metric spaces by taking quotients in the usual 
fashion: Observe that  IIf - gllp - 0 if and only if f - g #-a.e. This defines an equivalence 
relation f ~ g on the pseudometric space LP(#, X). The resulting metric space is denoted 
LP(#, X); we may call it the B o c h n e r - L e b e s g u e  s p a c e  of order p. The seminorm II lip 
or G-seminorm II lip p o n L P ( p , X )  (for 1 < p  < ~ or 0 < p  < 1, respectively) acts as a 
norm or G-norm on LP(#, X). 

In general, the spaces LP(p,X) and LP(p,X) are different. Members of LP(p,X) are 
functions, whereas members of LP(#, X) are equivalence classes of functions. In some con- 
texts, members of LP(p,X) are discussed as if they were functions i.e., the distinction 
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between a function and its equivalence class is ignored. In certain contexts this abuse of 
language is convenient and does not cause confusion. 

Although the spaces LP(p,X) and LP(p,X) are different in general, they are the same 
in some special c a s e s -  for instance, when # is counting measure, for then each equivalence 
class in LP(p,X) contains only one function. 

Notation for scalar-valued functions. When X is the scalar field F, then we abbrevi- 
ate LP(p,X) as LP(#) and abbreviate LP(p,X) as LP(#). The spaces LP(#) are called 

L e b e s g u e  spaces .  
When # is counting measure on the finite set { 1 , 2 , . . . , n } ,  then LP(#) = LP(#) is just 

the finite dimensional space F ~, normed as in 22.11. When # is counting measure on N, 
then LP(#) = LP(#) is just the sequence space gp; thus all the results proved below for 
integrals have corollaries about sums. More generally, when # is counting measure on some 
set 5, then Lv(#) = LP(p) is the generalized sequence space gp(5) introduced in 22.25. 

When ft is a subset of IR ~ and # is n-dimensional Lebesgue measure, then LP(#) is 
usually writ ten as LP(ft). For instance, if # is one-dimensional Lebesgue measure on the 
interval [0, 1], then LP(#) is usually writ ten as LP(O, 1) or LP[O, 1]. There is no substantial 
difference between LP(O, 1) and LP[O, 1] since a single point has Lebesgue measure 0. 

Further notation. The number Ilfll~ is sometimes called the e s sen t i a l  s u p r e m u m  of the 
function f. Caution: That  term has another meaning; see 21.42. 

An i n t e g r a b l e  function is a member of LI(p,X) or L I(p,X); this terminology is ex- 

plained in 23.16. 

22.29.  L e b e s g u e ' s  D o m i n a t e d  C o n v e r g e n c e  T h e o r e m .  Let 0 < p < oc. Let (f~) 
be a sequence in LP(p;X), converging pointwise to a limit f .  Assume that  the fn 's  are 
dominated by some member of LP(p;R) i.e., assume that  If,~(co)l _< g(co) for some 
function g c LP(p;R).  Then f c LP(p; X) and IIf~ - flip ---+ O. 

Remarks. This theorem can be proved for Riemann integrals by more elementary methods 
i.e., not involving a-algebras and abstract measure theory. See Luxemburg [1971] and 

Simons [1995], and other papers cited therein. 

Proof of theorem. We first prove this in the case of p = 1. 
Apply Fatou's Lemma (see 21.39.c) to the functions 

Observe that  If(aJ)l _< g(a~). 

ha(w) -- 2g(w) - I f ~ ( w ) -  f(w)l. 

The remaining details for p -  1 are left as an exercise. 
For other values of p, observe that  the functions Fn(c0) = I r a (co ) -  f(w)lP converge 

pointwise to 0, and they are dominated by the function G(c0) = 2Pg(co) p, which lies in 
1(#; ]~). Hence F~ --+ 0 in LI(#; ]1~) by the case of p - 1, and therefore f~ --+ f in 

22.30.  Results about dense subsets. Recall from 11.42 that  a s i m p l e  f u n c t i o n  is a mea- 
surable function whose range is a finite set. Let X be a Banach space, and let 0 < p < co. 

Then: 
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a. A simple function f belongs to LP(p,X) if and only if {w �9 ~t: f(w) # 0} has finite 
measure. 

b. The simple functions that  belong to LP(p, X) are a dense subset of LP(p, X). Hint: 
21.4 and 22.29. 

c. Let ~t be an interval in IR (possibly all of I~), and let # be a positive measure on the 
Borel subsets of ~t. Let X be a Banach space, and let 0 < p < co. Then the integrable 
step functions are dense in LP(p, X). 

Hint: Use 21.27 to show that  any integrable simple function can be approximated 
arbitrari ly closely by an integrable step function. 

d. Let # be a positive finite measure on the Borel subsets of [a, b]. Then C([a, b],X) = 
{continuous functions from [a, b] into X} is a dense subset of LI(p,X). 

Hints: In view of 22.30.c, it suffices to show that  any step function can be ap- 
proximated arbitrari ly closely by a continuous function. Let us first consider how to 
approximate step functions of the form lip,b](-), for any p E (a, b). Define fn as in the 
following diagram. Show that  IIfn - l[p,b]lll _< # ( [ P -  �88 That  last quant i ty  tends 
to 0 as n ~ oc, by 21.25.b. By left-right symmetry,  we may approximate step functions 
of the form l[a,p](') in an analogous fashion. Finally, show that  any step function on 
[a, b] is a linear combination of 1 and functions of the forms l[a,p ] and lip,b]. 

(a, 0) 

(p, 1) A continuous, 
; (b, 1) piecewise-affine 

function fn 
approximating 

-_1,0) 1 [p,b] in L 1 (~). 
( P -  n 

22.31.  Let 0 < p < oc and let X be a Banach space. Then: 

(i) LP(#, X) is complete. 

(ii) ( C o n v e r s e  to  D o m i n a t e d  C o n v e r g e n c e  T h e o r e m . )  Any convergent se- 
quence in LP(p,X) has a subsequence that  is convergent pointwise almost 
everywhere and is dominated by some member of LP(#,I~). 

Proof. To prove both statements,  we shall show that  any Catchy sequence has a subsequence 
that  is convergent pointwise almost everywhere and is dominated; then completeness follows 
from 22.29. 

Let p(f) I]fllpin{l'P}; then p is a G-norm on LP(p,X). Choose some subsequence 

(gk) satisfying p(gk gk+l) < 2 -k Let hN(w) --]gl(o2)] + ~-2~ N -- " k=l ]gk+l (w) -- gk(w)]. Since 
N 

p is subadditive, we have p(hN) <_ P(gl) + ~-2"-k=1P(gk+l -- gk) <_ P(gl) + 2 -N+I  The 
functions hN take values in [0, +oc),  and they increase pointwise to the function h(w) = 
Igl (w)l ~- EkC~=l Igk+l (w) - gk(w)[. Use the Monotone Convergence Theorem to show that  
h is a member  of LP(p,I~), with p(h) < P(gl) + 2; clearly h dominates the gk's. Since 
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p(h) < oc, it follows from 21.37.h tha t  h(w) < oc for p-a lmost  every w. From this it follows 
tha t  the sequence (gk(w) " k E N) is Cauchy in X for p-a lmost  every w. By assumpt ion,  X 
is complete,  so its Cauchy sequences converge. 

22 .32 .  R e v e r s e  M i n k o w s k i  I n e q u a l i t y .  If f and g are measurable  functions taking 

values in [0 ,+ec)  and 0 < s < 1, then  IIf + glls > I fl18 + Ilglls. 

Proof. By 21.5 and the Domina ted  Convergence Theorem,  it suffices to prove the present 
result  for finitely valued functions. Let r -  1Is E [1, +oc) .  We are to show tha t  

M M 1/r 1/r (Xi -~- Yi) 1/r Pi ~ ~i Pi Jr- Yi Pi 
�9 i = 1  i = 1  

for nonnegat ive  numbers  xi, yi, pi. 

By induct ion on M,  Minkowski 's  inequali ty yields II}--~Mlvillr < }--~.MlllVillr for any 

vectors Vl, v 2 , . . . ,  VM. W h e n  those vectors are members  of R 2, tha t  inequali ty tells us 

( s 1 6 3  i ~ 1 ( s  ) Vij ~ Vijl r 
j = l  i = 1  "=  j = l  

for any positive integer M and real numbers  vij. Now take the r t h  power on bo th  sides, 
1/r 1/r 

and then subs t i tu te  vii - xi pi and vi2 - Yi pi for i - 1, 2 , . . . ,  M;  this yields the desired 
inequality. 

1 -n L 1 __ 1. (Numbers  p and q related in this fashion are 2 2 . 3 3 .  Let p,q  E [1, oc] with  ~ q 
called c o n j u g a t e  e x p o n e n t s . )  Let f ,  g be measurable  scalar-valued functions, and let f g  
be the pointwise product  i.e., the function whose value at w is f (w)g(w) .  Then  we have 
H h l d e r ' s  Inequa l i ty :  

Ilf glll <- Ilfllp llgllq 
(whether  those quant i t ies  are finite or not). Moreover, if p, q E (1, oc) and If(~)l p - clg(~)l q 
for all w and some constant  c, then  we have H a l d e r ' s  E q u a l i t y :  Ilfglll -Ilfllpllgllq. 

The  special case of Hhlder 's  inequali ty with p = q = 2 is impor t an t  enough to deserve 
separa te  mention; it is the C a u c h y - S c h w a r z  I n e q u a l i t y :  

Proof. The  case of p = 1 and q = oc, or vice versa, is easy; we omit  the details. Assume 
tha t  p,q  E (1, oc). We may assume both  of the numbers  Ilfllp and Ilgllq are nonzero. 
(Why?)  Using homogeneity,  we may replace the functions f and g with the functions 
f ( ' ) / l l f l lp  and g(')/llgllq, respectively; hence we may assume Ilfllp = Ilgllq = 1 (explain). 
If If(w)l p = clg(w)lq for some constant  c, then  c = 1. By 12.20.a, we have I f(w)g(w)l  < 
l lf(w)l p _+_ 1 q - -  I g  " - -  p qlg(w) , wi th  equali ty if If(w) p ( w l  q Now integrate  to obta in  Ilfg 1 < 
!l lf l lp + 1  p qllg q -  1. 
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22.34. Suppose that 0 < a </3  < oo. Then: 

a. I nequa l i t i e s  for s equence  spaces .  Ilxllz < IIx]l~ for sequences x, and g~ C gZ. In 

par t icu lar ,  Ilxlloo _< II*ll~ _< Ilxlll and el ~ e2 ~ eoo. 
mnt~. Show that if I1*11<~ 5 1 then Ixjl -< 1 for all j ,  hence Ixjl ~ 5 I*ul 5 Ixul" 

if r > 1 _> s. Also, find some constant t such that the sequence f - ( l t ,2t ,3t , . . . )  
belongs to f~ and not to f~. 

b. I nequa l i t i e s  for p r o b a b i l i t y  spaces .  If # is a probability measure, then [[hll~ < 
[[hi[z and LZ(#,X) C_ L~(p,X).  In particular, ]lh[[1 _< llhil2 < ]]hi[ ~ and L ~ ( p , X )  C_ 
L2(p,X) C LI(p ,X) .  

Hints" Use 22.33 with f - I h l  ~, g - 1, p - / 3 / a ,  q - / 7 / ( / 3 -  a). Prove separately 
for 3 -  oc. 

Remark. For a more general result, see the remarks in 27.29. 

1 1 - -  rain{p, q} 22.35. C l a r k s o n ' s  I n e q u a l i t y .  Let p, q E (1, +oc) with ~ + q - 1, and let c~ 

and/3 = max{p, q}. Then for any measurable scalar-valued functions f and g, 

IIf + gll~ + I I f -  gll~ _ 2 (llfll~ + Ilgll~) ~/~. 
Note. There are several other inequalities also known as "Clarkson's Inequalities" and 
in fact, some of ' them will appear in the proof below but the inequality given above is 
the most important one for our applications in 22.41.a and thereafter. 

Proof. This proof follows the presentation of Weir [1974]. For most steps of this proof, 
we shall give inequalities only for p > 2 > q; the reversed inequalities are then valid when 
p<2<_q.  

It follows from 10.35 that 

If(co) + g(,o)l p + If(co) - 9(,o)1" _< 2 (If(co)l q + [g(co)]q) plq if p_> 2_>q, 

with inequality reversed if p 5 2 _< q. Now integrate; this yields 

llf + gii~ + IIf - gnl~ ~ 2  S~ ( Is("~ + ig("o)l~) 
P/q 

d,(~),  

still assuming p > 2 _> q, and we have the reverse of this inequality if p _< 2 _< q. 
For any nonnegative scalar-valued measurable functions F and G, we have 

[i~ (F(o2) -}-G(w)) p/q d#(w)] q/p ~- [fgt F(.)P/q d#] q/p + [fgtG(.)P/q d#] q/P 
if p _> 2 _> q (by Minkowski's Inequality), or the reverse of this inequality if p _< 2 _< q (by 
the Reverse Minkowski Inequality). Raise both sides of this inequality to the power ~, and 
then multiply by 2; thus 

2 la (F(w) + C(w)) p/q dp(w) <_ 2 F(.) p/q dp + C(.) p/q dp 
P/q 
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(or the reverse of this inequality). Apply this result with F(w) = If(a~)[q and G(w) = Ig(~)l q, 
and simplify the right side. We obtain 

2 L (]f(w)lq + Ig(w)[q)P/q dp(a;)< 2(][f11 q + [[g[]q)P/q 

if p _> 2 _> q, or the reverse of this inequality if p <_ 2 _< q. 
Combine the conclusions of the last two paragraphs.  We have established that  

q~P/q if p > 2 > q, [If + gllPp + IIf - gll p < 2 (1/]]q + [[gllp, p _ _  n _ _  

I I /+ gll~ + f - gll~ >- 2( Ill q + Igllq) pIN ifp _< 2 _< q. 
Substi tut ing f = u + v and g = u -  v and then rearranging a bit yields 

2 ([[U p -~-[[vIIP) q/p ~ [U + vliqp + l i u -  vii q if p _> 2 _> q, 

2 ([lU I p -Jr" IIVI[ p) N/p ~ U + vii q + u n vllq if p <__ 2 <__ q. 

The first and last of these four inequalities give us the result s tated in the theorem. 

22.36.  Definition. Let [a, b] be some interval in R equipped with its a-algebra of Lebesgue- 
measurable sets, and let X and Y be Banach spaces equipped with their a-algebras of Borel 
sets. Let G be an open subset of X. Let f : [a, b] • G ~ Y be jointly measurable, and 
suppose f takes separable sets to separable sets. Also assume that  for each fixed x0 E G, 
the mapping f( . ,  x0) :  [a, b] ~ Y is integrable. We shall say that  f is 

i n t e g r a b l y  L i p s c h i t z  if there exists a function A �9 Ll[a, b] such that  [[f(t, x l ) -  
f ( t ,  x2)ll <_ A ( t ) l l x l -  x2ll for all t �9 [a,b] and X l , X  2 �9 (~; or 

i n t e g r a b l y  loca l ly  L i p s c h i t z  if for each compact K C G there exists a function 
AK e Ll[a,b] with IIf(t, x l ) -  f ( t ,  x2) l <_ AK( t ) I lX l -  x211 for all t e [a,b] and 
Xl,X2 C K.  

Proposition. Let f "  [a, b] x G ~ Y be integrably locally Lipschitz, as above. Then for each 
compact set K c_ G there exist an open set H with K C_ H c_ G and a function ~ E L 1 [a, b] 
with this property: Whenever u, v" [a, b] ~ H are continuous functions, then 

Iif(t, u(t)) - f ( t ,  v(t)) <__ ~(t)ilu(t ) - v(t)I I 

for almost all t E [a, hi. (This result will be used in 30.9.) 

Proof. Note that  any continuous function defined on [a, b] is measurable and has compact 
range. It suffices to apply 21.44 with Z -  G • G, ~ t -  [a, b], and 

I]f(t, Xl )  -- f ( t ,  X2) when Xl ~ X2 
r ( t ,  (x, y)) - Xl -- X2[[ 

0 when Xl - x2. 

(A more complicated but more general argument of this sort by Schechter [1981] dealt with 
not only Lipschitzness, but also uniform continuity.) 
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S T R I C T  C O N V E X I T Y  A N D  U N I F O R M  C O N V E X I T Y  

22.37 .  Observation. Any norm is a convex function. 

22 .38 .  Definitions. Let (X, II II) be a normed linear space. We say X (or its norm) is 

s t r i c t l y  c o n v e x  if, whenever IIxll : Ilyll : 1 and IIx + Yll = 2, then x = y; 

l o c a l l y  u n i f o r m l y  c o n v e x  if, whenever Ilxll : 1 and (Yn) is a sequence with 
Iiyni] = 1 and Iix + yni] ~ 2, then ]i x -  Yni] ~ 0; 

uniformly convex if, whenever (Xn) and (Yn)are sequences satisfying IIx~[[ = 
Ily~ll- 1 and IIxn + y~ll-~ 2, then IIx~ - Yni] ~ O. 

Clearly, X is uniformly convex =~ X is locally uniformly convex =~ X is strictly convex. 
We remark  tha t  strict, locally uniform, and uniform convexity are not topological prop- 

erties. If we replace a norm with an equivalent norm i.e., one tha t  y ie lds  the same 
topology then the convexity propert ies  described above are not necessarily preserved; 
tha t  will be clear from examples in 22.41. Nevertheless, uniform convexity of a norm does 
imply certain topological properties; see 28.46. 

22 .39 .  Reformulations of the definition of strict convexity. Let (X, II II) be a normed 
space, and let S be the unit  sphere i.e., let S = {x E X : Iixll = 1}. Then the following 
condit ions are equivalent. If any (hence all) of them is satisfied, then the normed space 

(x,  II 
(A) 

(B) 
(C) 

(D) 

(E) 

(F) 

(G) 

(H) 

(I) 

II) is strictly convex. 

If II u + vii = IluiI + Ilvi], then u, v, and 0 lie on one straight line. 

Any straight line intersects S in at most  two points. 

Any convex subset of S contains at most  one point. 

If C is a nonempty  convex subset of X and u c X,  then at most  one point of C 
is closest to u. Tha t  is, at most  one point c E C satisfies IIu - e l l  = dist(u,  C). 

Any convex subset of X contains at most one point of min imum norm. (Com- 
pare with 28.41(F).) 

If Ilull = 1 for all u in some line segment [x, y] (with nota t ion  as in 12.5.i), 
then x = y. 

If x, y, z are distinct points satisfying Ilxll = Ilyll = Ilzll, then x, y, z are not 
all on one straight line. 

If x and y are points in X satisfying IixII - IiyiI II 1 1 ~x + ~ylI, then x - 
y. (This condition is easily seen t o  be equivalent to the definition of strict 
convexity given in 22.38.) 

II II is a strictly convex function (as defined in 12.17.c) on each straight  line 
tha t  does not pass through 0. In other  words, if u and v are points satisfying 
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IIA~ § (1 - A)vll = AII~II § (1 - A)llvll for at  least  one A E (0, 1), t hen  u, v, and  
0 are all on one s t ra igh t  line. 

Proof of (A) ~ (B). Suppose  t h a t  x, y, z are th ree  d is t inct  points  on one s t ra igh t  line, 

wi th  II~ll = Ilyll = Ilzll. By re label ing  we may  as sume  t h a t  z lies be tween  x and  y; thus  
z = Am + (1 - A)y for some A E (0, 1). Let u = Am and v = (1 - A)y. T h e n  

I I~+vl l  = I1~11 = ~11~11+(1-~)11~11 - II~ll+ltvll .  

Apply  (A); this  tells us t h a t  the  line t h r o u g h  x and  y passes t h r o u g h  0; it also passes 
t h r o u g h  z. This  leads to a cont rad ic t ion .  

Proof of ( B ) ~  (C). Trivial.  

Proof of (C) =~ (D). By t r ans l a t i on  (i.e., rep lac ing  C wi th  C -  u), we may  assume  u = 0. 
We may  as sume  dist(0,  C) > 0 (explain) .  By h o m o t h e t y  (i.e., rep lac ing  C wi th  kC for a 
su i tab le  posi t ive n u m b e r  k), we may  assume  dist(0,  C) = 1. T h e n  {c E C :  licit = 1} = {~ c 
c :  I1~11 _< 1} is ~ convex subset  of S, so it conta ins  at  mos t  one point .  

Proof of ( D ) ~  ( E ) ~  (F). Obvious.  

Proof of (F) =~ (G). Assume  t h a t  x ,y , z  are all on one line. We may  as sume  t h a t  

IIzII = Ilyll = Ilzll = 1. One of these  points  is be tween  the  o ther  two; by re label ing  we may  
assume  z is be tween  x and  y. We have I1~11 <__ 1 for all u E [x, y], by convexi ty  of II II. If 
IlUlll < 1 for some t t  1 E [g, y], t hen  z lies be tween  t t  1 and  x or be tween  t t  1 and  y, h e n c e  

Ilzll < 1 by convexi ty  of II II. 

Proof of (G)~ (H). Trivial.  

Proof of (H) =~ (I). The  funct ion  t H c(t) : Iltu + (1 - t)vll is convex. By 12.17.c, if 

IIc(A)ll = Arl~l l+(1-~)l lvPI  for at  least  one A E (0, 1), t hen  in fact IIc(~)ll = ~ l l ~ l l + ( 1 - ~ ) l l v l t  
for every A C (0, 1). We m a y  assume  t h a t  u and  v are bo th  nonzero.  Choose  A c (0, 1) to 

sat isfy AII~,II = (1 - ~)llvll; t hen  let x = Au and  y = (1 - A)v. T h e n  apply  (H). 

Proof of (I) ~ (A). U s e A = l / 2 .  

22 .40 .  Reformulations of the definition of uniform convexity. Let (X, II 
space. T h e n  the  following condi t ions  are equivalent .  

(A) 

(B) 

(c) 

(D) 

II) be a n o r m e d  

X is uniformly convex, as defined in 22.38. T h a t  is, whenever  (x,,) and  (y~) 

are sequences  wi th  I1~,11 = Ily~ll = 1 and  I1~ + y~ll--+ 2, t hen  I 1 ~ -  y~IP--+ 0. 

Whenever (u~) and (v~)are sequences with II~ll, IIv~lr-~ 1 and I1~ + v~rl---+ 
2, th~n II~,, - v~II + o. 

W h e n e v e r  (p~) is a sequence  wi th  ]]p~]] --+ 1 and lim~,~__+~ ]]p~ + p~]] --+ 2, 
t hen  (p,~) is Cauchy. 

For each c > 0, the re  exists  some 6 - 6(c) > 0 such t h a t  Ilull, Ilvll < 1 and  
1 
5 u + vii > 1 - 6 imply  u - vii _< c. 
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In condition (D), the largest ~i that  will work is clearly 

5(e) - i n f { 1 -  u + v  
2 �9 Ilull, Ilvll ~ 1 and l u -  vii _> e } .  

This formula defines an increasing function ~ �9 (0,2) ~ (0, 1), called the m o d u l u s  of  
c o n v e x i t y  of the space. By obvious substitutions, we obtain the following inequality, 
which may be more convenient in some applications: 

l ip-  xll, ffp- yll -< [Ix- yll -> I x+y P 2 _< (1 - ~(E))r. 

rants for the equivalence proof: For (C) =~ (B), let (Pn) be the sequence (Ul, Vl, u2, v2, . . . ) .  
Fo r (A)  =~ ( D ) , l e t x n - U n /  Unll a n d y ~ - - V n /  Vn �9 

22.41.  Examples. 
a. Let 1 < p < oc. When I l f l l -  Ilgll = 1, then Clarkson's Inequality (proved in 22.35) 

1//3. 
yields modulus of convexity less than or equal to the function ~(c) - 1 - [ 1  - (~)/3] 

thus LP(#) is uniformly convex. 
Optional remarks. When p > 2 > q then this estimate is the best possible, and 

so the function 5 defined above (with /3 = p) is actually equal to the modulus of 
convexity of LP(#); this is shown by Hanner [1955]. However, when p < 2 < q, then 
the estimate can be improved slightly; Hanner shows that  the modulus of convexity 
5(~) is the slightly smaller function defined implicitly by the equation (1 - 5 + ~ + 
( 1 - 5 -  ~)P- -  2. 

b. In general, norms of type [[ I[1 are not strictly convex. For instance, when IR 2 is 
equipped with the norm [[(Xl,X2) 1 -[Xl[-~-[x2[ ,  then the unit sphere contains the 
line segment {(Xl,X2)'Xl,X2 ~_ 0, Xl + X2 -- 1}. 

c. In general, norms of type I[ ][~ are not strictly convex. For instance, when R 2 is 
equipped with the norm [[(Xl,X2)[[~ - max{[xl[, ]x2[}, then the unit sphere contains 
the line segment { ( x l , x 2 ) ' X l  - 1 and - 1 _< x2 _< 1}. 

d. (A renorming example due to Clarkson.) Let Y be the scalar field, and let C[0, 1] - 
{continuous functions from [0, 1] into F}. Let ( t n ' n  - 1, 2, 3 , . . . )  be a dense sequence 
in (0,1) - - e .g . ,  the rationals in (0,1) or the dyadic rationals. For continuous f ' [ 0 ,  1] 
F, let 

[ ~ 1 1/2 
Ilfllc - IIf 2 + Z 4-nlf(tn)12 ." 

n = l  

Show that  [I IIc is a strictly convex norm on C[0, 1] that  is equivalent to I1~. Hint" 
Use the strict convexity of g2. 

e. (Lovaglia's example.) Show that  Clarkson's norm I IIc, given in 22.41.d, is not locally 
uniformly convex, by letting x(t) be the constant (3//4) 1/2 and y n ( t ) -  x(t)min{1,  nt}. 
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22 .42 .  If X is a uniformly convex normed space, then the complet ion of X is also uniformly 
convex; it has the same modulus  of convexity. 

(Optional.) The complet ion of a strictly convex space need not be strictly convex, 
as the following example shows. For sequences of scalars y = (Y0, Yl, Y2,. . . ) ,  let IlYll = 

Y01 + V/}--~.~-i 4-J  lYj 2. Let Y be the set of all sequences for which yll < oc. Let X be the 

subspace consisting of those sequences y tha t  also satisfy l i m j ~  yj - 0. Show tha t  

a. (Y, II I I) is a Banach space, and X is a dense linear subspace. 

b. X is str ict ly convex. Hint: Use the fact tha t  f2 is complete and strictly convex. 

c. Y is not strictly convex. Hint: 22.41.b. 

2 2 . 4 3 .  
The  II 

C l a r k s o n ' s  R e n o r m i n g  T h e o r e m .  Let (X,  el 
II is equivalent to a strictly convex norm. 

II) be a separable normed space. 

Proof. This short  proof is from Riley [1981]. Let F be the scalar field. Let (z~) be a 
sequence in X with the proper ty  tha t  every point in X is a limit of some subsequence of 
(zn) (see 15.13.g). For n = 1, 2, 3 , . . . ,  let 

- - inf e ly -  Ax~ll. f~(y)  dist(y, Fxn) ~ "  

Define 7(Y) - I ly l l  + }-~n~_-i 2-nfn(Y)  �9 Then show 

a. Each f~ is a seminorm on X,  with fn(.)  _< II" II. 

b. "y is a norm on X tha t  is equivalent to II II. 

c. Now let y and z be nonzero vectors in X,  with -y(y + z) = "y(y) + ~/(z). It suffices to 
show tha t  y = tz  for some t > 0. Show, first of all, tha t  dly + zll - Plyll + Ilzll, and 
f n ( y  + z) = fn (y )  + f~(z )  for all n. 

d. Since (x~) is dense in X,  there is some subsequence (x~(j)) tha t  is II II-c~ ent to 
y + z. Tha t  is, Ily + z - x~(j)II ~ o as j ~ oc. Hence f~( j ) (y  + z) ~ O, and therefore 
f~(j) (y) ---, O. Thus there exist scalars Aj with I l y -  ~jx~(j)ll--+ o. 

e. We consider two cases now: First,  suppose the sequence (Aj) is unbounded.  Replacing 
it with a subsequence (explain), we may assume tha t  1/Aj ---, O. Using the joint 
continuity of mult ipl icat ion (noted in 22.7), show tha t  IIx~(j)II ~ 0, hence Ily + zll - 0, 
hence y = z = 0, a contradict ion.  

f. Thus, the sequence (Aj) is bounded.  Replacing it with a subsequence (explain), we 
may assume tha t  (Aj) converges to some finite scalar ~. In tha t  case, again using the 
joint continuity of mult ipl ication,  show y = A(y + z); hence ~ r 0. 

g. Similarly, z = p(y  + z) for some nonzero scalar p, so y = tz for some nonzero scalar t. 

h. Since also IlY + zll = Ilyll + Ilzld, show tha t  I1 + t I = 1 + Itl, and therefore t > 0. 

22 .44 .  Remarks.  The theorem above was originally proved for norms by Clarkson. The 
proof given above can also be applied to F-norms,  if in terpreted appropriately.  

Still more is true, at least for norms. We have in fact 
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K a d e c ' s  R e n o r m i n g  T h e o r e m .  Every separable normed space has an equiv- 
alent norm that  is locally uniformly convex. 

The proof of Kadec's  theorem is longer and deeper, and will not be given here. 
Some other, related results: Any separable normed space has an equivalent norm that  

makes both X and its dual strictly convex (Klee, 1959). If both X and its dual are separable 
(Kadec, Klee, Asplund) or if X is reflexive (Troyanski), then X has an equivalent norm 
that  makes both X and its dual locally uniformly convex. For further, related reading and 
references, see Diestel [1975], Istrh~escu [1984], and Lindenstrauss [1988]. 

2 2 . 4 5 .  T h e o r e m  o n  c loses t  p o i n t s .  Let Q be a convex subset of a Banach space X .  
Assume either 

(i) X is strictly convex and Q is compact,  or 

(ii) X is uniformly convex and Q is closed. 

Then for each point x c X there is a unique point 7r(x) E Q that  is closest to x i.e., that  
satisfies I]x - 7r(x)l I = dist(x, Q). Furthermore,  this function 7r: X ~ Q is continuous. It is 
called the c loses t  p o i n t  p r o j e c t i o n  onto Q. 

Proof. Uniqueness follows from 22.39(D). 
For any x c X,  there exists a sequence (qn) in Q that  satisfies IIx- qnll ~ dist(x, Q); 

any such sequence will be called a minimizing sequence for  x in this proof. Note that  any 
subsequence of a minimizing sequence is a minimizing sequence. To prove the existence of 
7r(x) it suffices to show that  

(!) any minimizing sequence for x has a convergent subsequence. 

Tha t  is easy in case (i), since any sequence in a compact metric space has a convergent 
subsequence. The proof of (!) will take slightly longer for case (ii). Let (q~) be a minimizing 
sequence, and let r = dist(x, Q). The result is trivial if r = 0; we shall assume r > 0. By 
rescaling, we may assume r = 1. Thus I I x -  qmll ~ 1 and II x -q~ l l - -*  1 as m, n ~ oc. On 

l(qrn + q~)II > dist(x Q) - 1 1 (qm + qn) E Q since Q is convex; thus x -  ~ the other hand, ~ , �9 
Therefore ] ] ( x -  q m ) +  ( x -  qn)]] ~ 2. By 22.40(C) the sequence (q~) i s  Cauchy. This 
completes the proof of (!). Thus 7r is defined everywhere on X. 

To show 7r is continuous, suppose (x~) is a sequence converging in X to some limit 
x ~ ;  we must show that  7r(xn) converges to 7r(x~). Suppose not. Replacing (x~) with a 
subsequence, we may assume iITr(xn)- 7r(xoo)II > ~ for some constant ~ > 0. We know 
that  dist(xn, Q) ~ dist(xoo, Q) by 4.41.b; hence (Tr(xn)) is a minimizing sequence for xoo. 
Replacing (x~) with a subsequence, by (!) we know that  (Tr(x~)) converges to some limit 
q E Q. Then IIq-7r(xoo)ll >- ~ > 0, so q =fi 7r(xoo). Thus, q is not the member  of Q closest to 
x ~ ,  so I Iq-  x~ll > dist(xoo, Q). Hence I Iq-  x~ll > r > dist(xoo, Q) for some real number 
r. Then for all n sufficiently large we have II~(x~) - x~ll > r > dist(x~, Q), a contradiction. 
Thus 7r is continuous. 
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HILBERT SPACES 

22.46.  Definition. Let X be a linear space over IF. An i n n e r  p r o d u c t  on X is a mapping 
{, } : X x X ~ I F t h a t s a t i s f i e s :  

<.,y} : X ~ I F i s l i n e a r ,  f o r e a c h y E X  (linear in first component) 

x ~: 0 =~ (x, x) > 0 (positive-definiteness) 

(x, y} = (y, x}, (conjugate symmetry)  

where the bar denotes complex conjugation. The conjugate symmet ry  condition is some- 
times called "ant isymmetry."  If the scalar field F is R, then the complex conjugate of a 
scalar is equal to that  scalar, and so the conjugate symmetry  condition becomes 

{x, y} = <y, x}, (symmetry)  

and it also implies that  <, } is bilinear i.e., linear in each of its two arguments.  
An i n n e r  p r o d u c t  s p a c e  is a linear space equipped with an inner product.  As we shall 

see in an exercise below, if < , } is an inner product then Ix l =  (x, x}1/2 is a norm on X. 
An inner product space will always be understood to be equipped with this norm, unless 
some other arrangement  is specified. If the norm is complete, then the inner product space 
is called a H i l b e r t  space .  

22.47.  Examples. If (~2, 8 ,#)  is any measure space, then L2(#) is a Hilbert space, with 
inner product defined by 

(f  , g} - fn f (w)g(w) d#(w). 

The convergence of the integral is guaranteed by HSlder's inequality. If the scalar field is 
R, then the bar over the g(j) may be omitted.  We note some important  special cases. 

a. Let (ft, g ,#)  be some set 5 equipped with counting measure. Then we obtain the 
normed space g2(5) introduced in 22.25. It has inner product 

{f , g} = ~ f (J)g(J). 
jc2  

In 22.56 we shall prove tha t  every Hilbert space can be expressed in this form i.e., 
every Hilbert space is isomorphic to some g2(5). However, other representations of 
Hilbert spaces are often useful. 

b. When 5 is a finite set containing n elements, we find that  IFn is a Hilbert space when 
equipped with the inner product  

<x,y}  = X l Y l  + x2Y-2 + "'" + X n Y n .  

If the scalar field is R, then the bar over the yj's may be omitted.  In N ~, the inner 
product  is also known as the d o t  p r o d u c t ;  it is used in analytic geometry to give 
algebraic formulas for much of Euclidean geometry. 



602 Chapter 22: Norms 

22.48 .  Some elementary properties. Let ( , } be an inner product  on some vector space, 
and let J x - (x, x}1/2. (We do not yet assert tha t  II II is a norm; tha t  fact is shown below.) 
Show tha t  

a. II x + yll ~ - I l x l l :  + 2 R e ( x , y / +  flYll :. 
(Hence Re(x, y) is uniquely determined by ]] II. It follows easily tha t  (x, y} is 

uniquely determined by II II.) 

b. S c h w a r z  I n e q u a l i t y .  I<x,y}l < ]Ix YlI. 
Hint" Subst i tu te  c -  (x, Y}/IlY 2, and use 0 <_ I Ix -  cy 2. 

c. ]] is a norm on X.  

d. The mapping  (x, y) H (x, y) is a continuous map from X x X (with the product  
topology) into F. 

e. P a r a l l e l o g r a m  E q u a t i o n .  IIx + y 2 + ii x _ yl12 _ 21]x112 + 211y 2. 
Remark. Clarkson's  Inequali ty may be viewed as a generalization of the Parallelo- 

gram Equation.  Clarkson's  Inequali ty tells us that  lip norms, for 1 < p < oc, are 
"almost as good as" the norms of inner product  spaces. 

f. Any inner product  space is uniformly convex. 

22 .49 .  
the Paral le logram Equality. T h e n ]  
determined by II II. 

1 2 (i) If F - IR, then ~ [llx + Yll 

1 2 (ii) I f F - C ,  then ~ [ l l x + y l l  

Hint" 22.48.a. 

Converse results (optional). Let (X, II [I) be a normed space whose norm satisfies 
II arises from an inner product  ( , }, which is uniquely 

- x - yll :] - <x, y>. 

- I t x -  yll ~ + illx + iyll ~ - i l l x -  iyll :] - ix ,  y >  

22.50 .  Let X be a linear space, and let ( ,  } be an inner product  on X.  In this context,  we 
say tha t  two elements x, y E X are o r t h o g o n a l  to each other, denoted x _1_ y, if (x, y} - 0. 
For any set S c_ X,  the o r t h o g o n a l  c o m p l e m e n t  of S is the set 

S • { x E X  �9 x _ l _ s f o r a l l s E S } .  

This definition is a special case of 4.12, with 

r = { ( x , y )  x • y} = { ( x ,  y)  <x, y> - 0 } ,  

and so the conclusions of 4.12 are applicable. The mapping  S H S •177 is then a Moore 
closure on X.  (That  closure is characterized further in 22.52.) 

22 .51 .  T h e o r e m  on  c lo ses t  p o i n t s .  Let C be a nonempty  closed convex subset 6'f a 
Hilbert  space X.  Then  for each u E X,  there is a among the members  of C a unique point 
7r(u) tha t  is closest to u. It can be characterized as follows: It is the only point ~ E C tha t  
satisfies 

R e ( u - ~ , x - ~ )  _< 0 for a l l x E C .  



Hilbert Spaces 603 

(In terms of Euclidean geometry, this inequality says that  the directed line segment from ~c 
to u and the directed line segment from ~ to x are separated by an o b t u s e  a n g l e  i.e., 
an angle greater than a right angle.) The mapping 7r" X ~ C is also nonexpansive i.e., 
it satisfies (Tr}Lip _< 1. 

If C is a closed linear subspace of X,  then 7r(u) can also be characterized as follows: It 
is the unique point ~ �9 C that  satisfies u -  ~ �9 C • 

Proof. Let C be closed, convex, and nonempty, and let u �9 X. It follows from 22.45 that  
there is a closest point and that  it is unique. 

Now let ~ be a point in C. Then 

is the point in C that  is closest to u 

~' :- II~ c - u  < II x - u l  for a l l x � 9  

"', ',- I 1 ~ -  ~ < I I ~  + (1 - A ) ~ -  u I for all x �9 C \ {~} and A �9 (0, 1] 

~: :- I1~ - ~ 2 < (~ _ ~ )  + a ( x  - ~)ll  2 for all x �9 C \ {~} and A �9 (0, 1] 

for a l l x � 9 1 4 9  

,: :. 0 < 2 a a ~ ( ~  - ~ ,  �9 - ~ )  + a ~ l l x  - ~ll  ~ 

for a l l x E C \ { ~ }  a n d A � 9  (0,1] 

0 < 2 R e ( ~ - u , x - ( } + A  x - (  9 for a l l x � 9  a n d A � 9  (0,1] 

0 _ < R e ( ( - u , x - ( )  for a l l x � 9  

0 _ < R e ( ~ - u , x - ( )  for a l l x � 9  

This proves the first characterization. 
Thus 0 _< Re(Tr (u ) -  u , x -  7r(u)} for all u �9 X and x �9 C. Apply that  result with 

x - rr(v) to obtain 0 < Re(re(u) - u, rr(v) - rr(u)) for any u, v E X. Reversing the roles of u 
and v yields 0 < Re( re (v ) -  v, r r ( u ) -  re(v)). Combine that  inequality with (1) and rearrange 
the results to obtain 

_< (~ - ~,  ~ ( ~ )  - ~ ( ~ ) ) l  _< ~ - ~ l l  ~ ( ~ )  - ~ ( ~ ) l l  

and therefore r r ( v ) -  rr(u)]] < ] i v -  u]l. Thus rr is nonexpansive. 
Now suppose C is a linear subspace of X, and ~c E C. Then as x varies over all members 

of C, x - ~c also varies over all members of C. Hence 

<----> 

is the point in C that  is closest to u 

0 < R e ( ~ - u , x - ~ }  for a l l x c C  

0 < R e ( ( - u , y }  for a l l y E C  

0 < R e ( ~ -  u, ry} for all y E C and all scalars c 

0 - ( ~ - u , y )  for a l l y E C  

~-uEC'. 
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22.52.  T h e o r e m  on  o r t h o g o n a l  c o m p l e m e n t s .  Let X be a Hilbert space and S c_ X. 
Then S •177 is the closed linear span of S. Thus S is an orthogonal complement if and only 
if S is a closed linear subspace of X. 

Furthermore,  if S, T C_ X with S • - T and T • - S, then S and T form an internal 
direct sum decomposition of X; tha t  is, S + T - X and S N T - {0}. The projections of X 
onto S and T are the c loses t  p o i n t  mappings; i.e., for any x C X the unique decomposition 

x -  s + t  w i t h s E S ,  t c T  

is given by s and t being the points in S and T that  are closest to x. These are continuous 
linear maps. 

Remark. Compare this theorem with 11.61. 

Proof of theorem. It is easy to see that  any orthogonal complement is a closed linear 
subspace of X. Let clsp(S) denote the closed linear span of S; then S •177 C clsp(S). We 
wish to show equality here. Suppose that  x E clsp(S) \ S •177 Since x ~ S •177 there is some 
y E S • such tha t  (x, Y/=/= O. Since y E S • we have 

(s,y) - 0  

for every s C S, hence (by the linearity of (., y}) also for every s E span(S),  hence (by the 
continuity of (., y)) also for every s E el(span(S)) = clsp(S). But this contradicts (x, y) r 0. 
Thus, we must have S •177 = clsp(S). 

Now suppose tha t  S • = T and T • = S. Let s be the point in S that  is closest to 
x. By 22.51, x - s  is a member  o f S  • = T. This shows tha t  x can be represented as 
the sum of an element of S and an element of T. Since S and T are linear subspaces of 
X and S N T = {0}, the representation is necessarily unique (see 8.13). Thus, in such a 
representation, the S component must be the member  of S closest to x. By symmetric  
reasoning, the T component must be the member  of T closest to x. 

22.53.  Remarks. The preceding theorem has a converse: If X is a normed space in which 
every closed linear subspace has an additive complement that  is also a closed linear subspace, 
then X is isomorphic to a Hilbert space. This was proved in Lindenstrauss and Tzafriri 
[1971]; the proof is too long to give here. 

22.54.  Definitions. Let X be a Hilbert space. An o r t h o n o r m a l  se t  in X is a set S C X 
with the property that  (s, t) - ~ist, where 5 is the Kronecker delta i.e., 

t} - ~ 0 i f s s ~ t  
' 1 i f s - t .  I 

Some easy observations. Suppose { e l , e 2 , . . .  ,en} is an orthonormal set. Then: 

a. II j I I -  1 for each j .  

b. If x -  r l e l  + r2e2 + - . - +  rne~ and y - S l e l  + s 2 e 2  + ' ' "  + 8nen for some scalars rj and 
8j, then (x, y) - r l~ -  -t- r2~- -31-''" -31- rnSn  and Ilxll - I r l l  2 -t-It2[ 2 -[-...  + 
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c. The  ej's are linearly independent  i.e., if t ie1 -+- r2e2 + . . . r ~ e , ,  - 0 then  r l  - r2 = 
. . . .  r n - O .  

d. If z - r lel  + r2e2 + . . .  + r~e~ and u C X,  then 

?z Tt  

I1 - �9 = I1 11 + co - -  j/I 
j = l  j = l  

Hence the member  of span{el ,  e 2 , . . . , e ~ }  tha t  is closest to u is the vector z -  r l e l  -k 
r2e2 + . . .  + r~e~ obta ined by taking rj  - (u, ej) for all j .  Its dis tance from u is 

dist(u,  s p a n { e l , e 2 , . . . , e n } ) -  Ilult 2 -  t(u, ej) 2. 
j = l  

e .  II?~[[ 2 > A_~j=I ]('Z, ej)[ 2 for any  u e X .  

22 .55 .  T h e o r e m .  Let X be a Hilbert  space, and let {ej �9 j C J} be an or thonormal  subset  
of X.  Then  the following conditions are equivalent. If one (hence all three) of t hem are 
satisfied, we say {cj " j  c J} is an o r t h o n o r m a l  b a s i s  for X.  

(A) {ej " j  ~ J} is a maximal  or thonormal  set 
not contained in any other  or thonormal  set. 

i.e., an or thonormal  set tha t  is 

(B) The  span of {e d " j  E ~} is dense in X.  

(C) P a r s e v a l ' s  I d e n t i t y .  [lull 2 - }--~jEJ I( u, eJ}l 2 for every u E X. 

Remark. By Zorn's  Lemma,  any or thonormal  set can be extended to a max imal  o r thonormal  
set. However, some Hilbert  spaces have na tura l  o r thonormal  bases tha t  can be cons t ruc ted  
wi thout  the Axiom of Choice. For instance, the space ~f2 has o r thonormal  basis consisting 
of the vectors (1,sc2,~%,..., where ~.j - ( 0 , 0 , . . . , 0 ,  1 , 0 , . . . )  has a 1 in the j t h  place and 0s 
elsewhere. 

Proof of (A) => (B). Suppose the span of {ej} is not dense. Then  the closed span of {ej} 
which we shall denote by Y - -  is not equal to X. Let u c X \ Y. Let y be the point in Y 

tha t  is closest to u. Then z - y - u is nonzero, and z is or thogonal  to all of Y hence to 
all or {e3}. Let ( - z /  zll. Then  {ej " j  e J} u {~} is an or thonormal  set; thus {e3 " j  ~ J} 
is not maximal .  

Proof of (B) ~ (C). Let any u E X and e > 0 be given. Since the span of the ej 's  is dense 
in X,  there is some finite set J0 C_ g such tha t  some vector x in the span of {ej " j  E J0} 
satisfies [ z -  u < c. Thlts, by 22.54.d we obta in  

T h a t  is, lul 2 . e  2 _ < E j ~ . l o l (  u ,e j ) l  2-< [u l  2 Now l e t e l 0 a s  J0 increases .  
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Proof of (C) =~ (A). Suppose {ej : j E 5} satisfies (B), but is not maximal.  Then there is 
some ~ E X such that  {ej : j E 5} U {~} is orthonormal.  Then = 1 and {~, ej} = 0 for all 
j ,  but from (C) we obtain I 12 - Ej s  j>l 2, ~ contradiction. 

22.56.  T h e o r e m .  Every Hilbert space is isomorphic to some g2(5). More specifically: 
Let {ej : j E J} be an orthonormal basis of a Hilbert space X,  with scalar field F. For 

each x E X, define a mapping px : J  ~ F by ~x(j) = {x, ej). Then the mapping ~ax is 
a member  of g2(J) (defined in 22.25). Furthermore,  the mapping (I): X --~ g2(J) given by 
x H ~x is an isomorphism i.e., it is a bijection that  preserves all relevant structures. It 
is linear and norm-preserving, and it even preserves the inner product: 

]lxi]2 - E i ~ x ( j ) ] 2 '  {x,y/  = EPx(J )PY(J )"  
jE5 jE5 

It maps members of the orthonormal basis of X to corresponding members of the usual 
or thonormal  basis of g2(J) that  is, it maps ej to the function ~j : 5  --~ F, which is the 
characteristic function of the singleton {j}. 

Hints: The map (I) is norm-preserving by Parseval 's Identi ty (22.55(C)). It is obviously 
linear. It maps the span of the ej's to the simple functions i.e., the functions f :5  ~ F, 
which vanish outside a finite set. 



Chapter 23 

Normed Operators 

NORMS OF OPERATORS 

23.1 .  
map. Show that the following conditions are equivalent: 

(A) f is continuous. 

(B) f is uniformly continuous. 

(C) f is Lipschitzian; i.e., the Lipschitz constant 

(D) 

(E) 
(~) 

( r  

(u)  

(I) 

Let (X, I IIx) and (Y, II ty) be normed vector spaces. Let f "  X ~ Y be a linear 

]]]f l - s u p {  ]If(x)'7 f (x ' ) l ly  x' x ' }  

is finite. 

f is a b o u n d e d  l inear  o p e r a t o r  i.e., whenever S C_ X is a bounded set, 
then f ( S )  c_ Y is also a bounded set. (A generalization of this terminology 
will be given in 27.4.) 

The number I I l l - s u p { l l f ( x ) l l Y / l l x l l x  �9 x E x \ {0}} is finite. 

The number i /111- sup {1If(x) g " x E x ,  IlxlIx - 1} is finite. 

The number  I f I - s u p  {ll/(x) g " x ~ X ,  x l l x  _< 1} is finite. 

If (xn) is a sequence in X with z~llx ~ 0, then I I f ( x ~ ) l l r  ~ o. 

If (u~) is a sequence in X with ~ l l x  ~ 0, then sup~ II/(u~)llY < o~. 

Moreover, if these conditions are satisfied, then all the numbers I IIf I defined above are 
equal to each other. 

Hint for 23.1(I) =~ 23.1(H)- Let un - x ~ / v ~ l l x ~ l l x .  

Further notations. The set of all bounded linear operators from X into Y is a linear subspace 
of y X  _ {maps from X into Y}, which we shall often denote by B L ( X ,  Y) .  It is a normed 
space, with illf I (  defined as above) for the norm of f. A norm obtained in this fashion 
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is the o p e r a t o r  n o r m  determined by II Ilx and II IIg. A bounded linear operator will 
generally be given this norm, unless some other norm is specified. In most of the li terature 
the operator  norm is denoted by II II, but in this textbook we shall frequently denote it 
by llL IIIto aid the beginner in distinguishing this norm from the "lower-level" norms of X 
and Y. 

23.2 �9 Exercises and examples. 
a. If f �9 X ~ Y and g"  Y ~ Z are bounded linear maps, then the composition g o f �9 

X ~ Z is also a bounded linear map, with IIIg o fill -< IIIflll IIIglll- Also, the identity 
map ix  �9 X ~ X has operator norm equal to 1. Thus, we could take the bounded 
linear maps as the morphisms of a category, with normed linear spaces for the objects. 

b. Let A be a set, and let B(A)  - {bounded functions from A into R}; then B(A)  is 
a Banach space when equipped with the sup norm. Let T "  B(A)  ~ R be a positive 
linear map i.e., assume f > 0 ~ T( f )  > O. Then T is also a bounded linear 
map; in fact, IIITIII < IT(1)I. In particular, any Banach limit (defined as in 12.33) is a 
bounded linear operator. 

Similarly, if A is a topological space, then BC(A)  - {bounded continuous functions 
from A into R} is a Banach space when equipped with the sup norm, and any positive 
linear map from BC(A)  into R is a bounded linear map. 

c. The definitions of the vector space BL(X,  Y) and its operator norm III !11 depend on 
the norms II IIx and II IIY of the spaces X and Y. Show that  if II IIx and II IIz 
are replaced with equivalent norms I I1~: and II I1~, then the vector space BL(X,  Y) 
remains the same, and its norm III III is replaced with an equivalent norm III II1'. See 
also the related result in 23.29(iv). 

If Y is complete, then the normed space BL(X,  Y) is complete - -  regardless of whether 
X is complete. 

In particular, BL(X,F)  is complete, since the only scalar fields F that  we are 
considering for normed spaces in this book are R and C, both of which are complete. 

e. E l e m e n t a r y  E x t e n s i o n  T h e o r e m .  Let X0 be a dense linear subspace of a normed 
space X; let X0 be normed with the restriction of the norm of X. Let Y be a Banach 
space. If f0 " X0 ~ Y is a continuous linear map, then f0 extends uniquely to a 
continuous linear map f �9 X ~ Y. Furthermore, f0 and f have the same operator 
norm. 

Proof. This is a special case of 19.27. (However, some readers may prefer to prove 
it directly.) 

d�9 

23.3.  E x a m p l e :  m a t r i x  n o r m s � 9  Let T be an m-by-n matrix, with scalar tid in row i, 
column j.  Consider elements x E F n as n-by-1 column vectors and elements y E F m as 
m-by-1 column vectors. Then T acts as a linear map from IF ~ into IF m, with y = Tx given as 

n usual by yi - Y~j=I tijxd (1 _< i _< m). The choice of the norms on lE TM and F n will affect the, 
value of the operator norm I IITIII. For most choices, the value of I IITIII is complicated and 
difficult to compute. But for the two following choices, the value of I IITIII is fairly simple. 

a. Let F m and F n both be normed by their respective II Ill-norms, as defined in 22.11. 
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Then 

-- max E ItiJl" IITIII l_<j_<rt 
i=1 

m~t~: L~t S:, = E~ [t,~l. Choos~ k ~o that  Sk = maxj Sj. To show that  I lIZlll _> & ,  
consider [IZ~ll/ll~li where z j -  6jk. 

b. Let F "  and F" both be normed by their respective II Iloo-norms, as defined in 22.11. 
Then 

7/ 

I Till -- max y ~  t,ot. l<i<rn j=l 
H/~t~ L~t & - E~ It,~l. Choose 1< so t h a t  S t  - max~ S~. To s h o w  t h a t  I IIZlll _> & ,  
consider IIZzll/llzll where zj = Iqkl/qk if tjk r O. 

c. (The following observations use results developed later in this chapter, so beginners 
may wish to postpone reading this paragraph.)  The similarity between the two results 
above is not just coincidental; either of those formulas can be obtained from the other 
as follows. The normed spaces (F TM, II II1) and (F TM, II I1~) are each other 's duals, 
as we shall see in 23.10. For any mapping T : X ~ Y, the dual map T* : Y* --* X* 
satisfies lilT*Ill = IIIZlll, by 23.20. In the case of an operator given by a matr ix  T, the 
dual operator T* is given by the transpose matrix. 

23.4. Example: t h e  n o r m  of  an  i n t e g r a l  t r a n s f o r m .  (This example requires some 
familiarity with advanced calculus.) Let F be the scalar field. Let [c~, fl] and [~/, 6] be two 
closed bounded intervals in R. Let C[c~, fl] and C['y, 6] be the linear spaces of all continuous 
functions from [c~, fl] into F, respectively from [7, 6] into F. 

Let k be a continuous function fl'om [a, fl] x [?, 6] into F. For each f c C[?, ~], let 

:l/):s) - ~ kts, t).l~,t)at ic~ ~_ s ~ ~). 

Using uniform continuity arguments,  show that  (T f)(-) : [c~, fl] + F is a continuous function; 
hence T is a linear map froth C['y, 6] into Clot, fl]. 

The choice of the norms on C[c~, fl] and C['y, 6] will affect the value of the operator norm 
I IIZll I. For the two choices given below, the value of I IIrlll is fairly simple to compute. (IBnt: 
Any continuous function can be approximated uniformly by step functions.) 

a. When C[ct, ?fl and C['7. O] are normed as subspaces of Lllc~,fl] and 1,1[-y,t~], show that  
T is a bounded linear map from C['y, 6] into C[a,  fl] with operator norm 

j ~  iilzlil - max Ik(s t ) l&.  -~_<t<~ 

b. When C[o,/3] aim C[?, 6] are normed as subspaces of L ~176 [a,/3] and L ~ ['7, f], show that  
T is a bounded linear :nap from C['7, f] into C[c~, fl] with operator norm 
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23.5�9 E x a m p l e :  q u o t i e n t  maps�9 Let (X, [[ IIx) be a normed space, and let V be a 
closed linear subspace. Let Q = X / V  be the quotient vector space, and let 7r : X ~ Q be 
the quotient map. Then: 

a. IlqllQ = inf {llxilx : 7r(x) = q} defines a norm on Q; it is called the q u o t i e n t  n o r m .  
The topology it determines is the same as the quotient topology (defined in 15.30). 
(This is a special case of a construction given in 22.13.e.) 

b. I]Tr(x)llQ = in f{ ] ]x+v[ Ix  : v E V }  = i n f { l l x - v l l x  : v E V }  = dis t (x ,V).  

e. The quotient map 7 r : X  ~ Q has operator norm equal to 1. 

23 .6  
a .  

�9 E x i s t e n c e  of  u n b o u n d e d  l i nea r  m a p s .  Let F be the scalar field (R or C). 

Explicit example with incomplete domain. Let C[0, 1] - {continuous functions from 
[0, 1] F}; this is a Banach space when equipped with the sup norm. Let C1[0, 1] - 
{f  E C[0, 1 ] ' f  has a continuous derivative}; this is a dense linear subspace of C[0, 1]. 
Equipped with the sup norm, C 1 [0, 1] is a normed vector space but not a Banach space. 
Define T"  C1[0, 1] ~ F by T ( f )  - f'(O). Show that  T is discontinuous. 

b. Nonconstructive example with arbitrary domain. Let X be any infinite-dimensional 
normed vector space, with scalar field IF. Then there exists an unbounded linear 
functional T on X that  is, a linear map from X into F that  is not bounded. 

Hints" Let {x~ �9 ~ E A} be a vector basis for X. By assumption, A is infinite; hence 
we may assume N C_ A. Define T ( X n ) -  nIixnll for each n E N; define T arbitrarily on 
the rest of the basis; then use l l.30.b. 

c. Remarks. There is no explicitly constructible example with complete domain; that  will 
follow from 27.45(ii). 

23.7.  Let F be the scalar field. As a special case of the normed space BL(X ,  Y) introduced 
in 23.1, we now consider the space 

X* = B L ( X ,  IF) - {bounded linear maps from X into IF }. 

It has norm 

[[f l lx* - sup{If (z) l  " x ~ x ,  IIxllx - 1}. 

(We emphasize that  this supremum is not necessarily a maximum; contrast that  with 
28.41(G).) Our notat ion X*,  used in the remainder of this chapter, reflects the ideas 
of 9.55; the set X* will be called the d u a l  of X. 

Caution: We remind the reader that  the symbol X* and the term "dual" have different 
meanings in different branches of mathematics;  a few of the meanings are indicated by 
the list in 9.55. Also, we remark that  X '  is another notation often used for the set of all 
bounded linear maps from X into F. In fact, the notat ion X p is probably used a little more 
widely in the literature than our own notation X*. We prefer the notation X* because (i) 
it ties in neatly with the other notions of "dual" discussed in 9.55, and (ii) the mark P on a 
blackboard can be mistaken for a smudge too easily. 

Preview of examples. In 23.10 we shall prove (co)* - gl, (g l )*  - e ~ ,  and ( e ~ ) *  D gl. In 
29.30 we prove that  (L~(S) )  * = ba(g,F) and ( L ~ ( p ) )  * - ba(p). In 28.50 and 28.51 we 
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1 1 _ 1 (though for p -  1 we must assume prove that  (LP(#)) * - Lq(#)  if 1 < p < oc and ~ + q  

# is a-finite). In Chapter  28 we generalize this notion of "dual" to topological vector spaces 
that  are not necessarily normable. 

23.8. Observation. Let X be any normed space. By 23.2.d, we know that  X* is complete 
(i.e., a Banach space), regardless of whether X is complete. 

23.9. In many cases we can prove that  a dual space X* is isomorphic to some simpler, 
more familiar normed space Y. In this context "isomorphic" means that  we must preserve 
the linear structure and the norm. Thus, to each y E Y there is associated some bounded 
linear map Ty : X --+ IF, satisfying IIITylIIX* = IlYlIY, and the mapping y ~ Ty must be a 
linear map from Y onto X*. Examples of such a duality are given below. 

Hints on how to prove such a representation: In most proofs of such a representation, it is 
trivial to show that  the mapping y H Ty is linear. 

The inequality IIITylllx, <_ IlYlIY means that  ITy(x)l <_ Ilxllx IlYtlY for all x E X and 
y E Y. Generally the proof of this inequality is straightforward e.g., it may follow 
immediately from some result such as Hhlder's inequality. 

The inequality ItITylllx, > IlY{IY means that  suPllxllx= 1 ITy(x)l >_ IlYlIY. This may be 
harder to verify, because, as we noted in 23.7, this supremum is not necessarily a maximum. 
(Conditions for it to be a maximum are considered in 28.41(G).) Instead, for each y c Y we 
must show that  there exist x~'s in X satisfying IIx~llx = 1 and lim sup~__~ ITy(x,~)l >_ IlYlIY. 
Finding these xn's may take some effort; their choice depends on the choice of y. 

Finally, showing that  the mapping y H Ty is surjective may be a nontrivial matter.  
Following is one technique that  works in several contexts: Let X0 be a dense subset of X 
consisting of particularly nice elements (e.g., the polynomials are dense in certain spaces of 
continuous functions; the finitely valued functions are dense in certain spaces of measurable 
functions). Let f be any given element of X*. Study how f acts on each member of X0; 
use that  information to find a corresponding y E Y such that  f = Ty on X0. Since f and 
T~ are continuous maps agreeing on a dense set, they must agree everywhere on X. 

23.10.  Exercises/examples.  For sequences of scalars x and y, define 

CK) 

j= l  

when this series converges. With  notation as in 22.15, 22.25, and 23.9, show that  

(C0)* -- ~1, (~1)* -- ~oc, (~oc)* ~ ~1. 

(On the other hand, show that  the finite-dimensional normed spaces (IF TM, II II1) and 
( Fro, II I1~) are each other's duals.) 

Hint and remarks. The only tricky part of the proof is to show that  ( t ~ ) *  ~ t~l. If the 
scalar field is R, then any sequential Banach limit is a member of ( t ~ )  * \ t~l. (Sequential 
Banach limits were defined in 12.33; their existence was proved in 12.31.) For complex 
scalars, the proof of ( t ~ ) *  ~ t~l then follows from 11.12. 
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We remark that  there are other members of (g~)*  \ ~1 besides the sequential Banach 
limits; a complete characterization of (t~or is a special case of results in 29.30. We also 
remark that  this proof of ( t ~ ) *  D gl, or any other proof, must be nonconstructive it 
cannot produce a particular example of some f c ( t~ )  * \ ~1 that  is, the proof does not 
give an algorithm that  takes a constructive description of a sequence x E t ~  and produces 
a constructive description of the corresponding scalar f (x) .  In fact, we cannot give such an 
explicit algorithm; the members of (g~) * \ ~1 form an intangible class. The unavailability 
of explicit examples follows from 14.77 and 29.38. 

For the finite-dimensional case, refer to 11.22. 

EQUICONTINUITY AND JOINT CONTINUITY 

23.11. Remark. Several of the results below involve "an Abelian group equipped with a 
gauge consisting of G-seminorms (defined as in 2.13, 22.2, and 22.4) and with the resulting 
topology (defined as in 5.15.h) and uniformity (defined as in 5.32)." That  complicated- 
seeming object will simplify. It is nothing more than "a topological Abelian group," as we 
shall see in 26.14, 26.29, and 26.37. 

23.12. A d d i t i v i t y  a n d  u n i f o r m  con t inu i ty .  We now state two analogous theorems 
side by side. Actually, the result in the left column is a special case of the result in the 
right column, with (I) consisting of a singleton; but it is a special case important enough to 
deserve separate mention. 

Let X and Z be Abelian groups, each equipped with the topology and uniform structure 
determined by a gauge consisting of G-seminorms. Let x0 c X. 

Let f : X  ~ Z be an additive map. 
Then the following are equivalent: 

(A) f is continuous at x0. 
(B) f is continuous at 0. 
(C) f is continuous. 
(D) f is uniformly continuous. 

If X and Z are normed vector 
spaces, f is linear, and II II is the 
operator norm defined as in 23.1, 
then (A)-(D) are also equivalent to: 

(E) Ilfll < oo. 

Let (I) be a collection of additive maps 
from X into Z. Then the following are 
equivalent: 

(A) (I) is equicontinuous at x0. 
(B) (I) is equicontinuous at 0. 
(C) (I) is equicontinuous. 
(D) �9 is uniformly equicontinuous. 

If X and Z are normed vector spaces, (I) 
is a collection of linear maps, and II II is 
the operator norm defined as in 23.1, then 
(A)-(D) are also equivalent to: 

(E) s u p f ~  Ilfll < cx~. 

23.13. Ba ire -Osgood  Equicont inuity  T heore m for G r o u p s .  Let X and Y be groups, 
with topology and uniform structure given by gauges consisting of G-seminorms. Assume 
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tha t  X is a Baire space. (That  last condition is satisfied, for instance, if X is topologized 
by a single G-seminorm that  is complete.) 

Let f l ,  f2, f 3 , . . ,  be continuous additive functions from X into Y. Assume that  f (x)  = 
lim,~__+~ f~ (x) exists for each x E X. 

Then {fl ,  f2, f a , . . . }  is equicontinuous, f is continuous, and f~ + f uniformly on com- 
pact subsets of X as n --+ oc. 

Proof. It suffices to prove equicontinuity; then the other conclusions follow from 18.32.b. 
Let R be the gauge on Y. In view of 18.30.b, to prove equicontinuity from X to (Y, R) it 
suffices to prove equicontinuity from X to (I/, p) for each G-seminorm p in R. Fix any p. 
Since the f~'s and f are additive, it suffices to prove that  the sequence (f~) is equicontinuous 
at some point x E X (and we may use different x's for different p's). Tha t  fact follows from 
the nonlinear version of the Baire-Osgood Theorem in 20.8. 

23.14.  U n i f o r m  B o u n d e d n e s s  T h e o r e m  ( n o r m e d  s p a c e  v e r s i o n ) .  Let X and Y be 
normed spaces; assume X is complete. Let (I) be a collection of continuous linear maps from 
X into Y. Then these conditions are equivalent: 

(A) (I) is bounded pointwise; that  is, (I)(x) = { p ( / ) :  qp E (I)} is a bounded subset 
of Y for each x E X. 

(B) ~ is uniformly bounded, i.e., equicontinuous; that  is, suP~E~ > II1~111 < ~ .  

Proof. Obviously (B) => (A). For (A) => (B), suppose on the contrary that  q) is not 
equicontinuous. Then we can choose a sequence (qPk) in (I) with Ill,kill > k. For each k, 
we can choose some uk E X with Ilukllx = 1 and II~k(uk)llY > k. (Remark. These choices 
do not require the Axiom of Choice, but only the Axiom of Countable Choice, discussed in 
6.25.) 

We offer two different methods for finishing the proof. The first method is shorter but 
relies on earlier results that  are rather nonelementary: By the Baire Category Theorem 
(a form of Dependent  Choice), the complete metric space X is a Baire space. Since the 
functions Pk are bounded pointwise, the func t ions  k-1/2~gk converge pointwise to 0, and 
therefore are equicontinuous by 23.13. Since the vec to r s  k-1/2Uk converge to 0 in X, it 
follows tha t  k - 1 / 2 ~ k ( k - 1 / 2 u k )  --+ 0 in Y. Bu t  IIk--1/2ggk(k-1/2uk)i iY = k--l i iqok(uk)i iY > 1, 
a contradiction. 

The second proof, though longer, may be preferable to some readers, because it is self- 
contained and does not rely on the Baire Category Theorem or other deep topological 
theorems. (In fact, it uses Countable Choice but not Dependent Choice.) It is based on 
Hennefeld [1980]. Recursively define a sequence (Xn) in X and a sequence (fn) in q), as 
follows: Let Xo = 0 and choose any fo E ~. Having chosen X o , X l , . . . , x ~ - i  E X and 
fo, f l , . . . ,  f,~-i E �9 (clear for n = 1), define the numbers 

A n  z 

Bgt z 

n-1  

j~0 sup f (x j )  r and 
�9 fEo 

2 '~max{ 1, Illfolll, ]llfllll, . . . ,  IIIfn-1 II}; 

these are both finite by our hypotheses. Now let f~ be some member  of (I) that  satisfies the 
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inequality Illfnlll > (Anq-rt)Bn; if a canonical choice is desired, we may take fn to be the first 
member  of our sequence (~ak) that  satisfies that  inequality�9 Now multiply the corresponding 
vector uk by a suitable scalar, to obtain a vector Xn E X satisfying Ilxnllx < Bn  1 and 
Ilfn(Xn)[IY > An + n. This completes our recursive definition; we obtain sequences (Xn) 
and (fn). 

Since IlXnllX < Bn I < 2 -n  and X is complete, the sum 

X - -  X 0  -~- X l  n t- X 2  -~- " �9 �9 

is a well-defined member  of X. For all integers j > n, we have 

Ilfn(x~)ll~ < IIIf. I x~llx < 2-JBj 
1 �9 = 2 -J ;  

Bj 

hence Ilfn(Xn+l + Xn+2 -Jr-'' ")IIY --~ 1. Also, Ilfn(Xo + xl + x2 + " "  + Xn--1)IIY ~_ An by the 
definition of An. Use the fact that  

X --  ( X o n t - X l - ~ - X 2 - ~ - ' ' ' - ~ - X n _ I )  + X n + ( X n T l T t - X n _ t _ 2 n t - ' ' ' ) .  

It follows tha t  Ilfn(X)llr > n -  1 for every n, which contradicts the assumption tha t  

supf~o IIf(x)llY < oc. 

23.15.  T h e o r e m s  on  j o i n t  c o n t i n u i t y .  Let X, Y, Z be groups, each of which is topol- 
ogized by a gauge consisting of a collection of G-seminorms. Let h : X • Y --~ Z be a 
biadditive, separately continuous map i.e., assume that  z = h(x, y) is a continuous, 
additive function of either of the variables x, y when the other variable is held fixed. Then: 

a. h is jointly continuous if and only if h is jointly continuous at 0 i.e., if and only if 

whenever ( (xs ,  Ys)" o~ E A) is a net converging to (0, 0) in X x Y, then h(xs,  ys) --+ 0 
J % 

in Z. 
Proof. The "only if" part  is obvious. For the "if" part,  suppose that  (us, vs) -+ 

(u, v) in X x Y�9 Then (us - u, vs - v) --+ (0, 0) in X x Y, hence 

h ( ~ ,  v~ )  - h ( ~ ,  v) - h ( ~  - ~,  v~ - v)  + h ( ~ ,  v~ - v)  + h ( ~  - ~ ,  v) - ~  0 

by joint continuity at (0, 0) and separate continuity. 

b. Suppose that  the topologies on X and Y are each given by a single G-seminorm and 
at least one of X, Y is complete. Then h is jointly continuous. 

Proof. Say X is complete. Let ((Xn, Yn)) be a sequence converging to (0, 0) in 
X x Y; we wish to show h(xn,yn) --+ 0 in Z�9 Define mappings fn : X ~ Z by 
fn(x)  = h(x, yn)�9 Then each fn is continuous and additive, and fn -+ 0 pointwise. 
By 23.13, the sequence (fn) is equicontinuous. Since Xn --+ 0, we have fn(Xn) ~ 0 as 
required. 

c. Suppose X, Y, Z are normed spaces, and let h : X x Y -+ Z be a bilinear mapping. 
Then h is jointly continuous if and only if the number 

IIIhlll - sup{ l lh (x ,y ) l l z  �9 IIx x ,  IlYllr <-1} 
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is finite. 
Further observations. The jointly continuous, bilinear maps from X x Y into Z 

form a normed space, when normed by I IIhlll defined in this fashion. It is complete if 
Z is complete. 

THE BOCHNER INTEGRAL 

23.16. Definitions. Let (X, I I) be a Banach space, let (f~, g, #) be a measure space, and 
let f E L I ( # , X ) .  Then the Bochner integral, or Bochner-Lebesgue integral, of f 
with respect to #, denoted by fa fd#,  is an element of X defined as follows. 

When f E L I ( # , X )  is finitely valued, then we can define the integral as in 11.42; that  
is, fa fd#  - ~-~x # ( f - l ( x ) )  x. It is easy to verify that  

f d#  _< ~ f ( . ) d #  -- Ilflll �9 (*) 

Thus the mapping f ~ fa fd#  is a continuous linear map from a dense subspace of L 1 (#, X) 
into X. By 23.2.e, it therefore extends uniquely to a continuous linear map from L I ( # , X )  
into X, satisfying (,). 

By a "measurable set" we mean a member of g. For any measurable set S C_ f~, we 
may define the Bochner integral fs  f d# by restricting f to the set S and restricting # to 
measurable subsets of S. However, fs  f d# is also equal to fa l s f  d#, where l s is the 
characteristic function of S. Note also Ifs f d#l -< fs  Ifl d#. 

A few more basic properties of the Bochner integral are given below; some additional 
properties can be found in 29.10 and in the consequences of that  result. The Bochner 
integral should also be contrasted with the Bartle integral, introduced in 29.30. 

Further remarks. Terminology varies. The integral defined above (which we shall call 
the Bochner integral in this book) is often known as the Lebesgue i n t e g r a l -  particularly 
in the special cases where # is Lebesgue measure and/or  X is finite-dimensional. 

When #(f~) - 1 i.e., when # is a probability measure then fa  f d# is also called 
the e x p e c t a t i o n  of f. 

Ezercise. If f E LI(~,I[~) and f _> 0, then the Bochner integral fa f d# is equal to the 
positive integral fa f d# defined in 21.36. 

23.17. Let f~l, ~'-~2, X be any sets. Then any function f �9 f~l X ~2 ----+ X can also be viewed as 
a map f "  f~2 --+ X ~1 , whose value at any w2 is the mapping If(w2)](.) - f( ' ,w2) �9 f~l -+ X. 

This obviously gives us a bijection between X a l  xa2 and (X al)  a2. 

F u b i n i ' s  T h e o r e m .  Let (~'~1, ~1, #1) and (Vt2, $2, #2) be a-finite measure spaces, and let 
(~1 • ~2, gl • $2, #1 • #2) be the product measure space, defined as in 21.40. Let X be 

a Banach space, and let Y - L I ( # I , X ) .  Then the mapping f ~ f defined above gives an 
isomorphism (i.e., a linear, norm-preserving bijection) from LI(#I  • #2 ,X)  onto L1(#2, Y). 
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Furthermore, if f E Ll(pl  • p2,X),  then the following two iterated Bochner integrals 
exist and are equal to the noniterated Bochner integral f~'~l X~2 f d(#l • #2). 

(i) For almost every ~2 in ~2, the Bochner integral f~l f ( ' , ~2 )dp l  exists in X, and 

the mapping w2 H f~l f ( ' , ~2 )d# l  (from ~2 into X ) i s  integrable in X with respect to 
p2. The resulting iterated integral (in X over #1 and then in X over p2) may be denoted 

f~2 [f~l f ( "6J2 )d# l ]  d#2(~t)2)" 
(ii) For almost every w2 in ft2, the function If(w2)](') " ~1 ~ X is a member of Y. The 

mapping w2 ~ f(w2) (from ~t2 into Y) is integrable in Y with respect to p2. Integrate in Y 
to obtain ~ - fa~ f d#2, a member of Y. Then ~ E Y - L I (# I ,X)  may itself be integrated 

in X; thus we obtain the iterated integral f~l (~ d~f-Lt -- f~'~l /f~2 f"d~f'~2/ d]-L1 (in Y over #2 and 
- 1  

..3 

then in X over ~1)- 
A 

Proof. The map f H f is obviously linear. We shall show that it maps a dense subset of 
LI(#I • #2 ,X)  onto a dense subset of LI(#2,Y),  in a norm-preserving fashion; then the 
linear map obviously extends to an isomorphism between the two spaces. 

By a basic function we shall mean a function f �9 ~1 • ~ 2  ~ X of the form s(.) - 
n 

~-~j=l 1A~• where n is a positive integer, the xj's are members of X, and 1AjxB~ is 
the characteristic function of Aj • By, where Aj c_ t21 and Bj C_ f~2 are measurable sets 
with finite measure. We shall show that the basic functions s are dense in LI(#I • #2,X),  
and their images ~ are dense in L1(#2, Y). 

Let any f E LI(pl  • p2,X) be given. We know that the integrable, finitely valued 
functions are dense in L1(#1 • #2,X).  Hence f can be approximated arbitrarily closely by 

m a function of the form }-~k=l 1Sk (-)xk, where each Sk is a member of ~1 • ~2 with finite 
measure. By 21.26, each Sk can be approximated arbitrarily closely in measure by a set 
that is a union of finitely many measurable rectangles i.e., for any c > 0, there exist 
Ak,l,Ak,2,... ,Ak,N(k) E ~1 and Bk,l,Bk,2,...,Bk,N(k) E $2 such that the sets 

Ak,1 • Bk,1, Ak,2 • Bk,2, Ak,N(k) • Bk,N(k) 

are disjoint subsets of Sk and have union S~ satisfying (~1 X #2)(Sk \ S~)  < s Then f is 

approximated by the basic function s ( - ) -  }--~k~n=l y~N(lk)1Ak,i• (')Xk. 
On the other hand, let f �9 ~1 X ~ 2  ----+ X be a function with f E L I(p2, Y). Since A 

the finitely valued, integrable functions are dense in LI(p2,Y),  we can approximate f 
arbitrarily closely by a function of the f o r m  Ekm=l  1Bk(')Yk, where Bk is a member of , 
82 with finite measure and Yk E Y - L I ( # I , X ) .  Each Yk(') can, in turn, be approxi- 

mated arbitrarily closely by a finitely valued integrable function v'N(k) , z _ , i = l  1 A k , ~ ( ' ) X i .  It fol- 

lOWS easily that f is approximated arbitrarily closely by functions of the form ~, where 
m x-~N(k) 

s ( . ) -  E k : l  Z.~i=l 1A~,,xB~(')Xk. 
Now let any corresponding functions f E X nlxa2 and f" E (X ~1)~2 be given. We claim 

that 

f belongs to Ll (p l  • p 2 , X ) i f  and only if if belongs to f. 1 (~2,f. l (~ l ,X) ) ,  in 

which case I f l lg l (~x~2,x)-  IIl[f'(.)llgll . LI(#i,R) 
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This is clear for basic functions; equality of the norms follows easily from Tonelli's Theorem 
(21.40). Thus we obtain a norm-preserving linear map between dense subsets of the two 
Banach spaces Ll(~l x #2,X) and Ll(~2, Y). Taking limits proves this claim for all f .  

It is easy to verify tha t  the three kinds of Bochner integrals agree for any basic function. 
The basic functions are dense in the integrable functions, and the Bochner integrals are 
continuous linear maps; therefore the Bochner integrals agree for all integrable functions. 

HAHN-BANACH THEOREMS IN NORMED SPACES 

23.18.  Following are several principles, any one of which may be referred to as "the Hahn- 
Banach Theorem;" they are equivalent to each other and to the Hahn-Banach Theorems 
presented in 12.31, 23.19, 26.56, 28.4, 28.14.a, and 29.32. Most of the principles below refer 
to the dual space X* defined in 23.7. 

Each of the principles below asserts the existence of some object, but does not specify 
how to find tha t  object. In general, we may not be able to find the object. The existence 
proof is not constructive, and in fact it cannot be made constructive. The Hahn-Banach 
Theorem implies the existence of certain known intangibles; see 14.77 and 29.38. 

The norm-preserving extension A described in (HB7) is not necessarily uniquely deter- 
mined by ~. In 23.21 we consider some conditions for uniqueness. 

Note tha t  (HB10) asserts the equality of an infimum (the distance) and a supremum 
(the maximum).  The principle (HB10) can be found in Luenberger [1969] or Nirenberg 
[1975]. 

The charge described in (HB12) is closely related to another charge described in 29.32. 

( H B 7 )  N o r m - P r e s e r v i n g  E x t e n s i o n s .  Let (X, II II) be a normed space, 
and let Y be a linear subspace of X. Let A E Y* that  is, let A be a bounded 
linear map from Y into the scalar field, where Y is normed by the restriction of 
II II. Then A can be extended to some A E X* satisfying All x ,  - A y , .  

( H B 8 )  F u n c t i o n a l s  for G i v e n  V e c t o r s .  Let (X, II II) be a normed vector 
space other than the degenerate space {0}, and let z0 E X. Then there exists 
some A E X* such that  IIA]I = 1 and A(z0) = IIz011 . Hence the norm of a vector 
in X can be characterized in terms of the values of members of X*: 

]]x0II - max{I f (x0) l  �9 f E x * ,  I f i l x . - 1 } .  

(We emphasize that  this is a maximum, not just  a supremum; contrast that  
with 28.41(G).) Therefore each x E X acts as a bounded linear functional 
Tx" X* --~ F by the rule Tx( f )  - f ( x ) ,  with norm T~IIx** - I I x  x .  

( H B 9 )  S e p a r a t i o n  of  P o i n t s .  If X is a normed space, then X* separates 
the points of X.  Tha t  is, if x and y are distinct points of X,  then there exists 
some A E X* such tha t  A(x) ~ A(y). Equivalently, if u E X \ {0}, then there 
exists some A E X* such tha t  A(u) ~ 0. 
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( H B 1 0 )  V a r i a t i o n a l  P r i n c i p l e .  Let X be a normed space. Let V be a closed 
linear subspace, let V • - {A c X* �9 % vanishes on V}, and let x0 E X \ V. 
Then V • \ {0} is nonempty, and 

dist(x0, V) - max { lA(x~ �9 A E V• \ {O}} 

( H B 1 1 )  S e p a r a t i o n  of  S u b s p a c e s .  Let B be a closed linear subspace of a 
Banach space X, and let r/ E X \ B. Then there exists a member  of X* that  
vanishes on B but not on r/. 

( H B 1 2 )  L u x e m b u r g ' s  M e a s u r e .  For every nonempty set ~ and every proper 
filter 9" of subsets of ~, there exists a probability charge # on [P(~) tha t  takes 
the value 1 on elements of 9". 

Proof of (HB2) => 
field is C, use 11.12. 

(HB7). If the scalar field is IR, use p(x) - IIx  lly,. If the scalar 

Proof of (HB7) => (HB8). Let Y be the linear subspace spanned by zo; define k(rzo) - 
~11~oll for all scalars r. 

Proof of (HB8) => (HB9). z -  y -r 0; choose A E X* with A(z - y) - I I  z - YlI. 

Proof of (HB8) => (HB10). If v E V and A E V • \ {0}, then 

I1 -*oll _> 
- *o)1 I 

Take the infimum on the left over all choices of v, and take the supremum on the right over 
all choices of A; this proves tha t  

dist(x0, V) _> sup{IA(x~ �9 A E V •  I 

It now suffices to exhibit some particular A E V • \ {0} that  satisfies 

I (xo)i d i s t ( z o ,  V)  = . (!) 
il li 

Let Q = X/V  be the quotient space, equipped with quotient norm II ]]O as in 23.5. As 
we noted in 23.5, the quotient map r~ : X --+ Q has norm 1. As in (HB8), we may choose 
some functional A E Q* with ]]AI] = 1 and A(Tr(x0)) = ]]rr(x0)]]O = dist(xo, V). Let 
A = A o r~: X --+ {scalars}. The function A vanishes on V, since r~ does. Thus A satisfies (!). 

Proof of (HB9) => (HB11). Let Q - X /B  be the quotient space, equipped with the 
quotient topology; let r~ �9 X --+ Q be the quotient map. Refer to results in 23.5. Then 
rr(r/) is different from the 0 element of Q. By (HB9), there is some continuous linear map 
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A:  Q ~ {scalars} that  does not vanish on 7r(rl). Then A o T r:  X ~ {scalars} is a continuous 
linear map that  vanishes on B but not on r/. 

Proof of ( H B 1 0 ) = ~  (HBl l ) .  Obvious. 

Proof of (HBl l )  =~ (HB12). Let J = { f t \S  : S E 9~}; this is a proper ideal. For each 
E E J, let 1E : ft ~ [0, 1] be the characteristic function of the set E; also let 1 : ft ~ [0, 1] 
be the constant function 1. Let X be the Banach space of bounded functions from f~ into 
R, with the sup norm. Let B be the closed span of the functions 1E, for E E J. 

We claim that  1 ~ B. Indeed, consider any function g in the span of the 1E'S. It is of 
the form 

g ~--- C11E~ + C21E2 + ' ' "  + CnlEn 

for some nonnegative integer n, some real numbers c~, and some Ei 's  in J. Since J is a 
proper ideal, the set E = E1 U E2 U . . .  U En is a member of J, hence a proper subset of ~t; 
let w be some point in ~ \ E. Then g(w) = 0, while l(w) = 1. This shows that  any element 
of the span of the l z ' s  has distance at least 1 from the constant function 1, and therefore 
the constant function 1 does not belong to B. 

Now, using (HBl l ) ,  we find that  there is some bounded linear functional A : X ~ R 
that  vanishes on B but not on the constant function 1. Take L,(S) = A( ls ) ;  then ~ is a 
bounded real-valued charge on ~P(ft) that  vanishes on each E c J but not on ft. As we saw 
in 11.47, the positive part  of this charge is given by 

~+(S) = s u p { . ( A ) :  A c_ S}. 

This function u+ is a positive charge on T(ft) that  vanishes on each E E J but not on ft. 
Finally, #(S) = u+(S) /u+( f t )  is a probability charge with the required properties. 

Proof of (HB12) =~ (HB1). Let (A, 4)  be a directed set, and let B(A)  = {bounded 
functions from A into R}. Let 9 ~ be the filter of tails of (A, 4) ,  as defined in 7.9 that  is, 
9= is the filter on A consisting of the supersets of sets of the form {5 E A : 5 ~ 50}. 

By assumption, there exists a probability charge p on [P(A) that  takes the value 1 on 
elements of 9". Define LIM(u) = fzx u(~)dp(5) in the obvious fashion for simple functions 
u. Since simple functions are dense, we can extend this definition to u E B(A)  by taking 
limits. (This construction is a special case of the Bartle integral construction described in 
29.30.) 

Note that  if F c 9 ~, then LIM(1F) = # (F)  = 1 (where l p :  Ft ~ {0, 1} is the character- 
istic function of F) ,  and 

LIM(1A\p) = #(A \ F)  = # ( A ) -  # (F)  = 1 - 1 = 0. 

If g is a bounded real-valued function on A that  vanishes on F,  then -IIgll~lzx\F < g <_ 
IIgii~lzx\F; hence 

0 -  LIM(-llgll l \ ) _< LIM(g) < LIM(llgll l \ ) - 0  

and thus LIM(g) = 0. If h is any bounded real-valued function on A, then h - h l F  vanishes 
on F,  so L I M ( h ) =  LIM(h lp) .  
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We shall show that  LIM is a Banach limit with the desired properties. Clearly LIM 
is a positive linear functional; it suffices to show that  LIM(u) _< limsup6~A u($) for each 
u c B(A) .  Fix any number r > l imsupscA u(~); it suffices to show that  r _> LIM(u). By 
our choice of r, we have r > u(5) for all 5 sufficiently large say for all 5 ~ 50. Thus 
r lF  >_ u lF.  The set F -  {5 E A"  5 ~ 50} belongs to 9=, hence 

LIM(u) - L IM(u lF )  _< L I M ( r l F )  - LIM(r)  - r. 

23.19.  Luxemburg's Boolean equivalents of HB (optional). The principle (HB12) involved 
algebras of sets. We shall generalize that  principle to Boolean algebras. Admittedly,  Boolean 
algebras don' t  seem to be much more general indeed, (UF7) in 13.22 tells us that  every 
Boolean algebra is isomorphic to an algebra of sets. However, UF is stronger than HB, so 
we are not permi t ted  to use UF in the next few paragraphs when we prove that  certain 
principles are equivalent to HB. 

First,  we must generalize some notions of charges and measures to Boolean algebras. 

a. In a Boolean lattice X, we say that  two elements x, y are d i s j o in t  if x A y - 0. Note 
tha t  0 is disjoint from any element; 0 is even disjoint from itself. A subset of X is 
d i s j o i n t  (or, for emphasis, p a i r w i s e  d i s jo in t )  if each pair of elements of tha t  set is 
disjoint. 

b. A p r o b a b i l i t y  (or p r o b a b i l i t y  c h a r g e )  on X is a function # : X  ---, [0, 1] such that  
#(1) = 1 and 

#(x V y) = #(x) + #(y) for disjoint x, y E X. 

Of course, if # is any probability on a Boolean lattice X,  then #(0) is equal to 0, since 
0 is disjoint from itself. Thus, we have {0, 1} C_ Range(#) c_ [0, 1]. A t w o - v a l u e d  
p r o b a b i l i t y  on X is a probability with range equal to {0, 1}. Exercise. Show that  a 
two-valued probability is the same thing as a two-valued homomorphism (defined 
in 13.8). 

We can now generalize (HB12) to Boolean algebras. The principle (HB13) was recently used 
by Pawlikowski [1991] to prove tha t  the Hahn-Banach Theorem implies the Banach-Tarski 
Decomposition. It is interesting to compare (UF8) and (HB13), both of which assert the 
existence of charges. Also, in 29.37 are some even weaker assertions of the existence of 
charges. 

( H B I 3 )  On every Boolean algebra there exists a probability charge. 

( H B 1 4 )  Let X be a Boolean algebra. Then for every proper ideal I in X 
there exists a probability # on X that  vanishes on I. 

Proof of (HB12) ~ (HB13). Let X be a Boolean algebra. By the Tarski-Scott-Luxemburg 
Lemma 13.12, there exists a surjective homomorphism f : g ~ X, where g is some algeb1% 
of subsets of some set ~. Then Ker( f )  is a proper ideal in g, and so there is a probability 
# on g that  takes the value 0 on elements of Ker(f ) .  Hence g determines a probability 
on g//Ker(f) ,  which is isomorphic to X. 
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Proof of (HB13) => (HB14). Let rc : X --+ X / I  be the quotient map, and let t, be 
a probability on the Boolean algebra X / I .  Define #(x) = z~(rc(x)); verify tha t  # is a 
probability on X that  vanishes on elements of I. 

Proof of ( H B 1 4 ) = a  (HB12). Obvious�9 

A FEW C O N S E Q U E N C E S  O F  H B  

23.20.  T h e  d u a l  f u n c t o r  in n o r m e d  spaces .  Let F be the scalar field (R or C). Let 
e and (g* both be the category of normed spaces over F, with continuous linear maps for 
morphisms. Then we may define a dual functor X H X* as in 9.55 through 9.59, using the 
scalar field F for the object A discussed in 9.55. The resulting dual space X* defined in 9.55 
is the same as the normed vector space X* defined in 23.7. For any morphism f : X  ~ Y, 
the dual map f*  : Y* ~ X* is defined by f*(A) = A o f .  

By the Hahn-Banach Theorem (HB9), X* separates points of X. Therefore, points in 

X may be viewed as distinct functions acting on X* Moreover, the embedding X c �9 - -  > X * ~  

is norm-preserving, as we noted in (HB8) in 23.18. 

For any morphism f : X  --+ Y, the bidual function f**  : X * *  --+ Y** is an extension of 
the function f : X -+ Y. All of these s ta tements  and all of hypotheses (Ul) through (H5) 
in 9.55 through 9.57 are now easy to verify. 

A Banach space X is reflexive if X** = X. Some Banach spaces are reflexive, but others 
are not. For instance, gp is reflexive for 1 < p < oc, but t~l, g~,  and co are not. Reflexivity 
of Banach spaces will be investigated further in 28.41(A). 

A slightly more subtle result: Ilfll = II/*11 = IIf**ll for any continuous linear map f :  x ~ Y 
between normed spaces. 

rants: From the definition f*(A) = A o f ,  prove that  IIf*bl 5_ Ilfll. Similarly, IIf**lb ~ IIf*lb. 
On the other hand, use the fact that  f**  : X** --+ Y** is an extension of f : X --+ Y to 

show that  II/11 <_ II/**11. Finally, combine these results: II/*11-< II/11 _< II/**ll-< II/*ll. 

23.21. Taylor-Foguel Theorem (optional).  Let (X, II II) be ~ B~nach space, ~nd 
let ( x * ,  li II) be its dual. Then X* is strictly convex if and only if every bounded linear 
functional on a subspace of X has a unique norm-preserving linear extension. 

Proof. First, suppose there exists some linear subspace X0 C_ X and some f0 E (X0)* that  

has distinct extensions f l ,  f2 c X* with Ill011- Ilflll = rlf21F. Let  f = (f l  + f2)/2. Then f 
is also an extension of f0, so Ilflt -> Ill011- Now f l ,  f2, f are collinear, so X* is not strictly 
convex. 

Conversely, X* is not strictly convex; we shall show that  X does not have unique 
norm-preserving extensions. By assumption, there exist distinct f,  9 E X* with Ilfllx, = 

1 1191Ix* - 5 ( f  + g)llx* - 1. Let ]/[ - {x c X "  f (x )  - g(x)}, and let ~ be the restriction 
of f or 9 to the linear subspace M. It suffices to show that  II~IIM* = 1, for then f and 9 
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are distinct norm-preserving extensions. We know that  I1~1 M* -< 1 by the definition of the 
operator norm; thus it suffices to show that  II~IIM* --> 1. Since f ~: g, we may choose some 

E X with f ( ~ ) -  g(~) - 1. Then each x E X may be expressed in one and only one way in 
1 the form x - y + a~, where y E M and a is a scalar. Since [I ~ ( f  + g) x*  - 1, we may choose 

1 a sequence (Xn) in X with [[Xn[[X -- 1 and -~(f + g)(xn)  ~ 1. Since [[f[[x* - [ [g [  x*  - 1, 
it follows tha t  f ( X n )  ~ 1 and g(xn)  ~ 1. Write Xn -- Yn + an~ with Yn E M and scalar 
an. Then an - ( f  - g)(an~) - ( f  - g ) (xn  - yn) - ( f  -- g)(Xn) ~ 1- -  1 -- 0, hence 
[[Yn[[M - -[Yn[IX ~ 1. At the same time, c;(Yn) -- f (Yn)  -- f ( X n ) -  an f (~ )  ~ 1. Thus 
[[~[[M* -> 1, completing the proof. 

23.22.  K o t t m a n ' s  T h e o r e m .  Let X be an infinite-dimensional normed space. Then X* 
is infinite-dimensional. Furthermore,  there exists a sequence (Xn) in X such that  Ilxnll = 1 
for each n and ]lXm - Xnll > 1 whenever m # n. 

Remark.  It follows easily from compactness considerations (see 27.17) tha t  such a sequence 
cannot exist in a finite-dimensional normed space. 

Outline of  proof. This theorem was first proved by Kot tman,  but the proof given here is 
due to T. Starbird and was published by Diestel [1984]. 

a .  Show there exist X 1 C X and )~1 E X *  with [[Xl[[---[[)~1[[ • )~1 (Xl)  -- 1. 

b. We now proceed by induction. Assume 

X l , X 2 , . . . , X k  E X a n d  /~1,)~2,. �9 �9 ,/~k E X *  

have been chosen, all with norm 1, and with / ~ 1 , ) ~ 2 , . . . ,  ~k linearly independent.  Show 
there exists y c X such tha t  AI (y) ,A2(y) , . . . ,  Ak(Y) < O. 

k c. Show there exists a nonzero x in I"]i=l Ker(Ai); here "Ker" denotes kernel. 

d. Show that  for any sufficiently large positive number K,  we have IlYll < Y + Kxl]. Fix 
some such K.  

e. Using the linear independence of the Ai's, show that  if a l , a 2 , . . .  ,ak are scalars, not 
all 0, then I k E i = I  aiAi(y  + Kx)]  < [[ E i k _ l  aiAi[[ [[y + Kx[[. 

f. Let Xk+X -- (y "J- Kx) / [ [y  + Kx[[, and then by (HB8) choose s o m e  )~k+l E X *  with 
[ [ / ~ k + l [ [ -  )~k+l(Xk+l) --  1. Using 23.22.e, show that  Ak+l is not a linear combination 
of A1, A2 , . . . ,  Ak, completing the induction. 

g. Show that  if i _< i _< k, then Ai(Xk+l) < 0, and hence [[Xk+l-xi[[ _> [Ai(xk+x-xi)[  > 1. 

DUALITY AND SEPARABILITY 

23.23.  If (X, II II) is Banach space and X* is separable, then X is separable. 

Proof  {following the exposition of M. Schechter [1971]). Let (~n) be a dense sequence in 
1 X*.  For each n, choose some Vn E X that  satisfies IIv ll- 1 and (~n,Vn) >_  ll  ll. Let 
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V be the closed linear span of the v~'s. Then  V is a separable, closed linear subspace of 
X; it suffices to show V = X.  Suppose, on the contrary, tha t  w E X \ V. By ( H B l l )  in 
23.18, there is some ~ E X*  tha t  vanishes on V but  not on w. By rescaling we may assume 
I]~ll = 1. For each n, we have 

1 

Hence 

1 = ll ll <_ ll  - ll+ll  ll _< 311  - 11. 
But the qp~'s are dense in X*,  so they should come arbi t rar i ly  close to ~, a contradict ion.  

Remark. It is possible to have X separable and X*  not separable. 
separable, but  (see 23.10) its dual is g~,  which is not separable. 

For instance, ~1 is 

23 .24 .  Proposition. Let (X, II II) and (Y, II II) be real Banach spaces. Assume one is the 
dual of the other (i.e., assume either X = Y* or Y = X*) .  Let S be a separable subset of 
X.  Then there exists a sequence (Yn) in Y satisfying I ly~l l-  1 for all n, and such tha t  

Ilsll = sup (yn, S} for each s E S. 
n 

Proof. Note tha t  if ]lyll <- 1 then (y,s} _< Iisll. Let (sk) be a dense sequence in S. We 
proceed by two different arguments:  

(i) If Y = X*,  we may apply (HBS). For each k, there exists some Yk E Y satisfying 

[[Yk[] = 1 and (yk,sk} = [[sk[[. 
(ii) If X = Y*, we may apply the definition of the opera tor  norm i.e., the norm of X.  

For each k, we have Iiskll = sup{(y ,  sk} : y E Y, Ilyll = 1}. Hence we may choose a sequence 
(yk,j : j = 1, 2 , 3 , . . . ) i n  Y satisfying Ilyk,jll = 1 and l i m k + ~  (yk,j, sk} = Ilskll. Now arrange 
the doubly indexed set {Yk,d : J, k E N} into a sequence (yn) (see 2.20.e). 

In either case we obtain  a sequence (yn) in Y, satisfying Ily~ll = 1 for each n and 
satisfying sup~ (y~,sk} = II~kll for each k. Now let any s E S be given and any number  
e > 0. Since (sk) is dense in S, we have I I s -  ~kll < c for some k. For each n, we have 
(y~, s) > (y~, sk) - r and therefore supn (y~, s} _> ]]skl[- r > I ls l [ -  2c. Now let r ; 0. 

23 .25 .  Definitions. Let X be a Banach space, and let (f~, g) be a measurable  space. 
A function f : f~ ~ X is w e a k l y  m e a s u r a b l e  if the scalar-valued function (p, f(.)} is 
measurable  for each fixed p E X*.  A function ~ : f t  ~ X *  is w e a k - s t a r  m e a s u r a b l e  if 
the scalar-valued function (~(.),  x} is measurable  for each fixed x E X.  A function satisfying 
either of these conditions will be called s c a l a r l y  m e a s u r a b l e .  

Proposition. Any scalarly measurable,  separably valued function is strongly measurable  
(defined as in 21.4). 

Proof (modified slightly from Hille and Phillips [1957]). Here we assume X and Y are 
Banach spaces, one is the dual of the other,  f : ft ~ X is separably valued, and (y, f ( . ) )  
is measurable  for each fixed y E Y. Replacing each y with Re y, we may assume the scalar 
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field is IR (see 11.12); this simplifies our notat ion slightly. Let S be the closed span of the 
range of f;  then S is separable. As in 23.24, choose a sequence (yn) in Y with Ily ll = 1 for 
all n and I1~11 = SUPn (Yn, S} for each s E S. 

Temporari ly fix any v E S. The function f(co)-v takes its values in S. Moreover, for each 
n E N, the real-valued function co H (yn, f ( c o ) -  v) = (Yn, f(w)) - (y~, v) is measurable. 
Hence, for each v E S the real-valued function co H II/(co) - vii = sup~ <y~, f(~) - v> is 
measurable.  

In particular,  if (xk) is a dense sequence in S, then each of the functions co ~ IIf(co)-  
xkLI (for k = 1 , 2 , 3 , . . . )  is measurable. Now, for each co E gt and j c N, let fj(co) be the 

Show that  first te rm in the sequence Xl,X2,X3,.. .  whose distance from f(co) is less than 7" 

fj : gt --+ X is a countably valued, measurable function. Since (fj) converges uniformly to 
f as j --+ oc, it follows that  f is strongly measurable. 

UNCONDITIONALLY CONVERGENT SERIES 

23.26.  In 10.42 we gave an elementary example of a series whose sum is affected by a 
reordering of its terms. We now investigate that  phenomenon further. 

cx)  Definition and proposition. Let Y~o=lzJ be a series in a Banach space (X, II II). Then 
the following conditions are equivalent; if any (hence all) are satisfied we say the series is 
u n c o n d i t i o n a l l y  c o n v e r g e n t .  Furthermore,  when those conditions are satisfied, then all 
the series in (A) have the same sum, and that  sum is equal to the limit in (B). 

(A) Ek~ Xrr(k ) is convergent for every permuta t ion  rr of the positive integers. 
(This is the most commonly used definition of unconditionally convergent.) 

(B) The net (Y~jer xj" F E ~) is convergent, where 9 " -  {finite subsets of N} is 
/ 

directed by inclusion. 
o o  

(C) The series }--]-j=l lu(xj)l converges uniformly for all u in the closed unit ball 
of X*. Tha t  is, let U = {u E X * :  Ilull _< 1}; then 

( x )  

lim sup ~ U(Xo) I 
N---+cxz uEU j = N  

- 0 .  

(D) 

(E) 

(F) 

In other words, the set of sequences of scalars {(UXl, ux2, ~ x 3 , . . . ) ' u  E U} is 
a relatively compact subset of gl (see the characterization of compactness in 
22.25). 

O(3 
For each sequence (/3j) of scalars with 1/39] _< 1, the series ~ j = l / 3 9 x j  ,onverges. 

( x )  

For each sequence (cj) with cj - +1, the series ~ j = l  r converges. 

Each s u b s e r i e s  }--]~k~__l xjk is convergent i.e. the series ~-~or , k = l  XJk is conver- 
gent for each choice of positive integers j l  < j2 < j3 < "" ". 



Unconditionally Convergent Series 625 

Remarks. A seventh characterization of unconditional convergence will be given in 28.31. 
This result and proof are taken from Singer [1970]. Before plowing through the proof 

of equivalence, some readers may find it helpful to glance ahead to the examples in 23.27. 
Also, this concept should be compared with the one in 10.40. 

Proof that (A)implies (B), and that the sums in (A) all equal the limit in (B). Fix some 
(3O particular permutation "y of N, and let x - }-~-k=l x~(k); suppose that  }--~j~F xi does not 

converge to x; we shall obtain a contradiction. By our assumption, there exists some e > 0 
II II 

such that every finite set F C_ N is contained in some finite set G such that  I I x -  ~ j e c x i I l >  

c. Since x -  }--~,o k=l x~(k), there is some positive integer N1 such that 

N >_ N1 =~ NIL E m .  x -  x.y(k) < 2 
k=l 

Recursively choose  finite sets F1 C_ G1 C_ F2 C_ G2 C F3 C_ G3 C_ . . .  C N as follows: Let  

F1 -{ ' ) ' (1 ) , " / (2 ) , . . . ,  ~'(NI)}. Given F,~, choose Gm _D Fm such that  [I x -Y'~jeC;I~ XJ[I > C. 
|1 | l  

Given Gin, choose F,~+I = {?(1),~/(2),. . . ,~/(Nm+1)} with Nm+l large enough so that  
N,~+I >_ m + 1 and Fm+l _D Gin. This completes the recursion. Since Nm >_ m, the union 
of the F.~'s is equal to N. Now define a sequence 7r(1), 7r(2), 7r(3),... by listing first the 
elements of F1 in any order, then the elements of G1 \ F1 in any order, then the elements of 

O O  

F2 \ G1, then the elements of G2 \ F2, etc. The resulting series ~ k = l  x.(k) is not convergent, 
since 

c c 

jEG,~\Fm jCam jEFm 

Proof of (B) => (C). Let x - l i m r c s E j c F x  j. Let any c > 0 be given. By (B), there 
is some positive integer N such that if (7 is any finite subset of N with G _D {1 ,2 , . . .  ,N},  

II II then x - ~ - ~ j ~ c x j  < ~. Fix any u �9 U; it suffices to show that  }-~j=N+I lu(xj)l <-- e. 
Temporarily fix any integer p _> 1. Define the sets 

A1 = { j  

A2 = {j  

�9 {N  + 1, N + 2 , . . . , N  +p}  �9 Reu(xj)  >_ 0}, 

�9 { X  + 1 ,N  + 2 , . . . , N  +p}  �9 Reu(xj)  < 0}. 

Also let B - { 1 , 2 , . . . , N } .  Then 

N+p 2 

j = N + I  k--1 

Reu (j xj) 
k=l 

xj 

k=l 
X- -  E Xj 

jEAkUB ii + I X - -  E xj 
jCB 

2 { }  
c c 

k=l 
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x-,N +P e X-',N +p Similarly, z--,j=N+l IImu(xj)l < 3" Hence z--,j=N+l u(xj)l < e. Now let p ~ oc. 

0(3 Proof of (C) =~ (D). We must show that  the partial  sums of E j = I / 3 j x j  form a Cauchy 
OO 

sequence. Given any e > 0, choose N by (C), so that  s u p ~ u  E j = N  [u(xj)l < e. Now for 
any integers n, p with p _> n _> N, use the Hahn-Banach Theorem (HB8) in 23.18 to choose 
some u c U (which may depend on n, p) to satisfy the first equation below: 

P 

j=n 

Proof of ( D ) = ~  (E). Obvious. 

Proof of (E) =~ (F). Any subseries EkC~=l Xjk can be wri t ten as the average of the two 
OO OO convergent series }--~j=l xj and }-~j=l ejxj, where 

ej {11 if j is among the numbers j l ,  j2, j 3 , . . .  
otherwise. 

Proof of (F) =~ (A). Suppose 7r is a permuta t ion  of N for which }-~k x~(k) does not converge. 
Then the partial  sums are not a Cauchy sequence. Hence there exists some constant e > 0 
and some sequence of positive integers rnl < rn2 < m3 < . . .  such that  II V'mn+l Z-..~k--mn+l XTr(k) II > 
e for all n. Tha t  is, x ( )II > where Sn -- + 1, m n +  2, . . . ,  mn+l }. The  sets 
7C(Sn) = { re(k): k E Sn } are disjoint, finite sets with union N. Let min 7r(Sn) and max 7r(Sn) 
be the minimum and maximum elements of 7r(Sn). Note that  l i m n ~  rain 7r(Sn) = ec. 
Therefore we can recursively choose positive integers n(1) < n(2) < n(3) < - - . s o  tha t  
rain 7r(Sn(p+l)) > max 7r(Sn(p)). Form a subseries }-~i~__l XJi by taking the positive integers 

0(3 j l  < j2 < j3 < "'" to be the members of U p = l  7r(Sn(p)) arranged in increasing order. Then 

for each p, there exist i' and i" such that  ,, ,,ll}-~:"i'xJ~]l- , , , , l l ~ k ~ S n ( p )  x~(k)]l > e, and the 
I I  , .  I I  i i i l  

numbers i' and i" tend to oc when p ~ oc. This shows that  the ser ies  Ei~ xji is not 
convergent. 

23 .2  
a .  

b" 

C. 

d. 

7. Further exercises, examples, and observations. 
A convergent series is not necessarily unconditionally convergent. For instance, in the 

1__~_ 1 1 1 1 one-dimensional Banach space R, the series 1 -  ~ 5 - ~ + g - g + " "  is convergent; to 
1 1 1~ 1 see that ,  rewrite it as ( 1 -  3)1 + (51 - 3_ / + (g - g ) + . . - .  However, not every subseries 

is convergent; for instance, - 3  - ~ - g . . . .  does not converge (see 10.41.f). 
O ~  OO OO 

If ~ j = l  xj is absolutely convergent that  is, if ~ j = l  Ilzj < oc then ~ j = l  xj is 
unconditionally convergent. ~' 

If the Banach space X is finite-dimensional, then any unconditionally convergent series 
in X is absolutely convergent. 

In an infinite-dimensional space, an unconditionally convergent series is not necessarily 
0(3 absolutely convergent. An example is given by the series }--~j=l xj in the Banach space 
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co - {sequences of scalars converging to 0}, with 

X 1 - ( 1 , 0 , 0 , 0 , . . . ) ,  
1 

�9 - (o,  
1 

X 3 - -  (0, 0, ~ ,  0, . . .), 

Remark. Actually, in every infinite-dimensional Banach space there exists a series that  
is unconditionally convergent but not absolutely convergent. This theorem was proved 
by Dvoretsky and Rogers in 1950, but its proof is too long to include here. (It is given 
by Diestel [1984], for instance.) 

NEUMANN SERIES AND SPECTRAL RADIUS 
(OPTIONAL) 

23.28.  Let (X, [ I) and (Y,I l) be Banach spaces over the scalar field F. Let BL(X,  Y) = 
{bounded linear operators from X into Y}, with operator norm II II- Let I~v(X, Y) be 
the set of all invertible bounded linear operators that  is, bijections f from X onto Y 
such that  both f : X -+ Y and f - 1  : y ___+ X are bounded linear operators. Show that  

a. Let ix  : X --+ X be the identity map. If p 6 B L ( X , X )  with Ilpll < 1, then ix  - p  6 
Inv(X,  X) with 

O<3 

(ix -- p) - I  __ E p'~; hence 
n=0 

I I ( i x -  p)-lll ~ ( 1 -  I]pll) -1 

Hint" The series is absolutely convergent in BL(X,  X); let s be its sum. Show that  
s ( i x - p ) - ( i x - p ) s - i x .  

b. More generally, assume f 6 Inv(X,  Y) and u 6 BL(X,  Y) with I1~ I <  f - l [ I - 1  Then 
f -  u 6 Inv(X,  Y) with 

( f _ _ u ) - I  = f - 1  q _ f - l u f - 1  q_f - lu f - lu f -1  + . . . .  

(Hint" Use the preceding result with p - f - l u  or p - uf-1.)  This series is sometimes 
called the N e u m a n n  ser ies  for ( f -  u) -1 Conclude that  Inv(X,  Y) is an open subset 

of BL(X,  Y). Also note that  ( f  - ~ t ) - I  I ~ ( f - i l l - 1  _ I~l ) - 1 .  

23.29.  Proposition and definition. Let (X, I l) be a real or complex Banach space; let 
II II denote the operator norm on BL(X,  X); let g 6 BL(X,  X). Then 

(i) the number tad(g) - lim,~__+~ ll9'~ll 1/~ exists; it is called the s p e c t r a l  r a d i u s  
of the operator g. It is also equal to each of the following quantities: 

(ii) rad(9) = inf~eN IigniI 1/n 

(iii) tad(g) = R - 1 ,  where R is the radius of convergence of the power series 0(t)  = 

E,%0 t' g 
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(iv) rad(g) is the infimum of all the numbers we obtain as operator norms Ilgll for 
the operator g, when the norm of (X, I l) is  replaced by an equivalent norm 
and II II is replaced by the resulting operator norm. (Compare 23.2.c.) 

Still another equivalent definition of the spectral radius is stated (without proof) at the end 
of 23.30. 

Proof of (i) and (ii). Fix any positive integer m. If n is any positive integer, then n - mp+b 
for some b E {0, 1 , 2 , . . . , m -  1}. Show that  

Illfnll[ 1In < Illfmlll p/(~p+b) IllfllI b/(mp+b). 

Holding m fixed, let n -+ oc to show that  lim supn_+or IiIfnlll 1/~ ~ [llfmlll 1/m. 

Proof of (iii). Immediate from the formula for the radius of convergence of power series, 
given in 22.23. 

Proof of (iv). Since [[gil - [[911] 1 _> infnEN [ [ g n l l l / n  - -  rad(g), one direction is obvious. 
For the opposite inequality, suppose r is some number greater than tad(g). D e f i n e / x / -  
y-~n~176 r-n[gn(x)[. Show that  / / is a norm on X that  is equivalent to I [, a n d / g ( x ) / < _  
r /x / .  Thus the resulting operator norm sa t i s f i e s / / 9 / /<_  r. 

23.30.  Let X be a complex Banach space; let ix  " X ~ X be the identity map. Define 
BL(X ,  X)  and Inv(X,  X)  as in 23.28. Let g E BL(X,  X).  We define 

p(g) = {)~ E C : )~ix - g  E I n v ( X , X ) } ,  the r e s o l v e n t  set  of g, and 

a(g) = {)~ E C : Aix - g ~ I n v ( X , X ) } ,  the s p e c t r u m  ofg.  

These two sets form a partition of C. The function (Aix - g ) - i  is sometimes called the 
r e s o l v e n t  of g at A, particularly in the literature of spectral theory. Caution: In some 
parts of mathematics  e.g., in the literature of semigroups of nonlinear operators the 
term "resolvent" sometimes refers to the operator (ix - /~g) - l .  

From 23.28 it is easy to see that  p(g) is an open subset of C. Furthermore, 

1 if A E C and IAI > rad(g), then A E p(g) and [[(Aix - g)-l l l  < iAl_rad(g ) �9 

(Here rad(g) is the spectral radius of g, defined in 23.29. Hint: First show that  if ]h i > IlgJ], 
1 then A E p(g) with [[(Aix - g ) - l l l  < I~l-Ilgll ") Thus a(g) is closed and bounded; hence it is 

a compact set. 

More advanced results. We now state without proof a couple of further results about the 
spectrum. The proofs (which can be found in more advanced or more specialized books) 
depend on some knowledge of analytic functions. 

(i) The spectrum a(g) is nonempty. 
(ii) The spectral radius rad(g) is equal to sup{iAI : A E a(g)}. 



Chapter 24 

Generalized Riemann Integrals 

24.1.  Preview.  Presumably the reader is familiar with the Riemann integral, which is 
introduced in college calculus. In this chapter we study the Riemann integral for Banach- 
space-valued functions. We also study the Henstock integral, a slight generalization of the 
Riemann integral. It is conceptually similar to the Riemann integral, but in its power it is 
more like the Lebesgue integral. In fact, for functions f :  [a, b] ~ [0, +oc) we shall prove in 
24.36 tha t  the Henstock and Lebesgue integrals are the same. 

Still more generally, we shall s tudy the Henstock-Stieltjes integral f b  f ( t ) d ~ ( t ) .  Its no- 
tat ion is slightly more cumbersome, but the greater generality does not make the proofs 
longer, and the Henstock-Stieltjes integral offers certain advantages particularly in ex- 
plaining certain aspects of measure theory (see 24.35) and path  integration (used especially 
in complex analysis; see 25.26). Readers who are entirely unfamiliar with Stieltjes integrals 
may also wish to glance ahead to 25.17, which shows the relationship between Stieltjes 
integrals and "ordinary" integrals. 

DEFINITIONS OF THE INTEGRALS 

24.2.  A s s u m p t i o n s .  In this chapter we shall consider integrals only over compact intervals 
[a, b]; tha t  is, we assume - o c  < a < b < +oc.  We shall consider integrals of functions 
f :  [a, b] --~ X, where (X, II II) is a normed vector space. For many of the results, we must 
assume X is complete; see especially 24.27. 

The most important  cases to keep in mind are X = R and X = C, but other Banach 
spaces are also of interest and the more general theory of Banach-space-valued functions is 
not significantly harder; moreover, the greater generality will be needed in Chapter  30. It 
is possible to replace [a, b] with a more general domain see for instance McLeod [1980] 

but the notat ion then becomes appreciably more complicated. 

24.3.  Defini t ion.  Let f : [a,b] ~ X be some function, and let v E X. We say v is a 
Riemann integral of f over [a, b] if for each number s > 0 there exists some number ~ > 0 
such that  

if n E N and a = to _< t l < t2 < "'" < tn = b and Tj C [ t j _ l ,  tj] with t j -  t j -1  < (~ 
n 

for all j ,  then v - }-]d=l(tj  - t j _ l ) f ( T j ) l l  < s. 

629 
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When such an integral exists, we say f is R i e m a n n  in t eg rab l e .  The Riemann integrability 
of certain kinds of functions will be established later in this chapter; a characterization of 
Riemann integrability among real-valued functions will be given in 24.46. 

Any function f has at most one Riemann integral v; this can be proved directly by ad hoc 
methods now (easy exercise) or proved via a broader insight given in 24.7.a. Hence we are 

justified in calling this vector the Riemann integral of f; we shall write it as v - f :  f ( t ) d t .  
For emphasis it may sometimes be called the p r o p e r  R i e m a n n  in tegra l ,  to distinguish it 

from "improper Riemann integrals" such as f l  t _ l / 2d  t _ limit0 f :  t_ l /2d t ,  which will not 
be considered here. 

Remarks.  The definition of "Riemann integral" given above is essentially the same as 
the definition published by Riemann in 1868 at least, for real-valued functions f .  Some 
calculus books use a different definition, which is equivalent for real-valued functions f but 
does not generalize readily to Banach-space-valued f: Any bounded function f : [a, b] -~ 
I~ can be approximated both above and below by step functions (defined in 24.22), and 
those step functions can be integrated in an obvious fashion. When the infimum of the 
upper integrals equals the supremum of the lower integrals, the common value is called the 
D a r b o u x  i n t e g r a l  or the R i e m a n n - D a r b o u x  in tegra l .  It was used by Darboux in 1875. 

24.4. We now generalize slightly. Let f :[a, b] ~ X be some function, and let v E X. We 
say v is a H e n s t o c k  i n t e g r a l  of f over [a, b] if for each number c > 0 there exists some 
function 5: [a, b]--+ (0, + o c ) s u c h  that  

if n E N and a = to _< tl _< t2 _< ..- _< tn = b and Tj E [ t j_l , t j]  with 
n tj -- t j -1  < 5(Tj) for all j ,  then [Iv - ~-~.j=l(tj - t j -1) f(~ ' j ) l l  < c. 

When such an integral exists, we say f is H e n s t o c k  i n t eg rab l e .  The Henstock integrability 
of certain kinds of functions will be established later in this chapter. 

Any function f has at most one Henstock integral v; this can be proved directly by ad hoc 
methods now (easy exercise) or proved via a broader insight given in 24.7.a. Hence we are 

justified in calling this vector the Henstock integral of f;  we shall write it as v - f :  f ( t ) d t .  
Clearly, any Riemann integral of f is also a Henstock integral of f .  The Henstock 

integral is more general. For instance, f~  t -1/2 dt is a Henstock integral with value 2 (if the 
integrand is defined arbitrarily at t = 0), but it is not a proper Riemann integral. 

The Henstock integral is sometimes known as the g e n e r a l i z e d  R i e m a n n  in tegra l .  It 
is also known as the K u r z w e i l  i n t e g r a l  or the H e n s t o c k - K u r z w e i l  in tegra l ,  although 
that  last term also has another meaning see 24.9. It was introduced independently at 
about the same time by Kurzweil and Henstock. Kurzweil used it briefly as a tool in the 
s tudy of certain kinds of differential equations; see particularly Kurzweil [1957]. Henstock 
developed it in greater detail as part of a wider study of integration theory. The Henstock 
integral is sometimes known as the g a u g e  in tegra l ,  but that  term has also been applied 
to some other integrals. 

The integral studied in this chapter is also known by other names e.g., the spe-  
cial D e n j o y  i n t e g r a l  or the D e n j o y - P e r r o n  in tegra l ,  since it is equivalent to a more 
complicated integral worked out earlier by Denjoy and Perron. Research continues on re- 
lated integrals; some recent references are Bullen et al. [1990], Henstock [1991], and Gordon 
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[1994]. 

24.5. A n  equivalent definit ion (optional) .  One of the chief advantages of the Henstock 
integral is that  it so greatly resembles the Riemann integral with which we are already 
somewhat familiar. Thus our intuition about the Riemann integral can be carried over 
to this new, more general integral. Our definition in 24.4, which follows Henstock [1988], 
emphasizes this resemblance. However, we note that  certain other books (such as McLeod 
[1980] and DePree and Swartz [1988]) use a slightly different definition for the Henstock 

integral. In those books, v - f :  f ( t ) d t  means that  

( ,)  for each number c > 0, there exists some function U : [a,b] ~ (open 
subintervals of R} satisfying t c U(t)  for each t and such that  

if n c N and a = to < tl <_ t2 <_ . . .  <_ tn 
n 

j ,  then IIv - E j = I  (tj -- t j - 1 ) f ( r j ) l l  < e. 
= b and wj E [tj-1, tj] c_ U(Tj) for all 

It is easy to show that  this definition (,)  is equivalent to our definition of the Henstock 
integral in 24.4. Indeed, let any c > 0 be given. If v and f satisfy ( ,)  with some U, then we 
can satisfy the definition in 24.4 by taking 5(w) > 0 small enough so that  (T-~(T),  7+5(w))  c_ 
U(T). Conversely, if v and f satisfy the definition in 24.4 with some 5, then we can satisfy 

I(~(T) T-~- I~(T)) .  (Exercise. Fill in the details of this argument.) ( ,)  by taking U(T) - ( T -  ~ , 
Hereafter we shall only use the definition in 24.4. 

24.6. Definit ions.  We now introduce several auxiliary notations that  will be helpful in our 
study of the Riemann and Henstock integrals. 

By a g a u g e  we shall mean any function 5 :  [a, b] ~ (0, +oc); a positive constant may 
be viewed as a constant function and thus as a particularly simple gauge. (Caution: This 
kind of "gauge" is unrelated to the other "gauge," a collection of pseudometrics, defined in 
2.11.) 

By a t a g g e d  d iv i s i on  of the interval [a, b] we shall mean a system of numbers 

T :  a = to ~ T1 ~ tl ~ 7-2 ~ t2 <_ 73 <_. . .  <_ tn-1  ~_ Tn ~_ tn = b, 

where n is some positive integer; we may sometimes abbreviate this as T = (n, t j ,  ~-j). 
Some mathematicians impose the further restriction that  t j -1  < tj for each j ,  to exclude 

degenerate intervals of length 0. A l t h o u g h  that  restriction is satisfied in most interesting 
cases, it is has no real effect on the development of the theory, and omitt ing that  restriction 
simplifies the notat ion in some of our proofs for instance, see 24.12. 

A tagged division T = (n, t j ,  Tj) is called 5-fine for some positive constant 5 if tj - t j - 1  < 
for all j .  More generally, a tagged division T = (n, t j ,  Tj) is 5-fine for a gauge ~ if 

tj - t j - 1  < ~(Tj) for all j .  
For any function f : [a, b] ~ X, the a p p r o x i m a t i n g  R i e m a n n  s u m  corresponding to 

a tagged division T = (n, t j ,  Tj) is defined to be the sum 

n 

X[ f ,  T] = ~ (tj - t j - 1 )  f ( T j ) .  
j= l  
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It is an element of the normed space X. 
We can now restate our definitions of the integrals. A vector v c X is a Riemann integral 

(respectively, a Henstock integral) of a function f ' [ a ,  b] ~ X if 

for each number c > 0 there exists a number f > 0 (respectively, a gauge f > 0) 
such that  whenever T is a &fine tagged division of [a, b], then I Iv-  E[f, T]] I < e. 

24.7. The definitions given above are admittedly complicated: "For each e there exists 
a f such that  for each T we have . . . .  " That  grammatical construction contains more 
quantifiers than are commonly used in a nonmathematical  sentence. It takes some getting 
used to. 

The Riemann or Henstock integral may be viewed very naturally as the limit of a certain 
net. Let us define the sets 

2) - {(T,f )  �9 f E (0, +oc) and T is a f-fine tagged division of [a, b]}, 

t~ - {(T, 5) �9 f is a gauge on [a, b] and T is a f-fine tagged division of [a, b]}. 

Then �9 C ~, since every positive constant is a gauge. Both �9 and ~ will be viewed as 
directed sets, with this ordering: (T1,51) 4 (T2,52) if 51 _> 52. Unwinding the notation, 
verify that  

"v is a Riemann integral of f"  

converges in X to v, and 

means that  the net (E[f ,  T] (T, 5) E �9 

/ 

"v is a Henstock integral of f"  means that  the net (E[f ,  T] 

converges in X to v. 

Here are two immediate applications of this viewpoint: 

a. Since the normed space (X, II II) is a Hausdorff topological space, each net in X has 
at most one limit. Thus we have an immediate proof that  each X-valued function has 
at most one Riemann integral or Henstock integral. 

b. Assume the normed space X is complete. Then a function f : [a, b] ---, X is Riemann- 

if and only if the net (E[f ,  T] �9 (T, ~) c 2)) 
\ 

Henstock-integrable, respectively, o r  o r  

the net (E[f ,  T] �9 (T, ~) E ~) is Ca tchy  in X, where Catchy  nets are defined as in 
\ , I  

19.2. In other words, f is Riemann integrable (respectively, Henstock integrable) if 
and only if 

for each c > 0 there exists some number 5 > 0 (respectively, some gauge 5 
on [a, b]) such that  whenever T, T'  are f-fine tagged divisions of [a, b], then 

liE[f, T] - E[f, T'] II < c. 

24.8. Definitions. We generalize still further. Let X be a normed space over the scalar field 
F. (In the simplest case we may take X - F, but greater generality is sometimes useful.) Let 
f and p be two functions defined on [a, b] - -  one of them X-valued, the other scalar-valued. 
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(Throughout most of this chapter, whenever possible, we shall be intentionally ambiguous 
about which of f, p is scalar-valued and which is vector-valued, in order to cover both cases 
at once.) Define the approximating Riemann-Stieltjes sum 

n 

E[f,T,F] - ~ f ( T j ) [ F ( t j ) -  F(t j -1)] .  
j = l  

The R i e m a n n - S t i e l t j e s  i n t eg ra l  and the H e n s t o c k - S t i e l t j e s  i n t eg ra l  are, respectively, 
the limits of the nets 

(E[f ,T ,p]  " ( T , ~ ) E � 9  and (E[f ,T,~] " ( T , ~ ) E ~ ) ,  

where 2), ~ are defined as in 24.7. The resulting integrals are denoted f or fb f ( t )d~(t) .  
In other words, the integral is a vector v with the property that for each number e > 0 
there exists a number ~ > 0, respectively a gauge ~ > 0, such that whenever T is a ~-fine 
tagged division, then I v -  Elf, T, ~]1 < c. 

Since most of this chapter concerns itself with Henstock-Stieltjes integrals, when the 

Henstock-Stieltjes integral f :  f dp exists we shall simply say that f is qp-integrable.  
The theory of Stieltjes integrals generalizes that of Riemann and Henstock integrals, 

since we can take p(t) = t. Readers who are entirely unfamiliar with Stieltjes integrals may 
wish to glance ahead to 24.18, 24.35, 25.17, and 25.26 for motivation. 

24.9. Remarks on generalizations and variants (optional). We mention some other integrals 
that will not be studied in this book. 

In defining f fd~,  we could let f and p both be vector-valued. Say they take values 
in vector spaces X and Y, respectively; then form a product using some bilinear mapping 
( , } : X  x Y ---, Z. The resulting integral would take values in Z. 

For any mapping g : [a, b] x [a, b] ---, X ,  we may define the generalized Perron integral 
of U as the limit (if it exists) of sums of the form 

E[U,T] - ~ [U(~-j,ti) - U(Tj,tj_I)] 
j = l  

for tagged divisions T -  (n, tj, Tj). This generalizes the Henstock-Stieltjes integral f :  f d~ 
since we can take U(T, t) = f (T)p(t) .  For an introduction to this generalized integral and 
its applications to generalized differential equations, see Schwabik [1992]. 

Still more generally, let h = h(~-, J) be a Banach-space-valued function defined for real 
numbers ~- and compact intervals J. The limit of the sums 

~t 

r[h, T] = E h (7j, [tj-1, tj]) , 
j = l  

when it exists, is sometimes called the Henstock-Kurzweil integral of h. 
reader may refer to papers and books by Henstock and Kurzweil. 

For details the 
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The Lebesgue integral is an a b s o l u t e  i n t e g r a l -  i.e., if f is Lebesgue integrable, then 
so is If(')]; this fact is built into our definition of the Lebesgue integral. The Henstock 
and Henstock-Stieltjes integrals are not absolute integrals; the Henstock integral is slightly 
more general than the Lebesgue integral. McShane [1983] studies a gauge integral which is 
defined slightly differently from 24.4; McShane's integral turns out to be exactly equivalent 
to the Lebesgue integral. Further information on McShane's integral can be found in R. 
V~born:~ [1994/95] and in the appendices of McLeod [1980]. 

Another integral, due to Fr6chet, is particularly simple and noteworthy: Forget about 
gauges. Let 9" be the set of all tagged divisions of [a, hi, with this ordering (which ignores 
the placement of the tags): T1 4 2"2 if the partition of T1 is a refinement of the partition of 
2"2 i.e., if {divison points of 2"2 } C {division points of T1 }. The limit of the resulting net 
(E[f, T]) is sometimes called the r e f i n e m e n t  in tegra l .  It has the advantage that, although 
it resembles the Riemann integral, it does not depend as heavily on the specialized nature 
of subintervals of ]R it generalizes very easily to integrals over any measure space. It is 
discussed further by Hildebrandt [1963, pages 320-325]. The refinement integral is slightly 
simpler than the gauge integrals studied in this chapter, and perhaps it is a better approach 
in some respects; that  question deserves further study. We prefer the gauge integral chiefly 
because at present it is more compatible with the wider body of mathematical literature. 

24 .10 .  Proposition. If 5 :[a, b] --~ (0, +oc) is any gauge, then there exists a 5-fine tagged 
division of  [a, b]. 

Proof. Let S = {s E [a, b]: there exists a 6-fine tagged division of [a, s]}. We are to show 
that b c S. Trivially, a c S. Let ~ = sup(S). There is some s c S such that s > a - ~(a). 
Any tagged division of [a, s] can be extended to a tagged division of [a, a] by tacking on the 
additional interval Is, a] with tag a. This proves a c S. If a < b, then any tagged division 
of [a, a] can be extended to a larger interval [a, a'] by tacking on an additional subinterval 
[a, a'] with tag a thereby contradicting the maximality of a. Thus b = a, so b E S. 

24.11. A useful gauge. The following construction will be used in a few proofs later in this 
chapter. Let any finite, nonempty set Q c_ [a, b] be given. 

Let p = min{I q - q ' I  : q,q' e Q,q 7 ~ q'}, or let p = 1 if Q consists of just one point. 
Define a gauge 7 :  [a, b] ~ (0, +oc) by: 

- S min{p, dist(t ,Q)} when t ~ Q 
~(t) 

p when t c Q. 

Then it is easy to see that any 7-fine tagged division T = (n, tj, Tj) will have the following 
properties: 

(i) No subinterval [tj-1, tj] .contains more than one member of Q. 

(ii) If q E Q M [tj-1, tj], then q is equal to Tj (i.e., the tag of the subinterval). 

24.12. A useful tagged division. The following construction will be useful in a few proofs 
later in this chapter. Let S = (m, si, ai) be any tagged division of an interval [a, hi. We 
can form a related, new tagged division T = (2m, tj, Tj) by t'he following rule: We have 
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8i-1 ~_ ai ~_ 8i, SO we may subdivide  each interval  [8i-1,8i] into the  two subintervals  

[t2i-2, t2i-1] = [si-1,  ai] and [t2i-1, t2i] = [cri, si], 

with both new tags T2i_ 1 and ~-2i equal to the old tag cri. 
subintervals may have length 0, but that  is not a d i f f i c u l t y -  
tagged division T has the following important  properties. 

(i) For any gauge 6, if S is 5-fine, then T is also &fine. 

(ii) 

(iii) 

(Of course, some of the new 
see the remarks in 24.6.) This 

For any function g :  [a, b]--~ X, we have E[9 , S] = E[g, T]. 

Each subinterval [tj-1, tj] in the tagged division T = (2m, tj, Tj) has for its 
tag Tj one of the subinterval 's endpoints, tj-1 or tj. 

BASIC PROPERTIES OF GAUGE INTEGRALS 

24.13.  Some trivial integrals. 
a. In our definitions of the integrals, we permit  a - b. Trivially, fa f(t)dt and f~ f(t)d~(t) 

always exist and are equal to 0. 

b. Let f be a constant function: f(t) - x for all t E [a, b]. Then we have the Riemann 

integral f :  x d t -  (b -  a)x or, more generally, the Riemann-Stieltjes integral f :  x d p -  
[ ~ ( b ) -  ~(a)]x for any function ~. 

24.14.  Integrals as linear maps. If T is any tagged division of [a, b], then f ~ E[f, T] is 
a linear map from X [a'b] into X. The Riemann integrable functions form a linear subspace 

of x[a'b]; it is the set of all f for which the net (E l f ,  T] �9 (T, ~i) E �9 is convergent. The 
\ / 

Riemann integral is a linear map from that  linear subspace into X; it is the pointwise limit 
of the net of functions El., T]. 

Analogous remarks apply for the Henstock integral, with �9 replaced by ~:. 
Analogous remarks apply for the Stieltjes integral fb fd~, as a function of f (with 

fixed) or as a function of ~ (with f fixed). 

24.1 
a. 

5. Negl ig ib i l i ty  of  smal l  sets .  
If p :  [a, b] --~ X is a function that  is only nonzero on a finite subset of [a, b], then the 

Riemann integral f :p(t)dt  exists and equals 0. If f, g '[a,  b] ~ X are functions that  

only differ on a finite subset of [a, hi, then the Riemann integral f :  f(t)dt exists if and 

only if the Riemann integral f2 g(t)dt exists, in which case they are equal. Thus, if 
we change the value of a function at finitely many points, its Riemann integral is not 
affected. 

In the preceding statements,  we cannot replace "finite" with "countable." For 
example, show that  1Q, the characteristic function of the rational numbers, is not 
Riemann integrable on any interval of positive length. 
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bo 

C. 

d" 

If p �9 [a, b] ~ X is a function that  is only nonzero on a countable subset C - {cj } 
of [a, b], then the Henstock integral fbaP(t)dt exists and equals 0. (IBnt: Given any 
number e > 0, choose a gauge ~ so that  IIp(cj)ll6(cj) < 2-Jc for all j; choose 

arbitrari ly outside C.) For instance, f l  lQ(t)dt - O. If f ,  g " [a, b] ---, X are functions 

that  only differ on a countable subset of [a,b], then the Henstock integral fb  a f ( t )d t  
exists if and only if the Henstock integral fb  a g(t)dt exists, in which case they are equal. 
Thus, if we change the value of a function at countably many points, its Henstock 
integral is not affected. 

Remarks. The value of a Henstock integral is not affected if we change the integrand on 
a set of Lebesgue measure 0; that  fact will follow from 21.37.i and 24.36. However, for 
some purposes involving Henstock integrals, we cannot ignore uncountable sets, even 
if they have measure 0; for instance, see 25.19 and 25.25. 

Let f and ~ be two functions on [a, b], at least one of them scalar-valued. If p vanishes 
at a and b and at all but finitely many points of (a,b), then the Henstock-Stieltjes 

integral fa b f d~ exists and equals 0. (Hint" Use 24.11 and 24.12.) If ~Pl, ~P2 agree at 

a and b, and differ only on a finite subset of (a, b), then fa b f d~l exists if and only if 

fa b f d~P2 exists, in which case they are equal. 

24.16.  Some elementary estimates. 

a. If f ' [ a ,  b] --~ X and h ' [ a ,  b] ~ R are Henstock integrable and IIf(-)l _~ h(.) on [a, b], 
then I f  b f (t) dtll ~_ fb  a h(t) dt. 

More generally, if ~ "  [a, b] ~ R is an increasing function, f �9 [a,b] ~ X and 

h" [a, b] ~ R are p-integrable, and Ill(.) I _~ h(.) on [a, b], then II fb  f d~jl ~_ fb  h d~. 
Hint" First show that  112[f, T, ~] II 5 rib, T, ~]. 

b. A mean value theorem. If f " [a, b] --~ X is Henstock integrable, then ~ fb  f (t) dt is 
in the closed convex hull of the range of f .  

More generally, if ~ "  [a,b] ~ N is an increasing function and f "  [a,b] ~ X is 

~a-integrable, then [~(b) - ~(a)] -1 fb f d~ is a member of the closed convex hull of the 
range of f .  

Hint" First show that  [~(b) - ~(a ) ] - lE[ f ,T ,  ~] E co(Ran(f) ) .  

c. Let f,  ~ be functions defined on [a, b], at least one of them scalar-valued. 

has bounded variation and f is bounded and ~-integrable. Then I f  b 
IIfl l~Var(~, [a, b]). 

Hint" First show that  IE[f, T, P]I -~ Ilfll,~Var(~, [a, b]). 

Suppose 

f d~[  <_ 

24.17.  T h e o r e m  on  u n i f o r m  l imi t s .  Assume the normed space X is complete. Suppose 
that  f l ,  f2, f 3 , . . .  " [a, b] ~ X are functions converging uniformly on [a, b] to a function 
f " [a,b] ~ X .  

(i) If the fn 's  are Riemann integrable or Henstock integrable, then f is integrable 

in the same sense, and fb  a fn( t )d t  ~ fb  a f (t)dt. 
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(ii) More generally, suppose p "  [a, b] ~ IR is an increasing function. If the f~'s 
have Riemann-Stieltjes or Henstock-Stieltjes integrals with respect to p, then 

f is integrable in the same sense and f :  f~ ( t )d~( t )  ~ f :  f ( t ) d ~ ( t ) .  
It suffices to prove (ii). By assumption, sj - I I / -  fjll~ - s u p t  I f ( t )  - f ~ ( t ) l  tends 

to 0 as j ---, oe. We have II / j  (t) - /k (t) ll _< cj + ck for all t. Hence 

b b b b 
If fjd~s - f fkd:l I -- II f(fj - fk)d~sll <- I(ej + ek)d: -- (~s(b) - ~s(a))(ej + ek), 

a a a a 

which tends to 0 as j, k ---, oc. Thus the sequence ( f  f j d ~ )  is Cauchy and converges to some 
limit v. Now estimate 

E[f, T, ~] - vii _< IIE[f - f j ,  T, ~]11 + IIE[fj, T, ~] - f f j d~ l  I + II f f j d p  - vii. 
A 

24.18.  R e p a r a m e t r i z a t i o n  T h e o r e m .  Let (7 "[a, b] + [a, b] be an increasing bijection. 
Let f and p be functions defined on [a, b], at least one of them scalar-valued. Then the 

Henstock-Stieltjes integral f :  f dp exists if and only if the Henstock-Stieltjes integral f b ( f  o 
(7) d(~ o (7) exists, in which case they are equal. 

h 

Pro@ Let f -  f o (7 and ~ - p o (7. We are to prove that  f :  f dp exists if and only if fb f ' d ~  
exists, in which case they are equal. There is a symmetry  between the "hat" quantities and 
the "no-hat" quantities, since (7-1 "[a, b] ~ [3, b] is an increasing bijection and we have 

f - f 0(7 -1 and F - ~o(7  -1. 
Corresponding to each tagged division 

T �9 a - to < T1 ~ t l <_ 7-2 <_ ""  <_ tn_l  ~ Tn ~ t n  - -  b 

is another tagged division 

T �9 a - t o  <_~1 <__tl <_~2 <_"" <_tn-1 <_Tn < t n - - b  

defined by t~ - (7-1(tj) and ~j - (7-1(Tj). It is easy to verify that  E [ f ,T ,~ ]  - E [ f , T , ~ ] .  

We are to prove that  limg E[f,  T, ~] exists if and only if lim~ Elf ,  T, ~] exists, in which case 
the limits are equal. Thus, it suffices to prove that  the tagged divisions T become fine when 

i 

and only when the tagged divisions T become fine. By symmetry, it suffices to prove half 
of this implication. 

Thus, let any gauge ~ on [~, b] be given; it suffices to prove the existence of a gauge ~ on 
[a, b] with the property that  

whenever T is ~-fine, then T is 5-fine. 

(Caution" The most obvious choice is ~ - ~ o (7-1, but that  choice doesn't  work; we need 
i 

something slightly more sophisticated.) Since (7-1" [a, b] + [a, b] is an increasing bijection, 
it is continuous; in particular it is continuous at r. For each number r in [a, b), we can 
choose ~(r) to be a positive number small enough so that  T + ~(T) E [a, b] and 

-- ( ) - 1~" ((7-1 (7-)) . ( , 1 )  (7 1 7- Jr-(~(7-) ~ (7 1(7-)n t- 2 
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Also, for each number ~- in (a, b], we can choose ~(T) to be a positive number small enough 
so that  ~ - -  ~(T)E [a, b] and 

1^(0.-1 0 . - - I ( T - - ( ~ ( T ) )  ~ 0. --1( 7" ) -- ~(~ (7")). ($2) 

These conditions can be satisfied simultaneously since 1~ ( a - l ( T ) )  is positive number. a 
Now suppose T is ~-fine. Then for each j ,  we have Tj E [tj-1, tj] and tj - tj-1 ~ ~(Tj); 

hence 

tj <_ Tj + 5(Tj) and t j_l  >_ ~-j -5(~-j). 
We can now prove 0 . - l ( t j )  < a - l ( T j ) +  15(0.-1(Tj))  by two different arguments.  If Tj c 
[a, b), then this inequality follows from (.1); if Tj - b, then we deduce that  tj - T j .  Similarly, 

- (7"~ I~'(O'--I(Tj)). Hence obtain 0.-1 t j _ l ,  ( ) > 0. 1 j / _  we 

t~- - t~- i  -- 0 . - l ( t j ) - - a - l ( t j _ l )  < ~ (0"- 1 (Tj)) -- ~ ( ~ ) ,  

so T is ~-fine. 

ADDITIVITY OVER PARTITIONS 

24.19.  T h e o r e m .  Let P0 < Pl < P2 < "'" < Pro. Let f and ~ be functions defined on 
[P0, Pro] one taking values in a Banach space X, the other in the scalar field F. Then f 
is p-integrable on [PO,Pm] if and only if its restrictions to the subintervals [Pj-I,Pj] are all 
p-integrable, in which case 

f d~" - f d~ + f d~ + ... + f dp. 
0 0 1 r n - - 1  

Proof. It suffices to show this for m = 2; then apply induction. Let us denote a = P0, 
q = Pl ,  b = P2. T h u s ,  it suffices to consider [a, b] = [a, q] tJ [q, hi, where a < q < b. 

First suppose that  f is ~-integrable on [a, hi; we shall prove that  f is ~-integrable on 
[a,q]. (A similar argument works on [q,b].) We shall use the fact that  f satisfies the 
Ca tchy  criterion 24.7.b on the interval [a,b] to show that  this criterion is also satisfied 
on the subinterval [a, q]. Let any s > 0 be given. By assumption, there is some positive 
number 5 (or some gauge 5) such that  if S, S'  are ~-fine tagged divisions of [a, b], then 

liE[f, s,  ~ ] -  r [ f ,  s ' ,  p]ll < c. Let ~" be the restr ict ion of ~ to [a,p]. Now let T, T '  be any 
A 

two tagged divisions of [a, p] that  are 5-fine. Using 24.10, show that  T, T '  can be extended 
to ~-fine tagged divisions S,S '  of [a,b] that  are identical on [p,b]. Hence l l r [ f ,T ,  ~ ] -  
Elf ,  T' ,  ~] II = IJr[f, S, ~] - Elf ,  S', ~] II < c. 

Conversely, suppose f is ~-integrable on both [a, q] and [q, b]; we shall show that  f :  f d ~  
exists and equals fqa f d~  + f :  fd~.  Let any s > 0 be given. It suffices to construct a gauge 

on [a, b] with the property that  if 

S " a -  80 ~ 0.1 ~ 81 ~ (72 ~ 82 ~ ' ' '  ~ 8n_1 ~ 0.n ~ 8n -- b 
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is any &fine tagged division of [a, b], then 

/a q /qb II Elf,  S, 4] - fdg) - f d ~  < c. (**) 

By hypothesis, since the integral exists on [a, q] and [q, b], there exists some gauge ")/1 o n  

[a, b] such that  if U is any 71-fine tagged division of either J = [a, q] or J = [q, hi, then 
I1~[/, u, ~ ] -  f j  Idyll < c/2. Define a gauge ~ as in 24.11 with Q = {q}. We shall show 
that  the gauge (5 = rain{71, "7} satisfies condition (**) 

Indeed, let S be a &fine tagged division of [a,b]. We must have q E [Sk-l,Sk] for at 
least one value of k; fix such a value of k. (There may be two such values of k, if q is equal 
to one of the division points sj. In that  case, let k be either one of the applicable values; 
let k remain fixed throughout  the remainder of this argument.)  Then q = o"k, by one of the 
consequences of 24.11. 

Now split S into tagged divisions U1, U2 of [a, q], [q, b], splitting the subinterval [sk-1, ski 
into two subintervals both with tag q. Thus U1 and U~ have these tags and subintervals: 

gl : 

g2: 
0-1 E [80,81] ,  0"2 C [S1,82] ,  . . . ,  0"k-1 E [8k-2, Sk-1], q E [8k-l,q], 
q C [q, sk],  0"k+l C [8k, 8k+l ]  , . . . ,  o"n-1 C [8n_2, Sn-1], 0"n C [8n_l, 8n]. 

i t  is easy to see that  gl and U2 are both ")'-fine, and that  Elf ,  S, g)] = E[f, U1, g)] + E[f, U2, g)]. 
This completes the proof. 

24.20.  Notation and corollary. It is convenient to define fb  f dg~ - - f 2  f dg~. Thus an 
expression of the form fq f d~ may be defined regardless of whether p < q or p > q. With  
that  notation, we have t~is corollary: 

Let f : [a,b] ---, X be ~-integrable. Let p , q , r  be any three numbers in [a,b] (not 
necessarily in increasing order). Then 

f d ~  + f d ~  - fdg~. 

24.21.  Remarks. A theorem analogous to 24.19 is also valid for Riemann integrals, with 
a similar but slightly longer proof. We shall omit the proof, since that  result is not needed 
later in this book. 

An analogous theorem is not valid for Riemann-Stieltjes integrals. Indeed, let 

~(t) _ { 0 when - l _ < t < 0  { 0 when - l < t _ < O  
1 when 0 _< t _< l, f ( t )  - 1 w h e n 0 < t _ < l .  

Then it is easy to prove that  the Riemann-Stieltjes integrals f~ 1 fd~ and f(] fd~ both exist, 

but the Riemann-Stieltjes integral f l  1 f d ~  does not exist. Hint: 24.22.c. 

24.22.  Recall from 11.43 that  a s t e p  f u n c t i o n  on [a, b] is a function that  takes a constant 
value zj on each open subinterval (pj-1, Pd), for some division 

a = Po < Pl < P2 < "'" < Pm -- b. 
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Show that  
m a. If f is a step function, then f is Riemann integrable, with f :  f(t)dt - E j = I ( P j  - 

Pj-1)zj. Note that  the values of f(Po), f (Pl) ,  . . . ,  f(pm) are irrelevant i.e., they 

can be altered without any effect on the value of f :  f(t)dt a particular instance of 
the principle observed in 24.15. 

b. More generally, suppose f is a step function on [a, b], and p is a function on [a, b] that  
has right- and left-hand limits 

p ( t+ )  - limu,t ~(t) and ~ ( t - )  - 1 ~  t p(u) 

at every t E [a, b], with the convention that  ~ ( a - )  = ~(a) and ~(b+) = ~(b). (This 
hypothesis is satisfied, for instance, if ~ has bounded variation; see 19.21.) Assume 
that  at least one of f, ~ is scalar-valued. Then f is ~-integrable, with 

jfab m m 

f d~ = E [ ~ ( p j  -- ) -- ~ ( p j - I  -~-)] Xj -~- ~ [~(pj-'['-) -- ~ ( p j  --)] f (pj). 
j--1 j=0 

(This formula is taken from McLeod [1980]. The constructions 24.11 and 24.12 may 
be useful in the proof.) Note that  this formula does depend on the values of f at 
P0, Pl ,  P2, �9 �9 �9 Pro, unless  qD is con t inuous  a t  those  points .  

c. If f and qo are any functions on [a, b] one vector-valued, the other scalar-valued 
that  are both discontinuous at some point p E [a, b], then the Riemann-Stieltjes 

integral f :  f dqo does not exist. 

24.23.  H e n s t o c k - S a k s  L e m m a .  Let f and ~ be functions on an interval [a, b]; assume 
one of them takes values in a Banach space X and the other is scalar-valued. Let f be p- 

integrable i.e., assume the Henstock-Stieltjes integral faD f dp exists. Let c be a positive 
number, and (as in the definition of the integral) let 5 be a gauge with the property that  

every 5-fine tagged division T -  (n, tj, 7j) satisfies liE[f, T, ~ ] -  f :  f d~l I < c. Then: 

(i) Suppose T -  (n, tj, Tj) is a tagged division, not necessarily ~-fine, but satis- 
fying tj - tj_l ~ (~(Tj )  for all j in some set J C_ {1, 2, 3 , . . .  n}. Then 

f(~-j) [~(tj) - ~(t j-1)]  - -  1 f d~p 

(ii) If T - (n, tj, Tj) is a ~-fine tagged division and X is a finite-dimensional space 
equipped with any norm equivalent to any of the usual norms, then 

~ 

E f(rj)[~(tj)  - ~(t j-1)]  - f(t)dt < se 
j = l  -1 

for some constant ~ that  depends only on the choice of the space X and 
its norm II II. In particular, if X - R q with norm II(Zl,Z2,...,Xq)ll - 
Izll + Ix21 + . . .  + IZql, then we can take ~ - 2q. 
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Proof of (i). Let K = {1, 2, 3 , . . . ,  n} \ J.  Throughout  this argument,  the tagged division 
T = (n, tj, Tj) and the sets J and K will be held fixed, but we shall consider certain other, 
varying tagged divisions based on T, J, K. 

Temporarily fix any k E K, and consider tagged divisions U of the subinterval [tk-1, tk]. 
We know that  f is ~-integrable on [tk-1, tk] (see 24.19); hence the net (Elf,  U, ~]) converges 

to  fttkl f d~ as the tagged division U becomes finer. 

Now, for the entire interval [a, b], consider a tagged division 

S " a -  s0 ~ 0-1 ~ 81 ~ 0"2 ~ 82 < ' ' "  ~ Srn--1 ~ 0-m ~ Srn -- b 

that  is identical to T on each of the intervals [tj-l,tj] for j E J,  but is much finer on each 
of the intervals [ tk-l , tk] for k E K. Then 

E[f, S, ~] = E f(Tj)[~(tj) -- qp(tj-1)] 
jCJ  

+E 
kCK 

E 
{i " [8i-1,8i]  

C [ tk-1 ,  tk]} 

f(0-i) [qp(si) - ~(si-1)]. 

As the divisions on the intervals [tk-1, tk] become finer, we have this convergence" 

j(t~ k X[f,S, ~] --~ ~ f(rj)[p(tj) - ~( t j -1)]  + Z f dp. 
jEJ  kEK -1 

On the other hand, by applying 24.10 on each subinterval [tk-1, tk] for k c K, we can 

choose S so that  it is ~-fine, hence liE[f, S, p ] -  f :  f d~ < c. Taking limits in this inequality 
as S becomes progressively finer on the subintervals [ tk-l , tk],  we obtain 

]j~Ej f(Tj) [qp(tj) - ~(tj_l)] + kEgZ ff'tlkl_ 
jfa b 

f d99 - f dqp 

Rearranging terms, we obtain conclusion (i). 

Proof of (ii). To prove the result for X - R, use conclusion (i) twice 
consisting of those j ' s  for which the number 

f(Tj) [~(tj) - ~(t j -1)]  - / i  j 
--1 

f d99 

once with J 

is positive and once with those j ' s  for which that  number is negative; then add the results. 
For an arbitrary positive integer q, apply the one-dimensional result to each of the real- 
valued functions 7ri o f ,  where 7ri : Rq ~ IR is the i th coordinate projection. For the 
II II1 norm, we just add the coordinatewise errors. Any equivalent norm II II satisfies 
C1]IX]] < ]]X]]I < C2]]Xll for some positive constants C1,C2. 
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24.24.  Definition. Let f ' [ a ,  b] ~ X be ~-integrable. Then an i n d e f i n i t e  i n t e g r a l  of f 

is a function F ' [ a ,  b] ~ X of the form f ( t )  - z + f~ f d~, for any constants c E [a, b] and 
x E X. Note that  any two indefinite integrals of f differ by a constant. For simplicity, the 
most common choice of F is with c -  a and x - 0. For most applications, the particular 
choice of x and c does not mat ter ,  so we may refer to F as "the indefinite integral of f ."  
We may write it as 

F(t) - f d~ + constant. 

This is actually a whole collection of functions - -  one for each choice of the constant 
any one of those functions will work equally well in most applications. 

- -  but 

24.25.  C o n t i n u i t y  T h e o r e m .  If f is Henstock integrable on [a,b], then the indefinite 
integral v ( t ) -  fa ~ f(s)ds  is continuous. 

More generally, if f is ~-integrable, then the indefinite integral F(t) - f t  a f d~ is right 
continuous (respectively, left continuous) at each point where ~ is. 

Proof. Fix any p E [a, b) where p is right continuous; we shall show that  F is right continuous 
at p. (A similar argument  works for left continuity.) Let any c > 0 be given; choose some 
corresponding gauge 5 as in the definition of the Henstock integral or in the Henstock-Saks 
Lemma. Replacing ~ with a smaller gauge if necessary, we may assume p + ~(p) < b. Now 
consider any q E (p,p + ~(p)). By applying 24.10 on the intervals [a,p] and [q,b] we can 
obtain a 5-fine tagged division T that  has as one of its subintervals [t~-_l, t~ - [p, q] with 

tag ~ - - - p .  Apply the Henstock-Saks Lemma 24.23 with J equal to the singleton {~'}; thus 

If(P)[~(q) - ~(P)] - fq f d~l < c. This proves that  

q E (p, p + 5(p)) :=> IF(q) - F(p)I < c + ]~(q) - ~(P)I If(P)l. 

Hence limsupqlp IF(q)-  F(p)I < c. Since c was chosen arbitrarily, we have 

l i m s u p l F ( q ) - F ( p ) l  < O, hence l i m F ( q ) -  F(p). 
qlP q~P 

INTEGRALS OF CONTINUOUS FUNCTIONS 

24.26.  A d v a n c e d  c a l c u l u s  t h e o r e m :  e x i s t e n c e  of  t h e  i n t e g r a l .  Assume the normed 
space X is complete, and let f "  [a, b] ---, X be continuous or more generally, piecewise 
continuous (defined in 19.28). Then: 

(i) The Riemann integral fb a f ( t )d t  exists. 

(ii) More generally, let ~"  [a, b] --~ F be any function of bounded variation. Then 

the Riemann-Stielt jes integral f2  f d ~  exists. 
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Hints: f is a uniform limit of step functions; we shall apply 24.22 and 24.17. It suffices 
to consider the case of real-valued p, since p = Re(p) + i Im(p) .  It suffices to consider 

increasing, since any real-valued function of bounded variation is the difference of two 
increasing functions. 

Remark. Much weaker hypotheses imply the existence of integrals; see 24.45 and 29.33.b. 

24.27.  Converse proposition (optional). Let (X, II 11) be a normed vector space that  is 
not complete. Then there exists a continuous function f : [0, 1] --~ X that  is not Henstock 
integrable. 

Proof. By assumption,  there exists some sequence (xn) in X that  is Ca tchy  but does not 
converge. Replacing (xn) with a subsequence, we may assume IIx  - X~+l II < 4 -~ for all 

oc N 
n E H. Let ~t~ - x~ - X~+l; then I1~11 < 4-~ but X ~ = I  un - limN-~oo Y~=I  u~ does not 
exist in X. Note t h a t  E r t % l  Un does exist in the completion of X, which we shall denote 
by Y. 

Now let ~ :  [0, 1] ~ [0, +oc) be some continuous function satisfying 9~(0) = ~(1) = 0 

and c - f l  p( t)dt  > 0. (The particular choice of ~ does not matter ;  three such functions 
1 1 1 _ ( t -  1)2 and sin(Trt).) are ~ - I t - 7 1 ,  ~ ~ , 

Define f : [0, 1] ~ X as follows: Let f(0)  = 0. For n = 1, 2, 3 , . . . ,  on the subinterval 
[2-~,2-n+1],  let f ( t )  = 2 ~ p ( 2 ~ t -  1)u~. Then f is continuous on that  subinterval and 
vanishes at each end of that  subinterval, and II/(t)ll _< 2~ll~ll~llu~ll < 2-~11~11~ everywhere 
on that  subinterval; hence f is continuous everywhere on [0, 1]. An easy computat ion shows 

f } f  ~+l f (t)dt - cu,~. 
We may view f as a continuous function from [0, 1] into the completion space Y. Then 

f is Riemann integrable in Y, by 24.26(i). It is intuitively obvious (and an only moderately 

difficult exercise to prove) that  f l  f ( t )d t  - c}-~=1 un, which exists in Y but not in X. 
If f has a Riemann or Henstock integral in X, then that  integral must coincide with the 
Riemann integral in Y; thus f does not have a Henstock integral in X. 

24.28.  Proposition. Let F be the scalar field, and let C[a, b] = {continuous functions from 
[a, b] to F}. Let X be a Banach space. Define 

{ /a b } 
C[a, b] • - ~/ E BV([a, b], X )  �9 f d~ - O for every f c C[a, b] . 

Then a second, equivalent definition is 

• 
- {~P E BV([a, b],X) �9 ~p(a) -~p(b) and the set 

{t E [a, b] �9 ~p(t) ~ ~p(a)} is at most countable}.  

The linear space B V([a, b], X)  can be expressed as a direct sum of two linear subspaces, as 
follows: 

BV( [a, b] , X) = C[a,b] • ~ NBV([a ,  b],X), 
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where NBV([a ,  b], X )  is defined as in 22.19.d. Tha t  is, any ~ E BV([a,  b], X )  can be wri t ten 
in one and only one way as @ - ~21 + ~22 with ~)1 E C[a,b] • and ~2 E NBV([a ,  b],X). 
Furthermore,  Var(f2)  _< Var( f ) .  

Proof (following Limaye [1981]). To prove the equivalence of the two definitions of C[a, b] • 
let any f E BV([a,  b], X) be given. For simplicity of notation, replace ~(-) with the function 
~(.) - ~(a);  thus we may assume ~(a)  - 0. 

First suppose ~ E C[a, b] • using the first definition. If we take f to be the constant 
function 1, we find that  ~(b) - ~(a) .  Now let v(t) - Var(~, [a, t]); then v is increasing and 
hence has at most countably many discontinuities. Fix any point to where v is continuous; 
it suffices to show that  ~(t0) - 0. For large integers n, define the continuous function 

1 if a < t < to 1 
fn(t)  - 1 -  (t - to)n if t 0 < t _ < t 0 + n  

0 i f t 0 +  1 < t < b .  
n ~ 

Using 24.19, we can compute 

~a b ftl ~ 0 = f n d t  = ~(to) + fn(t)d~2 + O. 

Since [[fni[~ _< 1, 24.16.c shows that  ]~(t0)l _< Var(~, [to, to + 1]) _ v(to + 1) _ v(to). Now 
take limits as n ~ oc. 

On the other hand, suppose that  ~ E C[a, b] • using the second definition. We use the 

fact tha t  lab f d~ is a Riemann-Stielt jes integral, not just a Henstock-Stieltjes integral. We 

have f2 f d~ - limT Z[f, T, W] for any choice of tagged divisions T that  have subinterval 
lengths tending to 0. By our hypothesis on ~, we can choose the tagged divisions T so 
tha t  the subintervals [tj-1, tj] satisfy ~( t j -1 )  - ~( t j )  - O. Then Elf ,  T, ~] - 0 for all such 
tagged divisions. This completes the proof of the equivalence of the two definitions. 

From the second definition of C[a,b] • it is clear that  C[a,b]• N B V ( [ a , b ] , X ) -  {0}; 
hence any ~ can be wri t ten in at most one way as ~1 + ~2. Let us show that  it can be 
wri t ten in at least one way. Let any ~ E BV([a, b], X )  be given. Since any constant function 
belongs to C[a, b] • we may replace ~(.) with the function ~ ( . ) -  ~(a);  thus we may assume 
~(a)  - 0 to simplify our notation. Now define 

0 when t -  a 
~2(t) - ~ ( t + )  when t E (a,b) 

~(b) when t -  b. 

Then ~2 is right continuous on (a, b). 
To show that  Var(~2) <_ Var(~),  let any part i t ion a - to < tl < t2 < . . .  < tn - b be 

given and any number c > 0. For j - 1, 2 , . . . ,  n -  1 choose some point sj E (tj, t j+ l )  with 
1~2( t j ) -  ~(sj) l  < ~c. Tha t  inequality is also satisfied for j - 0 and j - n by taking so - a 

and sn - b. Hence 

n n 

E ]~2(tj) -- ~2(tj-1)[  < 2r -~- E I~(sJ) -- ~(s j -1) l  _< 2r + Var(~).  
j = l  j = l  
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Thus Var(fJ2) _< 2c + Var(fJ); now let c ~ 0. This proves Var(~2) _< Var(fJ), and therefore 

c xBV([a, hi, x) .  
Since ~ is continuous except at at most countably many points, the function ~1 = ~ - ~ 2  

belongs to C[a, b]• that  is clear from the second definition. This completes the proof of 
the theorem. 

MONOTONE CONVERGENCE THEOREM 

24.29. Monotone  Convergence Theorem for Henstock-Stieltjes  integrals. Let 
f l ,  f2, f 3 , . . ,  be functions from [a, b] into [0, +~c). For each t E [a, b] assume that  0 _< 
f l(t)  < f2(t) <_ f3(t) <_ ... and that  the sequence (fk(t)) converges to a finite limit f(t).  Let 

p"  [a, b] ~ R be an increasing function. Assume each fk is ~-integrable, and supk fb fk d~ < 

oc. Then f is p-integrable, and f,! fk dp ~ f2 f d~ as k ~ oc. 

Remark. We shall use both this theorem and the analogous theorem for integrals over 
a-algebras (given in 21.38(ii)) when we prove in 24.36 that  the two kinds of integrals are 
equivalent. 

Proof of theorem (following DePree and Swartz [1988]). Let A - l i m k ~  f :  fkdp; we 

are to show that  the Henstock-Stieltjes integral f :  f d~ exists and equals A. Let any 
c > 0 be given; we are to find a gauge ~ such that  every &fine tagged division T satisfies 
] A -  E[f,  T, ~]1 < c. 

From our hypotheses, we can easily see that" 

�9 There is some integer ~ such that  0 < A -  f2 f" d~ < e/4. 
�9 For each t c [a, b], there is some positive integer i(t) such that  0 _< f ( t ) -  fi(t)(t) < 

�9 For each positive integer k, there is some gauge yk such that  whenever S is a 7k-fine 

tagged division of [a, b], then IE[fk, S, F ] -  f2 fkdFl < 2 - k - i t "  

Now let p(t) - max{r , i ( t )} ,  and then define a gauge ~i by taking 6(t) - 7,(t)(t). Let 
T -  (n, tj, Tj) be any &fine tagged division; we shall show that  IE[f,T, p ] -  A I < c. We 
may write E[f,  T, ~] - A - Cl + c2 + r with the error decomposed into these three pieces: 

C1 -- ~ [9~(tj) -- ~( t j -1)]  [f('rj) -- ftL(rj)('rj)], 
j=l  

c2 ~ [F(tj) - ~( t j -1) l  flt(~j)(Tj) -- f,(~j) dF , 
j 1 '--- - 1  

r~, fjj 
c3 = ~ f , (~ j )dp  - A. 

j 1 ~'~-- - 1  
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To estimate el, observe that  #(Tj) >_ i(Tj), so 0 _< f(Tj) - f~(~)(~-j) < c/4[~a(b) - ~a(a)]; 
hence ]eli < c/4. To estimate e2, temporarily fix any positive integer k. Define the set 
Jk -- {j" p(Tj) -- k}. For each j E Jk, we have ~(Tj) -- 7k(~-j); hence tj - t j - 1  < "~k(~-j). By 
the Henstock-Saks Lemma (24.23) and our choice of ")'k, 

{ fi" } jc~j k [99(tj) -- 99(tj-1)] fk(Tj) -- fk d~ 
�9 1 

< 2-k-1~. 

The sets J1,J2, J3,. . .  form a partition of the set { 1 , 2 , 3 , . . . , n } ,  and therefore 

le21 -- E E [qp(tj) - qD(tj-1)] fk(~'j) - fk dqp 
k=l jCJk 

OO 
E B . < 2 - k - l c -  2 
k=l 

Finally, to estimate e3, let p - max{p(T1), p(T2) , . . . ,  P(~-n)}. Then u _< p(Tj) _< p for all 
j ,  hence 

j l J l  ~iJl  f fJ  f , d~ <_ f ,(~j ) d~ < f p d~, 
1 

and summing over j yields 

A C fab j~l~tl j jfa b < f . d ~  <_ f .( .~)d~ <_ fpd~ <_ A. 
�9 1 

Therefore le31 < ~/4, which completes the proof. 

24.30. Coro l l a r i es .  Let ~ ' [ a ,  b] ~ R be an increasing function. Then: 

a. I n t e r c h a n g e  of l imi ts  ( t h e o r e m  of  Levi  t y p e ) .  Suppose gl ,g2,g3, . . ."  [a,b] 
[0, +oc) are ~-integrable, and ~--~j~-i gj(t) is finite for each t. Then ~ j  f :  gj d~ is finite 
if and only if E j  gj is ~-integrable, in which case 

j~l 9j dp } Z g (t) 
j--1 

Hint" This is just a reformulation of the Monotone Convergence Theorem (24.29), with 
~ j  - fj - f j -1 and f0 - 0. 

b. If S c_ [a, b] is a union of countably many intervals, then its characteristic function l s 
is ~-integrable. In particular, by 15.37.d, we see that  the characteristic function of any 
open subset of [a, b] is ~-integrable. 
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ABSOLUTE INTEGRABILITY 

24.31.  Notation. Let (X, II II) be a Banach space, and let ~ "[a,b] --+ R be an in- 
creasing function. We shall say that  a function f �9 [a, b] ~ X is ~ - i n t e g r a b l e  if the 

Henstock-Stieltjes integral fa b f d~ exists. We shall say that  f "  [a, b] ~ X is a b s o l u t e l y  

~o-integrable  if both the Henstock-Stieltjes integrals fb a f(t)dp(t) and fb IIf(t)ll d~(t)exist. 
Recall from 19.21 and 22.19 the definition of the variation of a function. 

T h e o r e m .  Let (X, II II) be a Banach space. Let ~ ' [ a ,  b] ~ R be an increasing function. 

Suppose f "  [a, b] ~ X is p-integrable and has separable range, and let f(t) - f~a f(s) d~(s) 
be its indefinite integral. Then F has bounded variation if and only if f is absolutely 

~-integrable, in which case Var(F, [a, b]) - fa b IIfll dp. 

Proof. If f is absolutely p-integrable, then 

n n 

E F ( t j ) -  F(tj-1)ll = E 
j = l  j = l  

ftl ~ f dg) 
- - 1  

n ~ j  
~~1 IIf(s)l d~(s) 

�9 - - 1  

and thus Var(F, [a, b]) _< f :  IIf Ida. 
Conversely, suppose that  v = Var(F, [a,b]) < oc; we shall show that  the Henstock- 

Stieltjes integral f :  II/I d~ exists and equals v. We prove this first in the case where X is 
finite-dimensional; then we shall use that  case to prove the general case. 

Let any e > 0 be given. We are to construct a gauge 6 such that  whenever S = 
(m,s~,ai) is a 6-fine tagged division of [a,b], then I v -  E [II/II,S, ~]l -< c. Let t~ be the 
constant corresponding to the norm II II in the Henstock-Saks Lemma (24.23(ii)). Since f 
is Henstock integrable, we may choose some gauge ")'1 such that  whenever T = (n, tj, Tj) is 

a "/i-fine tagged division of [a,b], then Ilfba ~IS, T,  111",, < c/2t~. By the definition of 

v, there is some division a =  q0 < ql < q2 < "'" < % = b of the interval [a,b] such that  

II If 1 EPk=I fqk-lqk fd~ > v -  ~c; this division will remain fixed throughout  the remainder of 

the proof. Let Q = {q0, q l , . . .  ,qp}.  Define a gauge 7 as in 24.11. We shall show that  the 
gauge 6 = min{7, ")'1 } has the required properties. 

Let S = (m, si,cri) be any f-fine tagged division of [a,b]; we are to show that  I v -  
E[ f ,S, ~]l < e. Construct an auxiliary tagged division T - (2m, tj,'rj) as in 24.12. By 
24.11 we have Q c_ {Crl,a2,. . . ,crm} = {71,T2,.. . ,T2m} C_ { t0 , t l , t 2 , . . . , t 2m} ;  hence 

v - - c  < 
2 

P 

Z 
k = l  

f d~ _< 
k - - i  j = l  

fl ~ f dg) 
- - 1  

< V 

I ] . tagged T is 6-fine hence ~/1-fine 
2m tj I 

and therefore v - ~--~j=l II ftj-1 f d~ < ~el The division , , 

so we may apply the Henstock-Saks Lemma, which yields the first inequality in the following 
! 
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string of inequalities: 2m , 
> E f dqo - f(Tj)[q0(tj)  -- ~0(tj_l)] 

2 -- 
j = l  - 1  

>_ f d~ - I l f ( r j ) l l  [ p ( t j ) -  ~(tj-1)] 
j = l  1 

= f d ~  - 2[11/ ,Z ,~ ]  > v - r~[ll/(.)l I , z ,~ ]  _ lz c 
j = l  --1 

This completes the proof for the finite-dimensional case. 
For the general case, we may reason as follows: The Banach space X and its dual X* 

will have norms both denoted by II II. By assumption, the range of f is separable. By 
23.24, there is some s e q u e n c e  ()~j) in X* such that  [IAjll = 1 for all j and Ilull = supj IAj(u)l 
for every u E Range(f ) .  

Temporari ly fix any positive integer m, and let R m be equipped by the sup norm [I II~, 
defined as in 22.11. Define a function fm :[a, b] ~ R m by 

fro(t) - (Al f ( t ) ,  A2f( t ) ,  . . . ,  AreS(t)) .  

The function fm is ~o-integrable in R m, since we can compute the integrals component- 
wise. For any s , t  e [a,b], we have I l f m ( t ) -  fm(s)llo~ = InaXl<_j<_ml)~j(f(t)-  f(s)) l  _< 
Ill(t)-/(s)ll; from this it follows that  Var(fm, [a,b]) _< Var( / ,  [a,b]) = v. By the case 

we have already proved in finite dimensions, the integral f :  I l fm l l~d~  exists and equals 
Var(fm, [a, b]); thus it is bounded above by v. 

As m ~ ec, the function Ilfm(t)ll~ = max{IAl/( t ) l  , 1A2/(t)l, . . .  , IAmf(t) l  } increases 
to II/(t)ll, by our choice of the Aj's. By the Monotone Convergence Theorem 24.29, the 

integral f :  II/ d~ exists and is the limit of the integrals f :  I I /~ l l~d~;  hence fb II/I d~ _< v. 

On the other hand, v _< f :  II/lld~ as we showed at the beginning of this proof. Thus 

v - f b  Ilf l id~, completing the proof. 

24.32.  C o r o l l a r i e s .  Let ~o : [a, b] --+ R be an increasing function. Then: 

a. Suppose that  f : [a,b] + X and g : [a,b] + IR are ~-integrable, f has separable 
range, and IIf(t)ll <_ 9(t) for all t. Then II/(')11 is ~-integrable i.e., f is absolutely 

integrable. Moreover, Ill  b s: 
Hint: F( t )  - f t  a f d p  has bounded variation, since I I F ( t ) -  F ( s ) I -  IlY:fd ll ~- 

f : g d ~  by 24.16.a. 

b. T h e  l a t t i c e  of  a b s o l u t e l y  i n t e g r a b l e  f u n c t i o n s .  The real-valued absolutely p- 
integrable functions on [a,b] form a vector lattice, with ( f  V g)(t)  = m a x { f ( t ) , g ( t ) }  
and ( f  A g)(t)  = m i n { f ( t ) , g ( t ) } .  Hints: 

1 
f V g - -~ [f + 9 + l f  - gl] and 

1 
f a g -  ~ [f -+- g - l f  - g ] . 
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Also, f ( t )  + g(t)l <_ If(t)l + g(t)l. 
c. Suppose fl, f2, f3 , . . . "  [a, b] + [0, +c~) are ~-integrable, and g ( t ) -  SUPn fn(t)  exists 

for each t. If g _< h for some p-integrable function h "  [a,b] --~ [0, +oc),  then g is 
p-integrable, too. 

Hint: The functions Fn - max{f l ,  f 2 , . . . ,  fn} are ~-integrable, by 24.32.b. Apply 
the Monotone Convergence Theorem to the sequence F1, F2, F3, . . . .  

d. F a t o u ' s  L e m m a .  Let f l ,  f2, f 3 , . . .  " [a, b] + [0, +cx~) be ~-integrable functions. Sup- 

pose that  lim inf~__~ f :  f,~ dp < exp. Then lim infn_.~ fn(t)  is a ~-integrable function 
of t, and f lira inf,~__~ fn d~ _< lira i n f . _ ~  f f~ d~. 

Hint" Let gk - inf{fk, fk+l,  fk+2, . . .} .  Apply the Monotone Convergence Theorem 
to the increasing sequence gl,g2,g3, . . . .  

HENSTOCK AND LEBESGUE INTEGRALS 

24.33.  Remark. The proofs in this subchapter,  particularly the first one, are rather  long 
and technical. In a first reading, beginners may find it helpful to read the s tatements  of 
results but skip the proofs. 

24.34.  T e c h n i c a l  l e m m a  on  r e g u l a r i t y .  Suppose that  ~ : [a,b] + R is an increasing 
function, and f : [a, b] + [0, +ee)  is a function for which the Henstock-Stieltjes integral 

f : f d p e x i s t s .  Let any h u m b e r t  > 0 b e g i v e n ,  and let E -  {t E [a ,b] ' f ( t )  >_ 1}. Then 

there exists an open set G _D E such that  f :  1c d~ _< s + f :  f d~. 
(Here "open" refers to the relative topology on [a, b]; for instance, the set [a, b] is open. 

We know that  the Henstock-Stieltjes integral f2 l a  dp exists by 24.30.b.) 

Proof (modified from McLeod [1980]). It will be simplest to treat  the point a separately 
from the rest of the interval. Let l{a } be the characteristic function of the singleton {a}, 
and let l(a,b] be the characteristic function of the remainder of the interval. It suffices to 
prove the lemma for each of the two functions fl{a} and fl(a,b] i.e., it suffices to prove 
the lemma in the two cases where f vanishes outside {a} and where f vanishes at a. 

First, suppose f vanishes outside {a}. The theorem is trivial if E = ~,  so we may 

assume f (a)  _> 1. It is easy to compute f :  f dp - f (a)[~(a+)  - ~(a)]. Choose c~ > a small 
enough so that  ~ (c~) -  p ( a + )  < c. Then G = [a, (~) i s a n  open set containing {a}, and 

~b 1 ~V ~b 
lo  dp - p(c~-) - p(a)  _< ~(c~) - ~(a) _< s + ~ f d ~  <_ s + f d ~  

as required. 
For the remainder of the proof we may assume f (a)  - 0; hence a r E. We may define 

p(t)  - ~(b) for all t > b; thus F is right continuous at b. By 15.21.c, we know that  ~ is 
right continuous at all but countably many points of (a, b]; hence ~ is right continuous at 
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all points in a dense subset of (a, b]. We now form partitions P1, P2, P3 , . . .  of [a, b] into 
subintervals, 

Pj 0 1 2 . .  p ? ( j ) - i  a -  pj ~ pj < pj ~ �9 ~ ~ p ? ( J ) - - b  

satisfying these requirements: 

�9 Pj+I is a refinement of Pj (that is, Pj is a subsequence of Pj+l),  

1 2 Q(J) �9 ~ is right continuous at each of the points p j , p j , . . . , p j  , 

{ 0 2 1 , p?(J) (J)- } �9 max pl _ pj,  pj _ p j , . . .  _ pQj 1 < 2 - j (b  - a). 

(Although the particular method used for satisfying these conditions is not important, here 
is one way that it can be done, with Q(j)  = 3J: Each subinterval in Pj can be subdivided 
into 3 subintervals in Pj+I, where each of those subintervals has length less than half the 
length of the Pj subinterval and 9~ is right continuous at the endpoints of each subinterval.) 

Since the Henstock-Stieltjes integral faD f dg~ exists, there is some gauge 5 such that 

whenever T is a ~-fine tagged division, then IE[f, T, ~ ] -  faD f d~l < c/2. We now use 5 
to select a sequence ((ak,bk],ak)keN of tagged intervals, chosen in stages by the following 
procedure. For the first stage, there are no previously selected intervals. For j _> 1, in the 
j t h  stage we select all intervals (ak, bk] that meet the following criteria: 

(1) (ak,bk] is one of the j t h  stage intervals (pO,pl], . . . ,  (pQ(j)-l,pjQ(j)] that  make up 
partition Pj ; 

(2) (ak, bk] is not contained in any previously selected interval; and 

(3) there is at least one point ak E (ak, bk] N E that satisfies bk -- ak < 5(ak). 

For each interval (ak, bk] selected in this fashion, there may be more than one point that is 
suitable for use as ak, but we choose one particular value for ak. Note that  the resulting 
intervals (ak,bk] are disjoint; also note that f(crk) >_ 1. 

OO We claim that [.Jk=l(ak,bk] _D E. To see this, fix any z E E. For some integer j 
sufficiently large, we have 2 - J ( b -  a) < ~(z). Since a ~ E, we have z :/: a, so one of the 
intervals (p}~-l,p~] (for u - 1 , 2 , . . . ,  Q(j))  must contain z, and that interval (p}~-l, p}~] must 

have length less than 2-J ( b -  a). That interval must be selected in the j t h  stage, if it is not 
(X) contained in an interval that was already selected in an earlier stage. Thus z E [-Jk=l (ak, bk], 

proving our claim. 
(X9 

Next we show that E k = l  [~(bk) p(ak)] ~ 1 b - - ~ e + f a f d g ~ "  To see that, fix any pos- 
1 b itive integer K; it suffices to show Y~ff--1 [~(bk) -  ~(ak)] _< ~c + fa f d~. The intervals 

(al ,bl) ,  (a2, b2) , . . . ,  (aK,bK) are disjoint, and the complement of their union is equal to 
the union of finitely many subintervals of [a, b]. Apply 24.10 to obtain a 6-fine tagged divi- 
sion of each of those subintervals. Putt ing all the subintervals together, we obtain a 5-fine 
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tagged division T -  ( m , t ~ , r v ) o f  [a,b], in which ( [ak ,bkl ,ak) l<k<g comprise some of the 
subintervals. Since f(crk) _> 1, we obtain 

K m b 

[~(bk) - ~(ak)] _< ~ [qp(tv) - qp(tv-1)] f(7v) _< -2-~-c fa 
k = l  v = l  

f d~ 

by our choice of ~. This proves the desired inequality. 
For each k, the function ~ is right continuous at bk. Hence we may choose some ck > bk 

oc 1 with ck close enough to bk so that  p(ck) < ~ ( b k ) + 2 - k - l c ;  then 2 k = l  [p(ck) - ~(bk)] < 5c. 
The intervals (al,  Cl), (a2, c2), (a3, c3) , . . ,  are not necessarily disjoint, but their union is an 
open set G that  contains E. It follows from 24.30.a that  the Henstock-Stieltjes integral 

f b l c  d~ exists and is less than or equal to 

oc b oc oc [ b  

Ja 
k = l  k = l  k = l  

f d~. 

This completes the proof of the lemma. 

2 4 . 3 5 .  T h e o r e m  o n  m e a s u r e s .  One-dimensional Borel-Lebesgue measure and Lebesgue 
measure (defined as in 21.19) exist. Furthermore,  a set E C_ [a, b] is Lebesgue measurable if 
and only if its characteristic function 1E is Henstock integrable, in which case the Lebesgue 

measure # ( E ) i s  equal to the Henstock integral fb 1E(t)dt .  
More generally, let p "  [a, b I ~ R be an increasing function. Let :K be the collection of 

all sets S c_ [a, b] for which the Henstock-Stieltjes integral 

b 

#~(S) - ~ ls(t)d~(t) 

exists. Then K is a or-algebra that  includes ~B - {Borel sets}, and ([a, b], :X, #~) is a 
complete measure space (as defined in 21.16); in fact, it is the completion of ([a, b], ~B, #~). 
Furthermore,  the measure space ([a, b ] , K , # ~ ) i s  regular, in this sense: a set S c_ [a,b] 
belongs to :K if and only if there exist an F~ set A and a G~ set B such that  A c_ S C_ B 
and #~(B \ A) - 0. 

Every positive finite measure # on the Borel sets ~B in [a, b] is of the form #~ for some 
increasing function ~. 

Remarks. Here G~ is with respect to the relative topology of [a, b]; thus the set [a, b] itself 
is considered to be open. Note that  any measurable set is the union of an F~ and a set of 
measure 0; contrast that  with 20.22. 

Proof of theorem. By the definition of Js it is clear that  if K1, K2 E [Js and K1 _D K2, then 
K1 \ K2 E K. In particular,  the complement in [a, b] of any member of Js also belongs to 
J~. By 24.30.a, we see that  the union of countably many disjoint members of :K is also a 
member of :K; hence :K is a monotone class (defined in 5.29). Also by 24.30.a, the mapping 

#~ �9 S ~ f l  l sd~ is countably additive on :K. (We do not yet assert that  J~ is a a-algebra; 
that  fact will be established much later in this proof.) 
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Let 9" be the algebra of all unions of finitely many subintervals of [0, 1]. (We shall count 
the empty set and any singleton as subintervals.) Then ~B, the a-algebra of Borel sets, is 
the a-algebra generated by 9". It is clear that  K _D 9". By the Monotone Class Theorem 
5.29, JC _D B. The restriction of #~ to B is a measure since #~ is countably additive on 9(:. 

If E E X and n E N, then (by 24.34 with f - 1E and c - 1) there is some open set 
n 

1 e c  Gn ~ E with #~(Gn) < -~ + #~(E). Then B - ~ n = l  Gn is a Borel set (in fact, a G~ set) 
with B _D E and #~(B) - #~(E), hence #~(B \ E) - O. 

Let N -  {N C [a, b]" N c B for some Borel set B with #~(B) - 0}. The completion of 
is the a-algebra B /~  :N, defined as in 21.16. The inclusion ~B/~ N C_ K is an easy exercise, 

using the definition of Js we omit the details. To prove JC c_ B A N, let any E E K be 
given. Form a Borel set B as in the preceding paragraph. Then B \ E is not necessarily a 
Borel set, but  B \ E is a member of K that  has p~(B \ E) - O. By the results of the last 
paragraph,  there is some Borel set B'  containing B \ E with #~(B') - O. Thus B \ E E N; 
hence E - B \ (B \ E) E iB/~ :N. This proves 9(: is equal to the a-algebra iB/k N. 

The result about F~ sets is obtained by passing to complements. 
If p is a positive finite measure on the Borel subsets of [a, b], then define an increasing 

right continuous function ~ ' [ a ,  b] ~ ]R by ~(t) - p([a, t]), and use it to define a measure 
p~ as above. We obtain p~([a,t])  - ~(t) and p~([a , t ) )  - p ( t - )  - p([a , t ) ) .  Thus the 
measures p~ and p agree on 9"; by the Monotone Class Theorem they agree on B. 

24.36.  T h e o r e m  on  i n t e g r a l s .  Let (X, I I) be a Banach space, and let f :  [a,b] + X 
be some function. Then f E LI([a,D],X) if and only if f is absolutely Henstock integrable 
and almost separably valued. Moreover, when those two conditions are satisfied, then the 

Bochner-Lebesgue and Henstock integrals f :  f ( t )dt  are equal. 
More generally, suppose (X, ] ]) is a Banach space, f :  [a, b] ~ X is some function, and 

~a: [a, b] ~ IR is an increasing function. Define a measure p~ on the or-algebra K of subsets 
of [a, b], as in 24.35. Then the following two conditions are equivalent. 

(A) f E L 1(#~o, X).  

(B) f is absolutely ~-integrable (i.e., the Henstock-Stieltjes integrals f :  f dp and 

faD If(')] dp both exist, in X and in IR respectively), and f is almost separably 
valued (defined as in 21.17). 

Moreover, when conditions (A) and (B) are satisfied, then the Bochner integral lid,hi f d#~ 

is equal to the Henstock-Stieltjes integral f :  f d~. 

Remarks. Of course, the separability condition is satisfied trivially and can be omitted from 
mention if X itself is separable in particular,  if X is finite-dimensional. We emphasize 
that  measurabili ty of f (from ~ to the Borel subsets of X)  is an explicit part  of condition 
(A), but not of condition (B). In fact, most of the proof is devoted to showing that  condition 
(B) implies the measurabili ty of f .  

Proof of (A) ~ (B) and equality of the integrals. 

(i) We first prove (A) =, (B) in the case where f is finitely valued. This case is easy; the 
details are left as an exercise. 
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(ii) We next prove (A) ~ (B) in the case where X - R and f _> 0. Then there exists 
a sequence of finitely valued measurable functions fn, increasing pointwise to f ,  by 21.5. 
We have f f~dp - f fn(t)d~(t) for each finitely valued function f~. The numbers f f~dp 
increase to f fdp by the Monotone Convergence Theorem for Lebesgue Integrals (21.38(ii)). 
Hence the numbers f f,~ (t)dp(t) increase to f f(t)dp(t) by the Monotone Convergence The- 
orem for Henstock-Stieltjes Integrals (24.29). 

(iii) Finally, we prove (A) =~ (B) in full generality: Let any f e L I (p~ ,X)  be given. By 
22.30.b, there exists a sequence of finitely valued functions f,~ converging in L I (p~ ,X)  to 
f. By 22.31(ii), passing to a subsequence, we may assume that f~ ~ f pointwise and that 
the sequence is dominated by some nonnegative function h E LI(p~,IR). By the remarks of 
the preceding paragraph, h is p-integrable. Define u(S) = fs  h dp~; this is a measure on 9( 
by 21.38(i). 

Let any c > 0 be given, and let ~ = c/6[qp(b)- ~(a)]. By Egorov's Theorem (21.32), 
we may partition [a, b] into some disjoint sets J, K E K such that u(J) < e/6 and f~ ~ f 
uniformly on K. Choose n large enough so that maxt~K IIf~(t)- f(t)ll < 5. The function 
fn" 1K is also finitely valued, hence p-integrable. Since f~ -1K and h.  1j are ~-integrable, 
we may choose a gauge "7 such that whenever S is a 7-fine tagged division of [a, b], then 

s 
< ~ and E[hl j ,  S, ~] - f j  hdp 

s 

6 

Now consider any ~-fine tagged division S. We estimate 

liE[f, S, p] - E[ f lK,  S, ~] 

IIE[flK, S, p ] -  E[fnlK, S, p] 
IlE[fn 1K, S, ~] - f f~d# 

K 

II f f ~ d # -  f fdpl I 
K K 

II f f d# - f f d~ll 
K [a,b] 

C C < E[h l j ,  S,~] < g + f j h d ~  - -d §  < 
_< r [ 5 ,  s ,  - - - 

c < g (by our choice of 7), 

2 c  

6 '  

< fK6d# < #([a,b])6- [ ~ ( b ) - ~ ( a ) ] ~ -  6' 

= IIfjfdpll <_ f j h d p -  u(J) < 6 

Putting all these ingredients together, we arrive at l i t[f,  s, ~]- f[a,b] fd#l 
that  the Henstock-Stieltjes integral f fd~ exists and equals f fd#. 

< c. This proves 

Proof of (B) =~ (A). Again we proceed through several cases. 

(i) We first prove (B) => (A) in the case where X - R, f _> 0, and f : f d ~  - 0. 
Let any numbers r, e > 0 be given. By Lemma 24.34, there is an open set G containing 
{t E [a,b]" !f(t)~ _> 1}, such that p~(G) _< c. It follows easily that {t E [ a , b ] ' f ( t )  _> r} 
is a member of 9~ with measure 0. Hence f is measurable, f - 0 almost everywhere, and 
f E LI(p~). 

(ii) We next prove (B) =~ (A) in the case where X -  R and f_> 0 (but f : f d p  is not 
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necessarily 0). Temporarily fix any number c > 0. For n - 0, 1, 2 , . . . ,  define the functions 

0 if f ( t )  <_ ne 
Un(t) -- ( f ( t )  - ne) + A e -- f ( t )  - ne if ne < f ( t )  <_ (n + 1)e 

c if (n + 1)c _< f ( t ) .  
Then the functions un are all absolutely ~-integrable, since the absolutely ~-integrable 
functions form a vector lattice, as noted in 24.32.b. It is easy to verify that  ~n~__0 Un(t) -- 
f ( t )  for each t; hence }--~n~__0 f :  un d ~ -  f :  f d~ by 24.30.a. 

By Lemma 24.34, for each n > 0 we may choose some open set G ,  _D {t ~ Is, b] �9 
e-~u~(t)  > 1} - {t ~ [a, b] �9 u , ( t )  - c}, satisfying 

la fab ljfab 1Gnd#~ -- l a .  d~ < 2 -n-1 + - Un dcp. 
,b] C 

Then g - e y~n~__o 1Gn is Borel measurable, and f[a,b] g d#~ - f :  g d~a < e + f :  f d~ by the 

Levi Theorems 21.39.5 and 24.30.a. Note that  the sets Hn - {t E [a,b] �9 nc < f ( t )  < 
(n + 1)e} (for n - 0, 1, 2, 3 , . . . )  are disjoint, and ( lan + 1H,)C > un. Hence, summing over 
n, we obtain g + c > f.  

Our construction of g depended on the choice of c. Now construct such a function g - gk 
for each of the values c - } (for k - 1, 2, 3 , . . . ) .  Thus we obtain functions gk E L 1(#~, JR) 

k b with gk + gl _> f and f[a,b] gk d#~ _< u f~ f d~. Let h - liminfk__,~ gk. Then h is Borel 

measurable, h > f ,  and by Fatou's Lemma (21.39.c)we have f :  h dp - f[a,b] h d#~ < 

faD f d~. Hence f -  h is nonnegative and f : ( f -  h ) d ~  - O. By the special case discussed 
earlier in this proof, it follows that  f -  h E L I(#~),  and therefore f E L I(#~). This 
completes the proof in the case where X - JR and f > 0. 

(iii) We next prove (B) ~ (A) in the case where X - R (but f is not necessarily 
nonnegative). As we noted in 24.32.b, the absolutely ~-integrable functions form a vector 
lattice. Hence we may write the Jordan Decomposition f - f+  - f -  (see 8.42.f). The 
functions f+ ,  f -  are absolutely ~-integrable, so the problem is reduced to the previous 
case. 

(iv) Finally, we prove (B) => (A) in general i.e., where X is any Banach space. 
Any complex Banach space may be viewed as a real Banach space, by "forgetting" how 
to multiply vectors by members of C \ JR. This has no effect on conditions (A) and (B); 
hence we may assume the scalar field is JR. By assumption, f is almost separably valued, 
so by changing f on a set of #~-measure 0 we may assume f is separably valued. By 
assumption, the vector-valued function f is absolutely 9~-integrable; hence the real-valued 
function If()l is also absolutely p-integrable. By the previous case of this theorem, we 
know that  I f ( ) l  ~ LI (p~ ,R)  �9 

Temporarily fix any s E X*. We claim that  the function s o f : Is, b] ~ R is ~-integrable, 

with f :  s  - ~  ( f 2  f d~);  indeed, this is clear from the estimate 

b ) 
A(f(cri)) [~(si) - ~(si-1)] - ~ f d~ 
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Ja ) = A ..... f(cr~)[~(s~) - ~9(8i_ 1)] - -  f d~ 
i = 1  

_< a l l  - - f 
i = 1  

A similar estimate shows that fq )~(f(.))d~ -)~ ( fq f d~) for any subinterval [p, q] c_ [a, b]. 

Hence for any partition a = p0 < P l  < P2  < " ' "  < P n  = b w e  have 

)~(f(.)) dy) - • f d~ 
j = l  j - 1  j = l  j - 1  

Ja -< Ilall E f d~ _< IlAll If(.)l d~. 
j 1 " j - 1  

By 24.31, therefore, A o f : [a, b] ~ IR is absolutely p-integrable. Apply the previous case 

(iii); thus A o f E LI(p~,IR) with f[a,b] A o f dp~ -- f :  A(f('))d~. 
In particular, A o f is measurable from X to the Borel sets of IR. The function f is 

separably valued and weakly measurable, hence (see 23.25) strongly measurable. Since 
If(')l E LI(p~,IR) (established earlier in this proof), it follows that  f �9 LI(p~,X) .  The 

equation f[a,b] f d#~ - f :  f d~ was established when we proved (A) =~ (B). 

24.37. Coro l la ry .  Let X be a Banach space with scalar field F (equal to IR or C). If 
p :  [a, b] ~ F has bounded variation and f :  [a, b] ~ X is bounded and strongly measurable 

(from the Borel sets to the Borel sets), then the Henstock-Stieltjes integral faD f d~ exists. 

24.38. Remarks. The Henstock integral can be generalized, though only with some diffi- 
culty, to domains more general than an interval [a, b]. The Bochner/Lebesgue approach is 
more powerful, in that it applies easily to a very wide collection of measure spaces (ft, S, #). 

In certain other respects, however, the Henstock integral is actually more general. Built 
into the definition of the Bochner/Lebesgue integral are a separability condition and an 
absolute integrability condition (i.e., not only f but IIf(')ll must be integrable). These re- 
strictions are not imposed on the Henstock integral; hence we can devise functions that are 
Henstock integrable but not Bochner/Lebesgue integrable by violating either the separabil- 
ity condition or the absolute integrability condition. 

Violations of the separability condition are perhaps contrived and artificial, since all of 
applied mathematics (all of "the real world") happens in separable Banach spaces, or in 
separable subspaces of Banach spaces. Violations of the absolute integrability condition 
are not so contrived, however. A study of the continuous dependence on parameters and 
asymptotic behavior for solutions to differential equations with rapidly oscillating terms 
leads to functions very much like the pathological function in 25.20, which is Henstock 
integrable but not Lebesgue integrable. In fact, it was the study of such solutions to 
differential equations that led Kurzweil to his independent discovery of the Henstock integral 
(also known as the Kurzweil integral); for instance, see Kurzweil [1957]. 
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~/[ORE ABOUT LEBESGUE MEASURE 

24.39.  Example: meager but full. The sets with Lebesgue measure 0 and the meager sets 
form two a-ideals on IR and thus two different notions of "small" sets. These notions are 
not directly related; a set may be small in one sense while large in the other sense. That  is 
evident from the following example. 

Let (rj) be an enumeration of the rationals. For i , j  E N, define the open interval 
Hi,j -- (r~ - 2 - i - j ,  ri -Jr 2 - i - j ) .  Then Gj - -  Ui~  Hi, j is an open dense subset of R, and so 
C - n j = l  Gj is a comeager set with Lebesgue measure 0. Thus it is "small" with respect 
to Lebesgue measure, but "large" with respect to Baire category. Its complement has these 
properties reversed. Note also that  C is uncountable since it is not meager. 

24.40.  Proposition on regularity of Lebesgue measure. Let p denote Lebesgue measure on 
R. If S c_ IR is Lebesgue measurable, then 

p(S) - sup{p(K)  �9 K c_ S, K compact}. 

Proof. Let any c > 0 be given. By 24.35, for each integer n E Z we can find some compact 
set Kn C_ S n [n, n + 1] such that  p(K~) > p(S  n In, n + 1]) - 2-1nl-2c. Any overlap among 
the Kn's or among the sets S a [n, n + 1] is contained in the set Z, which has measure 0. 

Hence for any N E N, we have p(Ulnl<_ N K n ) -  Eint<_ N #(Kn) >_ #(S n [ - N ,  N ] ) -  e. The 

set Ul~l<g K~ is compact, and the numbers #(S n [ - N ,  N]) increase to #(S) as N ~ oc. 

24.41.  Further results for Lebesgue-integrable functions. Let X be a Banach space. Recall 
that  Ll([a, b], X) means the space L I ( p , X )  where p is Lebesgue measure on the Lebesgue 
measurable subsets of [a, b]. Show the following. 

a. C o n t i n u i t y  of  t h e  i nde f in i t e  i n t eg ra l .  Let I f ( u ) -  f~ f(t)dt. Then the map 
f H I S is continuous from Ll([a, b],X) into L~ ([a, b], X). 

Hint: First show that  the map f H / f ,  from Ll([a, b],X) into L~([a,b],X), is 
nonexpansive. Also show that  when f is continuous, If is continuous. Recall from 
22.30.d that  the continuous functions are dense in Ll([a, b], X).  

b. R i e m a n n - L e b e s g u e  L e m m a .  If f E Ll([a, b],X), then f :s in(nt) f ( t )dt  converges to 
0 as n --~ cxD. 

Hints: Let Rn(f)  - f :s in(nt) f ( t )dt .  Show that  Rn, considered as a mapping 
from Ll([a, b], X) to the scalar field, is nonexpansive. Prove l i m n _ ~  Rn(f)  = 0 firs{f 
when f is a step function. Then recall from 22.30.c that  step functions are dense in 
Ll([a,b],X). 

Remark. This result will be generalized in 26.47. 

24.42.  Proposition (optional). Suppose a function f "  R ~ R is additive; i.e., 

f (x § y) -- f (x) + f (y) for all x, yEIR.  
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Also suppose f is measurable (from the Lebesgue-measurable sets to the Borel sets). Then 
f (x )  = x / (1 )  for all x. Thus, any additive, Lebesgue measurable function from R to itself 
is continuous. (Compare this with 11.30.c.) 

Proof. This proof is based on Hille and Phillips [1957]. 
It is easy to show that  f ( rx )  = r f (x )  for all rational numbers r and all real numbers x; 

that  does not require measurability. In particular,  f ( 0 ) =  0 and f ( - x ) =  - f ( x ) .  
Let p denote Lebesgue measure. We first claim that  

{ 1 } 1 
if a > 0  and S -  s c [O,a] " f (s)  >_ -~f(a) , then #(S) >_ -~a. 

To see this, let T = a -  S = { a -  s : s  E S}; then p(T) = p(S).  Also, S tO T = [0, a] since 
1 1 f ( s )  + f ( a -  s) - f(a).  Hence #(S) -> 5# ([0, a]) - ~a. 

Next we claim that  f is bounded above on [1, 2]. Indeed, suppose not. Then there is 
a sequence ( x ~ ) i n  [1,2] with f ( x , )  --~ +oc. Passing to a subsequence, we may assume 
f(xR) > 2n. For each n, the Lebesgue-measurable set S~ = {s E [0, x~] : f ( s )  _> n} has 

1 measure p(SR) > 5XR; hence for each n the measurable set MR -- {s E [0,2] �9 f ( s )  _> n} 
1 However, the sets M~ form a decreasing sequence with empty has measure #(MR) _> 5" 

intersection, hence l i m R - ~  #(MR) = 0, a contradiction. 
Thus f is bounded above on [1,2]. Replacing f with - f  (which satisfies the same 

hypotheses), f is also bounded below on [1, 2]. It follows easily that  f is bounded on each 
bounded subinterval of R. 

Next we show that  f is continuous at 0. Indeed, suppose not. Show that  there exists a 
sequence (t,~) converging to 0 in R with f(tR) > e for some constant e > 0. Passing to a 
subsequence, we may assume the tR's are all positive or all negative. Let us assume they 
are all positive; the proof is similar in the other case. Passing to a subsequence again, we 
may assume t,, < 2 -~.  Then the numbers s~ = tl + t2 + . . - +  t~ all take their values in a 
bounded interval, but f (s~)  > he, a contradiction. 

Since f is continuous at 0, it follows easily by translat ion that  f is continuous everywhere 
on R. Since f (x )  = xf (1)  for all rational x, this equation is also valid for all real x. 

2 4 . 4 3 .  L e m m a  on  t h e  m a x i m a l  f u n c t i o n  for L e b e s g u e  m e a s u r e .  Let # be Lebesgue 
measure on R, let X be a Banach space, and let f c LI(R,  X).  For each t E R, let 

g(t) - 1 # ( B )  bf(s)l ds, 

where the supremum is over all open intervals B that  contain t. Then g is defined uniquely at 
each point of R (even if f is left ambiguous on a set of measure 0); g is lower semicontinuous 
(hence measurable); and 

p ( { t  E R  "g(t) > c t})  <_ _3 f ] l  
Ct 

for any number ct > 0. The function g is called the m a x i m a l  f u n c t i o n  associated with f .  
(This lemma will be used in the proof of 25.16. It is somewhat comparable to 29.18.) 
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Proof of lemma. (This presentation is from Fefferman [1977].) The definition of g is not 
affected if we change f on a set of measure 0. To see that  g is measurable, note that  

g(t) sup ga,b(t) where ga,b(t) 1 f t + b  - , - I f (s) lds .  
a,b>O a + b J t-a 

Thus g is a supremum of continuous functions, hence g is lower semicontinuous. 
Fix any a > 0, and let S -  {t E R "  g(t) > a}. For e a c h t  E S, there is some open 

interval Bt containing t such tha t  fB~ If(s)l ds > c~p(Bt). Fix any finite number r < It(S). 

The set G - [-ires Bt is open, hence measurable; it contains S, hence It(G) > r. By the 
regularity property established in 24.40, there is some compact K C_ G with It(K) > r. 

Since it is compact,  K can be covered by finitely many of the members of N say by 
Btl, B t2 , . . . ,  Btn. We may assume that  these are arranged in order of decreasing length 
tha t  is, It(Btl) ~_ It(Bt2) ~_ "" It(Btn). 

We shall choose a subsequence B u l , B u 2 , . . . , B ~ m  with the property that  the B~j 's  
m are disjoint and ~-~,j=lIt(B~j) > r/3. Let B ~  - Btl. Thereafter,  let Buj+l be the first 

one of the Bra'S that  does not meet any of Bu 1 , B u 2 , . . . , B ~ j .  The resulting collection 
m 

B~I, B~2, . . . ,  Bum is clearly disjoint. To see that  ~-~j=lIt(B~j) > r/3, reason as follows: 
For each j ,  let Lj be the open interval that  has the same midpoint as B~j but is three 
times as long. If some Bt~ is not among the Buj's, then Bt~ meets some B ~  that  is at 

n m 
least as large as Bt~. Then Bt~ C Lj. Hence K C_ U~=IBt~ c Uj=ILj ,  so r < It(K) < 
E j ~ I  #(Ly) - 3 E j ~ I  #(B~j). 

Let C be the union of the B~j's. Then 

3 < a It(Bu~) < f(s)l  ds - If(s)l ds <_ [If 1. 

j = l  j = l  uS 

The desired inequality follows immediately, in view of our choice of r. 

MORE ABOUT RIEMANN INTEGRALS (OPTIONAL) 

24.44.  Proposition. If f :[a, b] ~ X is Riemann integrable, then f is bounded. 

Proof of proposition. Suppose. (pk) is a sequence in [a, b] with II f(Pk)ll ~ oc. Choose some 

number  5 > 0 such tha t  whenever T is a 5-fine tagged division, then I t [ f ,  T ] - f b  a f ( t )d t  I < 1. 
Then whenever T and T'  are 5-fine tagged divisions, we have IE[f, T ] - E [ f ,  T']I < 2. Choose 
a part i t ion a = to < tl < t2 < .." < tn = b with maxj(t j  - t j - 1 )  < 5. Show that  some 
subinterval [tj_l,tj] contains infinitely many of the pk's. Consider tagged divisions T k, 
all of which are identical except for their tag Tj in the subinterval [tj-1, tj]; let T k use Pk 

for tha t  tag. Then E [ f , T  k] E [ f , T  k'] - [ f ( P k ) -  f(pk,)] (tj - t j - x ) ;  from this obtain a 
contradiction. 

24.45.  T h e o r e m .  Let (X, ]1 I]) be a Banach space. Let f ' [ a ,  b] ~ X be bounded, and 
continuous at almost every point of [a, b]. Then f is Riemann integrable. 
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Proof. For simplicity of notat ion we may assume [a, b ] -  [0, 1]. Also, we may extend f to 
all of IR by defining f ( t )  - 0 for all t E R \ [0, 1]. 

For each positive integer p, define a step function wp �9 R ---, [0, +oc) by taking 

{ ( ] }  ( 1 k-t-1 ] k - 1  k + l  k - 5  
Wp(t) - sup I I f ( r ) -  f ( s ) l  I " r, s e , for t e  , �9 p p p p 

The funct ions wp are bounded, since f is bounded. Also, at every point t where f is 

continuous, we have wp(t) ~ 0 as p ~ oc. Thus f2  wp(t)dt  ~ 0 by the Dominated 

Convergence Theorem. 
Now let us consider any two tagged divisions 

S . 

T "  
0 -  80 ~ (71 ~ 81 ~ 0"2 ~ 82 ~ ' ' "  ~ 8rn-1 ~ (Trn ~ 8rn -- 1, 

0 -  tO ~ T1 ~ tl < 7-2 < t2 <_ ""  <__ tn-1 <_ Tn <_ tn -- 1, 

of the interval [a,b], such tha t  m a x i ( s i -  8i-1) < ~p and m a x j ( t j -  t j -1 )  < ~ ;  we wish 

to compare the approximating Riemann sums E[f,  S] and E[f,  T]. For each pair i, j ,  the 
set [Si-l,Si] N [t j_l , t j]  is either an interval [uij,vij] or the empty  set. Let I - {( i , j )  �9 

[Si_l,Si] N [t j_i , t j]  r 2~}; then 

X[f ,S]  - ~ f((7i)(vij  - uij) ,  r [ f , T ]  - ~ f (7 j ) ( v i j  - uij).  
(i,j)EI (i,j)EI 

Therefore E [ f , S ] -  f l  f s ,T ( t )d t  and Elf ,  T ] -  f~ fT, s ( t )d t ,  where fS,T and fT, s are the 
step functions that  take the values f((7~) and f (T j ) ,  respectively, on the interval (u~j, v~j]. 

For any (i, j )  E I, consider any point t c (u~j, v~j]. Both (7~ and ~-j lie within distance 

1 from the number  t Choose the integer k that  satisfies t E k-�89 k+5 . then cri Tj c 2p " P ' P ' 

(k-1 k+l 1 hence Ilfs,T(t)--fT,S(t)ll- ( j)ll < Thus Till < p ' p ' - -  , _ _  

f~ wp(t)dt. This proves that the net E[f, .] is Cauchy, and therefore f is Riemann integrable. 

24.46.  T h e o r e m  ( L e b e s g u e ) .  A function f ' [ a , b ]  ~ R is Riemann integrable if and 
only if it is measurable (from Lebesgue-measurable sets to Borel sets) and bounded and its 
discontinuities make up a subset of [a, b] tha t  has Lebesgue measure 0. 

Proof. Parts  of this theorem were proved in 24.44 and 24.45. It remains to show that  if f 
is Riemann integrable, then its discontinuities make up a set of measure 0. For simplicity 
of notation, we may take [a, b] = [0, 1]; also, we may define f ( t )  = 0 for all t < 0 and for all 
t > 1. For positive integers n, define lower and upper step functions by taking 

l (t) - 

- 

i n f { f ( s )  �9 k~---!l <s_< ~ }  k - 1  k 
when < t < 

2 ~ - 2 ~ , 

and taking ln(0) - un(0) - f(0).  Then l~ <_ f < u~; the sequence (l~) increases pointwise 
to a limit l; the sequence (un) decreases pointwise to a limit u. By the Monotone or 
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Dominated Convergence Theorems, fo ln(t)dt -~ fd l(t)dt and fd un(t)dt ---, fd u(t)dt. On 

the other hand, we are assuming f is Riemann integrable; since f l  ln(t)dt and fo Un(t)dt 
are equal to approximating sums E[f, T], both of these integrals converge to fo f ( t )d t  as 
n --~ oc. Thus u -  1 is a nonnegative function with Lebesgue integral 0, so in fact u -  1 = 0 
almost everywhere. Thus, u(t) = l(t) = f ( t )  fails only on a set of measure 0. The set 
{2-nk : n, k E N} is countable, hence has measure 0. It is easy to see that  f is continuous 
at any point t that  is not in either of these sets of measure 0. 

24.47.  A p a t h o l o g i c a l ,  R i e m a n n - i n t e g r a b l e  f u n c t i o n .  The theorem in 24.46 applies 
to real-valued functions. It extends easily to functions taking values in a finite-dimensional 
Banach space. However, it is not valid for infinite-dimensional Banach spaces, as we shall 
show with an example of Gordon [1991]. 

Let t~2 be the space of all square-summable sequences of real numbers, as in 22.25. 
That  space is a separable Hilbert space; thus it is the most nonpathological of all infinite- 
dimensional Banach spaces. Nevertheless, we shall describe a Riemann-integrable function 
f : [0, 1] ---, g2 that  is discontinuous everywhere. 

For each positive integer m, let em be the sequence with 1 in the mth  place and 0s 
elsewhere. Let (rm : m  c N) be an enumeration of the rational numbers in [0, 1]. Define 
f ( rm)  = e m  for all m and f ( t )  = 0 when t is irrational. Then f is discontinuous everywhere. 

To prove that  f is Riemann integrable, let T = (n, ti, T i) be any tagged division with 
maxj( t j  - t j-1) < c. We may merge two consecutive subintervals [tj-1, tj] and [tj, tj+l] if 
they have the same tag i.e., if t i = Ti_I = Ti, then we may replace the two subintervals 
with a single subinterval; this does not affect the value of the approximating Riemann sum 
E[f, T]. The resulting new tagged division still satisfies maxj(t j  - t j-1) < 2c, and no two 
of its tags are identical. Hence {f(T/), f(Tk)} = 0 for j ~ k. Therefore 

IlE[f ,T]ll 2 
n 

E f ( T j ) ( t j  - t j - 1 )  
j = l  

n 

E IIf(TJ)ll2(tj - tj -1)2 <- 2c. 
j = l  

Thus fo f ( t )d t  - O. 



Chapter  25 

Fr6chet Der ivat ives  

D E F I N I T I O N S  A N D  B A S I C  P R O P E R T I E S  

25.1. Def in i t i ons .  Let X and Y be normed spaces, and let f "  ft ---, Y be some function 
with domain f~ c_ X. We say that  L is a d e r i v a t i v e  of f at a point ~ E f~ if L" X ~ Y is 
a bounded linear map satisfying 

lim IIf(x) - - L ( x -   )ll = o, (,_) 

or, in greater detail, 

I l f ( x )  - f ( ~ )  - L ( x  - ~)ll 
lim sup = 0. 

0 <  x - ~  < r  

Then f is said to be differentiable at {. This condition says, roughly, tha t  f can be 
approximated closely by a continuous affine operator at points near {. The operator L may 
also be called the Fr6chet derivative of f at {, to distinguish it from several other kinds 
of derivatives. 

In most cases of interest, we can show that  there is at most one operator L satisfying 
the conditions above see 25.3. Thus we are justified in calling it the derivative of f at {. 
It may then be denoted by f ' (~);  this is the L a g r a n g e  n o t a t i o n  for the derivative. The 
Cauchy notat ion  is Dxf(C~).  Alternatively, the derivative can be wri t ten in L e i b n i z  no-  

dy tation: d f / d x  or ~ or ~ ( ~ ) ;  this can also be writ ten as ~ if y - f ( x ) .  Each notation has 
its advantages: Lagrange notat ion is usually preferable if all of our functions are expressed 
in terms of the same independent variable x. Leibniz notat ion is usually preferable if we are 
working with several different choices of the independent variable (as in the Chain Rule, in 
25.6). 

Caut ion:  Leibniz notation makes the derivative look like a quotient of two simpler, 
more elementary quantities. At least in the case where X = Y = N, it is possible to 
explain the derivative as the quotient of two dependent variables, or even as the quotient 
of two infinitesimals. However, tha t  explanation is not simple and is not recommended for 
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beginners. The beginner is probably safer thinking of dy/dx as just one expression and 
ignoring the fact tha t  the derivative appears to be the quotient of two simpler expressions 
(except when that  appearance is helpful for mnemonic purposes, as in 25.6). 

25.2.  Alternate definition for functions of a scalar variable. When X is the scalar field 
(JR or C), then a linear operator L : X ---, Y can be represented by a vector y0 E Y, in 
this fashion: L(t) = tyo for all t E X. (In fact, Y0 = L(1).) Thus f '  may be viewed as a 
mapping from f~ into Y. Since it is possible to divide by scalars, the definition in 25.1 can 
be restated in an equivalent but simpler form: 

f ' ( g )  - l i m  f(x)-  f(~) 
x-~  x - ~  

In particular,  when Y is also the scalar field, then f~ (~) is just  a scalar, as in college calculus. 

25.3.  Proposition: uniqueness of the derivative. Let X and Y be normed spaces, let ft c_ X, 
let f "  ft ~ Y be some mapping, and let ~ E f~. Suppose that  either (i) ~ is in the interior 
of ~t, or (ii) ft is convex and has nonempty interior. 

Then the derivative of f at ~, if it exists, is unique i.e., there is at most one bounded 
linear operator  L"  X ~ Y satisfying condition 25.1(.).  

Remarks. These hypotheses can be weakened, but apparently not without making them 
more complicated. Note that  hypothesis (ii) is satisfied if f~ is an interval in the real line. 

Proof of proposition. By replacing f with the function u H f ({  + u), we may assume 0 E 
and { -  0; this will simplify our notation. By assumption, 

l im sup Ilf(x)- f(o)- L(x)I I = 0. 
x a, o<,lxaf<  iixll 

Suppose that  L1 and L2 are two bounded linear operators satisfying this condition; we must 
show that  the bounded linear operator M - L 1 -  L2 is equal to 0. We know that  M satisfies 

IlM(x) 
lim sup = 0. 

x  ,0<llxll<  iixii 

To show that  the linear mapping M equals 0, it suffices to show that  M vanishes on some 
nonempty  open subset of X; in particular,  it suffices to show that  M vanishes on int(f~). 
Consider any nonzero point v E int(f~). If either f~ is convex or 0 E int(f~), then tv E ft for 

all t > 0 sufficiently small. Then 0 = limt~0 IiM(tv)it/litviI = IiM(v)li/iiviI, so liM(v)Ii = 9. 

25.4.  Definitions. We say that  f is d i f f e r e n t i a b l e  on  t h e  se t  f~ if the Fr~chet derivative 
f , ( ~ ) _ df df f~ ~ ( ~ )  exists for every point ~ E ft. Thus we define a function f /  _ . dx  
BL(X,  Y), where BL(X,  Y) is the normed space of bounded linear operators from X into 
Y (introduced in 23.1). We say that  f is c o n t i n u o u s l y  d i f f e r e n t i a b l e  on ft if it is 
differentiable and the mapping f l  : f~ ~ BL(X,  Y) is continuous. The linear space of all 
continuously differentiable maps from f~ into Y is sometimes denoted C l(gt, Y). 
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If f : f~ ~ Y is continuously differentiable, then the continuous mapping  f '  : ft -~ 
BL(X,  Y) might also be differentiable at some point ~. Then its derivative is the s e c o n d  

d2 f 
der ivat ive  of f,  d ~ o t e d  f"(~) - d-~2 (~) Tha t  opera tor  is a member  of BL(X,  BL(X,  Y)); 

d3 f 
it may be viewed as a map from X x X into Y. Similarly, we may define f'"(~) - -~z3(~) , 

dnf  
etc., and in general f(n)(~c) - dx____ff(~)" We denote by C~(ft ,  Y) the class of functions f for 

which f(~) exists and is continuous. When  Y is the scalar field (R or C), then C~(ft ,  Y) 
may be wri t ten  more briefly as C~(ft) .  A function is called s m o o t h  if it has derivatives of 
all orders i.e., if it belongs to C~(ft ,  Y) -- N n % l  cn(  ft, }z). 

Note tha t  f(~)(~) = [f(n)(~)](.) is a mapping  from X ~ into Y; we may write it as 
[f(n)(~)](Xl,X2,... ,Xn). It is linear in each xj if ~c and all the other  x~'s are held fixed. In 
general it is not linear in ~ if all the xi 's  are held fixed. 

25.5.  Elementary examples and properties. 
a. If f is differentiable at ~, then f is also continuous at ~. 

b. If f is a constant  function, then f ' (~)  = 0 for all ~ c ft. 

c. Review (from a calculus text)  the proof of the product  rule: 

d f ,  dt (f(t)g(t)) - (t)g(t) + f(t)g'(t) 

for scalar-valued functions f and g. 

d. If M : X ~ Y is a bounded  linear opera tor  and f (x)  = M(x) for all x E ft, then 
f ' (~)  = M for each ~ E ft. Thus the mapping  f '  : ft ~ B L ( X , Y )  is a constant  
mapping,  since it takes the value M at each point of ft. Hence ft~ = 0. 

However, f itself is not constant  (unless M = 0). This is a subtle dist inction tha t  
may confuse some beginners. We have f (x)  = M(x) and i f(x) = M, but  these are two 
different things: M(x) is a par t icular  member  of Y, whereas M is a mapping  from X 
into Y. 

e. If f : X --~ Y is some mapping  and Y is the scalar field, then i f(x) (if it exists) is a 
member  of the dual space X* This s i tuat ion should not be confused with the s i tuat ion 
in 25.2. 

f. When  X = R, then we can use one-sided limits (as in 15.21) to define the one-s ided  
derivatives:  

f+(~c) - lim f (x)  - f(c~) and f - ( ~ )  - lim f (x)  - f ( ( ) .  
~l~ x - ~  xT~ x - ~  

When  { lies in the interior of the set ~t, then the Fr6chet derivative f ' ({ )  (defined as in 
25.1) exists if and only if bo th  the one-sided derivatives exist and are equal, in which 
case f ' ({ )  is equal to their common value. If ~t is an interval and { is the left endpoint  
of tha t  interval, then the limits and derivatives from the left at { are meaningless and 
the Frdchet derivative f ' (~)  is (by our definition in 25.1) the same as the r ight-handed 
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derivative f+  (~c). Similarly, when ~ is the right endpoint of the interval, then the limits 
and derivatives from the right are meaningless and f '(~) - f - (~ ) .  

g. If we replace the norms of X and Y with equivalent norms, then the linear space 
B L ( X ,  Y)  - {bounded linear operators from X into Y} remains unchanged and its 
norm also gets replaced by an equivalent norm. The existence and value of ff(~c) are 
unaffected by these replacements. Thus, our calculations are actually being performed, 
not in a normed space, but in a normable space i.e., in a topological vector space 
whose topology can be given by various norms but that does not have one of those 
norms specified in particular. 

h. (Optional.) Let X, Y be Banach spaces. With notation as in 23.28, recall that  
I n v ( X , Y )  is an open subset of the Banach space B L ( X , Y ) .  Define a mapping 
~ "  I n v ( X , Y )  ~ B L ( Y , X )  by ~( f )  - f -1 .  Show that F_ is continuously differen- 
tiable, with [F,' (f)] (h) - - f - l h f - 1 .  Hint" Use the series in 23.28.b. 

i. (Optional.) Let X be a complex Banach space, and let B L ( X ,  X)  be the Banach space 
of bounded linear operators from X into X. Let T be a member of B L ( X ,  X), and let 
p(T) be its resolvent set (defined as in 23.30). Show that the mapping A ~ ( A I - T )  -1 
is a differentiable mapping from p(T) into B L ( X ,  X) .  What is its derivative? 

Another example of a derivative in infinite dimensions is given in 25.22. 

25.6. C h a i n  ru le  of  d i f fe ren t ia l  ca lculus .  Let X, Y, Z be normed spaces. Let S C_ X 
and T C Y be open sets. Let f -  S ~ Y and g" T ~ Z be some functions. Suppose that 
x0 e S and Yo - f (xo)  c T. Suppose that the derivatives at these points, f ' (xo)  and g'(Yo), 
both exist. (We do not assume that f and g are differentiable anywhere else, though we do 
not prohibit that  either.) Then the composition g o f is differentiable at x0, and we have 

(g o f ) ' (xo)  - g'(yo) o f ' (xo) ,  

or, in other terms, (g o f) '(~) - g ' ( f (~ ) )o  f '(~). This formula is easier to remember in 
Leibniz notation: If z is a function of y and y is a function of x, then 

dz dz dy 
0 

dx dy dx 

The dy's appear to "cancel out" in this formula. The proof of the Chain Rule is similar to 
that  given in any calculus book for X = Y = Z = R, with epsilons and deltas. We leave 
the details as an exercise. (It is interesting to compare this with 29.12.b.) 

Cautionary remark. When X = Y = Z = R, as in college calculus, the linear operators 
d z  and d y  d---y ~xx are simply the operations of multiplication by a real number (see 25.2); hence 
the composition of those two operators is just the multiplication of those two real numbers. 
In that setting, it does not matter  in what order we put the factors ~ and ~ ,  since 
multiplication of real numbers is commutative. However, in the more general setting of 
three arbitrary normed spaces X, Y, Z, the order of the two factors is very important. The 

dz d y  dz Indeed, the formula must be stated d.__~z __ dz dy. it is incorrect if written d--~ - -  dx dy d x  d y  d x  ' 
d y  d z  composition 2-7x ~ may not even make sense for dy , ~ is a bounded linear operator from X 
d z  into Y while ~ is a bounded linear operator from Y into Z. Even when X - Y - Z, the 
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dz need not be equal, since the composition of bounded linear compositions ~ dd--}x and dd--~x dz 
operators from X into itself generally is not commutat ive if d im(X)  >_ 2 see 8.27. 

PARTIAL DERIVATIVES 

25.7. The matrix of partial derivatives. In some cases of interest, the normed spaces X 
and Y are products of finitely many normed spaces" 

X - X1 • X2 • ' ' '  ;'( Xrn, Y -  Y l  x y2 x . . .  x Yn 

for some positive integers m, n. As we noted in 25.5.g, for our present purposes any norm 
can be replaced by any equivalent norm. Hence the product  topology on X can be given by 

I I (Xl ,X2, . . . ,Xrn)  I 
I I (Xl ,X2 , . . .  ,Xm) 

- I x ~ l l + l l x ~ L l +  + l l x ~ l l  

- max {IlXll, IIx2KI,..., IXrnll} 
or 

or any other convenient product  norm; similarly for Y. Let f~ be a subset of X; then a 
function f "  f~ ~ Y can be represented by a wide assortment of notations: 

y - - ( Y l , Y 2 , . . . , Y n ) -  f ( x ) -  f ( x l , x 2 , . . . , x m ) -  ( f l ( x ) , f 2 ( x ) , . . . , f n ( X ) )  

: ( f l ( X l , X 2 , . . . , X r n ) ,  f 2 ( X l , X 2 , . . . , X m ) ,  . . . ,  f n ( X l , X 2 , . . . , X m ) ) .  

We shall use these different expressions interchangeably, switching to whichever one is most 
convenient in any part icular context usually suppressing whatever information is not 

currently being used. 
The p a r t i a l  d e r i v a t i v e  Oyi/Oxj is the derivative of the mapping xj ~-~ yi tha t  we 

obtain when we consider xj to be the only variable and view all the other Xp'S as constants 
Oy~ i.e., hold their values fixed. With  j - 1, for instance, o-;; (~) is a bounded linear operator 

L :X1 ~ Yi tha t  satisfies 

lim I I f i ( u , ~ 2 , ~ 3 , . . .  ,~m)  - fi(~1,~2,~3,... ,~m) -- L ( u  - ~1)11 
~ - ~ 1  I1~ - ~111 

= 0 

(if such an operator L exists). We define Oyi/Oxj for other j ' s  analogously. 
Exercise. Let us represent vectors x E X and y E Y as column matrices; that  is, 

Xl Yl 

x2 Y2 
x - . and y - . 

Xm Yn 
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Suppose the Fr6chet derivative dy/dx - f '(x) (defined as in 25.1) exists. Then all the partial 
derivatives exist, and the Frdchet derivative is equal to the matrix of partial derivatives" 

f,(~) = dy 
dx 

- Oyl Oyl Oyl 
�9 . . 

OXl OX2 OX m 

Oy2 Oy2 Oy2 
OX l OX2 OXrn 

Oyn Oyn Oyn 
Oxl Ox2 Oxm 

The expression L(x - ~) in 25.1(.) is then evaluated by the usual method for multiplying 
a matr ix times a vector, as in 8.28. Of course, here we must extend the meaning of the 
term "matrix:" the components cgyi/Ox j of this matrix are not necessarily numbers, or 
even members of a single ring; rather, Oyi/Oxj is a bounded linear operator from Xj into 
Yi. The components of the matrix are numbers (i.e., scalars) when Xj and Yi are both 
one-dimensional, as in 25.2. 

Example. Here is a typical example in two dimensions. If ft - X - Y - IR 2 
(Xl cosx2, Xl sinx2), then 

and (Yl, Y2) -- 

 , XlX l 
Oyl Oyl 
OXl Ox2 

Oy2 Oy2 
OXl OX2 

cos x 2 --x I sin x2 ] 

J D 

sin x2 Xl cos x2 

Thus, for instance, Oyl/OXl is the function we obtain by viewing x2 as a constant and Xl 
as a variable, and differentiating the function yl = X l cos x2 with respect to that  variable. 
The other partial derivatives Oyi/Oxj are defined similarly. To say that  the formula above 
gives the derivative is to say that  this quotient 

XlCOSX2 I -- 
Xl sin x2 

~1COS~2 ] _ [ cOS~2 
~1 sin ~2 sin ~2 

Xl -- ~1 

converges to 0 when X l ----+ ~1 and x2 + {2. 

--~lsin{2 ] [ Xl--~l ] 

~1 COS ~2 X2 -- ~2 

Further observations�9 If the FrSchet derivative exists, then the partial derivatives all exist. 
The converse is not valid: There are some functions that  possess partial derivatives but do 
not possess Fr(~chet derivatives; one example is the function f given in 15.28�9 (Exercise. 
Prove this.) One convenient sufficient condition for the existence of a Fr(~chet derivative is 
given in the exercise below, but it is not a necessary and sufficient condition. 
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Exercise. Let X = X1 x . ' '  • Xm and Y = Y1 • "'" x Yn; let ft be an open subset of X; let 
f : ft ~ Y be some mapping. Suppose that  all the partial derivatives gij = Oy~/Oxj exist. 
Also assume that  each function gi j (Xl ,X2, . . .  ,Xm) is a jointly continuous function from X 
into Yi. Then f has a Fr(~chet derivative given by the matr ix of partial derivatives. 

Hints: We can consider each Yi separately. (Why is that?) Therefore, in the computa- 
tion below, we shall suppress the subscript i. For simplicity of notat ion we shall consider 
only the case of m = 3; the proof for arbitrary m is similar. Use the fact that  

3 

f (Xl  + hl, X2 + h2, x3 + h 3 ) -  f ( x l , x 2 , x 3 )  - E g j ( X l , X 2 , x 3 ) h j  
j = l  

~ ]]f(Xl + hi, x2 + h2, x3 + h3) - f ( x l ,  x2 + h2, x3 + h3) - gl (Xl, x 2 , / 3 ) h i  I] 

-+- IIf(Xl,X2 -+- h2,x3  -k- h3) - f ( x l , x 2 , x 3  + h3) - g2(Xl,X2,x3)h211 
+ II f(xl ,x2,x3 + h3) - f ( x l , x 2 , x 3 )  - g3(xi,x2,x3)h311. 

25.8. Real derivatives versus complex derivatives. The spaces C and R 2 are isomorphic 
when considered as real Banach spaces i.e., as complete normed vector spaces over the 
scalar field R. The obvious bijection preserves the linear structure and also the topology. 
However, the two-dimensional real vector space C and the one-dimensional complex vector 
space C have different differentiable structures, as we shall now show. 

Proposition. Let (W, II II) be any complex Banach space (for instance, C itself), and let 
f : C + W be some function. We may view W also as a real Banach space and define a 
corresponding function g :  R 2 + W by g(x, y) = f ( x  + iy) for real x and y. Suppose g has 

a Fr~chet derivative g ' ( x o , y o ) -  [ ~ ( x o ,  yo) Og ] (xo, yo) at some point (xo, Yo). Then f 

has a Fr6chet derivative at the point zo - xo + iyo if and only if the partial derivatives of g 
satisfy 

Og Og 
(xo, yo) - i  (xo, yo), (**) oy 

in which case f ' (zo) - ~x(XO, Yo). Equation (**) may be called the v e c t o r  v e r s i o n  of  t h e  
C a u c h y - R i e m a n n  e q u a t i o n s .  

Hints" We emphasize that  it is assumed that  9 has a Fr(~chet derivative; this is stronger 
than the assumption that  g has partial derivatives. By the definition of Fr(~chet derivative, 
a complex number A is the Fr~chet derivative of f at z0 if and only if A satisfies 

A - l i m  f ( z )  - f ( z o )  _ lim g(xo + h, yo + k)  - g(xo, yo) 
z~zo z -  zo (h,k)~(o,o) h + ik 

If the limit exists, then we must get the same value for the limit no mat ter  how (h, k) 
approaches (0, 0). In particular, approach along the horizontal direction or along the vertical 
direction. Thus we get the values 

lim g(xo + h, yo) - g(xo, Yo) 
h~O h 
lim g(xo, Yo + k) - g(xo, Yo) 
k~o ik 

Og 
Ox (xo, yo), 
1 Og 

Oy ( x~  ' yo ) , 
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which must therefore be equal; this proves (**). Conversely, if (**) holds, apply the defini- 
tion of the Fr~chet derivative. 

Further remarks. A particularly important  special case is that  of W - C. In that  case we 
may write f - u + iv, where u and v are real-valued functions (see 10.25). Then equation 
(**) can be rewritten as ~ ( u + i v )  - i ~ x ( U + i v  ) - -  that  is, u y + i v y  - i U x - V x .  Since u ( x , y )  
and v(x ,  y) are real functions of real variables, all their partial derivatives ux, uy, Vx, vy are 
real. Hence we may equate the real parts of the preceding condition, as well as the imaginary 
parts. Thus, for W -  C, equation (**) can be rewritten in the form 

Ou Ov Ov Ou 
Ox Oy ' Ox Oy " 

These are the classical C a u c h y - R i e m a n n  E q u a t i o n s .  

Example. Let f ( z )  - -2. This is the complex conjugate of z; it is a continuous function of 
z. We have u(x ,  y) - x and v(x ,  y) - - y .  The rea l  d e r i v a t i v e  of this function exists: 

~V 
Ox 

However, the c o m p l e x  d e r i v a t i v e  

/)u /)u 

Ox Oy 

Ov 
Oy 

1 0 I0 1] 

f ' ( z )  - lim f ( z  § h) - f ( z )  
h---~O h 

does not exist for this function f; the Cauchy-Riemann Equations are not satisfied. 

25.9. The Chain Rule takes a particularly interesting form when the spaces X, Y, Z can 
be factored into simpler spaces, as in 25.7. If 

X -  (Xl ,X2, . - . ,Xm),  Y--  (Yl ,Y2, . . . ,Yn) ,  z = z , ) ,  

then the Chain Rule says 

OZl OZl OZl OZl Oyl Oyl 
OX l �9149149 OXm Oyl �9149 ~Yn OX l �9149149 OXm 

�9 �9 m . . . .  

O'Zp OZp O'Zp OZp Oyn O'yn 
C~ X l "'' ~Xm C~ Y l "'' ~Yn (~ X l "'' ~Xm 

with usual multiplication of matrices�9 Thus, the entry in row i, column j of the product is 

Ozi Ozi Oyl Ozi Oy2 Ozi Oyn 
- t F. . . -~  . 

OXj Oyl OXj cgy 2 0 X j  cgy n OXj 

This formula is sometimes taught in college calculus texts, especially in the special cases 
where one or two of the integers m, n, p are equal to 1. 
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S TRONG D ERIVATIVES 

25.10 .  Definition. Let X and Y be normed spaces, and let f �9 ft -~ Y be some function 
with domain f~ c_ X.  We say tha t  L is a s t r o n g  d e r i v a t i v e  of f at a point ( c ft, denoted 
L -  f ' (~) ,  if L"  X --~ Y is a bounded  linear map satisfying 

IIf(x)- f ( u ) -  L ( x -  ~)11 
lira = 0, 

X,~t---+ ~ X--~t 

or, in greater  detail, 

f (x) - f (u) - L ( x -  u) l 
lira sup = 0, 

J. 0 x , u  ~ B~(~), II x -  ull 

x - O n  

where B~({) is the ball of radius r centered at ~c. Then we say f is s t r o n g l y  d i f f e r e n t i a b l e  
at {. Clearly, this is a stronger proper ty  than  Fr6chet differentiability. 

Note tha t  s trong differentiability is a condit ion at a single point. It is possible for f to 
be strongly differentiable at { and yet be nondifferentiable at every point in Q \ {{}. We 
shall see in 25.23 tha t  if f is differentiable on an open set, then f is strongly differentiable 
if and only if f is continuously differentiable. 

Our results on strong derivatives are taken from Behrens [1974] and Nijenhuis [1974 and 
1976]. 

Some basic properties. 
a. Suppose f : f~ ---+ Y is strongly differentiable at some point { E ft. Then f is Lips- 

chitzian on some neighborhood of {. In fact, if r > I ]] f '  ({) l] l, then for some neighbor- 

hood G of ~ we have (fiG}Lip. _< r. 

Proof. Let g = r - I I I f ' ({) l l l -  Choose G small enough so tha t  u, v c G ~ Ill(u) - 
f ( v )  - f ' ( ~ ) ( u -  v)l I <__ o l i n -  VII. 

b. If we merely assume tha t  f is differentiable on a neighborhood of {, then f need not 
be strongly differentiable at {. 

Example.  Let f ( t )  = t 2 sin(t -4) with f (0)  = 0. Then f is differentiable at every 
point of R, but  f is not strongly differentiable at 0. 

Proof. f ' (0 )  = 0 since If(t)l  <_ t 2 for all t. For t :/: 0, we easily compute  
f ' ( t )  = 2ts in( t  -4) - 4 t  -3 cos( t-4) .  Now consider us = (27rn) -1/4 and v~ = us + 6~ 
for some very small positive number  8~ to be specified. Then f ( u ~ )  = 0 and i f(u, , )  = 
-4(27rn)  a/4, hence 

lira f(u,~ + (5) - f(u,~) _ f ' ( u ~ )  = -4(2r rn )  a/4 
~+o 6 

Thus, for 6., positive but  sufficiently small, 

f ( v . , ) -  f(u,~) 
V n  - -  ~ n  

< --3(2rrn) 3/4 
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and therefore [ f ( v n ) -  f ( U n ) ] / ( V n -  ?-tn) does not tend to some finite limit L(0) as 
U n  , V n  ~ O. 

25.11.  If f is a (possibly vector-valued) function of a single real variable and f is merely 
assumed to be differentiable at a point ~, then f still has a property that  is nearly as useful 
as strong differentiability: 

S t r a d d l e  L e m m a .  If f is differentiable at ~, then [ f ( u ) -  f ( v ) ] / ( u -  v) approaches f ' (~)  
when u and v approach ~c f r o m  opposite directions (i.e., when u and v "straddle" ~c). That  
is, limu,~, vl~ ( f ( u ) -  f ( v ) ) / ( u -  v ) =  f ' (~) or, more precisely, 

lim510 s u p {  f ( U ) - u _ v f ( V ) _ f , ( ~ ) l l  " ~ - 6 < U < _ u C ~ C < v < ~ + & } v  - 0. 

(This result will be used in 25.14 and 25.17.) 

Proof. By the definition of f ' (~),  we have f ( x )  - f (~ )  - f ' ( ~ ) ( x  - ~) = (x - ~)e(x) ,  where 
e(x) is a function satisfying limx__,r e(x) = 0. Subtract one of the equations 

f ( u )  - f (~ )  - f ' ( ~ ) ( u  - ~) = (u - ~)c(u) ,  f ( v )  - f (~ )  - f ' ( ~ ) ( v  - ~) = (v - ~)C(v) 

from the other and then divide through by u -  v, to obtain the equation 

f ( u )  - f ( v )  _ f , ( ~ )  = u -  ~ c ( u )  + ~ - V c ( v ) .  
U - - V  ~ - - V  U - - V  

Because ~ lies between u and v, the right side of the equation above is a convex combination 
of e(u) and c(v), so it tends to 0 as u, v --~ ~. 

25.12.  I n v e r s e  F u n c t i o n  T h e o r e m .  Let X and Y be Banach spaces, let ~ c_ X be 
open, and let p" ~t --~ Y be some function. Assume that  p is strongly differentiable at some 
point x0 E ft. (We do not assume that  p is differentiable anywhere else.) Assume that  the 
linear mapping p~(xo) " X --~ Y is an i s o m o r p h i s m -  i.e., a continuous linear bijection with 
continuous inverse. 

Then p is locally invertible, in the following sense: There exist open sets U C_ ~ c_ X 
and V c_ Y, with x0 E U, such that  the restriction PlU. gives a bijection from U onto V 

whose inverse is strongly differentiable at p(xo) .  The derivative of p-1 at that  point is equal 
to p'(x0) -1. 

Proof. Let ~ -  p~(xo). It suffices to show that  the mapping q -  ~-1 o p .  ~ ~ X is locally 
invertible, for then p -  ~ o q and p-1 _ q-1 o ~-1 have the required properties. Thus, we 
may assume Y - X. Replacing p with p(xo + .) - p(x0), we may assume xo - p(xo)  - O. 

Denote open and closed balls by B and K, as in 5.15.g. Let g(x)  - x -  p(x); then 
g(0) - 0 and g'(O) - O. By 25.10.a, there is some r > 0 such that  g is Lipschitzian on the 

1 Since g(0) - 0  g maps K(0, r ) i n t o  closed ball K(0, r) with Lipschitz constant at most ~. 
K(O, r /2 ) .  For any constant y E K(O, r /2 ) ,  the mapping gy - Y + g is Lipschitzian with the 
same Lipschitz constant and maps K(0, r) into K(0, r). By Banach's Fixed Point Theorem 
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(19.39), gu has a unique fixed point x in K(0,  r). Unwinding the notation, that  says that  
for each y E K(O, r /2) ,  the problem 

p(x )  - y, ~ ~ K ( o ,  ~) 

has a unique solution x. The same conclusion is reached if we replace r with any slightly 
smaller value. Hence for each y E B(O,r/2) ,  the problem p(x) - y, x E B(O,r) has a 
unique solution. Let V - B(O, r/2)  and U - B(0, r) A p-1 (V); then U, V are open and the 
restriction of p is a bijection from U onto V. 

1 Next we show that  p - 1  . V --+ U is Lipschitzian. Since (g}Lip < 5, we have 

IlXl - x~ll - lip(x1) - p(x2)ll I lXl  - p ( x l )  - x2 + p ( x = ) l l  
1 
~llxl - x211 

and therefore I lXl -  x~lL ~ 2lip(x1)- p(x~)ll. Thus (p-l>Lip _< 2. 

Finally, we show that  p-1 is strongly differentiable at p(xo), with derivative equal to 
�9 1 < 2 , s ince  pt (xo) - i  Let ~ -  pt(xo). Let Yl - p ( x l ) a n d  Y2 - p ( x 2 ) .  Then Ilyl--y211 - Ilxl-x211 

(p- 1} Lip < 2. Then 

P - I ( y l )  - -  P - - I ( Y 2 )  - -  ~ - I ( y l  - -  y ~ ) l l  

IlCxl - x=) - ~ - 1  [ p ( X l )  - p(x2)]l I 
Ilyl - y~l 
- x 2 )  - [ p < X l )  - p<x )]}ll 

Ilyl - y~ll 

II~(Xl -- X2) -- [p(Xl) -- p(X2)] t 
I lXl  - -  X 2 

When Yl,Y2 ~ p(xo), then Xl,X2 ~ xo, and then that  last fraction tends to 0 by definition 
of qp -- p'(xo)�9 

Remarks�9 This theorem has many generalizations and variants�9 For instance, Clarke [19761 
gives an inverse function theorem for Lipschitzian functions that  are not necessarily differ- 
entiable. The bounded linear operator f ' (xo)  is replaced by a collection of approximating 
operators�9 

25.13.  In the next theorem we solve the following problem" Let f ( x ,  y) be some function of 
two variables. When x and z are known, then we may try to solve the equation f ( x ,  y) - z 
for y. Does this make y into a function of x and z? 

I m p l i c i t  F u n c t i o n  T h e o r e m .  Let X, Y, Z be Banach spaces, let f~ C_ X x Y be an open 
set, and let f �9 f~ ~ Z be some mapping that  is strongly differentiable at some point 

of (x0, Y0) E f~. Also suppose tha t  L - ~--~y (x0, Y0)" Y ~ Z is an isomorphism i.e., suppose 

L is a linear bijection from Y onto Z such that  L and L -1 are continuous. Let z0 - f(x0,  Y0). 
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Then there exists a Lipschitzian mapping q :  N ~ Y, defined on a neighborhood N of 
(x0, z0) in X x Z, such that  

q(xo, zo ) = Yo, and f ( x , q ( x , z ) ) - - z f o r a l l ( x , z ) E N .  

Moreover, this mapping q is locally unique, in the following sense: For all (x, y, z) in some 
neighborhood of (x0, Y0, z0) in X x Y x Z, we have f ( x ,  y) = z if and only if y = q(z, z). 

Pro@ Let zo = f (xo,Yo).  Define a mapping g : f~ ~ X x Z by g(x ,y )  = (gl,g2) = 

(x, f ( x ,  y)). Then g(xo, Yo) = (xo, zo). Also, g is strongly differentiable at (xo, yo), with 

091 Ogl 

0g2 0g2 Of Of " 
Ox Oy Ox Oy 

In particular,  

g' (zo,  yo ) = [ J E 1 i x  0 i x  0 
has inverse 

fx(xo,  Yo) L - L - l  fx(xo,  Yo) L -1 

Thus the mapping g~(xo, Yo) : X x Y ~ X x Z is an isomorphism. By the Inverse Function 
Theorem (in 25.12), the restriction of g gives a bijection from some open neighborhood of 
(x0, Y0) onto some open neighborhood of (x0, z0), and both g and g-1 are Lipschitzian. Let 
g - l ( x , z )  = (p (x , z ) , q ( x , z ) ) .  

When z = f ( x ,  y), then g(x, y) = (x, z), hence (p(x, z), q(x, z)) = (x, y). This proves 
tha t  p(x, y) = x for all (x, y) near (x0, y0). Now for (x, y, z) near (x0, Y0, z0), we have 

f ( x ,  y) = z .z---> g(x, y) = (x, z) ~ (x, y) = g - 1  (X, Z) ~ y : q(x, z). 

25.14.  E x i s t e n c e  of  n o w h e r e - d i f f e r e n t i a b l e  f u n c t i o n s .  The functions studied in an 
undergraduate  course in calculus are, for the most part,  piecewise continuously differen- 
tiable. Tha t  is, they are functions from an interval of R to ]R, which are differentiable and 
have continuous derivatives except at finitely many points. However, those functions are 
atypical if we change our viewpoint slightly. We now present two different proofs of the 
existence of continuous functions that  are nowhere-differentiable. 

(i) f ( t )  - En~ 2 -n  sin(22nTrt) is a particular example of a function that  is con- 
tinuous but nowhere-differentiable. 

(ii) The nowhere-differentiable functions comprise a comeager subset of the sup- 
normed Banach space C[0, 1] = {continuous, real-valued functions on [0, 1]}. 
(In other words, most continuous functions are nowhere-differentiable. This 
explains Poinca%'s remark, on page v at the front of this book. See also 
21.20.) 



Strong Derivatives 673 

Proof of (i). This  is similar to a proof given by Billingsley [1982]. Since sin(.) is bounded,  
f(t) is a uniform limit of continuous functions; therefore it is continuous. Fix any t E IR; 
we shall show tha t  I f ( b ) -  f (a)] / (b-  a) is unbounded  as a, b --+ t wi th  a _< t < b, and hence 
f is not differentiable at t E R by the Straddle  L e m m a  (25.11). 

Temporar i ly  fix any large positive integer m; then  choose k, a, b so k is an integer and 

k k + l  
a = < t < = b. 

2 2 r n + l  --  22m+1  

We now analyze the number  2-'~1 s in (22~r ra ) -  sin(22~:rb)l in three cases �9 

�9 W h e n  n is an integer greater  than  m, then 22ha and 22~b are integers, hence sin(2>~rra) 
= sin(22nrrb) - O. 

1 �9 W h e n  It - m, then  one of 2>~a, 22~b is an integer and the other  differs from it by 5, 
so 2 -'~ ] s i n (22~r r a ) -  s in(22~Trb)l-  2 -'~ - 2 -m.  

�9 Since d sin(x)] _< 1, the function sin(.) is nonexpansive;  so when n is a positive integer 
less than  m we can es t imate  2-~1 sin(22~a) - sin(22~b)[ < 2-~1(22~a) - ( 2 2 n b ) l -  

n - - 2 m - -  I 

2 

r n - 1  2 n _ 2 m _  1 Combining these results shows tha t  I f(b)-  f(a)l > 2 - m -  }-~n=-~ 
I[f(b)- f (a)] / (b-  a)[ >_ 2 "~, which is not bounded  as m --+ oc. 

= 2 - m - 1  �9 Thus  

Example  of 
a zigzag line 

Proof of (ii). For n - 1, 2, 3 , . . . ,  let Mn be the set of all functions z E C[0, 1] tha t  have the 
following property:  

There  exists some point to E [0, 1] such tha t  sup 
~[0,1]\to 8 - -  to 

< It. 

It is clear tha t  if z is continuous on [0, 1] and differentiable at some point to, then  x satisfies 
the inequali ty above for some n, and thus x E Un~ Mn. It suffices to show tha t  each set 
M,j is nowhere-dense.  It is easy to see tha t  Mn is closed in C[0, 1]; thus it suffices to show 
tha t  M,, has no interior. Let y be any continuous function on [0, 1], and let any c > 0 be 
given; it suffices to show tha t  some member  of C[0, 1] \ Mn is within dis tance e from y. 
Since y is uniformly continuous, we can par t i t ion  [0, 1] into finitely many  subintervals,  on 
each of which 9 changes less than  ~. Then  we approx imate  y by a polygonal function 
i.e., a continuous function z whose graph is a "zig-zag line" consisting of finitely many  line 
segments.  We may change those line segments  to be very numerous  and short  and to all 
have slope greater  than  n or less than  - n .  Then  z ~t Mn. 
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DERIVATIVES O F  I N T E G R A L S  

25.15.  F i r s t  F u n d a m e n t a l  T h e o r e m  of  Ca l cu lu s .  Let X be a normed vector space. 
Suppose u : [a, b] ~ X is Henstock integrable. Then "the derivative of the integral of u is 
equal to u." More precisely: 

Define a function F'[a ,  b] ~ X by F ( t ) -  f t  a u(s)ds. Then F is differentiable at every 
point to where u is continuous, and F'(to) = u(to). Likewise, F has a one-sided derivative 
(equal to u) at every point where u is continuous from one side. 

Hints: Suppose u is continuous at to. Given any s > 0, choose 5 > 0 small enough so that  
s E [to - & to + 5] A [a, b] implies ]]u(s) - u(t0)]] < s. Then t E [to - 5, to + 5] N [a, b] implies 

liP(t) - F(to) - ( t -  to)u(to)ll u(s)ds - u(to)ds I t -  tol~ 

by 24.16.a. Hence limt_+to[F(t) - F( to)] / ( t -  to) = u(to). The same proof applies, with 
obvious modifications, to one-sided continuity and one-sided derivatives. 

25.16.  L e b e s g u e ' s  T h e o r e m  on  d i f f e r e n t i a t i o n  of  t h e  i n t eg ra l .  Let u C L I(I~,X).  

Let F(t) - fo u(s)ds. Then F'(t) exists and equals u(t) for almost every t E R. In fact, we 
have a slightly stronger conclusion: There exists a set Lu whose complement has Lebesgue 
measure 0, such that  for each t E Lu we have 

lim 1 j t  "t+h - u(t)lds = 0. 

(This is a two-sided limit i.e., we permit h to approach 0 from either side, with the 
notational convention of 24.20.) The set Lu is sometimes called the L e b e s g u e  set  for u; 
its members are called the L e b e s g u e  p o i n t s  of u. 

Remark. In most of integration theory we would work with a member of L 1 (IR, X) - -  that  is, 
an equivalence class of functions. However, in the present theorem we work with a member 
of L1 (I~, X) that  is, a particular function from I~ into X. Different functions in a single 
equivalence class may have different Lebesgue sets, but those sets will differ by a set with 
Lebesgue measure 0. 

Proof of theorem (following Fefferman [1977]). We are to show that  the set 

t I~  �9 lim E sup 
~0 0<lhl_<~ 

1 / t+h  
- u(t)lds > 0  

has measure 0. Hence it suffices to show that  for each positive integer n, the set 

& f 
= { t  E R �9 lim sup L ~1o O< lh l__ r  

1 / t+h  
- u(t)lds 1} > - -  

n 
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has measure less than 1. n 
The continuous functions that belong to L1 (I~, X) are dense in that space. Thus we may 

write u - v + f ,  where v E C(R,X)NLI(IR, X) and f E LI (R ,X)  with II/lll < 1/8 n2. Let g 
1 Ft+ h be the maximal function of f (defined as in 24.43). Since limb__,0 -~ at Iv(s)-  v(t)lds - 0 

for every t, we have 

Sn  z 
{ 1} 

t E R �9 lim sup ~ I f ( s ) -  f(t)lds > - 
r$0 0<lhl_<r a t  n 

t E N  �9 sup I f ( s ) - f ( t ) l d s  >-- 
hr  h J t  n 

{ 1 }  { i f  t+h 
t E R  �9 I f ( t ) l>  ~n W t E R  �9 suph#0 -s f(s)lds 

{ 1 }  { 1 }  
t E R  �9 If( t ) l>Tnn o t E R  �9 g( t )>Tnn " 

1} 

Hence (letting # denote Lebesgue measure) 

( {  1 } )  ( {  1 } )  
# t E R  �9 I f ( t ) l>  ~nn + # t E R  �9 g(t)> ~n 

1 
2n / l l l + 6 n l l f  1 - 8nil fill _< - 

by Chebyshev's Inequality (21.37.g) and the Lemma on the Maximal Function (24.43). 

INTEGRALS OF DERIVATIVES 

25.17. T h e o r e m  re l a t ing  t he  H e n s t o c k  and  St ie l t jes  in tegra ls .  Let X be a normed 
vector space space with scalar field F. Let f and ~ be two functions defined on [a, b] 
one of them vector-valued, the other scalar-valued. Suppose that ~ is continuous, and its 
derivative ~1(t) exists except at at most countably many values of t. Then the Henstock- 

Stieltjes integral fb f(t)d~(t) exists if and only if the Henstock integral f :  f(t)~'(t)dt exists, 
in which case they are equal. 

Clarification. By fb f(t)p'(t)dt we mean f :  f(t)G(t)dt, where G is any function that satisfies 
G(t) = p'(t) except at perhaps countably many points. Thus G may be defined arbitrarily 
on a countable set. It is interesting to compare this theorem with 29.12.a. 

Proof of theorem. We wish to show that if either of the nets E[f, T, p], E[fG, T] (for tagged 
divisions T) converges to a limit, then the other converges to the same limit. Thus it suffices 
to show that liE[f, T, p ] -  E[fG, T]]] becomes small as T progresses. 

Let S = {a l , a2 , a2 , . . . }  be an enumeration of the points where ~ does not exist or 
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G r ~'. Let a n y e  > 0 be given. Define a g a u g e  6 separately on S and on [ a , b ] \ S ,  as 
follows: 

Define 6 on S by this rule: Choose 6(ak) > 0 small enough so that  

t, t' E [ak -- 6(ak), ak + 6(ak)] N [a, b] 

I I f ( ~ ) l l ~ l l ~ ( t )  - ~( t ' ) l l  + I I G ( ~ ) l l ( t  - t ' )~  < 2-k-2c.  
k ) 

(We can do this since IIf(~k)ll and IIG(ak)ll are finite numbers and ~ is continuous.) 
Define 6 on [a, b] \ S by this rule: At each point r in [a, b] \ S, by the Straddle Lemma 

(25.11) there is some number 6(7) > 0 with the property that  

v - + n [a, hi, _< _< v, r v 

IIf(~-)lJ 
~(~) ~(~) - G ( ~ )  < 

u - v  2 ( b -  a) 

In this fashion we define a gauge 6 : [a,b] --~ (0, + ~ ) .  Now let T = (n, tj, Tj) be any 
&fine tagged division of [a, b]; we shall show that  fir[f, T, ~ ] -  2 [ fG,  T]II _< c. We may drop 
any degenerate subinterval (i.e., any subinterval with tj-1 = tj) since such subintervals 
contribute 0 to Elf ,  T, ~] and E[fG, T]. Thus we may assume that  tj-1 < tj for each j.  
Let )~j ---IIf(Tj)[99(tj)- ~ ( t j - 1 ) ] -  f (T j )G(T j ) ( t j -  tj-1)ll; then I IE[ f ,T ,~]-  E[fG, T]I I < 

n ~ j = l  )~J" We shall estimate the Aj's in two ways, according to whether 7j does or does not 
belong to S. 

If Tj = ak  for some k, then )~j < 2 - k - 2 c  by our choice of 6(ak). Any ak appears at most 
twice among the tags Tj (since we have no degenerate subintervals). Hence the sum of all 
such / ~ j ' S  is less than 2 X: ~k=l 2 -k -2e  -- ~c.1 

On the other hand, if 7j r S, then ,kj < (tj - t j - 1 ) c / 2 ( b - a )  by our choice of 6(rj). The 
sum of all such Aj's is less than c/2. This completes the proof. 

25.18.  S e c o n d  F u n d a m e n t a l  T h e o r e m  of  Ca l cu lus .  Let ~ :  [a, b] ~ X be a mapping 
from some compact interval into a normed vector space. Then "the integral of the derivative 
of ~ is ~." More precisely: 

(i) (College calculus version.) Suppose ~ is differentiable at every point of [a, b], 
and assume ~' is Riemann integrable. Then f :  ~ ' ( t ) d t -  ~ ( b ) -  ~(a). 

(ii) (Henstock integral version.) More generally, just assume ~ is differentiable 

at every point of [a, b]. Then ~' is Henstock integrable, and f :  ~'(t)dt - 
p(b) - p(a).  

(iii) (Henstock integral with bad points.) Still more generally, let G :  [a, b] ~ X 
be some function. Suppose that  ~ : [a, b] ~ X is continuous, and suppose 
that  the derivative ~'(t)  exists and equals G(t) for all but countably many 

points t i n  [a, b]. Then G is Henstock integrable, and f :  G(t)dt - p ( b ) -  ~(a). 

Proof. It suffices to prove (iii). Apply 25.17 with f ( t )  = 1. 
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25.19. Pathological example. In 25.18(iii) we cannot replace "countable set" with "set 
with measure 0." We shall now exhibit a continuous function f :  [0, 1] ~ [0, 1] that is not 
constant, but nevertheless satisfies i f(t)  = 0 for all t outside a set of measure O. 

Our example f is known as the Cantor  function. (In chaos theory it is also known 
sometimes as the devil 's staircase see Devaney [1989].) It is fairly complicated; we 
shall construct it as the uniform limit of a sequence of simpler functions fn. These are most 
easily understood by their graphs; see the graphs of the first few fn's on the next page. 

In general, fn(t) has a graph consisting of horizontal line segments of varying width, 
alternating with diagonal line segments that have slope (3/2) n, which go up 2 -~ units 
while going to the right 3 -n units. Each f~+l is formed from fn by this procedure: Leave 
unchanged each of the horizontal line segments in the graph of f~. Replace each non- 
horizontal line segment (which covers a horizontal distance of 3 -~) and replace it with 
three new line segments (each of which covers a horizontal distance of 3 -~+1); the middle 
one of these new line segments is horizontal. 

It is easy to see that the functions fn are continuous and converge uniformly to a limit 
f, which is therefore continuous. The function f is constant on each of the open intervals 

<3 2 ) ( 1  2 ) < 7  8 ) ( 1  2 ) ( 7  8 ) ( 1 9  2 0 ) ( 2 5  26) 

and thus we have f '  - 0 at every point of the set 

(1 ~ ) ( 1  2 ) ( 7  ~ ) ( 1  2 ) ( 7  8 ) < 1 9  2 0 ) ( 2 5  26) 

which has measure equal to 

( 1 )  (~  1 ) ( 1  1 1 1 )  1 [ ( 2 ) 0  ( 2 ) 1  ( ~ ) 2  ] 
5 + + + . . . .  5 + + + "  

which is 1 (by 10.41.d). It follows that f '  - 0 almost everywhere. 

SOME APPLICATIONS OF THE SECOND 
FUNDAMENTAL THEOREM OF CALCULUS 

25.20. Pathological example. Let f ( t )  - t 2 cos(Trt -2) when 0 < t < 1, and let f(0) - 0. 
We shall show that this function's derivative, i f(t),  is Henstock integrable but not Lebesgue 
integrable on [0, 1]. We easily compute i f ( t ) -  2t cos(Trt -2) + 27rt -1 sin(zrt -2) for 0 < t < 1, 
and if(0) - 0. Then f '  is Henstock integrable, by 25.18, and f ( b ) -  f(a) - f :  f ' ( t )dt  for 
any [a, b] c_ [0, 1]. On the other hand, let 

2 b y -  2; then f ( a j ) -  0 f ( b j ) -  2j 
aj - -  4j + 1' 
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�9 t 

Approximat ions  to 
Cantor ' s  function 

fo ( t )  - t for all t in [0, 1] 

�9 t 

f l ( t )  - i 3t w h e n O < t <  5, 
2 - -  - -  

1 when 1 < t < 2 5 -  - 5 ,  
3 1 2 < t < l  ( t - 5 )  w h e n s _  - �9 

/ 
/ 

/ 
/ 

, t 

f ~ ( t )  - 1 9 w h e n O _ < t _ <  9, ~t 

1 when 1 ~ t < 2 ~ -  _ ~ ,  
9 ( t _ 1  2 < t < l  ~) when ~ _  _ 5, 

1 when 1 < t < 2 
5 -  - 5 ,  

9 ( t _ 4  2 < t <  7 g) when 5 -  - g, 
8 3 when < t <  g, 

9 ( t _ 5 )  w h e n 8  < t < l  
4 - -  - -  ~ 
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Since 0 < an < bn < an-1 < bn-1 < "'" < a l < bl < 1, for any positive integer n we have 

n I I n 1 Thus f l  i f , ( t ) l d t - o c  so f ' ~  LI[0 1] and f l  if ,(t)ldt >_ E j = I  s f ' ( t )d t  - E j = I  2--~. , , , 

we cannot define f l  f ' ( t )dt  as a Lebesgue integral. 

25.21.  T h e o r e m  on  d i f f e r e n t i a t i o n  u n d e r  t h e  i n t e g r a l  s ign.  Let X be a Banach 
space (equipped with its a-algebra of Borel sets, as usual). Let (f~, g, #) be a measure space. 
Let f : I~ x f~ ~ X be jointly measurable (where R is equipped with Lebesgue measure on 
the Lebesgue-measurable sets). Assume that  

Of (s w) - lira f ( s  + h,w) - f ( s ,w)  
Os ' h-~o h 

Of 1 exists in X for all (s, w) E R x ft, and assume N E L (R x Ft, X) (where the product space 
is equipped with the product  measure). Assume that  I(so) = fa  f(s0,  .)dp exists for at 
least one real number so. 

Then I(s) - fa f (s ,  .)dp exists for every s E R. Also, I '(s) and fa  ~163 s o s  , -)dp exist and 

are equal for almost every s E R. Thus, we have d ffl f ( s  .)dp - ffl o , ~ f ( s ,  .)dp. 

Proof. When we need to write Lebesgue measure explicitly, we shall denote it by ,k. 
us denote g(s,w) - ~  By the Second Fundamental  Theorem of Calculus Let Os 

25.18, we have f(b, w) - f(a,  w) - f :  g(t, w)dt. Hence 

Z llf(b, oJ)- f(a, oJ)lIxd~(~) fa  g(t, )et d~(~) ~ IlgllLl(Xx.,X), 
X 

which is finite by hypothesis. It follows that  f (s ,  .) E L I ( p , X ) ,  and I(s) exists for every 

s E R. Then I ( b ) -  I ( a ) -  fa If2 g(t,w)dt] 
r - _ _  - i  

dp(w). 
Let Y = LI(p,  X).  By Fubini 's Theorem (23.17), LI(A• p , X )  is isomorphic to LI(A, Y). 

L . J  

For each v E LI(A • p , X )  let ~ be the corresponding member  of LI(A, Y). The Bochner 

integrals B[a,b]u -- f~ u(t)dt and Bay - f~ v(w)dw define continuous linear operators B[a,b] " 
L 1 ([a, b], Y)  --~ Y and B a :  L l(p,  X) --~ X; one of the conclusions of Fubini 's Theorem 23.17 

Bf~B[a ,b]V-  ff~ [ f :v ( t ,o . ) )d t ]d#(cd) .  is that  

By Lebesgue's Theorem on Differentiation (25.16) applied to members of LI(A, Y), for 

almost every s E R we have ~(s) - limh-~0 1 f]+h ~(t)dt; the limit and the integral are both 
in the Banach space Y. Fix any s for which that  equation is valid. The equation can be 
restated ~(s) - limb-.0 gl B[s,s+h]-~. Apply the operator Bfl on both sides of that  equation 
keeping in mind tha t  it is continuous and therefore preserves limits. We obtain 

g(s w)dp(w) - B ~ ( s )  - Ba lim 1 h ' h---*O -~B[s,s+h]'g -- h--,olim BflB[s,s+h]'g 

h--,o -h k~ ~ g(t, w)dt dp(w) - lim 1 [ I ( s + h ) - I ( s ) ]  
h--*O h 
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This completes the proof. 

25.22. Example: differentiation of an integral operator. Let X, (ft, g, #), f be as in 25.21, 
and in addition assume that #(ft) < co, ft is a compact metric space, and -~ �9 N x f~ ~ X 
is jointly continuous. Let 

BC(N,X) = {bounded, continuous functions from N to X}; 

this is a Banach space when equipped with the sup norm. Define 

[ F ( ~ ) ] ( t ) -  ~ f @(t),w)d#(w) for ~ E BC(N,N), t E N .  

We shall show that [F(7)] (.) belongs to BC(N, X), and the mapping 

F : BC(N,N) ~ BC(N,X) 

defined in this fashion is Fr~chet differentiable. The derivative at any 7 E BC(N,N) is 
given by the continuous linear map F'(~/) : BC(N,N) ---, BC(N,X) whose value at any 

E BC(N,N) is given by 

~s  ' 

of Since Range(3,) is a bounded subset of N, it is contained in a compact Proof. Let g -  os" 
set K. Then f, g : K x ft ~ X are continuous functions on a compact set, hence they 
are bounded and uniformly continuous there. For fixed t, the function w H f('7(t),w) is 
measurable and bounded, hence integrable on the finite measure space ft. For t E K, the 
integrand is bounded; hence [g(~/)](t) is a bounded function of t. That it is also a continuous 
function of t follows easily by Lebesgue's Dominated Convergence Theorem (22.29). 

To show that F'(3') has the indicated value, replace K with a slightly larger compact 

subset of N, so that (?(t) + r w) E K x ft for all ~ sufficiently small. Let any e > 0 be 

given. Since g is uniformly continuous on K x f~, there is some ~ > 0 such that 
f 

]]~1]~ <5 ,  c~E[0,1] => ]lg@(t ) + c ~ r  I < e .  
X 

Let us denote [E(3')r (t) - fa g@(t),w)r Observe that 

+ - 

= / a  { f @ ( t ) +  ~b( t ) ,w) -  f@(t ) ,w)-g@(t ) ,w)~( t )}d#(w)  

= g (~/(t) + a~(t) ,  w) ~2(t)dt - g ~(t), w ~(t) d#(w) 
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and therefore II[F(~ + ~ ) -  F (~) -  E(~)~](t)llx ~ cll~ll~(~). Finally, take the supremum 
over all choices of t; this yields IIF(7 + ~ ) -  F ( 7 ) -  E(7)~  Ioo _< cll~lloo~(~). Since e is 
arbitrarily small, this proves F ' ( 7 ) -  E(7). 

25.23. T h e o r e m  relating c o n t i n u o u s  d i f f e r e n t i a b i l i t y  to s trong d i f f e r e n t i a b i l i t y .  
Let X and Y be Banach spaces, let ft C_ X be an open set, and let f �9 ft ~ Y be some 
differentiable function. Let ~ E Ft. Then f is strongly differentiable at ~ (as defined in 
25.10) if and only if f ' ( . ) "  Ft ~ B L ( X ,  Y)  is continuous at ~. 

Proof. First suppose f is strongly differentiable at ~. Let (Xn) be a sequence in ft converging 
to ~; we wish to show that  f ' ( x~ )  ~ f ' (~) .  Since f is strongly differentiable at {, for any 
number e > 0 there is some number ~ > 0 such that  

I 1 ~ -  ~11, IIv - ~1 ~ 2~ u, v c ft and Ilf(u) - f ( v )  - f ' ( ~ ) ( u -  v)l I <_ Ilu - vile. 

For n sufficiently large (say for n >_ Ne) we have Ilx~ -~l  < ~; then 

l l f(x~ + h ) -  f ( x~ )  - f ' (~ )h  <_ Ihll c. 

On the other hand, since f is differentiable at x~, there is some 5~ > 0 such that  

I f (x~ + h ) -  f ( x~ )  - f ' ( x ~ ) h  <_ hilt. 

Thus Ilhll _< m i n { & ~ }  ~ I l f ' ( ~ ) h - f ' ( x ~ ) h l l  <_ 21 bile. Therefore n _> N~ ~ I I I f ' (~ ) -  
f ' (x~)ll l  _< 2c, so f ' ( x~ )  ~ f ' (~) .  

Conversely, suppose f ' (-)  is continuous at {. Temporari ly fix any two points xo ,x l  near 
~, and let xt - (1 - t)xo + txl  for 0 <_ t _< 1. Then, applying the Chain Rule (25.6) and the 
Second Fundamenta l  Theorem of Calculus (25.18),  l[d 

f ( x l ) -  f ( xo)  - --~f( 

and therefore 

f(Xl)  - f(Xo) -- f ' ({)(Xl -- Xo) 

/ 0 1 f  ' Xt) dt - (xt)(Xl - xo)dt, 

L 
1 

[f ' (xt)  - f'(~)] (Xl - -  xo)dt. 

'S  When x0 and X l  are near ~, then all the xt are near ~, hence f ' ( x t ) -  f'(~)ll stays small 
for all t c [0, 1]. This can be made precise with epsilons and deltas; we omit the details. It 
follows easily that  IIf(xt)  - f ( xo)  - / ' ( ~ ) ( X l  - x0) / X l  - -  x 0 l l  + 0 a s  X l , X  0 ----+ ~. 

25.24.  T h e o r e m  r e l a t i n g  L i p s c h i t z n e s s  to  d e r i v a t i v e s .  Let ft be a convex open 
subset of a Banach space X. Suppose that  f "  ft ~ Y is differentiable at every point of ft. 
(We do not require that  the derivative of f be continuous.) Then {f}Lip - I f ' l ib-  Tha t  is, 

sup II f (x l )  - f(x2)llY = sup Ilf'(x)IBL(X Y) 
Xl~X2 l l x l  - x 2 1 1 x  x E ~  ' 
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(with one side of this equation finite if and only if the other side is finite). 
Lipschitzian if and only if f t  is bounded. This generalizes a result in 18.3.b. 

Thus, f is 

Proof .  First  suppose (f}Lip -< r, and let L - f ' (~) and h E X \ {0}; we wish to show 

]]Lh[[ _< rllhll. Replacing h with ch for some small nonzero scalar c if necessary, we may 
assume ~ + h c ft. Then also ~ + t h  C f~ for all t c [0, 1], by convexity. Let any ~ > 0 be 
given. By the definition of derivative we have 

I]f(~ + t h )  - f ( ~ )  - tLh]] 
tllhll for all t > 0 sufficiently small. 

For those t, we have Iif(~ + t h )  - f ( ~ )  - tLhiI  < stllhll , and therefore 

t]iLhiI - IitLhll ~ [If(~ + t h )  - f(~)II + ~tiihiI _ rt]ihll + ctiihiI. 

Divide by t to obtain ]lLhi] _< (r + ~)lihi]; then let s I 0. 
Conversely, suppose Iif'(~)II < r for all ~ c f t ;  we shall show (f}Lip -< r. Let any 

Xo, Xl  C f t  be given. Since f~ is convex, the points x t  - t x l  + ( 1 -  t ) xo  lie in ft for all 
t c [0, 1]. By the Chain Rule (25.6) and the Second Fundamental  Theorem of Calculus 
(25.18), we have 

]ilE ] / o  1 
f ( x l )  -- f ( x o )  -- - - ~ f ( x t )  dt  - f ' ( x t ) ( X l  - x o ) d t .  

Therefore I i f ( x l )  - f ( xo ) l ]  <_ f l  riixl - xol id t  - r l l x l  - x0]] by 24.16.b or 24.16.a. 

25.25.  T h e o r e m  c h a r a c t e r i z i n g  c o n v e x  f u n c t i o n s  on  a n  i n t e rva l .  Let J C II~ be an 
open interval, and let f "  J ~ R be some function. Then f is convex if and only if 

(i) f is continuous, 

(ii) the derivative i f ( t )  exists except for at most countably many points t E J,  
and 

(iii) there exists some increasing function g" J ~ • such that  f ' ( t )  - g ( t )  for all 
but at most countably many points t c J.  

Moreover, if f is convex, then both of the one-sided derivatives 

f+ ( t )  - lim f (s)  - f ( t)  f -  ( t)  - lim f (s)  - f ( t)  
s~t s - t ' sTt S - -  t 

exist for all t C J,  and either of these functions satisfies the requirements on g listed in (iii). 

Proof .  First assume f "  J ~ I~ is convex. Show that  

f(Yl) - f ( x l )  < f ( Y l ) -  f(x2) < f ( Y u )  - f(x2) (!) 

Yl - X l Yl - x2 y2 - x2 

whenever Xl ~ X2, Yl ~ Y2, and x j  < yj  for j - 1, 2. The function [ f ( y ) -  f ( x 2 ) ] / ( y - x 2 )  is 
an increasing function of y for y > x2, and it is bounded below by [f(yl)  - f ( x l ) ] / ( y l  - Xl). 
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Hence f +  (z2) exists for every z2 E J,  and therefore f is continuous from the right at every 
z2 E J.  Take limits in (!) as Yl ~ 2;1 and Y2 I z2, to prove f + ( x l )  _< f+(x2)  for Xl < X2; 
thus f+  is an increasing function. Similarly, f -  exists everywhere on J and is an increasing 
function, and f is continuous from the left. Combining these results, f is continuous on J. 
Since f+  and f -  are increasing functions, they are continuous except at at most countably 
many points (see 15.21.c). Take limits in (!) as x2 T y2 and yl ~. Xl to prove f-(Y2) _> f+  (Xl) 
when Y2 > Xl; or take limits in (!) as y2 $ x2 and Xl T Yl to prove f+(x2) >__ f-(Yl)  when 
x2 > Yl. Thus, at any point t where f -  and f+  are both continuous, they must be equal, 
and there f '  exists. Thus (i), (ii), (iii) are satisfied, with g - f+  or g - f - .  

Conversely, suppose (i), (ii), (iii) are satisfied. By the Second Fundamental  Theorem of 

Calculus (25.18), g is Henstock integrable on each closed interval [a, b] c_ J,  with f2  g(t)dt - 
f ( b ) -  f (a) .  We have g(s) <_ g(b) < g(t) whenever a < s <_ b < t _< c, hence 

f (b) - f (a) _ 1 [ b  
L b - a  b - a  

1/ab 
g(s)ds < g(b)ds - g(b) 

- b - a  
l l  l l- lbl 

= c - b  g(b)dt < 9 ( t ) d t -  
- c - b  c - b  

when a < b < c. This inequality can be rearranged to yield 

c - b  b - a  ) c - b  b - a  
a +  c - f (b) <_ ~ f (a) + ~ f (c), f c - a  c - a  c - a  c - a  

which proves f is convex. 

PATH INTEGRALS AND ANALYTIC FUNCTIONS 
(OPTIONAL) 

25.26.  Remark. This subchapter can be omitted. Its results will not be needed later in 
this book, except for a few brief examples. 

Definitions. By a p a t h  in C we shall mean a function p �9 [a, b] ~ C that  satisfies these 
conditions: 

(i) ~ is continuous, 

(ii) ~ is nondifferentiable at at most countably many points, and 

(iii) ~ has bounded variation. 

We say that  the path b e g i n s  at ~(a) and e n d s  at ~(b), or that  ~(a) and p(b) are the 
in i t ia l  and t e r m i n a l  p o i n t s  of the path. A c losed  p a t h  is a path ~ �9 [a, b] ~ C that  also 
satisfies p(a) = p(b). 

Let X be a complex Banach space. Let ~ : [a, b] ~ C be a path, and let h : Range(~) 
X be a function that  is measurable (from Borel sets to Borel sets) and bounded, with 
separable range. Then the p a t h  i n t e g r a l  f~ h(z)dz  is defined to be the value of 
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the Henstock-Stieltjes integral f:(h o ~) d~ or, equivalently, 

the Henstock integral f :  h(~(t))~'(t)dt. 

The existence of the former integral follows from 24.37; the existence of the latter integral 
and the equality of the two integrals follows from 25.17. If ~ is a closed path (i.e., if 
~(a) - ~(b)), then the path integral f~ h(z)dz is sometimes written f~ h(z)dz for emphasis. 

The terminology varies in the literature. Some mathematicians may prefer a less general 
or more general definition of "path." Also, some mathematicians will call qpl and ~2 "differ- 
ent parametrizations of the same path" if ~1 ~-~ ~ 2  o O" where a is some continuous, strictly 
increasing function, because then ~1 and ~2 are interchangeable for the most important  
purposes: We have 

as an immediate consequence of 24.18. This equation says, roughly, that  two motorists 
who drive from New York to Chicago along the same road will get the same value for any 
quantity computed as a path integral (with their driving routes as paths), even if they 
follow different timetables (different starting times, different speeds, etc.) when traversing 
that  road. 

In the preceding remarks we have established (!!) for any bounded measurable func- 
tion h. We emphasize that  we have established (!!) only when ~1 and ~a2 are different 
parametrizations of the same path i.e., the two motorists must follow the same road. 
However, for certain special functions h considered in 25.27, we obtain equality (!!) even if 
the motorists follow different roads e.g., if one goes from New York to Chicago by way 
of Nashville, while the other goes from New York to Chicago by way of Buffalo. 

25.27. We now state without proof a few results about analytic functions. Proofs can 
be found in books on functions of a complex variable. (Usually these basic results are 
presented for mappings from subsets of C into C, but the proofs are not much different for 
mappings from subsets of C into a complex Banach space. However, we remark that  the 
theory becomes much more complicated when one considers mappings from subsets of C n 
into a complex Banach space, or even into C. That  theory will not be indicated here.) 

T h e o r e m .  Let X be a complex Banach space, let f~ be an open subset of C, and let 
h : ft ~ X be some function. Then the following conditions are equivalent. 

(A) If ? is a closed path contained in an open convex subset of f~, then f~ h(z)dz = 
0. (Catchy called a function h o l o m o r p h i c  if it satisfied a condition like this.) 

(B) h has a complex derivative on f~ (as defined in 25.8). That  is, h'(~) = 

limz__~r h(z)-h(r exists in X for each point ~ E f~ (Riemann called such Z--~ 
functions c o m p l e x  d i f fe ren t iab le . )  

(C) Locally, h is a sum of a power series. That  is, for each z E ~t there exist R > 0 
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and vectors c~ E X (which depend on z) such that  

n---O 

for all r with 1 r  z I < R. 

(Weierstrass called a function h a n a l y t i c  if it had this property.) 

Furthermore, if the conditions above are satisfied, then the radius of convergence of the 
series in 25.27(C) is at least as large as the radius of the largest disk centered at z and 
contained in ~t. The function h has derivatives of all orders, and cn = h(n)(z)/n! in that  
power series formula. 

Any power series h(~) - ~--~n~__0 C n ( ~ -  Z) n is analytic inside its disk of convergence 
{ ~ ' ] r  z[ < R}. It can be differentiated term by term: h'(r - )--~,n~__l n c n ( ~ -  Z) n-1 is a 
power series with the same radius of convergence. It can also be integrated term by term: 
f.y h(~)d~ - ~-~n~__0 ~+1 (qn+l _p~+ l )  if 7 is a path inside the disk of convergence with initial 
point p and terminal point q. 

M o n t e l ' s  T h e o r e m .  Let ~t be an open subset of the complex plane, and let hl ,h2,h3,  " 
f~ ~ C be a sequence of scalar-valued analytic functions. Suppose the sequence is uniformly 
bounded on compact sets that  is, assume 

sup sup [hk(z) l  < c~ 
ken zE K 

for each compact set K C_ f~. 

Then some subsequence (hk~) converges uniformly on compact sets, and the limit is also an 
analytic function. 

Remark. This theorem takes an interesting form when restated in the terminology of topo- 
logical vector spaces; see 26.10. 

25.28.  The following example illustrates the difference between smooth functions and 
analytic functions. Define a function ~p" ~ ~ I~ by 

__ f e - 1 / r  when r > 0 ~(r) 
�9 1, 0 when r < 0. 

Verify the following: 

a. f;(r) > 0 for r > 0, and ~( r )  - 0  for r _< 0. 

b. There exist some polynomials p 0 , p l , p 2 , . . ,  such that  the derivatives of ~ are of the 
form 

~(n)(r) _ { Pn (1)r e -1 / r  when r > 0 
0 when r _< 0. 

Hint" Don't  bother trying to find the polynomials explicitly; that  is more work than 
is necessary. Just use induction on n to show that  there exist such polynomials. 

c. ~p is a smooth function i.e., infinitely many times differentiable with ~p(n)(0) - 0 
for all n. 

Hint: Show that  lim~10 e -1/r r k - 0  for every integer k. 
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r2 1/)" rn 1/) ( n ) ( 0 )  "-[-'" ". d. Conclude tha t  generally r  # r  + r e ' (0 )  + T (0) + . . .  + -AT. 

e. Related exercise. Define a funct ion/3" I~ m + ~ by/3(x)  - @ ( 1 -  Ilxl12). The function 
/~ could be called a smooth unit bump function, because it has these properties: /9 is 
smooth (i.e., infinitely many times differentiable),/~(x) > 0 for Ilxl12 < 1, and/3(x) - 0 
for I[xl12 > 1. It can be used to define approximate identity functions 

9 (x) (~ > 0, x e R~). ~(x) = ~ L~ Z(~)d~ 

These functions have the following properties: ~ is smooth, ~(x)  > 0 for [[x]]2 < s, 
~ ( x ) -  0 for Ilxl12 _> c, and f~m ~ ( x ) d x -  1. Thus, the ~ ' s  have unit weight, but tha t  
weight is concentrated near the origin when s is small. Moreover, for many types of 
functions g" I~ TM ~ I~, the function g ,  L~ �9 I~ TM ~ • defined by 

(g . ~)(x) - ~m g(y) L~(X -- y)dy 

is smooth and converges to g as s I 0. The type of convergence pointwise, uniform, 
etc. depends on the regularity assumptions about  g integrable, continuous, etc.; 
we omit the details. 

25.29.  An example: series for In 2 and 7r/4. The following example answers a question 
tha t  some readers may have wondered about when they studied calculus. 

Begin by forming the geometric series 

l + x  
1 

l + x  2 

= 1 - x --[- x 2 - x 3 - [ -  x 4 n L . . .  (Ixl < 1), 

= 1 - x 2 + X 4 - -  X 6 n c- X 8 . . . .  (IX[ < 1). 

Since a power series can be integrated term by term inside its radius of convergence, we 
obtain 

l n ( l + x )  - x 

arctan(x) - x 

X 2 X 3 X 4 X 5 

- 7 + -5- - 4 + T . . . .  (Ixl < 1),  
X 3 X 5 X 7 X 9 

~-+ 5 - 7 +%- . . . .  (Ixl < 1).  

The reader may wonder: Do these series formulas remain valid at x = 1? They do, but the 
proof of tha t  fact is generally beyond the scope of courses in advanced calculus. 

However, the proof is now quite easy, using a corollary of the Monotone Convergence 
Theorem. First, rewrite the series as 

ln(1 + x )  

arctan(x)  

(x2) (x3 x4) (x2nl x2n) 
x - ~  + 3 4 + " "  + 2 n - 1  2n + " "  (Ixl < 1 ) '  

( -~) ( x~ x~) (x 4n-~ x ~n-I ) 
x - + 15 7 + " "  + 4 n -  3 4 n -  1 + " "  (Ixl < 1). 
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x2n--1 X2n x4n--3 x4n--1 
Observe tha t  the  funct ions ~h--~-f 2n and 4n-3 4n-1 are increasing funct ions on [0, 1] 
since their  derivatives are nonnega t ive  on tha t  interval.  Now apply  21.39.d; we find tha t  
the  formulas are valid for x -  1. Thus  

1 1 1 1 7r 1 1 1 1 
l n 2  - 1 - ~ + ~ - ~ + ~  . . . .  , ~ = 1 - ~ + ~ - ~ + ~  . . . .  . 

(The formula for in 2 was also proved by a different m e t h o d  in 10.42.) 



Chapter 26 

Metrizat ion of Groups 
Spaces 

and Vector 

26.1. Preview. The following chart shows the relations between several types of spaces 
that will be studied in this and later chapters. 

I vector space I 

I topological vector space I I ordered vector 

[LcsI ultra- 
barrelled 

[ barrelled I I F-space I 

I Fr&het space I 

I 
[ Banach space I 

space I 

locally 
full I Riesz space ] 

trivial locally 
ordering solid 

I F-lattice I 

Orlicz 
spaces L ~ (#) 

I Banach lattice I 

/ 

ILP(p) forl<_p<_ocl 

A topological vector space (TVS) is a vector space equipped with a topology that makes 
the .vector space operations continuous. More generally, a topological A belian group (TAG) 

688 
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is an Abelian group equipped with a topology that  makes the group operations continuous. 
This makes the topology translation-invariant, so there is a uniform structure naturally 
associated with that  topology. Even when scalars are present (i.e., in a TVS), the most 
basic properties of the uniform structure do not involve the scalars; thus it is natural to 
first introduce uniform structure in the simpler and more general setting of TAG's. 

In 5.32, 16.16, and Chapter 18 we saw that  uniform spaces can be analyzed in terms 
of pseudometrics. Since the structure of a TAG is translation-invariant, it can be analyzed 
naturally in terms of translation-invariant pseudometrics. These are called G-seminorms 
(or group seminorms) in the theory developed below. In special kinds of TAG's we can 
use special kinds of G-seminorms: In TVS's we can use F-seminorms (the "F" stands for 
Fr~chet), and in LCS's we can use seminorms. 

The following table lists several kinds of distance functions in order of decreasing general- 
ity. Thus, every Riesz seminorm is also a seminorm, every seminorm is also an F-seminorm, 
every F-seminorm is also a paranorm, etc. 

FUNCTIONAL PROPERTIES SUP T O P O L O G Y  
quasipseudometric 

pseudometric 
G-seminorm 

paranorm 
F-seminorm 

seminorm 
Riesz seminorm 

triangle inequality 
symmetric 

translation-invariant 
continuous multiplication 

balanced 
homogeneous 

isotone 

topological space 
uniform space 

topological additive group 
topological linear space 
topological linear space 

locally convex space 
locally solid LCS 

Caution: Although the most basic theorems of this subject are fairly well standardized 
by now, the terminology is not; it varies slightly from one book or article to another. 
In particular, different mathematicians attach different meanings to the prefixes "quasi," 
"pseudo," or "semi." The reader is urged to check definitions whenever reading anything on 
this subject. In this text we have chosen an arrangement of terminology that  is internally 
consistent, and is in agreement with the literature to the extent that  this is possible. Here, 
both "pseudo" and "semi" mean "not necessarily positive-definite." When "pseudo" or 
"semi" appears in parentheses in a sentence, the sentence should be read once with the 
parenthesized term included and once with it omitted. 

F-SEMINORMS 

26.2. The reader will find it helpful to review the definitions of (semi)norm and G- 
(semi)norm given in 22.2. We shall now define some structures that  are midway between 
(semi)norms and G-(semi)norms. 

Definitions. Let X be a real or complex linear space; let F be the scalar field. A 
p a r a n o r m  on X is a G-seminorm p : X + [0, +oc) that  makes scalar multiplication jointly 
continuous i.e., that  satisfies the following. 

If cn --+ c in IF and xn + x in the metric space (X, p), then c~xn --+ cx in (X, p). 
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Actually, it suffices to assume that scalar multiplication is separately continuous 
that 

i.e., 

if Cn ~ c in F and Xn 
CXn ~ cx in (X, p) 

--~ x in the metric space (X,p), then cnx ~ cx and 

- -  for in this context separate continuity implies joint continuity; that rather nontrivial fact 
follows (exercise) from 23.15.b and the fact that the scalar field F (always I~ or C in this 
book) is a complete metric space. 

An F - s e m i n o r m  is a paranorm that is also balanced i.e., satisfying 

x c x, c c Icl ___ 1 =~ p(cx) <_ p (x ) .  

If it is also positive-definite, then p is called an F - n o r m ,  and (X, p) is an F - n o r m e d  space.  
We may refer to X itself as the (F-)normed space, if no confusion will result. 

The definitions above are admittedly complicated, but their importance will become 
evident in 26.29. 

An F - s p a c e  is a vector space topologized by an F-norm that is complete. (Equivalently, 
it is a complete metrizable topological vector space; we shall prove that equivalence in 
26.29 and 26.32.) Caution: In the modern literature, an "F-normed space," an "F-space," 
a "Fr~chet space," and a "topological space with a Fr~chet topology" are four different 
things; see 26.14. 

Any seminorm is also an F-seminorm (easy exercise). Other examples of F-seminorms 
and paranorms will be given below. 

Further remarks about terminology. This book's terminology conforms to the literature 
whenever possible, but it is not always possible; the literature varies greatly in its termi- 
nology for F-norms and related notions. Our definition of "F-norm" is equivalent to the 
definition used by Kalton, Peck, and Roberts [1984] and KSthe [1969]. Our definition of 
"paranorm" follows that of Wilansky [1978]; Swartz [1992] calls this object a q u a s i n o r m .  If 
a paranorm is positive-definite, then Wilansky [1978] calls it a " to ta l  p a r a n o r m , "  Yosida 
[1964] calls it a "quas inorm,"  and Swartz [1992] calls it a " to ta l  q u a s i n o r m . "  Many other 
books and p a p e r s -  including the classic work of Banach [1932/1987] - -  use positive-definite 
paranorms without attaching any name to them. A very extensive treatment of metric linear 
spaces is given by Rolewicz [1985]. 

26.3. Relations between G-seminorms, paranorms, and F-seminorms. 
a. A function p is an F-seminorm on a vector space X if and only if p is a balanced 

G-seminorm that satisfies this sca lar  c o n t i n u i t y  condition: 

For any x E X, if ICnl--'-+ O, then p(cnx) ~ O. 

Hint: 12.25.f. 

b. Any paranorm p is equivalent to an F-seminorm a. 
Hint (modified from Rolewicz [1985]): The set {t e F :  Itl _< 1} is compact; hence 

the number a ( x ) =  max{p( tx ) :  Itl < 1} is finite. 
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c. Let X be a linear space, and let p �9 X ~ [0, +oc)  be some mapping.  Then  the following 
are equivalent" 

(A) 

(B) 

(C) 

Hints" 

p is a seminorm; 

p is a convex function and an F-seminorm;  

p is a convex, balanced G-seminorm.  

We shall prove (C) ~ (A); the other  implicat ions are easy. Show tha t  
p(sx) <_ sp(x) for x c X first for s c N, by the subaddi t iv i ty  of G-seminorms;  then  
for s c (0, 1], by the assumed convexity of p; then  for s > 0 by combining those two 
results. Then  show p(sx) >_ sp(x) for s > 0 by replacing s with  1/s. Then  what?  

26.4 .  Basic examples. 
a. Open and closed balls. Let (X, d) be a metr ic  space. As in 5.15.g, define the open ball 

and closed ball 

Bd(z, ~) - {~ e X d(x, z) < ~}, Ied(z, ~) - {x �9 X d(x, z) < ~} 

As we noted in 5.18.c, cl[Bd(z, r)] C Kd(z, r) in any metr ic  space. Show tha t  

cl[Bd(z, r)] -- Kd(z, r) in any normed space. 

T h a t  conclusion is false in some F-normed  spaces; for instance, show tha t  it is false in 
IR equipped with  the F-norm p(x) - min{1, ]xl}. 

b. Pathological example. Consider C (the complex numbers)  as a vector space with scalar 
field IR; then  

p(z) - [ R e z l + l I m z l  

is a norm. On the other  hand,  if we consider C as a vector space with  scalar field C, 
then p is not a norm or an F-norm (since it is not balanced),  but  it is a pa rano rm 
on C. Here we under s t and  tha t  the absolute  value of a scalar is defined as usual: 
I c l -  v / (Re  c) 2 + (Im c) 2. 

c. Another pathological example. Using the ident i ty  s in(a  +/3)  - sin a cos/3 + sin/3 cos a ,  
show tha t  the function f (x )  - I  sin(rrx)] is subaddi t ive  on IR tha t  is, f ( x  + y) < 
f (x)  + f (y)  for x, y E IR. Then  show tha t  the function 

p(x) - I sin(Trx)l + min{2,1xl} 

is a pa r ano rm on IR tha t  is equivalent to the usual norm on R, but  p is not balanced.  

d. For 0 < p < 1, the functions 

P --- X l l  p + Ix21 p + . . .  + Ixnl p xllp 

are F-norms on 1R n or C n tha t  yield the product  topology. This  follows easily from 
12.25.e. (Here II lip is defined as in 22.11.) Similarly, the functions 

P =_ IXll  p -Jr-IX21 p + IX3[ p -Jr- ' ' '  Ilxllp 

are F-norms on fp, defined as in 22.25. We emphasize  tha t  the functions II lip are not 
necessarily norms when p < 1. 
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e. The sum of finitely many paranorms or (G-)(F-)(semi)norms is another object of the 
same type. 

f. The pointwise maximum of finitely many paranorms or (G-)(F-)(semi)norms is another 
object of the same type. 

The restriction of any paranorm or (F-)(semi)norm to a linear subspace is a paranorm 
or (F-) (semi)norm. 

Bounded equivalents. Let /3 be a bounded remetrization function; in 18.14 we saw 
that  if d is a pseudometric on a set X, then/3  o d is a bounded, Uniformly equivalent 
pseudometric.  Show that  if p is a G-(semi)norm or an F-(semi)norm, then /3  o p is a 
bounded, uniformly equivalent G-(semi)norm or F-(semi)norm. 

We cannot make an analogous assertion for seminorms, however. If p is a seminorm, 
then /3  o p is an equivalent F-seminorm, but in general it is not a seminorm. Indeed, 
the only bounded seminorm is the constant function 0. 

i. If X is a vector space, p is an F-seminorm on X,  K is a linear subspace, and the 
quotient G-seminorm ~ is defined as in 22.13, then fi is an F-seminorm too. 

go 

ho 

26.5.  Change of scalar field. Let X be a complex vector space. Then X may also be 
viewed as a real vector space, if we "forget" how to multiply members  of X by members  of 
C \ R. Show that  

a. If p is a paranorm, F-seminorm, or seminorm on the complex vector space X,  then p 
is a paranorm, F-seminorm, or seminorm (respectively) on the real vector space X. 

b. I f  p is a seminorm or F-seminorm on the real vector space X, show that  

~/(x) = sup{p(tx) : t E C, It I <_1} 

defines a seminorm or F-seminorm ~/on the complex vector space X,  which is "semi- 
equivalent" to p in this sense: p(x) <_ ~/(x) <_ p(x) + p(ix) for all x E X.  (Hint: 
p(tx) <_ p(Re(t)x) + p(Im(t)ix).) 

Moreover, if X is equipped with some topology and p : X ~ [0, + ~ )  is lower 
semicontinuous, then ? : X ~ [0, +c~) is lower semicontinuous. (Hint: It is the sup of 
the lower semicontinuous functions x H p(tx).) 

(This construction is based on Rolewicz [1985].) 

26.6.  Frdchet combinations. Let (pj : j r N) be a sequence of F-seminorms on a vector 
space X. Then ~a(x) - ~--~j=l~ 2 - j  min{1, ]~aj (x)I } defines an F-seminorm ~ that  is uniformly 

equivalent to the gauge {pl ,P2,P3, . . .} .  
More generally, let (a j )  be a sequence of positive numbers with finite sum. Let F : 

[0, +c~) ~ [0, +c~) be a bounded remetrization function (defined as in 18.14). For x E X, 
let 

jcN 

This sum is called a F r ~ c h e t  c o m b i n a t i o n  of the pj's; it is a special case of the sum 
developed in 18.17. Show that  
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a. For any sequence (x~ ) in  X (or, more generally, any net), we have 

~(xn) ~ 0 if and only if pj(xn) ~ 0 for each j .  ( ,)  

b. ~ is a bounded F-seminorm on X. (Hint: Use ( .)  for an easy proof tha t  ~ is scalar 
continuous.) 

c. ~ is uniformly equivalent to the gauge {pl,p2,p3,...}. Thus, the topology that  
determines on X is the supremum of the topologies of the pseudometric spaces (X, pj), 
and the uniform structure of (X, ~) is the supremum of the uniform structures of the 
(X, pj)'s. (Hint: Again, use (,) .)  

d. If we replace F with some other bounded remetrizat ion function and/or  replace (c~j) 
with some other sequence of positive numbers with finite sum, then condition (,)  
remains valid; hence the resulting Fr(~chet combination is equivalent to p. 

e. ~ is an F-norm if and only if the pj's separate points of X i.e., if and only if they 
have the further property that  whenever pj(x) = 0 for all j ,  then x = 0. 

Remarks. In most applications of this formula, the F-seminorms pj are actually seminorms 
- -  i.e., they are homogeneous. In that  case X is locally convex; tha t  will follow from 26.20.d. 
(Hence, if the metric determined by ~ is complete, then X is a Fre~chet space.) However, 
cannot be a seminorm, since p is bounded. In many applications, ~ is not even equivalent 
to a seminorm; see the examples in 27.7.c and 27.8. 

26.7.  Example:  the space of all s e q u e n c e s .  Let F be the scalar field that  is, IR or 
C; then F N = {sequences of scalars}. The product  topology and product  uniform structure 
on F N are given by any of the following F-norms: 

f i m i n { 1 , 1 x j l }  f i a r c t a n  xjl f i j -21x j l  
j=l  j i  ' 2J ' 1 + Ixjl' 

j = l  j = l  

applied to any sequence x = ( X l , X 2 , X 3 , . . . ) .  Indeed, these formulas are all special cases 
of 26.6, with pj(x) = Ixjl. The resulting F-norms are complete; any one of them may be 
referred to as the u s u a l  F - n o r m  on F N. Although all the pj 's  are seminorms, none of the 
resulting F-norms is a norm or even equivalent to a norm i.e., the product  topology on 
F • cannot be given by a norm; that  will be proved in 27.8. 

26.8. Example:  the s p a c e  of  all c o n t i n u o u s  f u n c t i o n s .  Let C(R) be the set of all 
continuous functions from R into the scalar field IF (which may be R or C). For f E C(R),  
let 

~(f) - f i 2 - J  arctan(max If(t)l). 
j = l  \tE[--j,j] 

Show that  y) is an F-norm on C(R) that  is complete and that  gives the topology of uniform 
convergence on compact sets (introduced in 18.26). This F-norm (or any other F-norm 
equivalent to it) is the u s u a l  F - n o r m  on C(R).  It is not equivalent to a norm; see 27.8. 



694 Chapter 26: Metrization of  Groups and Vector Spaces 

26.9. Example:  the  space of local ly  i n t e g r a b l e  func t ions .  Let F be the scalar field (R 
or C). A function f : N --. F is called local ly  i n t e g r a b l e  if its restriction to each compact 
interval [a,b] is integrable. More generally, let ~ be an open subset of R n, equipped with 
Lebesgue measure; a function f : Ft ~ F is called local ly  i n t e g r a b l e  if its restriction to 
some open neighborhood of each point in gt is integrable. The set of all (equivalence classes 
of) locally integrable functions on ~t is denoted by L~oc(gt). Show that 

a. LP(f~) C_ L~oc(ft) for every p in [1, +oc]. (Hint: H61der's Inequality.) 

b. If f : ft ~ F is locally bounded (i.e., bounded on compact sets) and f is measurable, 
then f c L~oc(f~). In particular, any continuous function from ft to F is locally 
integrable. 

Thus, the function f ( t )  = exp(t 2) is locally integrable on l~, even though it does 
not belong to LP(R) for any p E [1, +oc]. 

c. L{o c (f  t) can be made into a Frdchet space in a natural fashion, using the sequence of 

seminorms Pn(f)  = fa~ [f(t)l dt, where the G~'s form an open cover of ft and each G n  

is contained in some compact subset of f~ (see 17.18.a). The resulting F-norm is 

p ( f )  = 2 - n  1, f f ( t ) ld t  
n - - 1  n 

(In particular, L~o c (N) can be made into a Frdchet space using the sequence of semi- 

norms Pn(f)  - f 2  n [f(t)l dt.) 
Exercise. Different choices of the sequence (Gn) of relatively compact sets may yield 

different F-norms p. Show that any two such F-norms are equivalent. (Hint: 17.18.b.) 
In fact, the topology can be described as follows: A sequence (fn) is p-convergent to a 
limit f if and only if, for each open set G that is contained in a compact subset of ~t, 
we have l i m n ~  f a I fn ( t ) - f ( t ) l d t =  O. 

Further exercise. Prove the completeness of L~o c (f~). 

26.10. E x a m p l e :  the  space of ho lomorphic  func t ions .  Let ft be an open subset of 
the complex plane, and let Hol(ft) = {holomorphic functions from Ft into C} (defined as in 
25 27). 

The usual topology for Hol(f~) is the topology of uniform convergence on compact subsets 
of Ft, introduced in 18.26. That topology makes Hol(Ft) a Fr~chet space; it can be metrized 
as follows. 

Let G1, G2, G3, . . .  be an open cover of f~, where each Gn is contained in some compact 
subset of f~. (See 17.18.a.) "Define 

Pn(f)  -- max [f(~v)l ( n -  1 2 3 , . . . ) .  
w E G n  ~ ' 

Then each Pn is a seminorm on Hol(f~), and the seminorms Pl,P2,P3, . . .  determine the 
topology of uniform convergence on compact sets. The particular choice of the sequence 
(Gn) does not matter  see 17.18.b. 

A further property of Hol(f~) is noted in 27.10.c. 
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26.11. Example:  c o n v e r g e n c e  in m e a s u r e .  Let (~, S, #) be a measure space, and let 
(X, [ I) be a Banach space. Then the pseudometric D ,  defined in 21.34 on SM(S, X) takes 
a slightly simpler form: It can be rewritten D,(f ,  g) - p , ( f  - g), where 

p,(h) - inf arctan[(~ + p{w E ~t �9 ]h(w)[ > c~}]. 
c~>0 

Some basic properties: 

a. The function p ,  is a G-seminorm on SM(S,X)  or a G-norm on the quotient space 
SM(S, X)/#,  making those vector spaces into topological Abelian groups. 

b. In general, SM(S, X) is not a topological vector space. That  is shown by the example 
below. However, in 26.12.c we shall consider a smaller subspace on which p ,  is indeed 
an F-seminorm. 

Example. Let (f~, S,#) = (N, [P(N), counting measure), and let X = IR. Define 
fn(j) -- f( j)  --J for all n, j E N, and let cn - s and c -  0. Then fn ~ f in measure 
and Cn ~ C, but Cnfn 74 cf in measure. Thus, multiplication of scalars is not jointly 
continuous for this topology. 

26.12.  (Optional.) Let (Vt, S, p) be a measure space, and let (X, I I) be a Banach space. 
A function f �9 ~ ~ X is t o t a l l y  m e a s u r a b l e  if it is a strongly measurable function (as 
defined in 21.4) that  also satisfies 

p ( { w E ~  �9 ]f(w)] > c } )  is finite for c a c h e > 0 .  

(Of course, if #(~t) < oc, then every strongly measurable function is totally measurable.) 
Let TM(p; X) denote the set of all #-equivalence classes of totally measurable functions. 

Exercises. 
a. TM(#, X) is a closed linear subspace of the G-normed space (SM(#, X), p,) (which is 

complete). 

b. The finitely valued members of TM(p,X)  are dense in TM(p,X) .  
c. The G-norm p~ of 26.11 is an F-norm when restricted to TM(p;X).  The space 

TM(#; X),  equipped with this F-norm or any other equivalent F-norm, is sometimes 
denoted L~ X) (especially when #(ft) < oc). 

d. When #(ft) < oc, then p ,  is also equivalent to this F-norm: 

7 ( f )  - f~F[]f(w)l]dP(w), 

where F is any bounded remetrization function (defined as in 18.14). Hint: To prove 
7 is scalar-continuous (as in 26.3.a), use the Dominated Convergence Theorem 22.29. 

e. For any p E (0, oc), the vector space LP(p,X) is a linear subspace of the vector space 
min{1,p} is stronger than p ,  on LP(p,X). TM(p,X) ,  and the F-seminorm ] lip 

f. D o m i n a t e d  C o n v e r g e n c e  T h e o r e m  for T M .  Let (fj) be a sequence in TM(p; X) 
that  converges pointwise #-almost everywhere to a limit f .  Assume that  the sequence 
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(fj) is dominated by a totally measurable func t ion - - i . e . ,  assume g(w) = supj Ifj(w)l is 
totally measurable. Then fj --+ f p-almost uniformly (hence also fj ---, f in measure). 

Hints: Let any c > 0 be given. For each positive integer n, let f~n = {w E F t :  g(w) > 
l /n} ;  then #(f~n) is finite. Hence fj --. f #-almost uniformly on f~n, by Egorov's 
Theorem. Thus there exists some set An C_ ~n such that  #(An) < 2-nc, and fj --~ f 
uniformly on ~-~n \ An. Now let A = Un%l An. Then #(A) < c, and we shall show that  
fj --. f uniformly on f~ \ A. To see this, let any 5 > 0 be given; we must show that  for 
all j sufficiently large, we have sup~ Ifj(w) - f(w)l < 6. Choose some integer n > 2/~. 
Then f~ \ A = CA can be parti t ioned into the sets (CA) A ~n  and (CA) N (Cf~n). We 
have uniform convergence on ~n \ An, hence on the smaller set ~-~n \ A = (CA) N f~n. 
The remaining piece, (CA) N (C~tn), is a subset of Cf~n, and at every a; in CFtn we have 
supj I f j (w)"  f(w)l <- 2g(w) _< 2/n < 6. 

For a slightly more general t reatment ,  see Dunford and Schwartz [1957], which permits p 
to be a charge, not necessarily a measure. 

26.13.  (Optional.) (We omit the proofs of the results below; they constitute exercises that  
are difficult but  may be within the reach of some particularly ambitious readers.) 

By an Or l i cz  f u n c t i o n  we shall mean an increasing, continuous function ~ : [0, +c~] --. 
[0, +cxD] tha t  satisfies 9~-1(0) = {0}. (Caution: The terms "Orlicz function" and "Orlicz 
space" have slightly different meanings in different books and papers.) A few examples of 
Orlicz functions are 

t p (for constant p > 0), t p ln(1 + t), e t - 1, min{ 1, t}. 

As the last example shows, we permit  an Orlicz function to be bounded. 
Let 9~ be an Orlicz function, let (f~, $ ,p)  be a measure space, and let (X, I 

Banach space. For strongly measurable functions f :f~ + X, define 
I) b e a  

p~(f) - i n f { r E ( 0 , + o c ]  �9 /ag~ ( ] f ( r  )1) dp(w) < r } .  

Show that  

a. The set L~(tt; X)  : {f  E SM(g; X ) :  p~(f) < cx~} is a linear space, on which p~ is a 
complete F-seminorm. If we take the quotient with respect to/z-equivalence classes of 
functions, we obtain an F-space L,~(#; X).  

b. When 9~(t) = t p for some number p E (0, +cx~), then LP(#; X)  (defined as in 22.28) is 
equal to L~(#; X)  and p~ is equivalent to [[ lip. 

c. The space TM(#; X),  defined in 26.12, is equal to the union of all the spaces L~(#; X),  
as 9~ varies over all Orlicz functions (defined as above). 

For a different t rea tment  and references, see Rao and Ren [1991]. 
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T A G ' s  AND T V S ' s  

26.14. Definitions. Let X be an Abelian (i.e., commutative) group, with group operation 
+ and identity element 0. Let 7 be a topology on the set X. We say (X, 7) (or more 
simply, X) is a t o p o l o g i c a l  A b e l i a n  g r o u p  hereafter abbreviated T A G  if the 
group operations are continuous i.e., if 

v H - v  is continuous from X into X, and 

(at, v) H u + v is jointly continuous from X x X into X. 

Along with the theory of TAG's, we shall also develop the slightly more specialized 
theory of TVS's. Let X be an vector space over the scalar field IF, and let 9" be a topology 
on the set X. We say (X, 7) is a t o p o l o g i c a l  v e c t o r  space  (or topological linear space) 

hereafter abbreviated T V S  if the vector operations are jointly continuous; i.e., if 

(c, v) ~ cv (from IF x X into X) and 

(u,v) ~ u + v  ( f r o m X x X i n t o X )  

are both jointly continuous. Of course, every TVS is also a TAG. 
We shall specialize further: A loca l ly  convex  s p a c e - -  hereafter abbreviated L C S  

is a topological vector space with the further property that  0 has a neighborhood basis 
consisting of convex sets. 

Finally, a F r~che t  space  is an F-space that  is also locally convex. (This should not be 
confused with a very different meaning given for "F%chet space" in 16.7.) 

Remarks. Clearly, any Banach space is also a F%chet space. Some other examples are 
noted in 26.20.e. 

It is immediate from 22.7 that  any G-seminormed group (when equipped with the pseu- 
dometric topology) is a TAG. Similarly, any F-seminormed vector space is a TVS, and any 
seminormed vector space is an LCS. We shall see in 26.29 that  TAG's, TVS's, and LCS's 
are not much more general than this. 

In our study of TVS's in this and later chapters we shall distinguish between those 
theorems (such as 27.6) that  require local convexity and those theorems (such as 27.26) that  
do not. However, this distinction is made chiefly for theoretical and pedagogical reasons 

i.e., to make the basic concepts easier for the beginner. Although we do give a few 
examples of non-locally-convex TVS's in 26.16 and 26.17, we remark that  most TVS's 
used in applications are in fact locally convex. Thus, it would be feasible to skip TVS's 
altogether and simply study LCS's, equipping some theorems with hypotheses that  are 
slightly stronger than necessary; that  approach is followed by some introductory textbooks 
on functional analysis. 

Caution: Since most TVS's used in applications have Hausdorff topologies, some math- 
ematicians incorporate the T2 condition into their definition of TVS or LCS. In the present 
book, however, a topological space will be assumed Hausdorff only if that  assumption is 
stated explicitly. 

26.15. Degenerate (but important) examples. 
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a. T h e  d i s c r e t e  t o p o l o g y .  The topology consisting of all subsets of an Abelian group X 
is a TAG topology. However, if X is a vector space (other than  the degenerate space 
{0}), then the discrete topology on X does not make it a TVS, because (exercise) 
mult ipl icat ion of scalars t imes vectors is not jointly continuous. In fact, for fixed 
x :/: 0, the mapping  c H cx is not continuous at c - 0. 

b. T h e  i n d i s c r e t e  t o p o l o g y .  The topology {~,  X}  makes any Abelian group X into 
a TAG and any vector space X into an LCS. Of course, it is not Hausdorff (unless 
X = {0}). 

26 .16 .  Example. For 0 _< p < 1, the F-spaces LP[0, 1] (defined in 26.12.c and 22.28, with 
It equal to Lebesgue measure on [0, 1]) are not locally convex. In fact, LP[0, 1] has no open 
convex subsets other  than  O and the entire space, and the space LP[0, 1]* - {continuous 
linear functionals on LP[0, 1]} is just  {0}. 

Proof. The F-space LP[O, 1] is topologized by the F-norm p( f )  - fd F ( I f ( t ) I )d t ,  where 
F(s) - s p in the cases of 0 < p < 1, and F is any bounded  remetr izat ion function in the 
case of p - 0 (see 26.12.d). In part icular ,  for p - 0, we may take F(s) - s/(1 + s); thus 
F(s) _< 1 for all s in tha t  case. 

Suppose V is a nonempty  open convex subset of LP[O, 1]. By t ranslat ion,  we may assume 
0 E V. Since V is a neighborhood of 0, we have V ~_ ( f "  p ( f )  < r} for some number  r > 0. 
Let g be any element of LP[0, 1]; we shall show tha t  g E V. Choose some integer n large 

enough so tha t  p(g) < rn 1-p. Since the function t H fo F(ig(s)l)ds is continuous, we can 
I : ;  1 choose a par t i t ion  0 - to < tx < t2 < "-" < tn - 1 such tha t  -1 F(Ig(s)i)ds - uP(g) 

for all j .  Let l ( t j_ l , t j  ] be the characterist ic function of the interval ( t j_l , ty],  and let gj - 
nl(tj_l,tj]g. An easy computa t ion  shows tha t  

p ( g j )  - r(nlg( )l)ds <_ r(Ig(s)l)d  - nP-lp(g) < r, 
- -1  - -1  

1 (gl -~- g2 -~-" ""-~- gn) and V is convex, g ~ V also. and thus gj C V .  Since g -  n 
If A is a continuous linear functional on LP[0, 1], then A -1 ({c "]c] < 1}) is an open 

convex set containing 0. Hence it is all of LP[0, 1]; hence A - 0. 

26 .17 .  Example. If 0 < p < 1, then the sequence space ~p is not locally convex. In 
part icular ,  { x :  []xiip < 1} does not contain a convex neighborhood of 0. However, the set 
(t~p)* = {continuous linear functionals on t~p} is equal to t ~ ;  this space is large enough to 
separate  the points of t~p. 

Hints" For the first assertion, suppose {x"  ]]xll p < 1} contains some convex neighborhood 
of 0, which we label V. Show tha t  V ~_ {x �9 ]]xll p <_ s} for some s > 0. Let ej be the 
sequence tha t  has a 1 in the j t h  place and 0s elsewhere. Then sej E V. By convexity, ,, 

1 Vn -- n (Sel  -F se2 - F "  "-F Sen) E V for any positive integer n. However, show tha t  [[Vn]]p > 1 
for n sufficiently large. 

Any y E t ~  acts as a continuous linear functional on t~p, by the action (x ,y  I - 
OO ~-~j=l xjyj;  in fact, we have ~-~j [xjyj] < ]]x[I1]]yi]~ _< []Xllp]iYi[~. Conversely, if ~ e (t~p)* 
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let ej be the sequence with 1 in the j t h  place and 0 elsewhere. Define a sequence y = (yj) 
by taking yj = g)(ej). Then lYjl <-Illg)liI Ilejllp = 11199111; thus y is bounded. The functionals 
(., y} and qp are continuous on t~p, and they act the same on sequences with only finitely 
many terms. Such sequences are dense in gp, so {., y) = ~ on gp. 

26.18.  N e t  c h a r a c t e r i z a t i o n s  of  T A G ' s  a n d  T V S ' s .  Let X be an Abelian group, 
equipped with some topology. Then X is a TAG if and only if its topology satisfies these 
two conditions: 

(1) W h e n e v e r  (x~ ,  y~)  is a net in X x X sa t i s fy ing  x~  ~ x and y~ ~ y, t h e n  x~  + y~ 
x + y .  

(2) Whenever (x~) is a net in X satisfying x~ --, x, then - x ~  ~ - x .  

More specifically, let X be a vector space, equipped with some topology. Then X is a TVS 
if and only if its topology satisfies conditions (1) and 

(2') Whenever (c~,x~) is a net in F x X satisfying ca ~ c and x~ ~ x, then c~x~ ~ cx. 

26.19.  I n i t i a l  o b j e c t  c o n s t r u c t i o n s  of  T A G ' s ,  T V S ' s ,  a n d  L C S ' s .  Let X be a set, 
let { ( Y x , ~ a ) :  A E A} be a collection of topological spaces, let ~ : X --+ Yx be some 
mappings, and let g be the initial topology determined on X by the ~x's  and ~x's i.e., 
the weakest topology on X that  makes all the px's  continuous (see 9.15). Show that  

(i) 

(ii) 

(iii) 

If X is a group, the (Yx,g'a)'s are TAG's,  and the ~x's are additive maps, 
then (X, g) is a TAG. 

If X is a vector space, the (Yx, g'a)' 
then (X, $) is a TVS. 

s are TVS's, and the ~x's  are linear maps, 

If X is a vector space, the (Y~, ~r~)'s are LCS's, and the p~'s are linear maps, 
then (X, $) is an LCS. 

Hints: 15.14(A), 15.24, and 26.18. 

26.20.  Some important special cases of initial objects. 
a. The product of any collection of TAG's or TVS's  or LCS's, with the product  topology 

and product  algebraic structure,  is a TAG or TVS or LCS. 

b. Subspace topologies are initial topologies determined by inclusion maps (see 5.15.e and 
9.20). Thus, any subgroup of a TAG is also a TAG; and a linear subspace of a TVS or 
LCS is another TVS or LCS. 

c. The supremum, or least upper bound, of a collection of topologies is the weakest topology 
that  includes all the given topologies (see 5.23.c); it is the initial topology given by 
identity maps. Thus, the sup of a collection of TAG or TVS or LCS topologies is 
another TAG or TVS or LCS topology. 

d. Let D be a collection of G-seminorms on an Abelian group X, or a collection of F- 
seminorms or seminorms on a vector space X. Then the gauge topology determined on 
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X by D is a TAG, TVS, or LCS topology, respectively. (Hints: As we noted in 5.23.c, 
the topology determined by a gauge is the supremum of the individual pseudometric 
topologies. It follows easily from 15.25.c and 26.18 that  any sup of TAG or TVS 
topologies is a TAG or TVS topology.) 

(A converse to this result will be given in 26.29.) 

e. Let ~ be a Fr6chet combination of ~ j ' s  on X (as in 26.6), and suppose that  each ~j 
is actually a seminorm (i.e., it is homogeneous). Then the F-normed space (X, p) 
is locally convex. If it is complete, then it is a Fr6chet space. These conditions are 
satisfied by the examples in the next few sections after 26.6. 

26.21.  Change of scalar field. Let X be a complex vector space. Then X may also be 
viewed as a real vector space (if we "forget" how to multiply members of X by members of 

Let ff be some topology on the set X. It is easy to show that  if the complex vector space 
X is a TVS, then the real vector space X is also a TVS. The converse of that  implication 
is false, however, as we now show: 

A pathological example. Let X - {bounded functions from [1, +oc) into C}. That  is a 
complex vector space, with vector addition and scalar multiplication both defined pointwise 
on [1, +c~) For f E X, define 

( 1 } 
[Ifll = sup ]Ref(t) l  + 71Imf( t ) l  . 

l ~ t < o o  

Verify that  (X, I] II) is a Banach space, when we use the real numbers for the scalar field. 
However, let fn be the characteristic function of the interval [n, n + 1]. Verify that  

I l f n l ] -  1 while [lifn[[- 1. Conclude that  the topology of the Banach space (X, II ]]) 
n 

does not make scalar multiplication jointly continuous from C x X into X; hence (i) that  
topology does not make X into a complex topological vector space, and (ii) ]1 II is not a 
norm on the complex vector space. 

ARITHMETIC IN TAG's AND T V S ' s  

26.22.  Arithmetic in TAG's. Let X be a TAG, and let S, T be nonempty subsets of X. 
Show that  

a. If- S is symmetric (i.e., i f - S -  S), then el(S) and int(S) are symmetric. 

b. If S is open, then S + T is open regardless of what T is. 

c. If S and T are closed and S' is compact, then S + T is closed. 

d. int(S) + int(T) C_ int(S) + T C_ int(S + T). 

e. cl(S) + cl(T) C cl(S + T). 
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Hint" I f  (s~ �9 c~ E A) is a net in S converging to z and (t~ �9 /3 E B) is a net in T 
converging to y, then (s~ + t~ �9 (c~,/~) E A x B) is a net converging to z + y, where 
A x B has the product  ordering. 

f. If S is a subgroup of X, then cl(S) is also a subgroup, and int(S) is either a subgroup 
or empty. 

26.2 3. Ar i thmet ic  in TVS's .  Suppose X is a TVS and S c X. Then" 

a. If S is balanced or convex or absolutely convex, then cl(S) has the same property, and 
so does int(S) if it is not empty. 

b. If S is a linear subspace of X, then cl(S) is a linear subspace of X, and int(S) is either 
or all of X. 

c. The c losed  c o n v e x  hul l  of S, denoted here by clco(S), is the smallest closed convex 
set containing S; it is the intersection of all the closed convex sets that  contain S. Show 
that  it is also equal to the closure of the convex hull of S - -  that  is, clco(S) = cl(co(S)). 

d. If S is convex, then S is connected. In particular,  X itself is connected. 

I S  + 1S tha t  is, if S contains the e. A set S c_ X is called m i d p o i n t  c o n v e x  if S _D ~ 
midpoint of any line segment whose endpoints are both in S. Clearly, any convex set 
is midpoint convex. Show that  any closed, midpoint convex set is convex. 

Example. The rational numbers form a subset of the reals tha t  is midpoint convex 
but not convex. 

f. The convex hull of a finite set is compact.  More generally, if A1, A 2 , . . . ,  An are compact 
convex subsets of X, then co(A1UA2U.. .UAn) is compact.  If the A3's are also balanced, 
then so is co(A1 U A2 U . . .  U A~). 

Hints" First show that  

C = { ( C l , C 2 , . . . , c n )  E [0,1] n �9 Cl  - ~ - C 2 n L ' ' ' n t - C n  - 1} 

go 

h" 

is closed and bounded, hence a compact subset of IR n. Then define g" C x A1 x A2 x 
�9 .. x An ~ X by taking g(c, a l , a 2 , . . .  ,an) - Clal + c2a2 -4-''" -Jr- Cnan. Show that  
co(A1 U A2 U . . - U  An) - Range(g); then use the fact tha t  the continuous image of a 
compact set is compact (see 17.7.h). 

If K is a compact subset of F n, then the convex hull of K is also compact.  Hint: Use 
CarathSodory's  Theorem 12.10 and the continuity of the vector space operations. 

(Optional.) The preceding result is only true in finite dimensions. If X is any infinite- 
dimensional F-space, then there exists a compact set K c_ X whose convex hull is not 
closed and hence not compact.  

Proof. Let p be a complete F-norm on X. Let (xn " n  - 1, 2, 3 , . . . )  be a linearly 
independent sequence of vectors in X. Replacing the xn's with suitable scalar multiples, 
we may assume xn ~ 0 as n ~ oc. Then the set K - { z O , X l , X 2 , z a , . . . }  is compact,  
where x0 - 0. If Cl,C2,C3,. . .  are positive numbers with sum less than 1, then the 
partial  sums s~ = C l X  1 -[- c 2 x  2 J r . . . - J r  C n X n  belong to the convex hull of K,  hence 
s - l i m n _ ~  sn (if it exists) belongs to the closed convex hull of K.  If we choose the 
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cj's small enough so that  p(cjxj) < 2 - j ,  then s does indeed exist, by the completeness 
of p. Let "conv" denote convex hull; we shall choose the cj's so that  s ~ conv(K). 

For each positive integer n, since Cn is positive, the vector sn does not lie in the 
linear span of Xo,Xl,X2, . . .  ,xn-1.  Hence it does not lie in their convex hull, which 
is a compact set. Thus Pn = dist(sn, conv{xo ,x l , x2 , . . .  ,Xn-1}) is a positive number. 
Note that  the definition of rn depends only on the choices of Cl, c2 , . . . ,  Cn-1, Cn. Thus 
we may choose the c~'s and r~'s recursively: choose each c~+1 small enough to satisfy 

p(Cn+lXn+l) < 2 -n -1  rain { 1 , r 0 , r l , r 2 , . . .  , rn} .  

It follows that  

p(8 -- 8n) -- p(Cn+lXn+l ~- Cn+2Xn+2 -}-'" ") < E 2--JPn < rn" 
j>n 

Hence dist(s, conv{x0, Xl, x 2 , . . . ,  Xn--1 }) > 0. By 12.5.d, we have 

o o  

c o n v ( K ) -  U conv{xO,Xl ,X2 , . . . ,Xn_l} ,  
n - - 1  

so s ~ conv(K). 

Show that  in a locally convex space, the convex hull of a totally bounded set is totally 
bounded. Then use that  to prove M a z u r ' s  T h e o r e m "  In a Banach space (or, more 
generally, in a complete LCS), the closed convex hull of a compact set is compact. (A 
still more general result is given in 27.3.f.) 

j .  Suppose X and Y are TVS's with scalar field R, and f "  X ~ Y is a d d i t i v e -  that  is, 
f ( x l  + x2) - f ( x l )  + f(x2).  Also assume f is continuous. Then f is linear. 

k. Let S be a convex neighborhood of 0, and let p be its Minkowski functional (defined 
in 12.27). Then p is continuous. If S is open, then S -  {x E X ' p ( x )  < 1}. 

N E I G H B O R H O O D S  OF ZERO 

26.24. Discussion. If (X, 7) is a TAG, then the topology ~ is translat ion-invariant .  
That  is, for a n y S C _ X a n d x ,  x ~ E X , w e h a V e S C g "  ~ x + S E ~  ~ x ~ + S E S " .  

We saw in 5.22 that  any topology ~ can be characterized in terms of its neighborhood 
filters N(x). If ~Y is translation-invariant, then the neighborhood filters can be translated as 
well" 

x+Se>C(x) .: :.  

Thus, the topology is determined by its neighborhoods of 0. Some simplifications are 
possible at 0, so usually we just work with the neighborhood filter at 0. Likewise, we 
consider neighborhood bases at 0. 
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26.25.  N e i g h b o r h o o d  c h a r a c t e r i z a t i o n  of  a T A G .  Let X be an Abelian group, and 
let N be a proper filter on X. Then there exists a TAG topology 9" on X for which N is the 
filter of all neighborhoods of 0, if and only if N has these properties: 

(i) For each N E N, there is some A E :N satisfying A + A c N. 

(ii) N has a filterbase consisting of symmetric sets 
some B E N that  satisfies - B  - B. 

i.e., each N E N contains 

Moreover, in that  case the topology 9" consists of the collection of all sets T C_ X that  satisfy 
the following condition. 

For each x E T, there is some G E N such that  x + G C_ T. 

The interior operator of that  topology can be expressed as follows: For each S c_ X,  we 
have 

int(S) - { x E X  �9 x + G C _ S f o r s o m e G E N } .  

Hints" If X is a TAG with neighborhood filter N at 0, then (i) follows from continuity of 
addition; for (ii) take B - N M ( - N ) .  Conversely, if (i) and (ii) hold, use 5.22 to show that  
9", as defined above, is a topology, etc. 

26.26.  N e i g h b o r h o o d  c h a r a c t e r i z a t i o n  of  a T V S .  Let X be a vector space, and let 
N be a proper filter on X. Then there exists a TVS topology 9" on X for which N is the 
filter of all neighborhoods of 0, if and only if N has these properties" 

(i) For each N E N, there is some A E N satisfying A + A c_ N. 

(ii) N has a filterbase consisting of balanced sets i.e., each N E N contains 
some B E N that  is balanced (as defined in 12.3). 

(iii) Every member of N is absorbing (as defined in 12.8). 

Hints for  the "only i f"  part" (i) X is a TAG. (ii) By continuity of scalar multiplication there 
is s o m e r  > 0 and some neighborhood G of 0 such that  ]c] <_r, x E G  ~ c x E N .  Then 
B - Ulcl___T cG is a balanced neighborhood of 0 that  is contained in N. (iii) Continuity of 
multiplication. 

Hints for  the "if" part: First, define 9" as in 26.25, and show that  (X, 9") is a TAG. 
To prove continuity of x ~ cx for fixed c E F, it suffices to show continuity at x - 0, 

and we may assume c ~: 0. Let any balanced B E N be given; it suffices to show c -1B E N. 
By repeated uses of (i), there is some H E N such that  rnH C_ B for some integer m > Ic]. 
Then H c m - l B  c c - l B .  

Continuity of c ~ cx follows from (iii); joint continuity of (c,x) --~ cx at (0,0) follows 
from (ii). Finally, joint continuity of (c, x) ~ cx now follows from the fact that  that  mapping 
is bilinear if ca --~ c and x~ ~ x, then 

- - - + - x) + - - o 

26.27.  Further properties of neighborhood bases. Show that  
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a. If X is a TAG, then cl(S) - -  NNE~(S-~- N) for any set S C X, if N is the neighborhood 
filter at 0. Hence cl(S) c_ S + N for any N E N. 

Hint" x c cl(S) if and only if S meets every neighborhood of x, as we noted in 15.4. 

b. If X is a TAG, then X has a neighborhood base at 0 consisting of open symmetric sets 
and a neighborhood base at 0 consisting of closed symmetric sets. 

Hint" If N is a neighborhood of 0, choose some open neighborhood G of 0 such that  
G + G C N; then show that  G n ( - G )  and its closure are symmetric neighborhoods of 
0 contained in N. 

c. If X is a TVS, then X has a neighborhood base at 0 consisting of open balanced sets 
and a neighborhood base at 0 consisting of closed balanced sets. Hint: 26.23.a. 

d. If X is an LCS, then X has a neighborhood base at 0 consisting of open convex balanced 
sets and a neighborhood base at 0 consisting of closed convex balanced sets. 

26.28. Technical lemma on subspaces (Dieudonnd-Schwartz). (This result will be needed 
in 27.41.b.) 

Let V be a HausdorffA LCS. Let V be a closed linear subspace of V, equipped with the 
relative topology. Let C be a convex neighborhood of 0 in V, and let z E V \ V. 

Then there exists a convex neighborhood C of 0 in V such that C N V - C and z r C. 
A 

Proof. In the following diagram, V is represented by the entire plane, and V by a horizontal 
line through that  plane. The set C is represented by a line segment in that  line. This 
line segment is drawn slightly thickeronly to make it visible in the diagram; it should be 
interpreted as being no thicker than V. 

V 

A 

V 

N3 

A 

C 

0 
A 
w 

N3 

Z 

A A 

By assumption, V \ V is a neighborhood of z that does not meet V. Then N1 = 
A A 

- ( V  \ V) + z is a neighborhood of 0 such that z - N1 does not meet V. 

^ By definition of the relative topology, since C is a neighborhood of 0 in V, we have 
C - V n N2 where N2 is some neighborhood of 0 in V. 
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Now, N1 n N2 is a neighborhood of 0 in V. Since V is locally convex, N1 n N2 contains 
some convex neighborhood N3 of 0. Observe that  V n N3 C_ C and (z - N3) n V - ~. In 
the diagram, the set N3 is represented by a square. 

Now let 

C : c o ( C U N 3 )  - { A u + ( 1 - A ) v  �9 AE[0,1] ,  u c C ,  v E N 3 }  

where "co" denotes convex hull (see 12.6.c). 
A 

CA V - C  and z ~ C. 

We leave it as an exercise to verify that  

CHARACTERIZATIONS IN TERMS OF GAUGES 

26.29.  T h e o r e m  (Bi rkhof f ,  K a k u t a n i ,  a n d  M i n k o w s k i ) .  Let g" be a topology on 
an Abelian group X. Then (i) ff is a TAG topology if and only if ff is the gauge topology 
determined by some gauge consisting of translation-invariant pseudometrics. In other words, 
a TAG topology is the same thing as a topology given by a collection of G-seminorms. 

Suppose that  X is a vector space. Then (ii) ff is a TVS topology if and only if ff is 
the gauge topology determined by some gauge consisting of F-seminorms, and (iii) ff is a 
LCS topology if and only if 9" is the gauge topology determined by some gauge consisting 
of seminorms. 

Proof. A proof of the "if" parts was sketched in 26.20.d; it remains for us to prove the 
"only if" parts. Suppose ff is a TAG, TVS, or LCS topology; we shall find appropriate 
G-seminorms. 

Case (iii) is easiest: Let ib be a neighborhood base at 0 consisting of convex, balanced 
sets. Being a neighborhood of 0, each B E N is also absorbing. Hence its Minkowski 
functional pB is a seminorm on X (see 12.29.g). It is easy to verify that  the seminorms PB 
give the same topology as the neighborhood base lb. 

For case (i), let N be a neighborhood base at 0 consisting of symmetric sets; for case 
(ii) we may assume the members of ib are balanced sets. Temporarily fix any B E iB, and 
let B1 = B. Since addition is continuous, we may recursively choose B2, B3, B4 , . . .  in ib 
with B~ D gn+l -~-Bn+l -~-gn+l. Also let B0 = X. Define relations Vn C_ X x X by 
V~ = {(x, y) E X x X : x -  y C B~}. Then the V~'s are translation-invariant in this sense: 
(x,y)  c V~ ,'. :- (x + u ,y  + u) E Vn. Also, the Vn'S satisfy the hypotheses of Weil's 
Pseudometrizat ion Lemma 4.44. Define a pseudometric d as in that  lemma; then it is also 
translation-invariant and thus defines a G-seminorm p. In fact, we have f(x, y) = p ( x -  y), 

m 

where ~(u) - inf{2 -~ "u  E B~}; hence p(x) - inf Y~j=I ~(xj) where the infimum is over 
all positive integers m and all decompositions x = Xl + x2 + . "  + xm. Since the sets B~ are 
symmetric or balanced, it is easy to verify that  the functions ~a and p are also symmetric or 
balanced. In case (ii), since the B~'s are balanced neighborhoods of 0, it is easy to verify 
that  p is an F-seminorm. By Well's Lemma, we have 

{ ~ x .  p(~)<2 -n} c B,~ c { x ~ X .  p(x)_<2 -n} 
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for all positive integers n. Recall that  B1 -- B; let us denote p = pB. Then a net (x~) in 
X satisfies pB(x~) ---* 0 for each B c ~ if and only if for each B E ~ we have eventually 
x~ c B. Thus the topology with neighborhood base at 0 given by ~ is the same as the 
topology given by the pB's. 

26.30. Remark. Although 16.16 and 26.29 show that  every TVS is completely regular, in 
general a TVS need not have stronger separation properties such as normality. Indeed, an 
example of Stone [1948] showed that  the Hausdorff locally convex space ~ is not normal. 

26.31. Compatibility with a TAG or TVS. Let (X, 9") be a TAG, TVS, or an LCS, and let 
R = {p~ : A E A} be a gauge on X consisting of G-seminorms, F-seminorms, or seminorms, 
respectively. We shall say that  the gauge R is c o m p a t i b l e  with the topology 9" if 9" is the 
topology determined by R that  is, if 

x~ ---~ x in ( X,~T) z ;. p~ (x~ - x) ~ 0 for each )~. 

Show that  the largest gauge that  is compatible with q" is, respectively, the set of all G- 
seminorms, F-seminorms, or seminorms that  are continuous from (X, ~ to [0, + ~ ) .  (This 
is a specialization of 16.20.) 

26.32. P s e u d o m e t r i z a b i l i t y  c r i t e r i a .  Let (X, 9") be a TAG. Show that  the following 
are equivalent: 

(A) 9" is pseudometrizable. 

(B) 9" can be determined by a countable collection of pseudometrics. 

(C) 9" can be given by a single G-seminorm. Hint: 18.17. 

(D) (X, 9") is first countable i.e., it has a countable neighborhood base at 0 
i.e., there is a countable collection No of neighborhoods of 0, such that  every 
neighborhood of 0 includes some element of No. 

Suppose, moreover, that  (X, ~ is a TVS. Then the following is also equivalent: 

(E) 9" can be given by a single F-seminorm. 

Finally, suppose (X, 9") is an LCS. Then the following are also equivalent: 

(F) 9" car~ be given by a countable collection of seminorms. 

(G) 9" can be given by a single F-seminorm of the form 

oo 

P -- E 2-n arctanpn,  
n - - 1  

where the pn's are seminorms. 

Remarks. We emphasize that  the topology of a pseudometrizable LCS is not necessarily 
obtainable from a single seminorm. An example is given in 27.8. 
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Some readers will be more interested in the metrizability of a TAG, TVS, or an LCS 
rather than the pseudometrizability. But of course, a space is metrizable if and only if it is 
pseudometrizable and Hausdorff; we consider Hausdorffness in the next section. 

26.33. H a u s d o r f f n e s s  c r i t e r i a .  Let X be a TAG; let N be the neighborhood filter at 0; 
let R be any determining family of G-seminorms. Then the following are equivalent: 

(A) 

(B) 

(c) 

(D) 

(E) 

(G) 

(H) 

{0} is closed. 

NN N N = {0}. 
p-1 (0) -  {0} 

X is To (i.e., the topology can distinguish between points of X). 

X is TI (i.e., every point is closed). 

X is T2 (i.e., Hausdorff). 

X is T3. 

X is T3.5 (i.e., Tychonov). 

26.34. Corollary on quotients. Suppose X is a TAG, TVS, or an LCS. Let K c_ X be 
a subgroup, linear subspace, or linear subspace, respectively. Let X / K  have the quotient 
topology. Then: 

a. X / K  is also a TAG, TVS, or an LCS, respectively. 
Hint: The topology on X is determined by a gauge D consisting of G-seminorms, 

F-seminorms, or seminorms, respectively. Replacing D with an equivalent gauge, we 
may assume D is directed. The gauge D on X / K ,  defined as in 22.13.e, also consists 
of G-seminorms, F-seminorms, or seminorms, respectively. 

b. The topology on Q is Hausdorff if and only if K is a closed subset of X (regardless of 
whether the topology on X is Hausdorff). 

Hints: Let 0Q denote the additive identity of Q. Refer to 26.33. Then Q is Hausdorff 
-', ;- {0Q} is a closed set ~ K = 7r-l(0Q) is a closed set, by 15.31.b. 

c. In particular, if K = cl({0}), then Q is the Kolmogorov quotient of X, defined in 16.5. 

26.35. A few properties of the Kolrnogorov quotient. Suppose that  X is a topological 
Abelian group. Let Q -  X/cl({0}) have the quotient topology. Then: 

a. Q is a Hausdorff space. 

b. Q is the Kolmogorov quotient of X. 

c. For each G-seminorm p on X, define the corresponding G-seminorm fi on Q, as in 22.13. 
The G-seminorms that  determine the topology and uniformity of X are all continuous, 
and so they satisfy p- l (0)  D cl({0}). By 22.13.d, the formula for fi simplifies to 
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d. Let 7r: X --, X/cl({0}) be the quotient map. Let a :  X/cl({0}) ~ X be any selection of 
7r -1 that  is, let a be any function that  satisfies a(q) C 7r-l(q) for all q E X/el({0}).  
Then a is continuous. 

Proof. Let (q~) be a net converging to a limit q in X/cl({0}).  Show that  p ( a ( q ~ ) -  
e(q)) = ~(qa - q) -+ O. 

e. The quotient map 7 r : X  -+ Q is open, closed, and continuous. 

UNIFORM STRUCTURE OF TAG's 

26.36.  Preliminary lemmas. Let X and Y be TAG's. By 26.29, the topologies of X and 
Y can be determined (not necessarily in a unique fashion) by gauges D and E consisting of 
G-seminorms - -  i.e., consisting of translation-invariant pseudometrics. Fix any such gauges 
D and E, and let X and Y be equipped with the uniform structure determine~t by those 
gauges. Then: 

a. Let ((x~,x~)t . c~EA) b e a n e t i n X x X .  ThenD(x~ ,x~) t  ~ O in X in the sense of 
/ 

18.7 if and only if x~ - x~ ---, 0 in X. 

b. A function f : X --+ Y is uniformly continuous if and only if it has this property: 

' A) is net in X x X that  satisfies x~ - x ~  ~ 0 in Whenever ((x~, x~) �9 c~ c a 
X, then also f ( x ~ ) -  f ( x~)  ~ 0 in Y; 

or, equivalently, this property: 

For each neighborhood H of 0 in Y, there is some neighborhood G of 0 in 
X such that  x -  x' C G ~ f ( x )  - f ( x ' )  c H. 

c. Any additive continuous map f : X --+ Y is uniformly continuous. 

26.37.  Discussion: uniqueness of the uniformity. Let (X, 9") be a topological Abelian 
group (TAG). As we have noted above, the topology 9" can be determined by some gauge 
consisting of G-seminorms. Such a collection also determines a uniformity on X. The gauge 
is not necessarily unique, but we can now see that  the uniformity is unique; any two such 
gauges must determine the same uniformity. (Proof. Apply 26.36.c to the identity map.) 

That  unique uniformity will be called the u sua l  u n i f o r m i t y  for the topological group. 
It will always be understood to be in use whenever a topological Abelian group is viewed 
as a uniform space (unless some other arrangement is specified). It will also be in use for 
special kinds of TAG's e.g., for TVS's and LCS's. Note that  

on an A belian group, a TAG topology and its associated usual uniformity deter- 
mine each other uniquely. Consequently, we may refer to them interchangeably 
in discussions. 

For instance, we might say something like "the set S is a totally bounded subset of X,  when 
X is equipped with the topology of uniform convergence on members of g." Here we are 
really referring to the uniformity, not the topology, of uniform convergence on members of 
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g, but in certain parts of the literature it seems to be customary to call this a "topology." 
No harm is done by this abuse of terminology, since the topology and uniformity determine 
each other uniquely. 

26.38.  Remarks: nonuniqueness of the topology corresponding to the group structure. The 
result developed above, on the uniqueness of the usual uniformity for a TAG, must be 
read carefully. It does not say that  there is only one uniformity compatible with the given 
topology, nor that  there is only one translation-invariant uniformity. Even if we restrict 
our at tent ion to the topologies and uniformities given by translation-invariant gauges, an 
Abelian group X may be made into a TAG in more than one way i.e., there may be 
several different pairs 

(rJ'l, 111), (~2,112), (~'3, ~[3), . . .  
consisting of a topology ~rj that  makes X into a TAG and the associated uniformity ll j .  

We illustrate this by mentioning three different uniformities on R: 

�9 The translation-invariant metric d(z, y) - I z -  yl yields a translation-invariant (and 
complete) uniformity on IR and the usual topology. 

�9 The metric d(z,y) = l a r c t a n ( z ) -  arctan(y)l is not translation-invariant. It yields 
the usual (translation-invariant) topology on R, but it yields a uniformity that  is not 
translation-invariant or complete. (With this uniformity, the completion of R is the 
extended real line [ -oc,  +ec].) 

The discrete metric on IR is translation-invariant and yields a translation-invariant and 
complete uniformity. It yields, not the usual topology on R, but rather the discrete 
topology. 

It is also possible to develop a theory of topological groups that  are not necessarily 
Abelian, but that  theory is more complicated. A topological group that  is not Abelian 
does not necessarily have one "preferred" uniformity, analogous to that  discussed in 26.37. 
Examples can be found in Wilansky [1970], and in books on uniform spaces. We shall not 
pursue that  topic here. 

26.39.  Remarks: irrelevance of scalars. A uniformity is unchanged if we replace the 
gauge with any uniformly equivalent gauge. In a TAG we can choose the gauge to consist 
of G-seminorms. In a TVS or an LCS we can do better: We can choose the gauge to 
consist of F-seminorms or seminorms. However, these "better" gauges do not give us more 
insight into the uniform structure. In the basic theory developed below, we can forget 
about multiplication by scalars, for it has no effect on the uniform structure; we can view 
our TVS's and LCS's as TAG's. (Nevertheless, the uniform structure and the operation of 
scalar multiplication do interact in some interesting ways; see 27.2.) 

26.40.  Further properties of the usual uniformity. Let X be a TAG, let N be the neigh- 
borhood filter at 0, and let II be the usual uniformity on X. Then: 

a. The usual uniformity can be described directly in terms of the topology, as follows: 

-- {S C X • X " S D EN for some N E N}, 
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where 
= {(x,y)  x• �9 x - y e N }  

for each neighborhood N E N. The sets EN then form a filterbase for the uniformity. 

b. A net (x~ �9 a E A) in X is Cauchy if and only if, for each neighborhood N of 0, there 
is s o m e t ~ 0 E A s u c h t h a t c ~ , a  ~ a 0  =v x ~ - x ~ ,  E N .  

A filter 9" on X is Cauchy if and only if, for each neighborhood N of 0, there is 
some F E 9" satisfying F - F C_ N. 

c. Let (f~ �9 c~ E A) be a net of functions from some set S into X, and let f E X s also. 
Then f~ -~ f uniformly on S if and only if for each neighborhood N of 0 there is some 
a0 E A such tha t  { f ~ ( s ) -  f ( s )  �9 a ~ ao, s E S} C_ N.  

d. Let f~ be a topological space, and let {f~ �9 A E A} be a collection of functions from 
into X. Then {f~ } is equicontinuous at a point w0 E Q if and only if {f~ } has this 

property: 

For each neighborhood N of 0 in X, there is some neighborhood G of w0 in 
f~ such tha t  { f x ( ~ 0 ) -  f a ( ~ ) "  A E A,~  E G} C_ N. 

e. Let S c_ X. Then S is totally bounded if and only if S has this property: 

For each neighborhood N of 0, there is some finite set F C_ X (or, equiva- 
lently, some finite set F C_ S) such that  F + N _D S. 

26.41.  (Optional.) Most of the results on Riemann and Henstock integrals in Chapter  24 
require norms, but the definitions and a few basic properties do not actually require norms. 
The definitions would make as much sense in any topological vector space X, if we replace 

with 

for each number c > 0, there e x i s t s . . ,  such t h a t . . .  II v - E[f, T]I I < c 

for each neighborhood N of 0, there exists . . .  such that  . . .  v -  E[f,  T] E N. 

As an exercise, readers may wish to prove the following result. 

T h e o r e m .  Suppose the topological vector space X is locally convex, and assume it is 
complete i.e., every Cauchy net in X converges. Then any continuous function f : 
[a, b] ~ X is Riemann integrable. (Hint: Any continuous function on [a, b] is uniformly 
continuous.) 

PONTRYAGIN DUALITY AND HAAR MEASURt , 
(OPTIONAL; PROOFS OMITTED) 

26.42.  Remarks. We now state a few further results about topological Abelian groups. 
We shall omit the proofs, which are not short or elementary, since these results will not be 
needed later in this book except in some other material  marked "optional." 
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26.43.  Definitions. By a P o n t r y a g i n  g r o u p  we shall mean a locally compact, Hausdorff, 
topological Abelian group. Some examples of Pontryagin groups are" 

�9 IR or C, with the usual topology and with addition for the group operation. 

�9 (0, +oc),  with multiplication for the group operation. (This is isomorphic to R.) 

�9 Z, with the usual (i.e., discrete) topology and with addition for the group operation. 

�9 ~2 = { z  E C : lzl  = 1}, with multiplication for the group operation. This group will 
play a special role in the theory developed below. (Of course, it is isomorphic to the 
group [0, r) with the operation of addition modulo r, for any positive number r.) 

�9 Any product of finitely many Pontryagin groups, with group operation defined com- 
ponentwise and with the product topology. (In particular, IR ~ and C~.) 

We may form a category by taking Pontryagin groups for the objects, with continuous 
group homomorphisms for the morphisms of the category. It is easy to see that  this satisfies 
the definitions in 9.3. 

For each Pontryagin group G, we now define the d u a l  

G* = {qp �9 ~ is a morphism from G into T}. 

This is a special case of the notion of "dual" introduced in 9.55; in this context the object 
A of 9.55 is the circle group T. 

The set G* can be made into a multiplicative group by defining products pointwise 
that  is, P~(g)  = P ( g ) ~ ( g )  for any ~, ~ E G* and g E G. The identity element of the 
group G* is the constant function 1. The inverse of any element p(.) E G* is the function 
l / p ( . ) .  Note that  1/~(g) = ~(g), since ~(g) takes its values in T. Also, since p is a 
group homomorphism, note that  1/~(g) = ~ ( - g )  if G is writ ten as an additive group, or 
1/~(g) = p(g -1) if G is writ ten multiplicatively. 

The group G* is called the c h a r a c t e r  g r o u p  of G; the members of G* are called the 
c h a r a c t e r s  of G. 

Examples. The groups IR n and C n are isomorphic to their own character groups; the 
groups T and Z are isomorphic to each other 's character groups. 

The preceding assertions are easy to verify; the remaining ones below are not. 

26.44.  P o n t r y a g i n  D u a l i t y  T h e o r e m .  Let G be a Pontryagin group, and let G* be its 
character group. Let G* be topologized by the topology of uniform convergence on compact 
subsets of G. Then G* is also a Pontryagin group; thus the mapping G H G* goes from the 
category of Pontryagin groups into itself. With  respect to this mapping, every Pontryagin 
group is "reflexive" - -  that  is, G** = G. If f : (71 ~ (72 is a morphism, then the dual map 
f*  : G2* + GI* (defined as in 9.3) is also a morphism. If G* = H and H* = G, then G is 
compact if and only if H is discrete. 

26.45.  T h e o r e m "  e x i s t e n c e  a n d  u n i q u e n e s s  of  H a a r  m e a s u r e .  Let G be a Pontryagin 
group (as defined in 26.43). Then there exists a regular Borel measure # on G that  is 
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translation-invariant on G i.e., that  satisfies #(x + S) - #(S) for all x E G and all Borel 
sets S c G. It is unique, up to multiplication by a positive constant i.e., if #1 and p2 
are two such measures, then #1 = k#2 for some positive constant k. Any such measure is 
called the H a a r  m e a s u r e  of the group. It is bounded if and only if G is compact. 

Notations. The spaces LP(p) may be writ ten instead as LP(G). When the choice of the 
measure is clear, integration with respect to Uaar measure may be writ ten as fa f(x)dx 
instead of fc  f(x)dp(x). 

Remarks. For simplicity we have only considered commutative groups, but the notion of 
Haar measure generalizes to all locally compact Hausdorff groups; commutat ivi ty  is not 
actually required. The literature contains an assortment of proofs of the existence and 
uniqueness of the Haar integral. They are based mainly on two proofs. One, due to Caftan, 
is based on an argument involving Catchy  nets and proves uniqueness while it proves 
existence. The other, due to Weil, is slightly shorter, uses a compactness argument,  and 
does not prove uniqueness; it is usually supplemented by a brief proof of uniqueness due to 
von Neumann. Both proofs apply to noncommutat ive groups; both are given by Nachbin 
[1965]. Simpler proofs are possible if one restricts one's at tention to compact groups or to 
commutat ive groups; for instance, see Izzo [1992] and references cited therein. 

26.46.  Examples. Haar measure on Z n (or on any discrete group) is counting measure. 
Haar measure on R n is n-dimensional Lebesgue measure. The circle group [0, r) (with 
addition modulo r, as defined in 8.10.e) has Haar measure equal to the restriction of one- 
dimensional Lebesgue measure to subsets of [0, r). Haar measure on the circle group ll" = 
{z E C :  Izl = 1} (with the operation of multiplication) can be described in terms of [0, r) 
since those two groups are isomorphic; equivalently, Haar measure on ll" is arclength times 
any convenient positive constant. 

Haar measure on the multiplicative group (0, +oe) can be described in terms of Lebesgue 
measure on the additive group IR, since those two groups are isomorphic by the mapping 
(0, +oc)  ~ x ~ ln x E IR. That  isomorphism yields this formula for Haar measure p in 

p(S) = fs  l for Borel sets S c (0, +co).  

Here the dt is integration with respect to Lebesgue measure. 

26.47.  Let G and G* be a Pontryagin group and its dual group (as defined in 26.43). 
Let H.aar measure on both groups be denoted by dx. Of course, Haar measure is only 
determined up to multiplication by a positive constant; fix some particular version of Haar 
measure on each group. 

i 

The F o u r i e r  t r a n s f o r m  of a function f �9 G --~ F is a corresponding function f �9 G* ~ F. 
The transform is defined for f E LI(G),  for f E L2(G), and for f in various other classes of 
functions by an assortment of different methods, but the different definitions agree wherever 
the classes of functions overlap. 
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The most basic of these definitions is the following: 

f(w) - fG f(x)w(x)dx if f c L I(G) and y c G*. 

This makes sense for f e LI(G), since 7(x) has absolute value 1 for all x. 

A b s t r a c t  R i e m a n n - L e b e s g u e  L e m m a .  If f �9 LI(G),  then f �9 Co(G), with Ilfll~ < 
Ilflll- Here Co(G) is the set of all continuous functions from G into C that  vanish at infinity, 
as defined in 22.15. (This result generalizes 24.41.b; explain how.) 

P l a n c h e r e l  T h e o r e m .  The Fourier transform, restricted to L I ( G ) N  L2(G), is a linear 
map from that  set onto a dense subset of L2(G*), which is distance-preserving i.e., 

A 

IIIII L2(C*) = ClIIIIL2(C) (**) 

(for some positive constant c tha t  depends on the normalizations of the Haar measures; the 
Haar measures can be chosen so that  c = 1). Hence tha t  restriction extends uniquely to a 

linear map f H IA from L2(G) onto L2(G*), satisfying (**). This map is sometimes called 
the P l a n c h e r e l  transform.  It also satisfies P a r s e v a l ' s  I d e n t i t y :  

c2 /af(x)g(x)dx = /a* f ( 7 ) g ( 7 ) d 7  for f ,g �9 L2(G) 

and the Fourier Invers ion  F o r m u l a :  c2f(x) - I ( -x) .  When f �9 LI(G*),  then the 
Fourier Inversion Formula can be wri t ten in this form: 

c2 f(x) - Jc[* f(~)'7(x)d~. 

Examples. 
a. When G = IR n, then G* = R n also. It is convenient to define 

f(~) - (27r)-n/2 ~ n  f (x )exp(- ix .  ~)dx 

other constants can be used, but this constant yields f(x) - f ( -x ) .  
" F o u r i e r  t r a n s f o r m "  most often refers to this example. 

bQ 

The term 

The group G = ~l" can be conveniently viewed as the additive group [0,27r), with 
addition modulo 27r (see 8.10.e). (Functions on T are also often viewed as functions on 
1R that  are periodic with period 27r. Intervals with length other than 27r can also be 
used, but the formulas are simplest for intervals of length 27r, so that  is the only case we 
shall describe here.) The dual group is G* = Z, and a function on Z is just  a sequence 
of numbers indexed by the integers. Thus, the transform of a function f E L I(T) is 
the sequence of F o u r i e r  coef f i c ien t s  

A i f  f (n) - c n - -  2"K f (x)e -inx dx (n C Z) 
7r 
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Going in the other direction, an "integral" of a function in LI(Z) is just a sum of real 
numbers. Thus we obtain 

f (x) = Z Cneinx (X C T) 
n=--cx~ 

This series is to be interpreted not as a pointwise summation but as a summation in 
L2(T). That  is, if f e L2(T), then the partial sums Sg(X) _ ~-~=g _g cne i~x converge 
to f in the sense that limg_+~ l l f  - -  S N l l 2  - -  O. 

26.48. Remarks on pointwise convergence. Let f E L2[-Tr, 7r], and define the Fourier coef- 
_ 1 ~ Cn  e i n x ,  the Fourier series of f ,  converges ~cients c n ~ LTr f (x) e - inx  dx. Then En%-ex~ 

to f in the norm topology of L2[-Tr, 7r]. Although the convergence in L p spaces is more 
important for applications, it is of some historical interest to know when the Fourier series 
converges pointwise to f.  For instance, a theorem of Jordan shows that if f(-Tr) - f(rr) 
and f has bounded variation on [-Tr, 7r] then }-~n~= Cneinx _ _  1 , _ ~  ~[f(x+)  + f ( x - ) ]  for all x; 
here f (x+)  and f ( x - )  are the right- and left-hand limits of f at x. If f is also continuous, 
then the Fourier series converges everywhere to f.  Georg Cantor tried to investigate the 
sets of points where certain Fourier series converge; this led him to invent cardinalities and 
set theory. 

What  about functions that are not necessarily of bounded variation? It turns out that  
"most" continuous functions are ill-behaved at "most" points, in the following sense: Let 
C2~ be the collection of all continuous functions f " [ -~ ,  ~] ~ C that satisfy f ( - ~ )  - / (T r ) ;  
this is a Banach space when equipped with the sup norm. There exists a comeager set 

c C2~ such that for each f E O, there exists a comeager set EI  C_ [-Tr, 7r] such that the 
Fourier series of f diverges at every point of EI. 

It also turns out that "most" functions in L 1[-7r, 7r] are ill-behaved at "most" points, in 
a different sense: The functions whose Fourier series diverge almost everywhere in [-Tr, 7r] 
is a comeager subset of Ll[-Tr, 7r]. (Kolmogorov first proved in 1926 that there exists a 
function in Ll[-Tr, 7r] whose Fourier series diverges almost everywhere.) 

However, for p > 1 the spaces LP[-rr, 7r] exhibit much better behavior. If f E LP[-Tr, 7r] 
for some p > 1, then the Fourier series for f converges almost everywhere to f.  This was 
proved by Hunt [1968], extending methods developed earlier by Carleson for the case of 
p - 2 .  

For proofs or references for most of these results, see Edwards [1967]. The abstract 
approach to Fourier analysis is also introduced by Rudin [1960]. 

ORDERED TOPOLOGICAL VECTOR SPACES 

26.49. Definition and remarks. A o r d e r e d  topo log ica l  ve c to r  space  is a real vector 
space X that is equipped with both 

�9 a topology, making X into a topological vector space, and 

�9 an ordering, making X into an ordered vector space (as defined in 11.44). 
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Many different types of ordered TVS's can be defined by assuming various relations between 
the topology and the ordering. We shall concentrate on just a few basic types of ordered 
TVS's. In order of increasing specialization, these are: 

{locally full spaces} _D {locally solid spaces} _D {F-lattices} _D {Banach lattices}. 

Our t reatment  is based largely on Fremlin [1974], Peressini [1967], and Wong and Ng [1973]. 

26.50.  Exercise. Let X be an ordered TVS whose positive cone X+ is closed. Then: 

a. The sets {x E X : z  ~ u} and {z E X : x  ~ u} are closed, for each u E X. 

b. X is Hausdorff. 

c. X is Archimedean. 

Hint: If Ny is bounded above by some x, then for all n E N we have x ~ ny, hence 
l X I X - y  ~ - y ,  and thus ,~ - y E X+ which is a closed set. Since X is a TVS, we have 
y ~ 0 .  

d. If (v5 : ~ E A) is an increasing net that  converges to some limit v~  in the topological 
space X, then v~  = suP~Ez x v~. 

Hints: For each 50 E A, the set {x E X : x ~ vs0} is closed, hence contains v~.  
Also, if w is an upper bound for the set {v~ : 5 E A}, then v~  is in the closed set 
{x X :x w}. 

26.51.  Recall that  a subset S of a preordered set (X, ~) is full (or o r d e r  convex)  if 
a ~ x ~ b w i t h  a,b E S implies x E S (see 4.4.a). The full hul l  of a set S is the set 
Ua,bES[a, b]; it is the smallest full set that  contains S. Exercises. 

a. The full hull of any balanced subset of X is balanced. 

b. The full hull of any convex subset of X is convex. 

26.52.  Proposition and definition. Let X be an ordered topological vector space. Then 
the following conditions are equivalent; if they are satisfied we say X is loca l ly  full (or 
o r d e r e d  by  a n o r m a l  cone) .  

(A) 

(B) 
(C) 

(D) 

(E) 

(X, 9-) has a neighborhood base at 0 consisting of balanced, full sets. 

(X, 9-) has a neighborhood base at 0 consisting of full sets. 

(X, 9") has a neighborhood base at 0 consisting of sets V with this property: 
If v E V ~ X+, then [0, v] c_ V. 

If (x~ :c~ E A) and (y~ : c~ E A) are nets in X based on the same directed set 

A and satisfying 0 f x~ f y~ and y~ ~ 0, then x~ ~ 0. 

( T h e  S q u e e z e  P r o p e r t y . )  If (us),  (v~), (w~) are nets in X based on the 
same directed set A and satisfying us ~ v~ ~ w~ for all c~ E A and also 

9- 9- 9- 
satisfying us ~ p and w~ ~ p with the same limit p, then v~ ~ p 
also. 
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(F) If V is any neighborhood of 0, then there exists a neighborhood W of 0 with 
this property: If w C W n X+,  then [0, w] c_ V. 

Remark. Note the similarity between 26.52(E) and 7.40.i. Those two properties are the 
same in I~, since in tha t  setting the order and topological convergences are the same. 

Proof of equivalence. The implications (A) =v (B) =v ( C ) = v  ( D ) a r e  obvious. The 
implications ( D ) ~  ( E ) a r e  an easy exercise. It suffices to show ( D ) = v  (F) :=v  (A). 

Let N be the neighborhood filter at 0. 

Proof of (D) =v (F). Suppose (F) fails. Then there is some V that  is a neighborhood of 0, 
for which there is no corresponding neighborhood W. Then for each N c N, there is some 
WN e N such tha t  [0, WN] is not contained in V, and hence there is some XN e [0, WN] \ Y. 
Then the net (Wg " N C N) converges to 0. By (D), the net (Xg " N C N) converges to 0 

but then eventually XN C V, a contradiction. 

Proof of (F) ~ (A). Let G be any neighborhood of 0; we wish to show that  G contains 
a balanced, full neighborhood of 0. Let G t be a balanced neighborhood of 0 satisfying 
G t + G ~ c_ G; such a set is available since X is a TVS. By (F), there is some neighborhood 
W of 0 with this property: n w ~ w n x +  [0, w] c_ G'. Replacing W with a smaller set, we 

may assume W c_ G ~. Now let W ~ be some some balanced neighborhood of 0 satisfying 
W ~ + W t C_ W. Let K - G ~ N W~; it is a balanced neighborhood of 0. Let F be its full 
hull tha t  is, F - Ua,bCK[a, b]. The full hull of any balanced set is balanced; thus F is a 
balanced, full neighborhood of 0. It suffices to show F c_ G. Let x c F.  Then a ~ x ~ b 
for s o m e a ,  b E K - G  ~ n W  ~. T h e n 0 ~ x - a ~ b - a c W  ~ - W  ~ - W  ~ + W  tC_W. Hence 
b - a c W n X + , a n d t h u s x - a E [ 0 ,  b - a ] C _ G ' .  Finally, x - ( x - a ) + a E G ' + G ' C _ G .  

26.53.  A degenerate example. Any topological vector space (X, 9") can be turned into a 
locally full space by equipping it with the degenerate ordering x ~ y -.' ;- x = y (so 
tha t  the positive cone is {0}). Indeed, with tha t  ordering, every subset of X is full, so any 
neighborhood base at 0 consists of full sets. 

Despite its triviality (or because of it!), this example is useful. It shows tha t  any affine 
operator between topological vector spaces can be turned into a convex operator from a 
topological vector space into a locally full space. Thus, the results proved in this chapter 
for convex operators are applicable to affine operators as well. 

26.54.  If X is a locally convex, locally full space, then X has a neighborhood base at 0 
consisting of balanced, full, convex sets. 

Hint: Let N be any given neighborhood of 0 in X. Since X is locally full, we have N _D B 
where B is a balanced, full neighborhood of 0. Since X is locally convex, we have B _D C 
where C is a balanced, convex neighborhood of 0. Show that  the full hull of C is a balanced, 
full, convex neighborhood of 0 that  is contained in N. 

26.55.  Definitions. Let (X, ~) be a Riesz space, i.e., a vector lattice. By a R i e s z  F-  
s e m i n o r m  we shall mean an F-seminorm p"  X ~ [0, + ~ )  (defined as in 26.2) tha t  also 
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has this property" 
/ x / 4 / y /  < 

If p is also homogeneous (i.e., if p(cx) = Iclp(x)), then  it is a Riesz  s e m i n o r m .  If p is 
positive-definite (i.e., if x -r 0 ~ p(x) > 0), then  it is, respectively, a R i e s z  F - n o r m  or 
Riesz  norm.  

Examples. On any of the Banach  spaces LP(p) for 1 _< p _< oc (with {scalars} = R), the 
norm II lip is a Riesz norm. On the F-spaces LP(p) for 0 < p < 1, the F-norm I lip p is a Riesz 
F-norm.  

26 .56 .  The  Hahn-Banach  Theorem was in t roduced in 12.30. Two more of its equivalents 
are given by the following principles: 

( H B 1 5 )  Riesz  S e m i n o r m s  and ( H B 1 6 )  P o s i t i v e  Funct iona l s .  
be a Riesz space, let S be a Riesz subspace,  and suppose either 

Let X 

q is a Riesz seminorm on X,  or 

q" X ~ R is a positive linear functional.  

Let ~"  S ~ R be a positive linear functional,  satisfying ~ _< q on S+. Then  
extends to a positive linear functional  A" X ~ R, satisfying A _< q on X+.  

Proof that (HB2) implies both (HB15) and (HB16). In either case, the restr ict ion of q to 
X+ is a convex, isotone function q" X+ ~ R tha t  satisfies q(0) - 0. Define p(x) - q(x +). 
Then  p is convex; this follows from the convexity and isotonicity of q and the fact t ha t  
(ax + ( 1 -  a)y) + 4 (ax) + + ( ( 1 -  a)y) + - a(x +) + ( 1 -  a)(y +) i f x ,  y E X a n d a  E [0,1]. 
For any x E S we have x 4 x +, hence A(x) _< ,k(x +) _< q(x +) - p(x). Thus  (HB2) is 
applicable, and ~ extends to a linear functional  A �9 X ~ R satisfying A <_ p on X; hence 
A _< p - q on X+.  To see tha t  A is positive, note tha t  if x ~ 0, then  ( - x )  + - 0; hence 
- A ( x )  - A ( - x )  < p ( - x )  - q ( ( - x )  +) - q(O) - O .  

Proof that either (HB15) or (HB16) implies (HB1). In either case we take X to be the 
Riesz space B ( A )  and let S be the subspace consisting of those nets tha t  are convergent 
in the ordinary sense. For a proof  with (HB15), use the Ries~ seminorm q(x) - I l x l l ~  - 
sup {Ix(~)l .  ~ E A}. For a proof with (HB16), use the positive linear functional  q(x) - 
lim sup~ /x  x(5). 

26.57.  Recall from 8.42.q tha t ,  in a vector lattice, a set S is so l id  i f / x / ~ / y / a n d  y E S 
imply x E S. Note tha t  any nonempty  solid set is balanced.  

Proposition and definition. Let (X, 4 )  be a vector latt ice and let (X, 0") be a topological 
vector space, bo th  with the same underlying vector space X.  Then  the following condit ions 
are equivalent.  If one, hence all, of these condit ions are satisfied, we say X is l o c a l l y  sol id;  
some ma thema t i c i ans  call it a t o p o l o g i c a l  R i e s z  s p a c e .  

(A) X has a neighborhood base at 0 consisting of solid sets. 
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(B) 

(c) 

(D) 

(E) 
(F) 
(c) 

The topology 9" is the gauge topology determined by a collection of Riesz 
F-seminorms. 

The mapping x ~ / x / i s  uniformly continuous from X to X (equipped with 
the uniform structure resulting from the topology 7). 

The mapping  (x, y) ~ x V y is uniformly continuous from X x X (with the 
product uniform structure) to X. 

The mapping x H x + is uniformly continuous from (X, 9") into (X, g'). 

X is locally full and the mapping x ~ x + is continuous at 0. 

For any two nets (x~) and (y~) in X (with the same index set), i f / x ~ / ~ / y ~ /  

for all a and y~ > 0, then x~ > 0. 

Proof of (A) =~ (B). The proof is similar to that  of 26.29, case (ii), but we may choose the 
sets B c ~B to be solid sets. Construct an F-seminorm p as in 26.29; we shall now show that  
that  function is actually a Riesz F-seminorm. We know that  / x /  ~ / y /  =~ ~(x) ~ ~(y) 
since each Bn is solid; we are to show that  / x /  ~ / y /  =, p(x) <_ p(y). Consider any 
decomposition y = yl n a y2 -+-""" n t- Ym. T h e n / x / ~ / y / ~ / Y l / + / Y 2 / + " "  +/Ym/ ,  hence 

X e [ - - / Y l / - -  /Y2 /  . . . . .  / Y m / ,  / Y l /  n t- /Y2/-Jr- ' '"  Jr- /Ym/] 

- -  [ - - /Yl / , /Y l / ]  -Jr- [--/Y2/,/Y2/] n c ' ' "  Jr -  [--/Yrn/,/Yrn/] 

by 8.36(C). Thus we can write x - -  X l  + x 2  -Jr''' + X m  with / x i /  ~ /yi/ .  Hence p(x) <_ 
Y~i~l ~(xi) <_ Y~i~=l ~P(Yi). Since p(y) is the infimum of all such summations }--~i~l V)(Yi), it 
follows that  p(x) <_ p(y). 

Proof of (B) =, (C). Recall from 8.42.0 t h a t / / / / x / - / x ' / / _  ~ / x - x ' / .  Hence for any Riesz 

F-seminorm p, we have p ( / x / - / x ' / )  <_ p ( x -  x'). If x~ - x~ > 0, then p(x~ - x~) ~ 0 
for every p in the determining family of Riesz F-seminorms; hence p ( / x ~ / - / x ~ / )  ~ 0 for 

each p; h e n c e / x ~ / - / x ~ /  > O. 

Proof of (C) =~ (D). Immediate from 8.42.1. 

Proof of ( D ) = ,  (E). Obvious. 

Proof of (E) ~ (F). Obviously the mapping x ~ x + is continuous at 0. To show that  X 
is locally full, we shall verify condition 26.52(F). Let V be any neighborhood of 0. By the 
uniform continuity of the mapping x ~ x +, there is some neighborhood W of 0 such that  
x -  y E W =~ x + - y+ E V. We are to show that  if 0 4 w C W, then [0, w] C_ V. Indeed, 
l e t x c  [0, w]. T h e n x - ( x - w ) - w c W ,  s o x  + - ( x - w )  + E V .  B u t x  + - x s i n c e x ~ 0 ,  
and (.z - w) + - 0 since w ~ x. Thus we have shown x E V. 

Proof of (F) =~ (G). Since x H x + is continuous at 0, the function x H x -  - ( - x )  + is 
also continuous at 0, and therefore so is the function x ~ / x / -  x + + x- .  Now, suppose 
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9" g~ / x ~ / ~ / y ~ / a n d  y~ ~ O. T h e n / y ~ /  ~ O. Then  

+ /x~ /y~/ and 0 ~ x ~  / ~  o 

g- 
hence by 26.52(D) we have x + 9" 9" x + x -  > 0. 0 and x~ > 0. Hence x~ - - 

Proof of (G) ~ (A). Let W be a neighborhood of 0; we wish to show tha t  W contains 
some full neighborhood of 0. Recall from 8.42.q tha t  the solid kernel of W is the set 

sk(W) - U c W} ; 

it is the largest solid subset of W. It suffices to show tha t  sk(W) is a neighborhood of 0. 
Suppose not. Then  there exists a net (y~) tha t  takes values outside sk(W) but  converges to 
0. Then  for each a,  the interval [-/y~/,/y~/] is not contained in W, hence there is some 

9- x~ E [-/y~/,/y~/] \ W. T h e n / x ~ / ~ / y ~ / ,  and so x~ ~ 0 by (G). But then eventually 
x~ E W, a contradiction. 

26 .58.  Exercise. If X is a locally solid Riesz space tha t  is Hausdorff, then its positive cone 
is closed; hence all the conclusions of 26.50 are applicable. 

Hint: X+ - ~-1(0) ,  where ~ is the continuous function x H x A 0. 

26.59.  Definitions. An F - l a t t i c e  or a B a n a c h  l a t t i c e  will mean a lattice topologized by 
a Riesz F-norm, respectively a Riesz norm, which is metrically complete. Note tha t  any 
F-latt ice or Banach lattice satisfies condition 26.57(B) and thus is locally solid. 

T h e o r e m :  C o n t i n u i t y  o f  p o s i t i v e  o p e r a t o r s .  Suppose X is an F-lattice and Y is a 
locally full space. Then  every positive linear operator  f "  X ~ Y is continuous. 

Remark. For a more general but more complicated result about  convex operators,  see 
Neumann  [1985]. 

Proof of theorem. Suppose not. Then  there exists a sequence (xn) tha t  converges to 0 in 
X,  such tha t  f(xn) 74 0 in Y. 

Then x + ~ 0 and x~ ~ 0, by 26.57(E). Since f(Xn) -- f (x+)--f(x~),  at least one of the 
sequences ( f (x+) ) ,  (f(x~)) does not converge to 0 in Y. Thus, replacing (x~) with either 
(x +) or (x~),  we may assume x,~ ~ 0. Replacing (x~) with a subsequence, we may assume 
f(Xn) stays out of some neighborhood G of 0 in Y. Choosing a smaller neighborhood,  we 
may assume G is full. Replacing (xn) with a subsequence, we may assume p(x~) < 4 -~, 
where p is some complete Riesz F-norm tha t  determines the topology of X. Let un = 2~Xn; 
then f(un) ~ 2~G. 

By subaddit ivi ty of p, we have p(Un) < 2 -n. Hence the series ~--~,~ un converges to some 
limit v in X. Since the u~'s are in X+,  we have 0 ~ u~ ~ v in X,  so 0 ~ f(un) ~ f(v) in 
Y. For all n sufficiently large, we have f(v) E 2nG, since G is a neighborhood of 0. But G 
is also full, so f(un) E 2~G, a contradiction. 

26.60.  Corollaries. 
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a. Any two complete Riesz F-norms on a vector lattice are equivalent. 
Hint" The identity map is a positive operator. 

b. Let X be an F-lattice, and let f �9 X ~ R be a linear functional. Then f is order 
bounded (i.e., the image under f of any order bounded set is an order bounded set) if 
and only if f is continuous. 

Hints" Order-bounded implies continuity, by 11.57 and 26.59. For the converse, 
suppose f is not order bounded. Then there is some set B C_ X that  is order bounded, 
such tha t  f ( B )  is not bounded in R. Choose a sequence (xn) in B with If(Xn)l > n 2. 

1 Let y~ - -~Xn; then If(Yn)l > ~. However ,  y~ -~ 0 in x ,  by 27.11 and 27.2(D). Thus 
f is not continuous. 

c. Example of a continuous operator that is not order bounded. Let C[0, 1] - {continuous 
functions from [0, 1] into R} and co - {sequences of reals converging to 0} be equipped 
with their sup norms; then both are Banach lattices and co is Dedekind complete. 
Define f "  C[0, 1] ~ co as follows: For any x E C[0, 1], let f ( x )  be the sequence whose 

n th  term is f l  x(t)sin(27rnt)dt. 
Hints: The sequence f ( x )  tends to 0 by the Riemann-Lebesgue Lemma (24.41.b). 

It is an easy exercise to show that  the operator f is continuous. The set B - {x E 
C[0,1] �9 - 1  _< x < 1} is order bounded. However, B contains all the functions 

1 show that  xn(t) - sin(27rnt). Observe that  the n th  term of the sequence f (Xn) is 3; 
f ( B )  is not order bounded. 
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Barre ls  and Other  Features  of  T V S ' s  

BOUNDED SUBSETS OF T V S ' s  

27.1. Motivating exercises. 
a. Two equivalent seminorms on the same vector space yield the same collection of met- 

rically bounded sets. 

b. Show by example that  equivalent F-seminorms on a vector space may yield different 
collections of metrically bounded sets. 

27.2. Definition. Let X be a TVS, with scalar field F equal to 1R or C. Let S C_ X. Show 
t h a t  the following conditions on S are equivalent. If any, hence all, of these conditions 
are satisfied, we say that  S is t o p l i n e a r l y  b o u n d e d ,  or b o u n d e d  in t h e  s e n s e  of  
t o p o l o g i c a l  l i n e a r  spaces ,  or b o u n d e d  w i t h  r e s p e c t  to  t h e  T V S  t o p o l o g y  on  X .  

(A) The set {ms " s E S} of mappings rn8 �9 F -+ X defined by rn~(c) - cs is 
equicontinuous. 

(B) For each neighborhood G of 0, there is some scalar c such tha t  S c_ cG. 

(c) For each neighborhood G of O, there is some r > 0 such that  S c_ cG for all 
scalars c with Icl > r. 

(D) Whenever (Cn,Xn) is a sequence in F x S with C n ~ O, then C n X  n --+ O. 

(E) Whenever (ca, x~) is a net in F x S with ca ~ 0, then c~x~ ~ 0. 

(Hint for the proof of equivalence: 26.27.c.) 
A collection of functions (I) = { ~  : 7 E F}, from some set ft into X, will be called 

t o p l i n e a r l y  b o u n d e d  p o i n t w i s e  if for each co EF t  the set (I)(a~) = { ~ ( a ~ ) :  7 E F} is 
toplinearly bounded in X. 

Caution: Toplinear boundedness is not the same thing as either metric boundedness or 
order boundedness. In 27.5, 27.6, and 27.11 we investigate some of the relations between 
toplinear boundedness and the other two kinds of boundedness. It is unfortunate  that  
the term "bounded set" has these three meanings that  are sometimes quite different; the 
reader must strive to determine from context which meaning is intended. In the next few 
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paragraphs,  of course, "bounded" means toplinearly bounded unless some other meaning is 
specified. 

27.3.  Basic properties of bounded sets. Let X be a TVS, with topology 9", and let S c_ X. 
Show that  

a. S is bounded if and only if every countable subset of S is bounded. 

b. The bounded sets form an ideal: the union of finitely many bounded sets is bounded; 
any subset of a bounded set is bounded. 

In fact, it is a proper ideal, provided that  the space X does not have the indiscrete 
topology. 

c. Any compact  set is bounded. 

d. The closure of a bounded set is bounded. 

e. If X is locally convex, then the convex hull of any bounded subset of X is bounded. 

f. A topological vector space is q u a s i c o m p l e t e  if each bounded, closed set is complete. 
Prove this more general version of M a z u r ' s  T h e o r e m :  In a quasicomplete, locally 

convex space, the closed convex hull of a compact set is compact.  
Hint" Refer to the result on totally bounded sets in 26.23.i. 

g. Suppose that  the topology 9" on X is the initial topology determined by a collection of 
linear mappings into topological vector spaces, ~a~ �9 X ~ (Y~, tl~). Show that  S c_ X 
is q-bounded if and only if ~x(S) is 1Ix-bounded for each A. 

Let X - 1-]aeA Xx be a product of TVS's; then (as we have noted in 26.20.a) X is also 
a TVS. Show that  a set B C X is bounded if and only if it is included in a set of the 
form I-IX~A Bx, where each Bx is a bounded subset of Xx. 

i. Change of scalar field. Let X be a complex TVS. Then X may also be viewed as a 
real TVS, with the same topology, if we "forget" how to multiply vectors by nonreal 
scalars. However, the bounded subsets of the real TVS are the same as the bounded 
subsets of the complex TVS. 

Proof. This may be easiest to see by considering condition 27.2(D). Any bounded 
subset of the complex TVS is also a bounded subset of the real TVS, since Ii~ C_ C. 
Conversely, suppose S is real-bounded, and suppose (Cn,Xn) is a sequence in C • S 
with Cn ~ O. Then cn - an + ibn with an, bn + 0 in IR. Then anxn ~ 0 and bnxn ---+ 0, 
since S is real-bounded; hence (an + ib~)x~ ~ O. 

h. 

27.4.  Let X and Y be topological vector spaces. Let f �9 X ~ Y be a linear map. 
Suppose f is continuous (i.e., preserves convergent nets) or, more generally, suppose f 
is sequentially continuous (i.e., preserves convergent sequences). Let S c_ X be bounded. 
Then f ( S )  is a bounded subset of Y. 

In some contexts, a linear map is called bounded if it takes bounded sets to bounded 
sets. (This generalizes the terminology of 23.1.) Wi th  this terminology, we have just  shown 
that  

f is continuous =~ f is sequentially continuous =~ f is bounded. 

A partial  converse is as follows: 
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Proposition. If X is a pseudometrizable TVS, Y is a TVS, and f : X ~ Y is a bounded 
linear map, then f is continuous. 

Proof. By 26.32, the topology of X is given by an F-seminorm, p. By 15.34.d, it suffices 
to show f is sequentially continuous. Suppose not say (x~) is a sequence that  converges 
to 0 in X, while ( f (x~))  does not converge to 0 in Y. Passing to a subsequence, we may 
assume ( f (xn))  stays out of some neighborhood G of 0 in Y. We have p(x~) ~ 0; passing 
to a subsequence, we may assume p(x~) < 1In 2. Then p(nxn) <_ i /n ,  by the subadditivity 
of any F-seminorm p. The sequence (nx~) converges to 0, hence is bounded. Since f is 
bounded, the sequence ( f (nx~))  = (n f (x~))  is bounded in Y. Then the sequence whose 
nth  term is gl . nf(Xn)  must converge to 0, a contradiction. 

Remark. A partial extension to nonmetrizable spaces is given in 27.41.m. 

27.5. Let X be a topological vector space�9 Then any toplinearly bounded set B is metrically 
bounded, in the following sense: If p is any continuous F-seminorm (or, more generally, any 
continuous G-seminorm) on X, then SUpxeB p(x) < ec. 

Proof. Suppose not. Say there exists a sequence (x~) E B with p(x~) > n. Let yn - ft-lxn. 
Since B is bounded, we have y~ + 0, hence p(y~) --+ 0, hence p(y~) < 1 for n sufficiently 
large. But then by the subadditivity of p we have p(xn) - p(ny~) _< np(y~) < n, a 
contradiction. 

27.6. Let X be a locally convex space over scalar field F, and let R be any family of semi- 
norms that  determines the topology of X�9 Let S C_ X. Then the following are equivalent: 

(A) S is toplinearly bounded (as defined in 27.2). 

(B) S is metrically bounded, in this sense �9 Each continuous seminorm on X is 
bounded on S. 

(C) Each seminorm in the given family R is bounded on S. 

(D) Each continuous linear map f "  X + F is bounded on S. 

Proof. The implication (a)  =~ (B) is a special case of 27.5. The implication (B) =~ (C) 
is trivial. 

For (C) =~ (A), let (xn) be a sequence in S and let cn ~ 0 i n F ;  we wish to show 
that  c~x~ --+ 0 in X. It suffices to show that  p(c~x~) ~ 0 for each p c R. Observe that  
sup~ p(x~) < oc, hence p ( c , x ~ ) -  Ic~]p(x~)~ O. 

For (g) ~ (D), note that ~(z) - I f ( ~ ) l  defines a continuous seminorm. 
It remains to prove (D) ~ (B). We first prove this under the additional assumption 

that  X is a normed space. Then X* is a complete normed space, as we noted in 23.8. The 
set S is a pointwise bounded set of continuous linear maps from X* into F. By the Uniform 
Boundedness Principle (23.14), S is equicontinuous. Thus S is norm bounded, when viewed 

as a subset of X** The canonical embedding X c X** �9 -~ is norm-preserving (see 23.20), 
so S is norm bounded in X. 

Now, for the general case" Let X7 denote the vector space X with the given topology. 
Let p be any continuous seminorm on X. Let Xp be the seminormed space (X, p); this has 
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a weaker topology than X~, and so the identity map i �9 X~ ~ Xp is continuous. 
the quotient space Z - Xp/p- l ( {o}) ;  its quotient topology is given by the norm II 
defined by ~(~(x)) - p(x), as in 22.13.e. 
continuous linear map from Xp into (Z, II 
Z, then the composition 

F o r m  

Let 7r �9 X ~ Z be the quotient map; it is a 
II). If A is any continuous linear functional on 

i 7~ )~ X~ > Xp > Z > F 

is a continuous linear functional on X~. Hence it is bounded on the set S. It follows that  
A is bounded on ~(S). By the results of the previous paragraph, ~(S) is a norm bounded 
subset of the normed space (Z, II II). That  is, ~ is bounded on 7r(S); hence p is bounded 
Oil S .  

Corollary. In a normed space, a set is metrically bounded if and only if it is toplinearly 
bounded. 

27.7.  A topological vector space X is loca l ly  b o u n d e d  if 0 has a bounded neighborhood 
(or, equivalently, if every point has a bounded neighborhood). Show that  

a. Any locally bounded TVS is pseudometrizable. 
1B, 1B, 1B ..} is a Hint" If B is a bounded neighborhood of 0, show that  {B, ~ g a ,. 

neighborhood base at 0. Now use 26.32. 

b. A topological vector space is seminormable (i.e., its topology can be given by a semi- 
norm) if and only if it is both locally convex and locally bounded. Hence we have the 
following result. 

K o l m o g o r o v  N o r m a b i l i t y  C r i t e r i o n .  A TVS is normable if and only if 
it is locally convex, locally bounded, and Hausdorff. 

c. The product of infinitely many nondegenerate TVS's cannot be locally bounded. (Here 
"nondegenerate" means not having the indiscrete topology.) Hints: Use 15.26.a and 
27.3.h. 

Corollary. A product of infinitely many nondegenerate TVS's is not seminormable. 

27.8.  Examples. 
a. For 0 < p _< c~, LP(#; X)  is locally bounded. (Hint: Ilcfllp -Ic]  Ilfllp.) 

However, for 0 < p < 1, the F-spaces gP and LP[0, 1] are not locally convex, as we 
saw in 26.16; hence their topologies are not normable. 

b. The space L~ 1] is not locally bounded. (Also, as we noted in 26.16, it is not locally 
convex.) Hence its F-norm is not equivalent to a norm. 

Proof. Let # denote Lebesgue measure. Show that  if V is a neighborhood of 0 in 
L~ 1], then there is some number ~ > 0 such that  V contains all measurable functions 
f that  satisfy # ({~" If(w)l > e}) < e. Now, for positive integers n, define fn - nl[0,~]. 

1 Then fn lies in the set V, but the sequence (n fn) does not converge to 0 in measure, 
so the set V is not bounded. 

c. The space F N, with the product topology, is locally convex but not locally bounded; 
hence it is not normable. Thus the F-norm given in 26.7 is not equivalent to a norm. 
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d. The space C(R) - {continuous scalar-valued functions on R}, with the topology of 
uniform convergence on compact subsets of R, is locally convex but not locally bounded; 
hence it is not normable. Thus the F-norm given in 26.8 is not equivalent to a norm. 

27.9. Let f~ be a set, let 8 be a collection of subsets of ft, and let Z be a topological 
Abelian group equipped with its usual uniform structure. Let Z a be equipped with the 
product  group structure (introduced in 9.18) and with the topology of uniform convergence 
on members of 8 (introduced in 18.26). Show that  

a. Z a is a topological Abelian group. 

b. The same topology on Z a is obtained if we replace 8 with its U-closure, defined as in 
4.4.d. 

For this reason, in many contexts we may freely assume that  8 is closed under finite 
union or we may make this slightly weaker assumption: 

8 is d irected  by inc lus ion 
S E 8 such that  $1 U $2 C S. 

that  is, for each S1, $2 E g there exists some 

c. Suppose that  8 is directed by inclusion and ~B is a neighborhood base at 0 in Z. Then 
the sets 

a ( s , B )  - { g e  z a . g ( s )  C B }  

form a neighborhood base at 0 in Z a. 

( S ~ 8 ,  B E : B )  

Now suppose that  Z is a topological vector space. Then: 

d. The topological Abelian group Z a is not necessarily a topological vector space. 
For instance, let Ig ~ be topologized by uniform convergence on Ig (thus 8 = {R}); 

then IR k is a topological Abelian group but multiplication by scalars is not continuous. 

e. Let �9 be a l i n e a r  subspace o f Z  a. Fix any S E 8. Then the sets f (S)  (for f E (D) 
are bounded in the topological vector space Z if and only if the sets G(S, B) N (I) (for 
B E ~B) are absorbing in the vector space (I). 

f. Let �9 be a linear subspace of Z a. Then the topology of uniform convergence on 
members of 8 makes (I) into a topological vector space if and only if 

( ,)  for each f E (I) and S E 8, the set f (S)  is bounded in the topological 
vector space Z. 

go 

Hints" The topology on Z is not affected if we replace the neighborhood base iB with 
some other neighborhood base that  generates the same neighborhood filter; hence we 
may assume members of 23 are balanced. Also, in view of 27.9.b, we may assume 8 
is directed by inclusion. Then the sets G ( S , B ) N  (I) are balanced sets that  form a 
neighborhood base at 0 for the topological Abelian group (I). Now use the preceding 
exercise and the characterizations of neighborhood bases in 26.25 and 26.26. 

Assume condition (,)  above. Then a set F C_ (I) is bounded in the topological vector 
space (I) if and only if for each S E 8, the set F(S) - {f(s)  �9 f E F, s E S} is bounded 
in Z. 



726 Chapter 27: Barrels and Other Features of TVS's 

h. Assume condition ( .)  above. If Z is locally convex, then so is (I). In particular, if Z is 
the scalar field (R or C), then ~ is locally convex. 

(Hint: Apply 27.9.c. If B is a convex subset of Z, then G(S, B) is a convex subset 
of Z•.) 

27.10.  Definition. A topological vector space is said to have the H e i n e - B o r e l  P r o p e r t y  
if every closed, bounded subset is compact. 

Examples. 
a. Any finite-dimensional Hausdorff topological vector space has the Heine-Borel Prop- 

erty. 

b. A normed vector space has the Heine-Borel Property  if and only if the space is finite- 
dimensional; that  fact will follow easily from 27.17. 

c. The F%chet space Hol(t2) described in 26.10 has the Heine-Borel Property; that  fact 
follows easily from Montel's Theorem, stated in 25.27. 

BOUNDED SETS IN ORDERED T V S ' s  

27.11.  Exercise. Let X be an ordered TVS that  is locally full (defined in 26.52). Then 
every order bounded subset of X is toplinearly bounded. 

Proof. Let [a, b] be any order interval in X, and let G be any neighborhood of 0 in X. Then 
G contains some N that  is a balanced full neighborhood of 0. Then a, b E rN for r > 0 
sufficiently large. Hence [a, b] C_ rN C_ rG. 

27.12.  T h e o r e m .  Let X be a TVS, and let Y be an ordered TVS that  is locally full. Let 
f~ C X be open and convex. 

If f �9 f~ ~ Y is convex and is continuous at some point of t2, then f is continuous 
everywhere on t2. 

More generally, let ~ be a collection of convex mappings from t2 into Y. Assume �9 is 
pointwise toplinearly bounded i.e., assume that  for each x E f~, the set ~(x)  - {f(x)  �9 
f E ~} is toplinearly bounded in Y. Also assume q) is equicontinuous at some point x0 E ft. 
Then ~ is equicontinuous at every point of t2. 

Proof (following Neumann [1985]). Let any Xl C ~ be given; it suffices to prove equiconti- 
nuity at Xl. We may replace the functions f E (I) with the functions f ( - +  Xl) - f(xl);  thus 
we may assume that  0 - Xl E f~ and that  f(0)  - 0 for all f E f~. Let N be any balanced 
full neighborhood of 0 in Y; we are to show that  there is some neighborhood G of 0 in X, 
contained in ft, such that  U/Ee  I(G) c_ N. 

Choose some balanced full set N ~ that  is a neighborhood of 0 in Y and satisfies N ~ + 
N ~ + N ~ C_ N. By the assumed equicontinuity at x0, there is some balanced neighborhood 
U of 0 in X,  contained in ft, such that  f(xo + u) - f(xo) E N' for all f E (I, and u E U. 
For some 5 E (0, 1] sufficiently small, we have -bx0  E f~. We know 5x0 E f~ by convexity of 
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tha t  set. Since (I) is bounded  pointwise, B - U f E , ~ { f ( x o ) , f ( S x o ) , f ( - S x o ) }  is a bounded  
subset  of Y, and hence there  is some E E (0, 1] such tha t  EB C N ~. Since each f E (I) is 
convex and f (0)  - 0, for all u E U we have this estimate" 

l +i~ f ( x ~  l +-----~f(-Sx~ ~ - o f  1 + 5  u 

4 f l + s U  4 e f  l + ~ i u  4 1 + 5  

- f ( l + 5 - e S u )  

c 
f (xo + u ) +  1 + 5 f ( - S x o ) .  

The vectors on the ext reme ends of this es t imate  belong to N ~ + N ~ + N ~, since N ~ is 
balanced and f (xo  + u) - f (xo)  E N'.  Since N '  + N '  + N '  is contained in N,  which is full, 

have f(~\i--47u/~ E N. Let G -  7-47~ U; this completes the proof. w e  

27 .13 .  Proposition. Let f~ be an open convex subset  of a real TVS. Suppose f �9 f~ ~ IN 
is a convex function or, more generally, suppose tha t  f �9 ft ~ Z is a convex function, 
where Z is some locally full ordered topological vector space. 

Suppose tha t  f is bounded  above on some nonempty  open set i.e., there exists some 
nonempty  open set G c_ f~ and some z0 E Z such tha t  f ( x )  ~ zo for all x E G. 

Then  f is continuous. (In part icular ,  any real-valued, upper-semicont inuous,  convex 
function on an open convex set is continuous.)  

Proof. By t rans la t ion  we may assume 0 E G and f (0)  - 0. Replacing G with a smaller 
open set, we may assume G is balanced.  Say f ( x )  ~ zo for all x E G. Then  

0 - f(O) - f ( x + ( - x ) )  1 1 1 1 2 ~ -~f(x) + -~ f ( - x )  4 f ( x )  + ~z0, 

so f ( x )  ~ - zo  for all x E G. Thus  f is order bounded  on G. 
I G  then  nx E G, so Let any positive integer n be given. If x E n , 

1 n - 1  ) 1 n - 1  1 
- n x  + 0 4 - f (nx) + ~ f (O) 4 -zo .  f (x) - f n n n n n 

Thus  f is bounded  above by 1 1 ~z0 on - G .  By the a rgument  of the preceding paragraph ,  
f is bounded  below by - i z 0  on I G .  By the Squeeze P rope r ty  (26.52(E)), it follows tha t  

n n 

limx--~0 f ( x )  - 0; thus f is continuous at 0. By 27.12, f is continuous everywhere on f~. 

C o r o l l a r y .  Suppose ft is an open convex subset  of IN n. Then  any convex function f �9 f~ ~ IN 

is continuous. 

Proof of corollary. For any x E ~t, let N(x)  be a closed n-dimensional  cube centered at x, 
small enough to be contained in ~. T h a t  cube has 2 n vertices Vl, v 2 , . . . ,  v2~. Each point u 

in N(x)  is a convex combinat ion of the vj 's,  and so suPuEN(x ) f (u)  ~ m a x / f ( v i ) .  

Remark. A convex function on an infinite-dimensional normed space is not necessarily 
continuous; see 23.6.a and 23.6.b. 
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27.14.  Proposition. Let X be a topological vector space whose topology is given by an 
F-norm. Let ft be an open convex subset of X. If f �9 ft ~ ]R is convex and continuous, 
then f is locally Lipschitz. 

Proof. Suppose that  the topology on X is given by an F-norm p. Let any point x0 C ft 
be given; we shall show f is Lipschitzian on some neighborhood of x0. (This argument is 
based on Roberts and Varberg [1974].) Let B~ denote the open ball of radius r centered at 
x0. Choose r > 0 small enough and M large enough so that  B2~ C_ ft and f( .)  _< M on B2~ 
and - f ( x o )  <_ M; we shall show f is Lipschitzian on Br with (f)Lip -< 4 M / r .  Note that  

for any u c X with p(u) < 2r, we have 

- M  < f ( xo )  - f ( (xo + u) + (xo - u) 

< f ( xo  + u) f ( xo  - u) + 
- 2 2 

< f ( x o + u )  M 
t 

- 2 2 

and therefore f( .)  > - 3 M  on B2r. 
Let any distinct points x l , x 2  c Br be given; let a - p(xl  - x2). Let x3 - x2 + ~(x2 - 

Xl); note that  x3 c B2~. Compute 

r Ct ) r ct 
Xl n t- x3 _< ~ f ( x l )  + ~ f ( x 3 )  f ( x2 )  - f r + a  r + a  r + a  r + a  

and thus 

a 4 M a  4 M a  4M 
f ( x2 )  - f ( x l )  < [/(x3) - / ( X l ) ]  _< < = ~ f l ( X l  -- X2). r + a  r + a  - r r 

Similarly, f ( z l ) -  f(x2)_< ~ - p ( Z l -  X2). 

DIMENSION IN TVS's  

27.15.  T h e o r e m  ( T y c h o n o v ) .  If X is a finite-dimensional vector space over the field 
F, then there is one and only one Hausdorff TVS topology ~r on X. Moreover, it can be 
specified as follows: If {e l , e2 , . . .  ,en} is any basis for X, then 

f o (Cl, C2, . . . ,  Cn) ~ Clel  -~- c2e2 - 4 - . . . - t -  Cnen 

is a linear homeomorphism from ]F ~ (with its product topology) onto (X, 9"). 

Hints: Certainly f is a linear bijection. Let 9" be any Hausdorff TVS topology on X; we 
wish to show f is then a homeomorphism. Certainly f is continuous since (X, ~ is a TVS 
and therefore the vector operations are continuous in (X, 7). The product topology on F n 
can be given by any of the usual norms on F n (see 22.11); let II II be any of those norms. 
To show that  f - 1  is continuous, let B = {v E F n :  ]lvll < 1}; it suffices (why?) to show that  
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f (B)  is a neighborhood of 0 in (X, 7). Let S = {v 6 F n :  Ilvll = 1}. Explain: S is compact; 
I(S)  is compact; f ( S ) i s  closed; f ( F n \  S ) i s  a neighborhood of 0; f ( F n \  S) D_ V where V is 
some balanced neighborhood of 0; F ~ \ S _D f - l ( V )  a n d / - I ( v )  is balanced; B _ D / - I ( v ) ;  
f (B) D_ V. 

27.16.  C o r o l l a r i e s .  

a. Any finite-dimensional subspace of a Hausdorff linear topological space is complete, 
hence closed. 

b. The only Hausdorff topological vector space that  is totally bounded is the trivial space 
{0}. 

Hint: If X contains a nonzero vector v, then it contains the one-dimensional space 
Fv, which is isomorphic to F which is not totally bounded. 

27.17.  T h e o r e m  (F.  R ie sz ) .  Let X be a Hausdorff TVS. Then the following conditions 
are equivalent: 

(A) X is finite dimensional. 

(B) X is locally compact.  

(C) 0 has a compact neighborhood in X. 

(D) 0 has a neighborhood that  is totally bounded. 

Proof. The implications (A)=:> ( B ) = ~  ( C ) : : ~  ( D ) a r e  clear. It remains only to show 
I U is also a (D) ~ (A). Let U be a totally bounded neighborhood of 0 in X. Then 12 

neighborhood of 0. By 26.40.e, there is some finite set F C_ U such that  F + ~U _D U. Let 
M be the span of the finite set F;  it suffices to show that  M = X. We know that  M is 
closed, by 27.16.a. Hence X / M  is a Hausdorff TVS, by 26.34. Let 7r: X --, X / M  be the 
quotient map. 

17r(U) D 7r(U)" that  is 1U D U we deduce that  Note that  7r(F) - {0}. From F + 7 _ _ , , 
7r(U) _D 27r(U). By induction, 7r(U) _D 2nTr(U) for all n. Since 7r is an open mapping, 7r(V) 
is a neighborhood of 0 in X/M; hence Un%l 2n71"(U) -- X / M .  Therefore 7r(U) - X/M.  

Since 7r is a uniformly continuous mapping and U is totally bounded, we deduce that  
7r(U) = X / M  is totally bounded. By 27.16.b, 7 r (U)=  {0}, and thus M = X. 

27.18.  Proposition on dimension and norms. As usual, we assume that  the scalar field F 
is either R or C. Assume conventional set theory ( that  is, ZF + AC), and the Cont inuum 
Hypothesis (CH). Then: 

(i) If X is an infinite-dimensional F-space, then d im(X)  = card(X) _> card(R). 

(ii) If X is an infinite-dimensional separable F-space, then d im(X)  = card(X) = 
card(R). 

(iii) If X is a vector space with d im(X)  = card(R), then there exist at least two 
inequivalent complete norms on X. (This conclusion should be contrasted 
with 27.47.b; see also 22.8.) 
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Proof. If dim(X) - card(N), then X is the union of countably many finite-dimensional 
subspaces. However, an F-space cannot have that  property, by 27.16.a and 20.16. Thus 
dim(X) > card(N). By the Continuum Hypothesis, it follows that  dim(X) _> card(R). By 
11.34, it follows that  card(X) - dim(X).  If X is separable, then card(X) _< card(R) by 
15.37.a. This proves (i) and (ii). 

For (iii), let X be a vector space with dim(X) - card(R). For 1 _< p < oc, define 
the normed space gp as in 22.25; it is complete by 22.31(i). The sequences with only 
finitely many nonzero terms are dense in gp; from this it follows that  t~p is separable. Thus 
dim(gp) - card(R). By 11.18.d, there exists a linear bijection fp from X onto gp. We can 
define a norm II II(p) on X by taking I lX l l (p )  - -  Ilfp(X)llp; then the normed space (X, II ]](p)) 
is isomorphic to the Banach space (gp, II lip). The norms II I1(1) and II 11(2) cannot be 
equivalent, since the Banach spaces t~l and g2 have different topological properties. (For 
instance, t~2 is reflexive while t~l is not - -  see 28.41, 28.50, 28.51, and 23.10.) This argument 
is taken from Day [1973]. 

F IXED POINT THEOREMS OF BROUWER, 
SCHAUDER~ AND TYCHONOV 

27.19. Following are several variants of B r o u w e r ' s  Fixed Point  T h e o r e m ,  in order of 
increasing generality. 

Simplex  vers ion .  Let n be a positive integer. Let A be the Standard n-simplex; 
that  is, the set 

A __ { } U C I~ n " U l , U 2 , . . . , U n  ~ 0 and uj <_ 1 . 

j = l  

Then any continuous function f "  A --+ A has at least one fixed point. 

C o n v e x  f i n i t e - d i m e n s i o n a l  vers ion .  Let Q be a compact convex subset of 
I~ n. Then any continuous function f ' Q  ~ Q has at least one fixed point. 

Schauder's  Fixed Point  Theorem.  Any continuous self-mapping of a com- 
pact convex subset of a Banach space has at least one fixed point. 

T y c h o n o v ' s  Fixed Point  T h e o r e m .  Any continuous self-mapping of a com- 
pact convex subset of a Hausdorff locally convex space has at least one fixed 
point. 

A p p r o x i m a t e  Fixed Point  Theorem.  Let K be a compact convex subset 
of a Hausdorff locally convex space X. Let f �9 K ~ K be any mapping (not 
necessarily continuous or measurable). Then there exists some point ~ E K that  
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is an "approximate fixed point" of f,  in the following sense: 

E N clco f(~ + V). 
v~N 

Here N is the filter of neighborhoods of 0 in X, clco stands for closed convex 

hull, and f(~ + V) stands for f ((~ + V)N Dora( f ) ) .  
/ \ 

Remarks. Our proof is based on the Second Approximate Fixed Point Theorem in 3.37, 
which we proved using Maaren's Theorem in 3.36. Some analysts may prefer the proof 
of Rogers [1980], which is shorter but assumes familiarity with the use of Jacobians in the 
formula for a change of variables in i n t e g r a t i o n -  a formula that  is well known but not at all 
trivial to prove. Still other mathematicians may prefer a proof by simplicial triangulations; 
a fairly brief, self-contained presentation of that  proof is given by Border [19851. 

Proof of simplex version. Let c1, C2, C a , . . .  be a sequence of positive numbers decreasing to 0. 
For each positive integer rn, choose a set S = S m  g A satisfying the conditions of the Second 
Approximate Fixed Point Theorem in 3.37 with diameter less than e = c,~. Let ~m be any 
point in Sm. Since A is compact, the sequence (~m) has a convergent subsequence. For 
simplicity of notation, replace (cm), (Sm), (~rn) with subsequences, so that  (~m) converges 
to a limit ~ in A. Since f is continuous, ~ satisfies the inequalities that  were satisfied by 
the u's and v's in 3.37, but with c replaced by 0. That  is, ~i <_ f(~)i for i = 1, 2 , . . . ,  n, and 

n n 
3-~i=1 ~i -> Y~=i f({)~. It follows that  f(~) - ~. 

Proof of convex, finite-dimensional version. By translation and rescaling, we may assume 
that  Q is contained in the simplex A. Let IR n be equipped with the Euclidean metric, and 
let ~ :IR n -+ Q be the closest-point projection; then ~ is continuous by 22.45 or 22.51. The 
inclusion maps il : A -+ IR ~ and i2 : Q --+ A are also continuous. Hence the composition 

/~ i l  ~ n  ~ f i2 , , Q  , Q  , A  

is continuous. By the simplex version of the Fixed Point Theorem, this composition has at 
least one fixed point ~ in A. Since il and i2 are inclusions and g is idempotent with range 
Q, that  fixed point must actually lie in Q and must be a fixed point of f. 

Proof of Schauder's and Tychonov's Fixed Point Theorems. Schauder's Theorem is a special 
case of Tychonov's Theorem, which is in turn an easy corollary of the Approximate Fixed 
Point Theorem; thus it suffices to prove that  result. 

Proof of Approximate Fixed Point Theorem. This proof is a slight modification of an argu- 
ment of Marchi and Martfnez-Legaz [1991]. Most of this proof will be devoted to showing 
that  

for each V E N, there exists some xv E co f ( x v  + V). (**) 

Let any neighborhood V of 0 be given. Replacing V with a smaller neighborhood, we may 
assume V is open. Define Tv : K  --+ {nonempty subsets of K} by 

T (x) - f ((x + v)  n K). 
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Since V is open, for each y E K the set  T v l ( y )  = {x E X : y E Tv(X)} is open (easy 
exercise). Since K is compact, the open cover { T v l ( y ) ' y  E K} has a finite subcover; 
say it is given by { T v l ( y ) ' y  E Y(V)} for some finite set Y(V) C K. (The particular 
finite subcover is not necessarily uniquely determined, but we select some particular finite 
subcover. At this step and at several other steps in this proof, we make arbitrary selections, 
which can be justified most easily by the Axiom of Choice.) 

Let {/3y : y E Y(V)} be a continuous partition of unity corresponding to this covering 
(see 16.29 and 17.7.g) and define pv:  K ~ co Y(V) by 

yEU(V) 

Then py is continuous. For each y E Y and x E K, we have/3y(X) > 0 only if x E Tyl(y) ;  
that is, y E Tv(x). Thus we have in fact py(x) E co[Y(Y)• f ( ( x  + V)NK)]  for all x E K. 

Since Y(V)  is finite, its span is a finite-dimensional subspace of X, which is isomorphic to 
Euclidean space by 27.15. Moreover, co Y(V) is compact by 26.23.g. Thus the restriction 
of Pv to co Y(V)  is a continuous self-mapping of a compact convex subset of Euclidean 
space, which has at least one fixed point xy  by the finite-dimensional convex set version of 
Brouwer's Theorem, This completes the proof of (**). 

Let 3# be the filter of all neighborhoods of 0 in X, ordered by reverse inclusion. Then 
(xy " V E N) is a net in the compact set K, so it has a subnet convergent to some limit 

E K. Fix any V E 3'/; it suffices to show that ~ E clco f(~ + V). 
Choose a neighborhood U of 0 such that U + U _c V. Then for all neighborhoods W 

sufficiently small, we have xw E ~ + U and W c U, hence xw + W C ~ + U + U C_ ~ + V, 
hence xw E clco f ( x w  + W) C_ clco f(~ + V). Since clco f(~ + V) is a closed set, any cluster 
point of the xw's must lie in that set; in particular, ~ lies in that set. 

BARRELS AND ULTRABARRELS 

27.20. Remarks. Ultrabarrels are a generalization of barrels. Barrels are simpler to define, 
but they are mainly useful in locally convex spaces; ultrabarrels can be useful in the more 
general setting of topological vector spaces. The theories of barrels in LCS and ultrabarrels 
in TVS are closely analogous; the analogy will be developed in the sections below. 

The definitions of barrels and ultrabarrels involve absorbing sets (defined in 12.8). In a 
TVS, absorbing sets may be viewed as "generalized neighborhoods of 0" any neighbor- 
hood of 0 is absorbing, but not every absorbing set is a neighborhood of 0. For instance, 
sketch a graph of {(x, y) E R 2 : lyl -> x2 or y = 0}; show that this set is absorbing but is 
not a neighborhood of (0, 0) when R 2 is equipped with its usual topology. 

27.21. Definition. Let X be a topological vector space. A ba r r e l  in X is a subset of X 
that is closed, convex, balanced, and absorbing. (Those terms are defined in 5.13, 12.3, and 
12.8.) 
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27.22.  Basic properties of barrels. Let X be a topological vector space. 

a. If X is a locally convex space, then X has a neighborhood base at 0 consisting of 
barrels. 

b. If p is a continuous seminorm on X and k > O, then {z c X : p(z) <_ k} is a barrel. 

c. If B is a barrel in X, then its Minkowski functional #S is a seminorm on X. Moreover, 
#B is continuous if and only if B is a neighborhood of O. 

27.23.  Definition. Let X be a vector space. A s t r i n g  in X is a sequence of sets (S~ : n E N) 
tha t  are balanced, absorbing, and satisfy Sn _D S~+I + Sn+l for all n. The S~'s are then 
called the k n o t s  of the string. 

In a topological vector space, a c losed  s t r i n g  is a string whose knots are closed sets; 
those closed sets are called u l t r a b a r r e l s .  We still have a string if we discard the first few 
knots of a string; hence every ultrabarrel  may also be viewed as the first knot of a closed 
string. 

In a topological vector space, a n e i g h b o r h o o d  s t r i n g  is a string, all of whose knots 
are neighborhoods of 0. (Some mathemat ic ians  call this a topological string.) 

27.24.  Basic properties of strings and ultrabarrels. 
a. If B is a barrel in a TVS X, then B is also an ultrabarrel  it is a knot of the closed 

convex string (S~) defined by S~ = 2 - ~ B .  

b. If (S~) is a string in a vector space X,  then {Sn} forms a neighborhood base at 0 for 
a TVS topology on X. 

Conversely, if X is a TVS, then X has a neighborhood base at 0 consisting of 
ultrabarrels. 

c. If p is an F-seminorm on a vector space X and k is a positive constant,  then the sets 
Sn = {z E X :  p(z) <_ 2 -n}  form a string. 

If p is a continuous F-seminorm on a TVS X, then the sequence (Sn) defined as 
above is a closed string; thus its members  are ultrabarrels. 

d. If (S~) is a string in a vector space X,  then there exist an F-seminorm p on X and 
positive numbers an, bn decreasing to 0 tha t  satisfy 

c_ & c_ c x �9 < b= } 

for all n. (Hint: The sets Vn = {(x, y) E X x X : x -  y e S2n} satisfy the hypotheses 
of 4.44.) 

Suppose, moreover, tha t  X is a TVS. Then p is continuous if and only if (Sn) is a 
neighborhood string. (Hint: An F-seminorm is continuous if and only if it is continuous 
at 0.) 

e. If (Sn) and (Tn) are strings and Sn + T~ = Un, then (Un) is a string. 

27.25.  Proposition. Suppose X is a complete metric space or, more generally, a Baire 
space. Then: 

(i) If X is a TVS, then X is ultrabarrelled, as defined in 27.26(U1). 
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(ii) If X is an LCS, then X is barrelled, as defined in 27.27(B1). 

Proof It suffices to prove (i), since that  result implies (ii) by 27.24.a. Let (Sn) be a 
closed string; we wish to show that  S1 is a neighborhood of 0. Since $2 is absorbing, 

o o  
X - (.Jk=l kS2. By 20.15(B), some kS2 has nonempty interior. Hence $2 has nonempty 
interior. Say x0 E int(S2). Thus x0 + G c_ $2 where G is some neighborhood of 0. Since $2 
is symmetric, we have 0 + (G - G) - (x0 + G) - (x0 + G) c_ $2 - $2 - $2 + $2 c_ S1. 

27.26.  T h e o r e m  a n d  de f in i t ion .  Let (X, 9") be a real or complex topological vector 
space. Then the following conditions on (X, ~ are equivalent. If any, hence all, of these 
conditions are satisfied, we say (X, 9") is u l t r a b a r r e l l e d .  

(U1) Every ultrabarrel in X is a neighborhood of 0. 

(U2) ( F - S e m i n o r m s  P r o p e r t y . )  Each lower semicontinuous F-seminorm on X is contin- 
uous. 

(U3) (Banach's Closed Graph Property.) Let Y be an F-space. Let f" X ~ Y be 
linear and have closed graph. Then f is continuous. 

(U4) ( N e u m a n n ' s  N o n l i n e a r  Closed Graph P r o p e r t y . )  Let Y be a locally full F- 
space. Let Ft C_ X be an open convex set. Suppose f �9 ft -~ Y is a convex operator 
whose graph is a closed subset of f~ x Y. Then f is continuous. 

(U5) ( B a n a c h - S t e i n h a u s  U n i f o r m  B o u n d e d n e s s  P r o p e r t y . )  Let Y be a topological 
vector space. Let (I) be a collection of continuous linear maps from X into Y that  is 
toplinearly bounded pointwise. Then (I) is equicontinuous. 

(U6) ( N e u m a n n ' s  N o n l i n e a r  U n i f o r m  B o u n d e d n e s s  P r o p e r t y . )  Let Y be an ordered 
topological vector space that  is locally full. Let f~ C_ X be an open convex set. Let (I) 
be a collection of continuous convex maps from ft into Y. Suppose (I) is toplinearly 
bounded pointwise. Then (I) is equicontinuous. 

Proof of this theorem begins in Section 27.31. 

27.27.  T h e o r e m  a n d  Def in i t i on .  Let (X, 9") be a real or complex locally convex space. 
Then the following conditions on (X, 9") are equivalent. If any, hence all, of these conditions 
are satisfied, we say (X, ~) is ba r r e l l ed .  

(B1) Every barrel in X is a neighborhood of 0. 

(B2) ( S e m i n o r m s  P r o p e r t y . )  Each lower semicontinuous seminorm on X is continuous. 

(B3) (Closed Graph P r o p e r t y . )  Let Y be a Fr~chet space. Let f "  X ~ Y be linear 
and have closed graph. Then f is continuous. 

(B4) ( N e u m a n n ' s  N o n l i n e a r  Closed Graph P r o p e r t y . )  Let Y be a locally full Fr~chet 
space. Let ft C_ X be an open convex set. Suppose f �9 f~ --, Y is a convex function, 
whose graph is a closed subset of f~ x Y. Then f is continuous. 
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(B5) ( U n i f o r m  B o u n d e d n e s s  P r o p e r t y . )  Let Y be a locally convex space. Let (I) be 
a collection of continuous linear maps from X into Y that  is toplinearly bounded 
pointwise. Then (I) is equicontinuous. 

(B6) ( N e u m a n n ' s  N o n l i n e a r  U n i f o r m  B o u n d e d n e s s  P r o p e r t y . )  Let Y be a locally 
full, locally convex space. Let ft C_ X be an open convex set. Let (I) be a collection of 
continuous convex maps from ft into Y that  is toplinearly bounded pointwise. Then 
(I) is equicontinuous. 

Proof of this theorem begins in Section 27.31. 
Remark. A seventh characterization of barrelled spaces will be given in 28.30. 

27.28.  Co ro l l a r i e s :  c lass ica l  ve r s ions .  Let X be an F-space. By 27.25: 

a. Any lower semicontinuous F-seminorm on X is continuous. 

b. U n i f o r m  B o u n d e d n e s s  T h e o r e m .  If Y is a topological vector space and (I) is a 
collection of continuous linear maps from X into Y such that  (I)(z) = {f (z)  : f E ~} 
is a bounded subset of Y for each z E X, then �9 is equicontinuous. 

c. C l o s e d  G r a p h  T h e o r e m .  If Y is an F-space and f : X  ---, Y is a linear map whose 
graph is a closed subset of X x Y, then f is continuous. 

d. If ft is an open convex subset of X and f : f~ -+ R is a convex function whose graph is 
a closed subset of f~ x R, then f is continuous. 

27.29.  Example application. Let (f~, g, #) be a measure space, let X be a Banach space, 
and let ct, fl E (0, +oc) be exponents such that  L~(#,X) c_ L~(#,X). Then the inclusion 

x )  c L9 , -> (#, X)  is continuous. 

Proof. It suffices to show that  the inclusion map has closed graph. Suppose f,~ --, f in 
L~(#,X) and f~ --+ g in L;~(#, X); we are to show that  f - g. By 22.31(ii) we may pass to 
subsequences such that  f~ --+ f and f~ --+ g pointwise #-almost everywhere. 

Remarks. This example is taken from Villani [1985]. That  paper also shows the following 
interesting result" Let X be a Banach space, let (ft, g ,#)  be a measure space, and let 
c~, fl E (0, +oc) with c~ < ft. Then 

L ~ (#, X) C_ L ;~(#, X) if and only if 

L ~ ( # , X ) _ D L  ~ ( # , X )  if and only if 

inf{#(S) �9 S E g, #(S) > O} > O; 

s u p { # ( S ) "  S E g, # ( S ) <  oc} < oc. 

Special cases of this were given in 22.34. (Villani's paper only shows this for X - IR, but 
that  case easily yields the general case since all the functions in L~(#, X)  or L~(#, X) are 
measurable, and we can separate the "regular" condition from the "not too big" condition 

see the remarks in 22.28.) 

27.30.  Change of scalar field. Let X be a complex topological vector space (respectively, 
a complex locally convex space). Then X, with the same topology, may also be viewed as 
a real topological vector space (respectively, a real locally convex space) if we "forget" how 
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to multiply members of X by nonreal scalars. Let us denote these two TVS's by Xc and 
X~. Note that  the choice of scalars affects the definitions of "balanced" and "absorbing;" 
hence it affects the definitions of "barrel" and "ultrabarrel." Show that  

a. If B is an (ultra)barrel in Xc, then B is also an (ultra)barrel in XR. Likewise, any 
(F-)seminorm on Xc is also an (F-)seminorm on X~. 

Hence, if X~ is (ultra)barrelled, then Xc is (ultra)barrelled, too. 

b. It is possible for X~ to have more (ultra)barrels than Xc. 
For instance, show that  the set B = {z E C :  IRe(z)[ _< 1 and ]Im(z)] _< 2} is both 

a barrel and an ultrabarrel in X~, but is neither in Xc since B is not balanced in Xc. 

c. Nevertheless, X~ is (ultra)barrelled if and only if Xc is (ultra)barrelled. 
For the moment, we shall prove this equivalence using only definitions (U2) and 

(B2); proofs with the other definitions in 27.26 and 27.27 will follow from the arguments 
given in the next subchapter. 

We have already established half of this "if and only if" result. Now assume Xc 
is (ultra)barrelled i.e., it satisfies condition (U2) or (B2). To show the same for 
X~, let p be any lower semicontinuous (F-)seminorm on X~; we wish to show that  p is 
continuous on X~. Note that  X~ and Xc differ only in their algebraic operations 
they are the same set, and they have the same topology; so a function is continuous 
on X~ if and only if it is continuous on Xc. Define -~ : X ~ [0, +c~) as in 26.5.b. 
As we noted in 26.5.b, this function 0/is also lower semicontinuous on X, and -~ is an 
(F-)seminorm on Xc. Hence, by our assumption, ~ is continuous. From the inequality 
p _< -y, we see that  p is continuous at 0. Since p is a G-seminorm, we have Ip(u) -  p(v)I _< 
p ( u -  v), and therefore p is continuous. 

PROOFS OF BARREL THEOREMS 

27.31. We now begin the somewhat lengthy proof of 27.26 and 27.27. We remark that  
shorter proofs of equivalence can be found in the literature (for instance, in Waelbroeck 
[1971]) if one omits the nonlinear conditions (U4), (U6), (B4), and (B6). 

The order of proof will not be the same as the order in which the results were stated. 
We shall cover the barrels and ultrabarrels cases simultaneously. In the discussions below, 
phrases in brackets should be read or omitted for the two cases e.g., an [F-]seminorm 
means a seminorm for the argument with barrels or an F-seminorm for the argument with 
ultrabarrels. Also, (1) will refer to either (U1) or (B1), and (2) will refer to either (U2) or 
(B2), etc. We shall prove the equivalence in this order: 

�9 ( 1 ) ~  (2), 

�9 (4 )=~  (3)=~  (2), 

�9 ( 6 ) = ~  ( 5 ) = ~  (1) ,and  

�9 (1)implies both (4) and (6). 
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In each argument the implication will be proved with either choice of scalar field (I~ or C); 
in fact, the choice of scalar field will not enter into most of the arguments. Our first few 
proofs are along the lines of Waelbroeck [1971]. Some researchers may also find Adasch, 
Ernst, and Keim [1978] helpful for further reading on this topic. 

27.32.  Proof of (1) ~ (2). Let p be a lower semicontinuous [F-]seminorm; then the 
sets Sn = {x E X : p(x) <_ 2 -n}  are closed. Each Sn is also absorbing, since p is scalarly 
continuous (see 26.3.a). It follows easily that  the sequence (Sn) is a closed [convex] string. 
By (1), then, it is a neighborhood string; thus each S~ is a neighborhood of 0. It follows 
easily that  p is continuous at 0. Since [p(u)- p(v)[ <_ p ( u - v ) ,  it follows that  p is continuous 
everywhere. 

27.33.  P, oof of (2) ~ (1). Let V0 be an [ultra]barrel; we wish to show that  V0 is a 
neighborhood of 0. It suffices to produce a lower semicontinuous [F-]seminorm p with the 
property that  

{x E X ' p ( x )  < 1} C_ V0. (~) 

For the locally convex case, let p be the Minkowski functional of Vo; that  is, p(x) - 
inf{k c (0, +co]. k-ix ~ v0}. Then p is a seminorm satisfying (~), as noted in 12.28 and 
12.29.g. To show that  p is lower semicontinuous, suppose p(xo) > r > s > 0. Then xo ~ rVo. 
Since rVo is closed, its complement is a neighborhood of x0, and for x in that  neighborhood 
we have r - I x  ~ V0, hence p(x) > r > s. Thus for any s the set {x c X ' p ( x )  > s} is open. 

For the non-locally-convex case, let (Vj �9 j - 0, 1, 2, 3 , . . . )  be a closed string in X. By a 
d y a d i c  r a t i o n a l  in [0, 1) we mean a number of the form 

tl t2 t3 tn 
= -g + 7 + -g + "  + 2-v 

for some positive integer n, where each tj is either 0 or 1. For each number of this type, 
define the set 

n 

Z c Vo 
j = l  {jEN:tj=I} 

Verify that  the W~'s are balanced and absorbing. Also, for any dyadic rationals c~,/3 with 
c~ +/3 < 1 we have and W~ + WZ C_ W~+Z, hence cl(W~) + cl(W~) c_ cl(W~+o) by 26.22.e. 
Now define 

p(x) - inf{~ e [ 0 , 1 ) ' x  e cl(W~)}, 

with p(x) - 1 if x ~ [.J~[0,1)cl(W~). Verify (exercise) that  p is an F-seminorm satisfying 

(~). To show that  p is lower semicontinuous, suppose p(xo) > c. Then p(xo) > c~ > c for 
some dyadic rational ~, and therefore x0 r cl(W~). The complement of cl(W~) is an open 
set on which p(-) > c~ > c. Thus the set {x e X ' p ( x )  > c} is open for any c. 

27.34.  Proof of (3) ~ (2). Let a be a lower semicontinuous [F-]seminorm on X. The 
linear subspace K = a - l ( 0 )  = {x ~ X : a(x) < 0} is closed. Let Q = X / K  be the 
quotient space, and let 7r" X ~ Q be the canonical map. Then an [F-]norm 3 is defined 
on Q by 3(Tr(x)) = a(x). We topologize Q with this [F-]norm. (We do not claim that  the 
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resulting topology is the quotient topology.) Let C be the completion of the [F-]normed 
space (Q, 8). Let its [F-]norm, an extension of 8, again be denoted by 8; then (C, 8) is a 
complete [F-Jnormed space. 

L e t i ' Q  c_ C be the inclusion. We claim that the composi t ioniore  �9 X 2 + Q 2 + C  
has closed graph. To see this, let ((x~, q~)) be any net in the graph of i o re, converging in 
X x C to some point (x, q); we shall show that (x, q) actually lies in the graph of i o re. Let 

number c > 0 be given; it suffices to show that 8 ( q -  ( io re)(x)) < 2e. Since C is the 
\ 

any 
\ / 

completion of Q, there is some q' E Q with 8 ( q ' -  q) < e. Since Q = re(X), we may choose 
some x' E re-1 (q,). Now compute 

a ( q - ( i o r e ) ( x ) ) - c  _< a ( q - q ' ) + a ( q ' - r e ( x ) ) - c  

< 8 ( q ' -  re(x)) - 8 (re(x') - re(x)) - ~ ( x ' -  x) < liminf o-(x ' -  x~) 
C~ 

= l i m i n f ~ ( r e ( x ' - x ~ ) )  = l i m i n f ~ ( q ' - q ~ )  -- ~ ( q ' - q )  < ~. 
Ct C~ 

Hence the linear map i o re does indeed have closed graph. 
By (3), then, i o re is continuous. Hence rr �9 X --+ (Q,~) is continuous; hence cr is 

continuous on X. 

27.35. Proof of (5) ~ (1). We shall make the proof slightly longer but easier to 
understand by splitting it into two parts. We first prove (5) ~ (1) under the additional 
assumption that  X is a Hausdorff space. Let (Vk) be a closed [convex] string in X; we wish 
to show that the Vk's are neighborhoods of 0. We shall construct 

a [locally convex] topological vector space 3, and (i) 

(ii) 

(iii) 

a sequence (Y)k) of neighborhoods of 0 in 3, and 

a family of continuous linear maps p~ �9 X --+ .3 (for all -7 in some index set 
F) that  is toplinearly bounded pointwise and satisfies Vk = ["lzer ~-l( t3k) for 
each k. 

By our assumption of (5), it will follow that the family { ~  : "y E F} is equicontinuous. Then, 
since 2)k is a neighborhood of 0 in 3, it follows that Vk - f'l~cr V)~-l(-gk) is a neighborhood 
of 0 in X. Thus, it suffices to satisfy (i), (ii), and (iii). 

We shall satisfy those conditions with the index set F equal to the set of all [convex] 
neighborhood strings in X. For each [convex] string -y = (U~I, U.r2, U.r3,...) belonging to F, 
let H.rk = U.rk + Vk. Then (H.rk: k E N) is also a [convex] neighborhood string in X. Since 
X is Hausdorff, it follows from our choice of F that  Vk -- ~ e r  H~k. 

Form the external direct sums 

3 - ( ~ X  and t 3 k -  ( ~  H.rk 
"~GF 7EF 

for k E N. Thus, 3 consists of all functions ~ from F into X that vanish at all but finitely 
many points in F, and -~k consists of those functions ~ E 3 satisfying the further requirement 
that  ~(-y) E H~k for all -y. 
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Then the sequence (Y)k) is a [convex] string in 3. Hence it is a neighborhood base at 0 
for a [locally convex] vector space topology on the vector space 3. Hereafter we shall view 
3 as being equipped with that  topology. 

For each 7 E F, define a linear mapping ~ : X ~ 3 as follows: ~ ( x )  is the function 
from F to X defined by 

x when - / -  7 
[ ~ ( x ) ]  (7') - 0 when 7' ~ 7. 

Observe tha t  ~ ; 1  (~)k) -- H.),k. Since the S)k's form a neighborhood base at 0 in 3 and each 
H~k is a neighborhood of 0, it follows that  ~ is continuous. 

Also, since the Vk's are absorbing, it follows that  the functions ~.y are pointwise bounded. 
Finally, we verify that  Vk -- O~er H~k -- N-yet ~-l(Y)k) for each k. This completes the 
proof, under the assumption that  X is a Hausdorff space. 

We now turn to the general c a s e -  i.e., where X is not necessarily Hausdorff. Let (Sn) be 
a closed string in X; we wish to show that  S1 is a neighborhood of 0. Let K = cl({0}). Then 
the quotient space X / K ,  equipped with the quotient topology, is Hausdorff. From 26.35 it 
follows easily (exercise) that  X / K  has property (5). Hence, by our preceding arguments, 
X / K  also has property (1). The quotient mapping 7r : X ~ X / K  is a continuous and 
closed mapping (see 26.35). The sequence (Tr(Sn)) is a closed string in X / K ,  hence it is a 
neighborhood string, hence each set 7r-l(Tr(Sn)) is a neighborhood of 0 in X. But each Sn 
is a closed set, hence S~ + K = Sn by 26.22.e, hence 7r-l(Tr(S~)) = S~. 

27.36. Proof of (4) =~ (3) and (6) =~ (5). Any vector space Y can be given a locally 
full ordering by taking the positive cone to be {0}. When Y is equipped with that  ordering, 
then any linear operator from X to Y is a convex operator. 

27.37. Proof that (1) implies both (4) and (6). The argument below, due to Neumann 
[1985], assumes that  the scalar field is R. The case of complex scalars can be dealt with 
as follows: If X satisfies (1) with scalar field C, then X also satisfies (2) with scalar field 
C, by the argument in 27.32; hence X satisfies (2) with scalar field N, as noted in 27.30.c; 
hence X satisfies (1) with real scalars, by 27.33. Hence the argument in the paragraphs 
below is applicable; therefore (4) and (6) are valid for X with real scalars. But a glance at 
conditions (4) and (6) shows t h a t  those conditions do not involve the specification of the 
scalar field at all; therefore X also satisfies (4) and (6)wi th  complex scalars. 

We now turn to the proof of (1) implies (4) and (6), with real scalars. 
The proofs of (1) =~ (4) and (1) =~ (6) begin the same. For both proofs we are 

given a pointwise bounded collection (I) of mappings f :f~ -~ Y, which we want to prove 
equicontinuous, but for (4) that  collection consists of just one function. (Of course, a single 
function is pointwise bounded, since any single point is a toplinearly bounded set). Other 
differences between the proofs of (4) and (6) will be discussed when they appear, later in 
the argument. 

Fix any ~ c ft; it suffices to show that  (I) is equicontinuous at ~. By a translation 
argument given below, we may assume that  

0 e f t ,  ~ = 0 ,  and f ( 0 ) = 0  for each fEff~. 
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A 

(The translat ion argument  is as follows: Let f~ - f t -  ~. For each f E �9 define a corre- 
A A A A 

sponding function f �9 a ~ Y by f(u) - f (u  + ~) - f(~). It suffices to show the f ' s  are 
equicontinuous at 0. By a change of notation, we may replace ft, f with ft, f . )  Next, 

let f~0 be a closed, convex, balanced neighborhood of 0 contained in ft. 

(To prove the existence of such a set gt0, we do not need to assume X is locally convex. 

For instance, we could take ~t0 - l c l (g t  A (-f~)) ' ,  that  this set has the required properties 
\ 

J 

follows from 12.6.e and 26.27.a.) 
Let K be any given closed neighborhood of 0 in Y. It suffices to show that  n s e ~ { x  E 

fro" f (x)  E K} is a neighborhood of 0 in X. 
Let H0, HI,/-/2, H 3 , . . .  be balanced, [convex,] full neighborhoods of 0 in Y, satisfying 

H0 c_ K and Hn + Hn C_ Hn-1 for all n E N; the availability of such sets follows from 
27.24.b, 26.52, and 26.54. For the proof of (4), since Y is metrizable, we may also assume 
tha t  the sequence (Hn) is a neighborhood base at 0. 

If u, v E ~t0 and f E �9 and 0 _< t _< 1, then (using the fact that  f is convex, f~0 is convex 
and balanced, and f ( 0 ) -  0 ) w e  obtain 

- t  f ( -u)  ~ - f ( - tu)  ~ f (tu) ~ t f (u), (i) 

- f ( -u)  - f ( -v )  ~ - 2 f (  u + v 

For each integer n > 0, define 

= N 
fEe 

2 f ( u + v )  2 ~ f (u )+  f(v). (ii) 

�9 f(x), f ( - x ) E  Hn}. 

A 

Note that  cl(Un) C_ fro C_ Dom(f )  since f~0 is closed. 
We now shall show that  each Un is balanced�9 To see this, let any u E U~, f E (I), and 

t E [0, 1] be given. Since Hn is balanced and contains f(u) and f ( - u )  for any f E ~, it also 
contains t f (u)  and - t f ( - u ) .  Since H~ is full, it also contains f( tu) and - f ( - t u ) ,  by (i). 
Thus, t u , - t u  E Un, so Un is balanced (since the scalar field is R). 

We next show that  Un is absorbing. To see this, let any x E X be given. Since U~ is 
balanced, it suffices to show kx E Un for some nonzero scalar k. Since ft0 is a neighborhood 
of 0, there is some c > 0 such that  ex E ft0. Since (I) is pointwise bounded, the set 
U S E . { f ( e x ) , - f ( - e x ) }  is bounded in Y. Since Hn is a neighborhood of 0 in Y, there is 
some t E (0, 1) such that  U s E ~ { t f ( c x ) , - t f ( - e x ) }  C_ Hn. As a special case of (i) we have 

- t  f ( -cx)  ~ - f ( - tcx)  ~ f (tsx) ~ t f (sx). 
A 

Since Hn is balanced and full, we have f (+tex) E Hn for all f E O, and thus tex E Un. 
A 

This proves Un is absorbing. 
For the proofs of (B4) and (B6) in 27.27, we claim also that  Un is convex. To see this, 

let any xo,xl E Un and ~ E (0, 1) be given; let x~ - (1 - ,~)x0 + AXl. Let any f E �9 be 
given. Since Hn is balanced, both - f ( - x j )  and f (x j )  lie in Hn for j - 0, 1. Since Hn 
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is convex, both - ( 1  - A ) f ( - x o )  - A f ( - x l )  and (1 - A ) f ( x o ) +  Af(xl)  lie in Hn. By the 
convexity of the function f and the fact that  f(0) - 0 ,  we have 

- ( 1 - , k ) f ( - x o ) - ) ~ f ( - x l )  ~ - f ( - x ) , )  ~ f(x),) ~ ( 1 - A ) f ( x o ) + ) ~ f ( x l ) .  

Since H~ is full, it follows that  - f ( - x : ~ )  and f (xa)  both lie in H~. Thus xx C U~. This 

proves U~ is convex, under the hypotheses of (B4) and (B6). 
Next, we shall show that  Un + Un C_ 2Un--1 for all n E N. To show this, fix any u, v E U~ 

and any f E ~. Then f ( + u ) , f ( + v )  E H~, and H~ + H ~  c_ H~_~, hence f ( u ) + f ( v )  
and f ( - u ) +  f ( - v )  both lie in Hn-1. Now apply (ii). Since Hn-1 is balanced and full, 

it contains 2f  (+u+v --5-)', hence it contains f (+u+v--5-). Thus ~l(u + v) E Un-1. This proves 

g~+g~g2g~_ l .  
Now let Un - 4-nUn; in particular, U0 - U0. The sets Un (n - 0, 1, 2 , . . . )  are balanced 

1g n_ C gn 1 Then c l (Un)+  cl(Un) c cl(Un-1) and absorbing, and satisfy Un + Un  C ~ 1 _ - �9 

by 26.22.e. Hence the sequence (cl(Un)) is a closed [convex] string. By our assumption (1), 

the sets cl(Un) are neighborhoods of 0 in X. Hence also the sets cl(Un) are neighborhoods 
of 0 in X. 

For the proof of (6), we may proceed as follows" f(Uo) c_ Ho, and under the hypotheses 

of (6) we know that  each f in r is continuous. Hence f(cl(U0)) C_ el(H0) C_ cl(K) - K since 
K is closed by assumption. Thus cl(U0) is a neighborhood of 0 contained in Afc~ f - l ( K ) ,  
completing the proof of (6). 

The proof of (4) will take much longer. For (4), with �9 containing just a single function 
f,  we continue our reasoning as follows" We are to show that  f-1 (K) is a neighborhood of 
0; we shall show that  in fact el(U1) C / - I ( K ) .  Let any X l  E el(U1) be given; it suffices to 
show f (x l )  C K. 

Note that  cl(Uj) c_ Uj + cl(Uj+l) since cl(Uj+l) is a neighborhood of O. Hence, starting 
from the given vector Xl E cl(U1) we may recursively choose vectors uj E Uj and Xj+l E 
cl(Uj+l) so that  xj - u j  + Xj+l. Then 

Ul + u2 + " "  + Uj E U1 + U2 + . . .  + Uj c_ Uo C_ Dom(f) .  

Now let 
yj - f (u l  + u2 + . . .  + uj). 

A 

Note that  yj E f(Uo) - f(Uo) C Ho C K. If l i m j ~  yj exists then that  limit must lie in K 
since that  set is closed. We shall show that  in fact f ( x l )  - l i m j ~  yj; that  will complete 
the proof. 

Let ~k - 4kuk. Note that  ~k C Uk, hence f (+~k)  E Hk, hence 4 - k f ( + ~ k )  E Hk. For 
m l, m C N with 1 < m it follows that  }-~k=t 4 - k f ( + ~ k )  c H~-I, for all choices of the =t= signs. 

Such sums tend to 0 as 1 ~ oc, since we chose (Hn) to be a neighborhood base at 0 in Y. 
m Hence the sequence of partial sums }-~-k=l 4 - k f ( + ~ k )  (for m -- 1, 2, 3 , . . . )  is Cauchy in the 

F-space Y. Therefore the series }-~k=l 4 - k f ( + ~ k )  converges to some limit in Y, for each 
choice of the + signs. 

1 __ 1 Temporarily Define tj - 1/(2 + 4 - J ) ;  then 5 - t o  < tl < t2 < . . .  and limj__.~ tj 2" 

fix any positive integers m, n with n < m. Then the numbers 

t n  trn t in--1  
( 7 - -  , " r - -  2 - -  - - ,  P m - -  

tm tn tm 
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all lie in (0, 1). Verify that these numbers satisfy 

n m 

a + ( 1 - a ) ~ - ~ 4  -k + ~ 4-k = I, 
k = l  k = n + l  

m m 

T + (1--T) E 4 - - k  + E 4-k = 1, 
k = l  k=n+l 

m 

Pm + (1--Pro) E 4  -k + 
k = l  

4--TY~ ~ 1 .  

Hence the convexity of f tells us that 

Ym = f a Uk + ( l - - a )  4-k~k  + 4 -k~k  
k--1 k--1 k = n + l  

n m 

ayn + ( 1 -  a) E 4 - k f ( u k )  + E 4-kf(uk) 
k = l  k = n + l  

(iii) 

and similarly 

Y n  f ~" uk + ( 1 - ~ ' )  4 -k~k  -- 
k--1 k = l  

m ) 
4-k~k 

k=n+l 
m 

7ym + (1--T) E 4 - k f ( u k )  + 
k = l  

m 

E 4-kf(--uk)" 
k=n+l 

(iv) 

Also, from f(0) = 0 and the convexity of f we obtain 

--Ym -- - f ( u l  + ' "  + urn) ~ f ( - u l  . . . . .  urn) 
f (4-1(-~1) + . . .  + 4-m(-~m) + (1 - 4 -1 . . . . .  4-m)(0)) 

m 

E 4-kf(--uk)" 
k = l  

(v) 

Multiply line (iii) by tm to obtain 

n m 

tmYm -- tnYn ~ (tin -- tn) E 4 - k  f ( u k )  + tm E 4-kf(uk)" 
k = l  k=n+l 

Also; multiply line (iv) by tn and line (v) by 2(tin - tn) and add the results to obtain 

tn yn -- tm Ym 
m m 

(tin -- tn) E 4-k [2f(--~k) + f(uk)] + tn E 4-kf(--Uk)" 
k = l  k = n + l  



Proofs of  Barrel Theorems  743 

The right sides of the last two inequalities tend to 0 as m, n ~ oc, since tm - t n  ~ 0 
and the series Ek~ 4 - k f ( + ~ k )  are convergent in Y. Since Y is locally full, it follows that  
tm ym - tn yn ~ O. 

Thus (tny~ : n  E N) is a Cauchy sequence in the F-space Y and therefore a convergent 
1 sequence. Since t ,  ~ ~ as n ---, oc, the sequence (yn) is also convergent. Let y be its limit. 

To show that  y = f (x l ) ,  we shall use the fact that  the graph of f is closed in ft x Y. 
Let G and H be any neighborhoods of 0 in X and Y, respectively; it suffices to show that  

(X 1 § G) X (y § H )  meets the graph of f .  

Note that  xm E el(Urn) c_ Um - G ,  since G is a neighborhood of 0. Therefore we 
A 

can choose vm E Um so that  x m - v m  E - G .  Let ~m - 4mvm; then ~m E Urn, hence 
I (+~m)  E Hm, hence 

0 

Also note that  pm ~ 1, and therefore the vectors 
~ n  m 

- Y  + PmYm, - y  § Y---2-~, (1 - Pro) E 4 - k f ( u k ) '  (1 --1 ) E 4 -k f (uk )  
Prn k=l Pm k=l 

all converge to 0 as m ~ oc. Next, observe that  

Xl -- Xm+l § Vm+l 

By convexity of f ,  

- -  ?-t l § U2 -Jr - ' ' '  § U m  -Jr- Vm+ l 

E U1 +/-/2 + ' "  + Um+l C ft0 c U0 c Dom(f) .  

) - y  § f ( x l  - Xm+l § Vm-F1 ) - -  --Y § f Pm Uk § (1 -- Pro) 4--kUk § Vm+l 
k=l k=l 

m 

--Y § PmYm § (1 - pro) ~ 4 -k f (~k)  + 4 - m - l f ( v m + l ) ,  
k=l 

which tends to 0 as m ~ ec. Also by the convexity of f ,  

Ym - f pro(x1 - xm+l § Vm+l) § pm4--m--l(--Vm+l) § (1 -- Pro) E 4 - k u k  
k=l 

m 

4 Prnf (Xl  -- Xrn+l § Vrn+l) § p m 4 - m - l f ( - - V m + l )  § (1 -- Prn) E 4 - k f ( u k )  
k=l 

and consequently 

Ym 1 
m 

--y + f ( x l  -- Xm+l + Vm+l) ~ --y § + ( 1 )  ~ 4 -k f (uk )  4 - m - l f ( V m + l )  
Pm Pm k= l 

which also tends to 0 as m ---, ec. Since Y is locally full, - y  + f ( x l  - Xm+l + Vm+l) ---, 0 as 
m ~ ec. For m sufficiently large we have f ( x l  - Xm+l § Vm+l) E y + H, so (Xl - Xm+l § 

Vm+l, f ( X l - - X m + l - J r - V m + l ) )  E (Xl - l r -G)  X ( y . j §  This completes the proof  of the 

theorem. 
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INDUCTIVE TOPOLOGIES AND LF SPACES 

27.38.  Remarks. LF spaces are used particularly in Schwartz's distribution theory. Al- 
though we shall not develop that  theory in this book, we now include a brief introduction 
to LF spaces, because they provide interesting examples of locally convex spaces that  are 
barrelled but not metrizable. Though the definition of LF spaces is slightly complicated, 
we shall see in 27.46 that  the LF space construction provides us with the only "natural" 
topology for some vector spaces. 

We begin with a few results in a slightly more general setting; then we specialize to LF 
spaces. Examples are given in 27.42. In 27.43 we briefly sketch some of the basic ideas of 
distribution theory. 

27.39.  T h e o r e m .  Let Y be a vector space (without any topology specified yet), and let 
{(Xj,  7 j ) ' j  E J} be a family of locally convex topological vector spaces. For each index j ,  
let 

yj " X j - - - - ~ Y  

be some linear mapping. Then there exists a topology 7 on Y that  is locally convex and 
has the property that  ~- is the strongest locally convex topology on Y that  makes all the 

~S yj continuous. It has these further characterizations" 

(i) Let ~B be the collection of all sets G C_ Y such that  

G is absorbing, balanced, and convex, and for each j c J ,  the set 
y~-l(G) is a neighborhood of 0 in Xj .  

Then ~B is a neighborhood base at 0 for T. 

(ii) Let Z be another locally convex topological vector space, and let g" Y ~ Z 
be some linear map. Then g is continuous from (Y,T) to Z if and only if each 
of the compositions g o yj �9 Xj  --+ Z is continuous. This property also uniquely 
determines 7. 

We shall call w the final  loca l ly  c o n v e x  t o p o l o g y  induced by the yj's (since it is on the 
final end of the mappings yj �9 Xj  ~ Y).  It is also known as the i n d u c t i v e  loca l ly  c o n v e x  

t o p o l o g y .  

Outline of proof. 
~S a. Let �9 be the set of all locally convex topologies on Y for which all the yj are continu- 

ous. Then (I) is nonempty, since the indiscrete topology {~, Y} is a member of ~. Let 
7- be the sup of all the elements of ~; by 26.20.c we know that  ~- is an LCS topology 
on Y. (We do not yet assert that  T is a member of (I).) 

b. Define ~B as above. Show that  N -  {S c_ Y �9 S contains some element of ~3} is the 
neighborhood filter at 0 for a locally convex topology a on Y. Show that  a c (I). Then 
a c_ w since 7 -  sup (I). 

c. Let H be any neighborhood of 0 in (Y, T). Using the definition of T, show that  H _~ 
[ ~ c v  He,  where �9 is some finite subset of �9 (which may depend on H),  and each H~ 
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do 

is a balanced convex neighborhood of 0 in the topological space (Y, ~p). Use that  fact 
to show that  H is also a neighborhood of 0 in (]I, a). Thus ~- C_ a. This completes the 
proof of (i) and (ii). 

If g is continuous from (Y, T) to Z, then each g o yj is a composition of two continuous 
maps, and thus it is continuous. Conversely, suppose that  each g o yj �9 Xj ~ Z is 
continuous. Let H be a balanced, convex neighborhood of 0 in Z. Then (g o y j ) - l (H)  
is a balanced convex neighborhood of 0 in Xj,  hence g - l ( H )  is a neighborhood of 0 in 
Y. To see that  this condition uniquely determines T, suppose that  ~-, ~-' are two locally 
convex topologies on Y with this property; show that  the identity map i �9 Y ---+ Y is 
continuous in both directions between (Y, T) and (Y, T'). 

27.40.  A peculiar specialization (optional). By taking J = 2~ in 27.39, we obtain these 
results: 

Let Y be a vector space over the scalar field IF. Then there exist topologies on Y that  
make Y into a locally convex topological vector space, and among such topologies there is 
a strongest. It is called the s t r o n g e s t  (or f inest)  loca l ly  c o n v e x  t o p o l o g y  on Y. It has 
these further properties: 

a. A neighborhood base at 0 for the topology is given by the collection of all absorbing, 
balanced, convex sets. 

b. Any linear map from Y into any other locally convex space is continuous. 

27.41.  Definition. Let X be a vector space. Let X 1 C X2 C X3 C . . .  be linear subspaces 
with U?-I  x j  = x .  Suppose each Xj is equipped with a topology ~-j making it a Fr6chet 
space. Assume also that  the T d's are compatible, in this sense: If j < k, then ~-j is the 
relative topology determined on X d by the topological space (Xk, Tk). 

Let 7- be the locally convex final topology on X (defined as in 27.39) determined by the 

inclusion maps Xj c -> X. Then "1- is called the s t r i c t  i n d u c t i v e  l imi t  of  t h e  r d~s. A 
locally convex space (X, ~-) that  can be determined in this fashion is called an LF space .  
(Caution: Some mathematicians use a slightly more general definition for these terms.) 

Basic properties. Let (Xj, Tj)'S and (X, T) be as above. Then: 

a. If we replace the sequence of spaces ((Xj,  Tj)) with any subsequence, we still obtain 
the same topology ~- on X. 

b. S u b s p a c e  l e Inma .  Fix any j .  Suppose Gj is a convex neighborhood of 0 in Xj. Then 
there exists a convex neighborhood Gj+I of 0 in Xj+I such that  Gj = Xj N Gj+I. 
Furthermore, if some point yo E Xj+I \ Xj is given, then Gj+I can be chosen so that  
Yo ~ Gj+I. (This is immediate from 26.28.) 

c. For some positive integer k, let Gk, Gk+l, Gk+2, . . .  be a sequence such that  Gj is a 
convex neighborhood of 0 in (Xj, Tj) and Gj - Xj  N Gj+I. Then G - [.Jj=k Gj is a 
convex neighborhood of 0 in (X, w) and Gj = Xj N G. 

d. The original topology Tj given on Xj is equal to the relative topology determined on 
Xj by the topological space (X, T). 

e. Each Xj is a closed subset of (X, T). 
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f. (X, r)  is Hausdorff. 

g. (X, r )  is not a Baire space. (Hint: It is the union of the Xj's, which are closed subsets 
with empty  interiors.) 

h. (X, r)  is barrelled. Hint: Let T be a barrel in (X, r) .  Then T N Xj is a barrel in Xj,  
hence a neighborhood of 0 in Xj; hence T is a neighborhood of 0 in X. 

i. Let S c_ X. Then S is a bounded subset of the topological vector space (X, r)  if 
and only if there exists some j such that  S C_ Xj and S is a bounded subset of the 
topological vector space (X j, rj). 

Hints" Suppose S is bounded in X but is not contained in any Xj. Replacing 
the Xj's  with a subsequence, show that  there is some sequence (sj) in S with sj E 
Xj+I \ Xj.  Using 27.41.b, choose sets Gj so that  Gj is a convex neighborhood of 0 in 

1 c c  Xj,  Gj - Xj  n (Tj+l, and 7sj ~ (Tj+l. Then G - Oj= l  Gj is a neighborhood of 0 in 

X Since S is bounded in X, we have i s .  j 3 - - + 0 i n X ,  h e n c e k s  �9 j 3 c G for all j sufficiently 
large, a contradiction. 

j .  Let (Xn "n E N) be a sequence in X. Then (Xn) is convergent to some limit x0 in X if 
and only if there is some j such that  {xn "n  - 0, 1, 2, 3 , . . . }  C_ Xj and Xn ---+ xo in Xj. 

k. X is not metrizable. 
Hints: Suppose d is a metric for the topology on X. Choose a sequence (Xn) with 

xn E Xn \ Xn-1 (with X l chosen arbitrari ly in X1). Choose numbers en > 0 small 
enough so tha t  d(enXn, 0) < • Then enXn ---+ 0 in X, hence {CnXn "n C N} C Xj for 

n m 

some j ,  a contradiction. 

1. Let Y be another topological space. Then a map f �9 X --+ Y is sequentially continuous 
if and only if its restriction to each Xj is sequentially continuous. 

m.  Let Y be another topological vector space. Then any bounded linear map f "  X --+ Y 
(defined as in 27.4) is sequentially continuous. 

27.42.  Examples. Let F be the scalar field (IR or C). 

a. [-]ken F is the set of all sequences of scalars that  have only finitely many nonzero terms. 
(See 11.6.i.) It is the union of the finite dimensional subspaces Xk = {sequences whose 
terms after the kth are zero}. Thus it can be topologized as an LF space. 

b. Let ft be an open subset of IR n or C n, for some positive integer n. Let C~(ft) = 
{continuous scalar-valued functions on ft with compact support}. Then C~(ft) is the 
union of the spaces 

CK(ft) -- { f  E Cc(f~) �9 f vanishes outside K},  

for compact sets K c_ ft. Each CK(~) is a Banach space when equipped with the sup 
( X )  

norm. We can write ft - Uj=I  Gj for some open sets Gj whose closures Kj - cl(Gj) 
are compact  subsets of ft (see 17.18.a), hence Cc(ft) can be topologized as the strict 
inductive limit of the spaces CKj (~). (Exercise. The topology is not affected by the 
part icular choice of the sequence (Gj). Hint: See 17.18.b.) 

See also the remarks in 27.46. 
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27.43. A few remarks about distribution theory. The most important  application of final 
locally convex spaces is in the theory of distributions, which was invented by Dirac and 
then formalized by L. Schwartz. This theory is particularly useful in the study of linear 
partial differential equations. Following is a brief sketch of how final locally convex spaces 
are used in that  theory. 

We consider a vector space consisting of "nice" functions; a typical example is 

D (R M) - {smooth functions from R M into C with compact support} .  

Ultimately, the test functions are not the real object of study, for they are fairly simple and 
well behaved, and well understood. The test functions are sufficiently well behaved so that  
they lie in the domain of many ill-behaved differential (or other) operators. Ultimately, it is 
these operators that  are the real object of the study; we can study them by "testing" their 
behavior with the test functions. We equip the space of test functions with an extremely 
strong topology; then virtually any linear operator that  is defined on all of the test functions 

including the ill-behaved operator that  we wish to study will in fact be a continuous 
linear operator on that  space of test functions. Such a continuous linear operator on the 
test functions is called a d i s t r i b u t i o n .  Thus, the distributions are the members of the dual 
space D (RM)*. 

"Ordinary" functions f act as distributions TI by the following rule: 

Tf(g)) - fR-  f(t)~(t)dt for ~ E �9 

This formula makes sense for a rather wide class of f ' s  since the p's are so well behaved. For 
instance, any function f : ]R M ~ C that  is measurable and locally integrable (i.e., integrable 
on bounded subsets of R M) defines a distribution TI in this fashion. The mapping f ~ T I 
is linear and injective, so it is natural to identify f and TI; thus the ordinary functions form 
a subset of the distributions. Because distributions can be used like ordinary functions in 
some respects, distributions are often called g e n e r a l i z e d  func t ions .  

Many familiar operations on ordinary functions can be extended to operations on gen- 
eralized functions. For instance, there is a natural way to define the derivatives of distribu- 
tions. For simplicity of notation we consider only the case of M = 1, but the ideas below 
extend easily to any dimension M. If f is a continuously differentiable function, then 

T(i,)(p) - J~_~ f '(t)p(t)dt (2 - i ~  ~ f(t)p'(t)dt = - T f  (p ' ) ;  

the middle equation (!) follows by integration by parts (with the boundary terms disap- 
pearing because p has compact support). Since we identify ordinary functions with their 
corresponding distributions, T(I,) is the "derivative" of TI. We now generalize" If T is any 
distribution (not necessarily corresponding to some ordinary function), then the derivative 
of T is defined to be the distribution U given by U(p) - -T(~ ' ) .  This definition makes 
sense because when ~ is a test function, then ~' is also a test function. 

It is customary to topologize the space of test functions D(R M) as follows" For each 
compact set K c_ R M, let DK consist of the smooth functions that  have support contained 
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in K. We can topologize �9 naturally with countably many seminorms, by using the sups 
of the absolute values of derivatives of functions. It turns out that �9 is then a Fr(~chet 
space. Now �9 M) is the union of the �9 and in fact it is the union of countably many 
of the �9 Thus it can be topologized as an LF space. With that topology, �9 M) is not 
metrizable, but it inherits other, more important properties from the DK's. For instance, 
it is barrelled. (It is also complete, but that seems to be less important.) 

The various topologies on the space of distributions �9 * are studied using duality 
theory, a small part of which is introduced in Chapter 28. For further reading on this 
classical theory, a few sources are Adams [1975], Griffel [1981], Horvath [1966], and Treves 
[1967]. 

In the classical theory (described above), distributions form a vector space but not an 
a!gebra. Although we can certainly talk about Tfg when f and g are ordinary functions, in 
general it is not possible to multiply together two distributions U and V. In recent years, 
however, new theories of distributions have been developed that permit multiplication of 
generalized functions. The theory of Colombeau [1985] is perhaps slightly simpler, but the 
theory of Rosinger [1990] seems to be more powerful. Both theories are based on algebraic 
quotients, as in 9.25. In both theories, we begin with some algebra of smooth functions, 
identify a suitable ideal within that algebra, and then form a quotient algebra, which then 
acts as a sort of completion of the "ordinary functions." 

THE DREAM UNIVERSE OF GARNIR AND WRIGHT 

27.44. Remarks. In this subchapter we consider how functional analysis is affected when 
we replace conventional set theory with an alternative set theory; this will help to explain 
certain intangibles of conventional set t h e o r y -  i.e., objects that exist but lack constructible 
examples. This subchapter can be omitted if the reader is only interested in a conventional 
approach to functional analysis. 

H. G. Garnir applied the term "dream space" to any normed space X with the property 
that every linear map from X into a normed space is continuous. (See Brunner [1987]; see 
also the related "good spaces" of Garnir [1974].) Any finite dimensional space is a dream 
space. As we noted in 23.6.b, there are no other dream spaces, under conventional set 
theory (ZF + AC). Garnir investigated dream spaces under some alternative set theories; 
later J. D. M. Wright [1975, 1977] also investigated automatic continuity under alternative 
set theories. Both of these mathematicians were motivated by the earlier consistency results 
of Solovay [1970] discussed in 14.75 of this book, but in retrospect we can say that a better 
motivation is given by the later consistency results of Shelah [1984] discussed in 14.74 of 
this book: If ZF is consistent (something we generally assume), then ZF + DC + BP is 
also consistent. 

The theorem below improves slightly on results of Garnir and Wright by dropping unnec- 
essary hypotheses of local convexity and Hausdorffness and generalizing to convex operators. 

27.45. G a r n i r - W r i g h t  Closed G r a p h  T h e o r e m .  Assume ZF + D C  + BP instead of 
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conventional set theory. Let X be an F-space. Then: 

(i) If f~ is an open convex subset of X and f �9 f~ --+ IR is a convex functional, then 
f is continuous. 

If Y is any TVS and f "  X --+ Y is any linear operator, then f is continuous. (ii) 
(iii) If f~ is an open convex subset of X, Y is a locally full space, and f : f~ --+ Y 

is a convex operator, then f is continuous. 

Remarks. Perhaps it is misleading to call this a "closed graph theorem;" a more descriptive 
term might be "automatic continuity theorem." The fact that  the graph is closed is a 
conclusion, not a hypothesis, of this theorem. 

We emphasize that,  in (ii), the operator f must be defined on all of X not just a 
dense subspace and X is complete. Result (ii) implies that  every Banach space is a 
"dream space," as defined in 27.44. Contrast  this with 23.6.b. 

Result (ii) gives us some explanation of why every linear operator observed in applied 
mathematics  that  can be defined everywhere on a complete metric TVS is continuous. 
Another explanation, not requiring unconventional set theory, is given by Neumann [1980]: 
The operators arising in applied mathematics  generally satisfy some additional condition, 
such as causality or positivity, which guarantees continuity. We saw an example of this in 
26.59. 

Our proof of the present theorem combines ideas from Neumann [1985], Wright [1975, 
1977]. 

Proof of theorem. Obviously (i) is a special case of (iii). We can also make (ii) into a special 
case of (iii), as follows. Let f~ - X. Any TVS Y can be equipped with the trivial ordering" 
yl 4 y2 if and only if yl - -  Y2. This ordering makes Y into a locally full space, and an 
operator f �9 X --+ Y is convex if and only if it is affine. 

Thus, it suffices to prove (iii). Fix any x0 E f~; by 27.12 it suffices to show f is continuous 
at x0. Replace f with the function f( .  + x0) - f(x0);  thus we may assume that  0 - x0 E f~ 
and that  f(0)  - 0. Replacing f~ with the set f~ C~ (-f~),  we may assume f~ is open, convex, 
and balanced. It suffices to prove f is continuous at 0. 

Suppose not. Then there exists a neighborhood N1 of 0 in Y and a sequence (xn) that  
converges to 0 in X, such that  f(Xn) stays out of N1. Replacing N1 with a smaller set, 
we may assume N1 is balanced and full. Let N2 be another balanced, full neighborhood 
of 0 in Y, satisfying N2 + N2 C_ N1. The topology on any TVS is determined by its 
continuous F-seminorms; thus there exists some continuous F-seminorm p on Y such that  
{y E Y �9 p(y) < 1} C_ N2. Finally, choose balanced, full neighborhood N3 of 0 in Y, 
satisfying N3 C_ {y E Y ' p ( y )  < 1}. 

Extend f to an operator defined on all of X, still denoted f ,  by taking f (x )  - 0 for all 
z E X \ f~. (We do not assert that  this new operator is convex.) Let X0 be the closed linear 
span of the sequence (xn) in X; then X0 is a separable F-space. Hereafter we only concern 
ourselves with the restriction of f to X0. 

By 20.25.h and 20.30 and our assumption of BP, every subset of X0 has the Baire 
property. Hence the function po f �9 X0 --+ IR is ~B~P(X)-measurable-  i.e., measurable when 
X0 is equipped with the a-algebra of almost open sets and IR is equipped with the a-algebra 
of Borel sets. By 20.23, there exists some meager set M c_ X0 such that  the restriction of 
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p o f to X0 \ M is continuous (with respect to the relative topology on Xo \ M). Then the 
set 

L = U U ( j M + k x n ) ,  
j , k C Z  HEN 

being a union of countably many meager sets, is also meager in X0. Since X0 is a Baire 
space, the comeager set X0 \ L is dense in X0; hence it meets the nonempty open set X0 N ~. 
Fix any z E (X0 A ~) \ L. Then + ~ + X n ~ M for all j, n E N. 

Since ~ is a neighborhood of 0 in X and N3 is a neighborhood of 0 in Y, for all j 
z l f ( •  E N3. Hold any such j fixed. Since sufficiently large we have + j  E ~t and + j  

f(0) = 0 and f is a convex operator, we have 

- 1  ( - z ) ( z )  1 
--f-- f ( - z )  ~ - f -7- ~ f ~ ~ - f (z). 

3 

Since N3 is a full set both f (~)  and - f (~-~)  must belong to N3 Hence p( f (+z) )  < 1. , �9 j 

z ~ + z in X0 \ M and p o f is continuous on that  set (with When n ~ c~, then +x~ • j j , 

the relative topology). Hence for all n sufficiently large, we have p(I(•  • ~)) < 1 (with 

all four combinations of the • signs). Also, since Ft is open, for all n sufficiently large we 
have • • ~ E ~. Fix any such n. Then • f (• .• ~ ) C N2 (with all eight combinations 

l f ( •  n • z) also belong to N2. of the • signs). Since that  set is balanced, the vectors •  j 
By the convexity of f ,  we have 

1 ( z / 1 (  z / 
- -2 f --  X n  3- - -~ f - xn + -3 4 - f ( - xn  ) 

1 ( z )  1 (  z / 
I(x ) Xn 3- x +j . 

The left and right ends of this display belong to N2 + N2 c_ N1, and that  set is full. Hence 
f (xn)  E N1, a contradiction. This completes the proof. 

27.46. Coro l l a ry .  Assume ZF + DC + BP in place of conventional set theory. Suppose 
X is a vector space, and ~- is a topology on X that  makes X into an LF space. Then there 
is no other topology besides ~- that  makes X into a barrelled space. 

Remark. Thus, though the definition of an LF space is somewhat complicated, for some 
spaces (such as those in 27.42) an LF topology is in some sense the "best" one available 
i.e., it is the only barrelled topology. 

Proof of corollary. Say (X, "/-) is the strict inductive limit of (Xj), where X1 C_ X2 c_ X3 c_ 
�9 .. are compatible Fr~chet spaces with union X. Let /3 be a topology on X that  makes 

(X,/3) barrelled. Each of the inclusions Xj c_ X is continuous from Xj (with its Fr~chet 
topology) to (X,/3), by 27.45. By 27.39(ii), then, the identity map i "  (X, 7-) ~ (X,/3) 
is continuous. Therefore its graph is closed in the product topology. Hence its inverse, 
the mapping i -1 �9 (X,/3) ~ (X, T), also has closed graph. By the classical Closed Graph 
Theorem (which can be proved in ZF + DC), since (X,/3) is barrelled, it follows that  i -1 
is continuous, too. 
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27 .47 .  Further corollaries. Assume ZF + DC + BP in place of conventional set theory. 
Then: 

a. If X is a reflexive Banach space e.g., if X = t~p for some p E (1, cx~) then the 
second algebraic dual of X is equal to X. This is in contrast  with 11.36. 

b. Any two complete norms (or, more generally, any two complete F-norms) on a vector 
space are equivalent i.e., they yield the same topology. Proof. The identity map 
i :  X ~ X is a linear operator. (Contrast  with 27.18(iii).) 

Remarks. The last result explains, at least in part,  the phenomenon described in 22.8. 
Applied mathemat ic ians  do not use the Axiom of Choice, and so they cannot prove the 
existence of inequivalent complete norms on a vector space. More precisely, they cannot 
construct two complete norms and prove tha t  those norms are inequivalent. We emphasize 
that  they may also be unable to prove that  the two norms are equivalent. Thus, it is 
conceivable tha t  an applied mathemat ic ian  could equip a vector space with two different, 
complete, "usual" norms, which are not known (by the tools of applied mathematics)  to 
be equivalent or inequivalent. However, tha t  seems rather  unlikely. Any two complete 
norms that  can be constructed explicitly can probably be investigated rather  extensively 
by constructive means as well; hence we can probably find some answer to the question 
of whether those norms are equivalent or not. The theorem above eliminates one of the 
answers it says that ,  using just ZF + DC, we cannot show that  the two norms are not 
equivalent. 



Chapter 28 

Duality and Weak Compactness 

28.1. Preview. A topological vector space can be retopologized i.e., its topology can be 
replaced with another, related TVS topology. Among such new topologies, one of particular 
interest is the so-called weak topology; it is weaker than the original topology, and therefore 
has more compact sets that can be used in existence proofs. 

Although our applications later in this book are concerned with weak topologies of 
normed spaces, we shall introduce weak topologies in the more general setting of TVS's and 
LCS's because (i) that seems to be a more natural setting for the theory, (ii) the theory is 
not significantly harder in that setting, and (iii) some readers may be interested in other 
applications not covered in this book. 

A highlight of this chapter is R. C. James's Sup Theorem (28.37) on weak compactness, 
which is quite simple to state but will take much preparation to prove. 

This chapter is based partly on Floret [1980], Holmes [1975], Kelley and Namioka [1976], 
and Schaefer [1971]. 

HAHN-BANACH THEOREMS IN TVS's  

28.2. Definition. Let X be a topological vector space, with scalar field IF. The dua l  of X 
is the vector space X* = {continuous linear maps from X into IF}. 

There may be several different topologies associated naturally with X*. Unless some 
topology is specified for X*, we shall view it simply as a vector space, not as a topological 
vector space. 

28.3 .  L e m m a .  Let X be a topological vector space, and let A E X*.  If A :/: 0, then A is 
an open mapping that is, A takes any open subset of X to an open subset of IF. 

Hints: Show that 

a. If N is a balanced subset of X, then A(N) is a balanced subset of IF. 

b. If N is a neighborhood of 0 in X, then A(N) is not just the set {0}. 

c. If N is a balanced neighborhood of 0 in X, then A(N) is a balanced neighborhood of 
0 in IF. 

752 
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d. If G is open in X and x E G, then x + N C_ G for some N that  is a balanced 
neighborhood of 0. 

28.4. Following are several principles, any one of which may be referred to as "the Hahn- 
Banach Theorem." Considered as weak forms of the Axiom of Choice, these principles are 
all equivalent to each other and to the versions of HB presented in 12.31, 23.18, 23.19, 26.56, 
28.14.a, and 29.32. 

Many of our Hahn-Banach Theorems can be extended to complex vector spaces via the 
Bohnenblust-Sobczyk Correspondence (11.12): If X is a complex vector space on which 

is a linear functional, then X can also be viewed as a real vector space on which Re)~ 
is a linear functional. We shall omit the details of that  argument; for simplicity we shall 
generally only consider real vector spaces. 

( H B 1 7 )  C o n t i n u o u s  S u p p o r t  T h e o r e m .  Let X be a real TVS. Then any 
continuous convex function from X into R is the pointwise maximum of the 
continuous aifine functions that  lie below it. That  is, if p : X -~ R is continuous 
and convex, then for each x0 E X there exists some continuous aifine function 
f :  X ~ R that  satisfies f(x) <_ p(x) for all x E X and f ( xo)= p(xo). 

( H B 1 8 )  Separat ion  of Convex  Sets  in T V S ' s .  Let A and B be disjoint 
nonempty convex subsets of a real topological vector space X, and suppose A is 
open. Then there exists A E X* such that  A(a) < infbEB A(b) for every a E A. 

( H B 1 9 )  Separat ion  of Convex  Sets  in L C S ' s .  Let A and B be disjoint 
nonempty convex subsets of a real, locally convex topological vector space X. 
Suppose A is compact and B is closed. Then there exists A E X* such that  
maxaE A A ( a ) <  infb~B A(b). 

( H B 2 0 )  Separat ion  of Points  from Convex  Sets.  Let B be a nonempty 
closed convex subset of a real, locally convex topological vector space X. Let 
x E X \ B. Then there exists A E X* such that  A(x) < infbEB A(b). 

(HB21)  Intersect ion of H a l f - S p a c e s .  Let X be a real, locally convex 
topological vector space. Then any closed convex subset of X is the intersection 
of the closed half-spaces that  contain it. (By a c losed  h a l f - s p a c e  we mean a 
set of the form {x c X :  A(x) > r}, for some continuous linear functional A and 
some real number r.) 

( H B 2 2 )  Separat ion of Points .  If X is a Hausdorff LCS, then X* separates 
points of X. That  is, if x and y are distinct points of X, then there exists some 
A E X* such that  A(x) ~: A(y). Equivalently, if u E X \ {0}, then there exists 
some A E X* such that  A(u) r 0. 

( H B 2 3 )  Separat ion of S u b s p a c e s .  Let B be a closed linear subspace of a 
locally convex space X, and let ~/E X \ B. Then there exists a member of X* 
that  vanishes on B but not on ~/. 
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Proof of (HB4) =~ (HBI7). Immediate from 27.13. 

Proof of (HB17) ~ (HB18). Pick a n y x 0  E B - A .  Let C = A - B + x 0 .  S h o w t h a t  
C is a convex open neighborhood of 0, and (since A and B are disjoint) x0 ~ C. Let p be 
the Minkowski functional of C. By 26.23.k we know that  p is a continuous convex function 
and C = {x c X : p(x) < 1}. By (HB17) there is some continuous linear functional 
A : X ~ ~ satisfying A _< p everywhere on X, and satisfying A(x0) = p(xo) _> 1. In 
particular, A(x) < 1 for each x c C; from this it follows that  A(a) < n(b) for all a E A and 
b c B. Finally, A(A) is open by 28.3, so each A(a) is strictly less than the supremum of the 
A(a)'s. 

Proof of (HB18) =~ (HB19). Each a E A has a neighborhood that  is disjoint from 
B. (For instance, X \ B is such a neighborhood.) That  neighborhood contains a smaller 
neighborhood of the form a + Ga § Ga, where G~ is a convex open neighborhood of 0; then 
(a+Ga +Ga) N B =  0. 

The sets (a § Ga) form an open cover of the compact set A. Let {a + (~a ." a E F} be 
a finite subcover, where F is some finite subset of A. Show that  G = ~ a e F  Ga is a convex 
open neighborhood of 0, satisfying (A + G) A B = O. Then apply (HB18) to the sets A + G 
and B. 

Proof of (HB19)=v  (HB20)=v  (HB21) =v (HB22) =v (HB9). Easy exercise. 

Proof of ( H B 2 0 ) ~  ( H B 2 3 ) ~  (HBll ) .  Obvious. 

28.5. Pathological example. Because (HB17) has a topology-free analogue (HB4) in 12.31, 
we might be tempted to believe that  (HB21) also has a topology-free analogue i.e., that  
any convex set in a vector space is the intersection of the half-spaces that  contain it. But 
that  is not true; for instance, the set 

{(x,y) eR 2 .  y >o } u{ (x ,O)  

is a convex set in R 2 that  is not equal to an intersection of half-spaces (easy exercise). 

B I L I N E A R  P A I R I N G S  

/ \ 

28.6. Definitions. A b i l inea r  p a i r i n g  will mean a triple ( X , Y , ( , ) )  where X and Y 
\ / 

are vector spaces over the scalar field F (without any topologies necessarily specified) and 
( , )  is a bilinear map from X • Y into F (defined as in 11.7). We may abbreviate this 
arrangement by (X, Y). 

When (X, Y) is a bilinear pairing, then an associated bilinear pairing [Y, X] can be 
defined by [y, x] = (x, y). However, we shall usually use the same symbol ( , )  for both of 
these functions. Thus, ( , )  represents two functions, one from X x Y into F and the other 
from Y x X into F, related by (x, y) = (y, x). This ambiguity in our notation should not 
cause any difficulty. 
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Let (X, Y) be a bilinear pairing. Then each y c Y acts as a linear map (., y) : X ~ F; 
thus Y acts as a collection of functions on X. Observe that  this collection of functions 
separates points of X (in the sense of 2.6) if 

for each pair of distinct points Xl,X2 in X, there exists at least one y c Y such 
that  (xi,  y) ~ (x2, y) 

or, equivalently (since the y's act as linear maps),  if 

for each point x -r 0 in X, there exists at least one y E Y such that  (x, y) =fi 0. 

This condition may or may not be satisfied. If it is satisfied, then the elements of x act as 
different members of Lin(Y, F) = {linear functionals on Y}, and so we may view X as a 
linear subspace of Lin(Y, F). Similarly, the points of X may or may not separate the points 
of Y; if they do, then we may view Y as a linear subspace of Lin(X, N). We shall say that  
(X, Y) is a s e p a r a t e d  p a i r i n g  if each of the sets X, Y separates the points of the other 
set. 

Remarks. What  we have called a "separated pairing" is called a "dual pairing" in many 
other texts, which assume the separation property throughout  the entire development of 
duality theory. We have deviated from that  conventional terminology to clarify just where 
the separation property is or is not needed. Admittedly,  most pairings arising natural ly in 
applications are separated, but a few are not; see 28.7.b. 

28.7.  Examples. 
a. Let X - Y - {continuous functions from [0, 1] into F}, and let (x, y) - f l  x(t)y(t)dt. 

Then (X, Y) is a separated pairing. 

b. Let X = Y = {piecewise continuous functions from [0, 1] into F} (defined as in 19.28), 

and let (x, y) - f l  x(t)y(t)dt. Then (X, Y) is a bilinear pairing, but it is not separated. 
For instance, if x is the characteristic function of a nonempty finite set, then elements 
of Y do not distinguish x from 0. 

c. If X is any linear space, and Y is any linear subspace of Lin(X, F) = {linear functionals 
on X}, then the evaluation map (x, y) = y(x) defines a bilinear pairing. Wi th  this 
pairing, X separates points of Y, but Y does not necessarily separate points of X,  so 
( , )  is not necessarily a separated pairing. 

d. The preceding case arises, in particular,  if X is a topological vector space and Y = X* 
is its topological dual. We note several subcases: 

(i) If X is not Hausdorff, then X* does not separate points of X. 

(ii) If X is a Hausdorff locally convex space, then X* does separate points 
of X by (HB22) in 28.4, and so (X, X*) is a separated pairing. 

(iii) If X is a Hausdorff topological vector space that  is not locally convex, 
then X* may or may not separate points of X. We saw examples of those 
two cases in 26.17 and 26.16. 
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28.8. Definition. Let (X, Y} be a bilinear pairing. Let S be a collection of subsets of Y. 
Each element of X may be viewed as a mapping from Y into the scalar field F, and so we 
may topologize X with the topology of uniform convergence on elements of 8, as defined in 
18.26. We may refer to that  as the S - topo logy .  

Proposition. Suppose that  8 satisfies these conditions: 

(i) Each set S c 8 is p o i n t w i s e  b o u n d e d ,  in the following sense: For each 
x E X, the set of scalars (x, S} = {(x, s } : s  E S} is bounded. (This condition 
is reformulated in 28.12.b.) 

(ii) 8 is directed by inclusion i.e., the union of any two members of 8 is con- 
tained in some member of S. 

(iii) If S E 8 and r is a nonzero scalar, then rS c S. 

Then the g-topology makes X into a locally convex topological vector space. Furthermore, 
{Ps : S E g} is a gauge that  determines that  topology, and {S ~ : S E g} is a neighborhood 
base at 0 for that  topology, where 

ps(x) = supl<x,s>l, 
sCS 

S > - ~ { x E X ' l { x , s ) l _ < l } .  
sCS 

(The "polar" sets S ~ will be studied further in 28.25 and thereafter.) 

Hints: See 27.9.f, 27.9.h, and 27.9.c. 

Remarks. Condition (i) is essential for a TVS topology, as we saw in 27.9.f. Conditions (ii) 
and (iii) are not so essential, but they are quite convenient; they yield the characterization 
of neighborhoods in terms of polars. Moreover, conditions (ii) and (iii) are not really 
restrictive: If (i) is satisfied, then we can replace g with a larger collection yielding the 
same S-topology and also satisfying (ii) and (iii). We saw this for (ii) in 27.9.b; for (iii), 
replace 8 with the collection 9" = {rS : r > 0, S E g}. 

28.9. Preview and definitions. Following are four important  cases of collections g satisfying 
the conditions of 28.8. 

a. If g = {finite subsets of Y}, then the S-topology is denoted by a(X, Y) or, more briefly, 
a or w. (The a and w stand for "simple" and "weak.") It has many names it is 
called the w e a k  t o p o l o g y ,  the Y - t o p o l o g y ,  the Y - w e a k  t o p o l o g y ,  the t o p o l o g y  
of  s i m p l e  c o n v e r g e n c e ,  or the t o p o l o g y  of  p o i n t w i s e  c o n v e r g e n c e .  

In an analogous fashion, we define the a(Y, X) topology on Y that  is, the topol- 
ogy on Y given by convergence on points of X. It makes Y into a topological vector 
space, so it can be used to specify certain kinds of subsets of Y for instance, the 
a(Y, X)-compact  sets. These are used to define some other topologies On X, described 
below: 

b. If S = {pointwise bounded subsets of Y}, where "pointwise bounded" is defined as 
in 28.8(i), then the resulting g-topology is called the s t r o n g  t o p o l o g y  on X; it is 
denoted by 13(X, Y). (The/3 stands for "bounded.") Clearly, this collection S is the 
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largest collection of subsets of Y that satisfies the conditions of 28.8, so/3(X, Y) is the 
the strongest topology that can be constructed as in 28.8. 

c. Let ~1 ---- {o'(Y, X)-compact, convex subsets of Y} and $2 = {a(Y, X)-compact, con- 
vex, balanced subsets of Y}. It can be shown that these two collections satisfy the 
requirements of 28.8 and that furthermore they yield the same S-topology. (We shall 
not prove those assertions since they are not needed later in this book.) This topology 
is called the M a c k e y  t o p o l o g y  and is denoted by T(X, Y). 

d. Actually, every locally convex topology can be viewed as an g-topology, by taking S 
to be the equicontinuous subsets of X*; see 28.28. 

The set X equipped with the weak, strong, or Mackey topology may be denoted X~, XZ, 
or X~, respectively. The topological vector space X~ may also be denoted Xw in some 
contexts. It is easy to see that 

a(X, Y) c_ T(X, Y) c_ 3(X, Y), 

since a larger collection g yields a stronger (i.e., larger) g-topology. 
This chapter is concerned primarily with the weak topology. The Mackey and strong 

topologies are important in distribution theory, but they will not be considered in great 
depth in this book; we introduce them mainly for the sake of some information they yield 
about the weak topology. (See also 28.17.a.) 

28.10. Re topo log iza t i ons .  We now describe one of the most important ways to form 
S-topologies. 

Let X be a vector space. Let 7 be a topology that makes X into a topological vector 
space; let X~ denote the vector space X equipped with that given topology. (The -y stands 
for "given," if you like.) Let (X~)* be its dual i.e., the set of all continuous linear maps 
from X~ into F. 

Then (X, (X~)*} is a bilinear pairing (not necessarily separated). It can be used to 
define more topologies on X, most notably 

the weak topology c r -  a(X, (X~)*), 

the strong topology/3 - / 3 ( X ,  (X,)*),  and 

the Mackey topology 7- - T(X, (X~)*). 

In this context, we may call 7 the given topology or the or ig inal  topology. (Some math- 
ematicians also call it the initial topology, but we prefer to reserve that term for the kind 
of topology introduced in 9.16.) 

Caution: Because the two topologies used most often are 7 and a, the beginner who 
studies only these two topologies may be tempted to call 7 the "strong" topology, to contrast 
it with the "weak" topology a. However, the term "strong" customarily refers to the 
topology 3(X, (X~)*). The strong topology/3(X, (X~)*) is at least as strong as the given 
topology 7, and in some cases it is strictly stronger. 
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We now summarize the relations between these important topologies: If X~ is a TVS 
with dual (X~)*, then 

c_ c_ ( x , ) , )  c_ 9(x ,  

These inclusions are justified by conclusions in 28.13.b and 28.30. 

WEAK TOPOLOGIES 

28.11. Characterizations of the weak topology. Let (X, Y} be a bilinear pairing. As we 
stated in 28.9.a, the a(X~ Y) t o p o l o g y  on X is the topology of pointwise convergence on 
members of Y. Thus, a net (x~) converges to a limit x in the topological space (X, a(X, Y)) 
if and only if {x~, y} --~ {x, y} for each y r Y. This topology can also be characterized in 
other ways: 

a. a (X ,Y)  is the initial topology (in the sense of 9.15, 9.16, and 15.24) generated by 
elements of Y. In other words, it is the weakest topology that  makes all the mappings 
(., y} : X  ~ F continuous. 

b. One gauge that  determines the topology a(X,  Y) is the collection of seminorms {py : 
y e Y}, where py(x)= [(x, y}[. 

c. A neighborhood subbasis at 0 for this topology is given by the sets 

- { x  e x . l ( x , y } l  < for y C Y ,  c > O .  

That  is, a set is a neighborhood of 0 in this topology if and only if that  set contains 
the intersection of finitely many sets of the form Sy(c), for various y's and o's. 

28.12. Basic properties of the weak topology. Let {X, Y} be a bilinear pairing, and let 
a - a(X, Y) be the resulting weak topology. Show that  

a. X~ is a locally convex topological vector space. 

b. A set B c_ X is weakly bounded (i.e., bounded in the topological vector space X~, in the 
sense of 27.2) if and only if each y in Y is a bounded function on B - -  that  is, if and only 
if suPbcu I(b, Y}I < ~ for each y r Y. (Thus, the "bounded pointwise" requirement 
introduced in 28.8(i) is the requirement that  each S c S be a(Y, X)-bounded.) 

c. Every member of Y is a continuous linear map from X~ into F. Thus, y H {., y} is a 
linear mapping from Y into (X~)*. 

d. That  mapping y H (., y}, from Y into (X~)*, is surjective. That  is, every continuous 
linear map A ' X ~  ~ F is represented by at least one member of Y. 

Hints" {x E X �9 ]A(x)l < 1} is a a-neighborhood of 0. Use 28.11.c to show that  
there exists a finite set F C_ Y such that  ~y~pKer (y )  C Ker(A). By the Common 
Kernel Lemma 11.16, we have A E span(F).  
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e. Suppose X separates points of Y. Then the mapping y ,-~ (., y} from Y into (X(7)*, 
described in the last two exercises, is also injective. Thus it is a linear bijection. 
Allowing a change of notation, we therefore have (X(7)* - Y. 

f. X(7 is Hausdorff if and only if Y separates points of X. In that case, X may be viewed 
as a subset of Lin(Y, F), as explained in 28.6. Then F Y C_ Lin(Y, F) C_ F Y. Show 
that the topology a(X,  Y) is the relative topology on X determined by the product 
topology on ]~'Y. 

28.13. Basic properties of weak retopologizations. Let X be a vector space; let X~ be a 
TVS formed by equipping that vector space with some given topology 7; let (X~)* be the 
resulting dual space; let a = a(X,  (X~)*) be the resulting weak topology; let X(7 be the 
resulting TVS - -  that is, the weak retopologization of X~, as discussed in 28.10. Then: 

a. The weak topology a(X,  (X~)*) is a locally convex topology whether the given 
topology ~/is locally convex or not. 

b. The weak topology a has fewer open sets and fewer closed sets than the original 
topology ~/. (Here we use "fewer" in the extended sense of mathematics - -  i.e., meaning 
"fewer or as many.") 

In brief, every weakly open set is open, and every weakly closed set is closed. 

c. For any set S c_ X, we have 

a-int(S) c_ 7-int(S) c_ S c_ ~/-cl(S) c_ a-cl(S). 

d. The weak topology has more (i.e., at least as many) compact sets, bounded sets, and 
convergent nets than the original topology. Thus, every compact set is weakly compact, 
and every bounded set is weakly bounded, and 

Xa ) X ~ Xa ) X .  

Compact sets are often used in existence proofs; that is one of our main reasons for 
studying weak topologies. 

e. By 28.12.d, the original topology ~ and the weak topology a have the same set X* of 
continuous linear functionals. That  is, (X~)* = (X(7)*. Therefore, in discussions of 
the original and weak topologies, we may refer to the dual simply as X *. 

Hence a(X, (X(7)*) = a(X,  (X~)*). That  is, the weak topology of the weak topology 
is the weak topology. Thus, repeating this weak retopologization procedure cannot get 
us another, different, still weaker topology. 

We may say that a topological vector space X~ already has the weak topology if 
X~ = X(7 that is, if ~ - a(X,  (X~)*). 

28.14. Weak retopologization of locally convex spaces. Additional conclusions can be drawn 
if the original topology is locally convex. Let X~ be a locally convex topological vector space 
and let X(7 be its weak retopologization. Then: 

a. We have this principle, which is another equivalent of the Hahn-Banach Theorem" 
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b. 

C .  

d. 

e .  

( H B 2 4 )  W e a k  c losures .  In a locally convex space, every 7-closed, convex 
set is a-closed. In brief, every closed convex set is weakly closed. 

For a proof, refer to 28.4; it is easy to see that (HB20) ~ (HB24) ~ (HB21). 
Remark. (HB24) will be used to prove the next few results below. The Hahn- 

Banach Theorem and its consequences are needed frequently in duality theory, and 
will be used heavily throughout the remainder of this chapter. Hereafter we shall use 
the Hahn-Banach Theorem freely; we shall discontinue our practice of keeping track of 
its uses and its equivalents. 

Let S be a convex subset of X. Then a-cl(S) - 7-c1(S). 

A convex subset of X is closed if and only if it is weakly closed; a linear subspace of 
X is closed if and only if it is weakly closed; a linear subspace of X is dense in X if 
and only if it is weakly dense; X is separable if and only if it is weakly separable. 

Every weakly bounded set is bounded. Thus, X~ and X~ have the same bounded sets. 
(Hint" 27.6.) 

Any weakly convergent sequence is bounded. 

28.15. Let X be a TVS with scalar field IF, and let X* be its dual i.e., the vector space 
of continuous linear maps from X into IF. One of the most important topologies on X* is 
the a(X*,  X) topology i.e., the topology of pointwise convergence on members of X. It 

X* is called the w e a k - s t a r  t o p o l o g y  (or weak-*  topo logy) ;  it is often abbreviated as , .  

We caution the reader against referring to "the weak-star topology on Y" since we may 
have Y = X* for more than one choice of X. Different choices of X may yield the same set 
Y = X* but may nevertheless yield different weak-star topologies on that set. 

Here are some basic properties of the weak-star topology: 

a .  

b. 

C .  

X , is a locally convex space. 
w 

X* w* is Hausdorff, whether X is Hausdorff or not. {Indeed, X separates the points 

of X*, by definition of the set X*.) The topology on X** is the relative topology 
w 

determined by viewing X* as a subset of IFx when that product is equipped with the 
product topology. 

Each x c X determines a continuous linear map Ax �9 X* w* ~ IF, by the rule Ax(f) - 

f (x ) .  (This is the e v a l u a t i o n  m a p  at x.) Furthermore, every continuous linear 

�9 t)e written in this form. (Hint 28.12.d.) Thus x H Ax is a functional on X , can 
w 

X* . surjective linear map from X onto ( w* )* 

If X* separates the points of X, then the mapping x ~ Ax is also injective, so 

X* )* (allowing a change of notation) we have ( , - X. That  is, X is equal to the dual 

of its own weak dual. 
Remarks. What about other retopologizations besides the weak one? A locally 

X* convex space X~ is called semireflexive if ( ~(x, ,x))*  and X are equal as sets; here 
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indicates the strong topology. The space is reflexive if in addition -7 = ~(X,  X*)  
tha t  is, if the strong dual of the strong dual of (X, ~) is equal to (X, "t,). We shall not 
s tudy reflexivity in such a general setting; in 28.41 we shall s tudy reflexivity in the 
more specialized setting of normed spaces. 

WEAK TOPOLOGIES OF NORMED SPACES 

28.16.  Let (X, II II) be a normed space over the scalar field F. The usual topology on X 
is the norm topology i.e., the metric topology given by the metric d(x, y) = IIx - YlI. We 
use it to define continuous linear functionals A : X ~ F; they make up the dual X*.  We 
use that  dual to define the weak topology or(X, X*) as in 28.10. 

The norm and weak topologies are the two topologies used most often on a normed 
vector space. The weak topology is weaker than the norm topology. Some of the exercises 
in 28.18 below show that  if X is infinite-dimensional, then the weak topology is strictly 
weaker than the norm topology. 

28.17. 

a .  

Exercises. Let (X, II II) be a normed space. Show that  

The norm topology on X is the same as the strong topology r X*)  and the Mackey 
topology r ( X , X * ) ,  defined in 28.10. 

b. The norm topology on X is a locally convex topology. Hence X and X~ have the same 
dual, the same bounded sets, and the same closed convex sets. 

c. The weak topology a ( X , X * )  is a Hausdorff, locally convex topology on X. 

d. If (x~) is a net converging weakly to some limit x, then Ilxll _< lim i n f ~ ~ l l x ~ l l .  (This 
result should not be confused with 28.14.e.) 

e. If X is finite dimensional, then the weak topology and the norm topology on X are 
identical. Hint: 27.15. 

28.18.  Proposition. Suppose (X, II II) is an infinite dimensional normed space. Then 
there exists a directed set 9" and a net ( x r  : F E 9") in X such tha t  xv + 0 in the weak 
topology but Ilxfll 

Hints: We know X* is infinite-dimensional, by Kot tman ' s  Theorem (23.22). Let H be a 
vector basis for X*; then H is an infinite set. Let 9" = {finite subsets of H}, directed by 
inclusion. For each F E 9 ~, choose some v E H \ F; then use the Common Kernel Lemma 
( l l .16)(Qk)  to find some vector in X that  vanishes on F but not on v. Let x r  be a suitable 
scalar multiple of that  vector, chosen so that  IlxFll _> card(F) .  

Corollaries. Suppose (X, II II)is an infinite dimensional normed space. Then: 

a. The weak closure of the unit sphere S = {x E X :  IlxlL- 1} is the unit ball B = {x E 

x :  Ilxll _< 1}. 
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Hints: Suppose Ilzll < 1. Choose a net (XF) as in the preceding proposition. Let 
ZF -- z + rFXF for some real number rF; show that  a suitable choice of rF yields 

ZF E S and Irgl _< (1 + Ilzll) ~ 0. Hence (ZF) is a net in S converging weakly to z. ffx ll 
b. If S c_ X is bounded, then cr-int(S) - Z. That  is, in the weak topology, any bounded 

set has empty  interior. 
Hints" Suppose p is in the weak interior of S. Replacing S with S -  p, we may 

assume p -  0. There is a net that  converges weakly to 0 but stays out of the bounded 
set S. 

c. The topology of X~ is not metrizable. (Of course, certain small subsets of X~, equipped 
with their relative topologies, may be metrizable.) 

Hint: If d is a metric for that  topology, use the preceding proposition to find a 
sequence (x~) satisfying d(O,x~) < 1In and IlXnll > n. This contradicts 28.14.e. 

28.19.  Proposition. Let X be a locally uniformly convex Banach space 
(x~) be a net in X,  and also let x ~  E X. Then the following are equivalent: 

see 22.38. Let 

(A) Ix,~ - x ll ~ o. 

(B) xa ~ x ~  weakly and l imsup~ IIx~ll _< Ilxo~]]. 

Proof. The proof of (A) =a (B) is trivial. Assume (B); we shall prove (A). Note that  
x~ ~ x ~  weakly implies IIx~ll < l iminf~ IIx~ll, and thus IIx~ll ~ IIx~ll. We may assume 
x ~  ~= 0 (why?), and tha t  all the x~'s are also nonzero (why?). Replacing x~ with x~/llx~ll , 
we may assume IIx~]]-  1 for all a and I I x ~ l l -  1 (explain). By the Hahn-Banach Theorem 
(HB8) in 23.18, there exists some A e X* such that  IIA[[- A(x~) - 1. Then 2 _> IIx~ + 
x~ll  > IA(x~ + x~) l  ~ 2. Thus IIx~ + x~ll  ~ 2. By local uniform convexity, x~ ~ x ~ .  

28.20.  Recall from 23.10 that  the dual of the Banach space t~l is f ~ .  Hence a net (x~) 
converges weakly in ~1 to a limit x ~  if and only if }-~j=l x~,jzj  ~ }-~j=l x ~ , j z j  for each 
z = (Zl,Z2, Z3,. . . )  in t ~ .  

The space t~l has an unusual property, not shared by most Banach spaces. 

S c h u r ' s  T h e o r e m .  Let (Xn) be a sequence converging to a limit x ~  in the weak topology 
of t~l. Then also xn ~ x ~  in the norm topology. 

Remarks. We emphasize that  Schur's Theorem applies to only to sequences, not to nets. 
Tha t  is clear from 28.18, for instance. 

The proof below is direct. Some mathemat ic ians  may prefer a proof using Baire category, 
such as that  given by Conway [1969]. 

Outline of proof of theorem. Assume that  xn ~ x ~  weakly but not in norm; we shall obtain 
a contradiction. Say Xn : (Xn,1, Xn,2, X n , 3 , . . . ) .  Then: 

a. We may assume x ~  = 0. (Replace each Xn with xn - x~ . )  

b. We may assume Ilxnll = 1 for all n. Hints" The sequence ( l l x n l l ' n  C N) is bounded 
\ / 

and does not converge to 0. Replacing (Xn) with a subsequence, we may assume that  
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the numbers Ilxnll are all positive and converge to some positive number c. Since 
the weak topology makes ~1 a topological vector space, we may replace each Xn with 
�9 ~/11~11 (explain). 

c. For each finite set S c N, we have ~-~jcs Ixn,Jl --* 0 as n ~ cx~. 

d. Replacing (xn} with a subsequence, show that  there exist disjoint finite sets S(1), S(2), 
S(3), . . .  contained in N such that  ~-~d6s(n)IXn,jl > 2/3. 

e. There exists some z E t ~  such that  Ilzll~ = 1 and IZjXn,jl = IXn,jl whenever j E S(n). 
f" t~-~j=l x~,jzjl > 1//3 for all n, contradicting the fact that  xn ~ x ~  weakly. 

28.21.  Let [a, b] be a compact interval in I~, and let C[a, b] - {continuous scalar-valued 
functions on [a, b]}; this is a Banach space with the sup norm. We emphasize that  the 
following result is for sequences, not for nets. 

Proposition. In C[a, b], a sequence (fn) converges weakly to a limit f if and only if the 
sequence (f~) is uniformly bounded and f~ ~ f pointwise on [a, b]. 

Proof. If fn ~ f weakly, then (fn) is bounded by 28.14.e and each pointwise evalua- 
tion mapping g H g(t) is a continuous linear functional on C[a, b], so fn ~ f pointwise. 
Conversely, suppose fn ~ f pointwise and boundedly. By 29.34, each continuous linear 
functional on C[a, b] is represented by a scalar-valued measure # on the Borel sets; it suf- 
rices to show that  f fn d# ~ f f d#. If the scalar field is C, we may consider the real and 
complex parts of #; thus it suffices to consider real-valued #. By the Jordan Decomposition, 
it suffices to consider finite positive measures #. Then f fn d# ~ f f d# by the Dominated 
Convergence Theorem (22.29). 

28.22.  When no topology is specified for X*,  then X* is generally understood to be 
equipped with its norm topology, using the operator norm as in 23.7. Tha t  topology on X* 
is usually used to define the second dual i.e., the vector space X**.  

In addition to the norm topology, two other topologies on X* that  are occasionally 
useful are the weak topology ~ (X* ,X**)  and the weak-star topology ~ ( X * , X ) .  

Exercises. 
a. The weak topology a ( X * , X * * )  and the weak-star topology a ( X * , X )  are Hausdorff, 

locally convex topologies on X*.  The weak-star topology is weaker than (or equal to) 
the weak topology. (In 28.41(B), we shall consider the conditions under which these 
two topologies are equal.) 

b. The norm-closed unit ball, {v C X* : Ilvll _< 1}, is closed in both the weak and 
weak-star topologies. 

28.23.  Example. Let X - co - {sequences of scalars converging to 0}; we have seen in 
23.10 that  X* - gl and X** - g~.  

Recall from 21.11.b tha t  a probability measure on N is a sequence (Pn) with Pn >_ 0 for 
all n and  En%l  Pn -- 1. Let P be the set of all such probabili ty measures. Show that  P is 
a closed convex subset of f l ,  when that  space is given its norm topology. Hence P is also 
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weakly closed i.e., closed in the 0"(~1, ~oo) topology by 28.14.a. 
However, P is not weak-star closed that is, P is not closed in the a(gl, co) topology. 

Indeed, we have 0 ~ P, but the sequence 

(1 ,0 ,0 ,0 ,0 , . . . ) ,  (0 ,1 ,0 ,0 ,0 , . . . ) ,  ( 0 , 0 , 1 , 0 , 0 , . . ) ,  (0 ,0 ,0 ,1 ,0 , . . . ) ,  . . .  

is easily shown to be weak-star convergent to 0. 

28.24. As we have shown above, a normed space, equipped with a weak or weak-star 
topology, generally is not metrizable. Nevertheless, certain subsets of that nonmetrizable 
TVS may be metrizable, when equipped with the relative topology. Here are two particularly 
important special cases. Let V be a normed space. 

a. If V is separable and �9 is a norm-bounded subset of V*, then the relative topology on 
determined by the weak-star topology is metrizable. 

b. If V* is separable and (I) is a norm-bounded subset of V, then the relative topology on 
determined by the weak topology is metrizable. 

Hints: Show that convergence in (I), pointwise on the separable space mentioned, is equiv- 
alent to convergence pointwise on some dense subset of that separable space, since q~ is 
bounded. Convergence on a countable set can be determined by a countable collection of 
seminorms. 

POLAR ARITHMETIC AND EQUICONTINUOUS SETS 

28.25. Definition. Let IX, Y} be a bilinear pairing. For each set R c_ X, we define the 
po l a r  of R to be the set 

R "~ = {y e Y ' l<x,y>l-< 1 for all x e R}. 

Similarly, we may define the polar of any set S c_ Y to be the set 

S > = {x E X ' l<x ,y>l  <- 1 for all y e S}. 

These operations are a special case of 4.10(D). 
Caution: Notations differ. For instance, some mathematicians call the objects above the 

absolute polars of R and S, and use Re(x, y) instead of I<x, Y)I to define "polar." Moreover, 
among many mathematicians, R <a and S > are denoted by R ~ and S~ we have introduced,, 
separate notations to reduce confusion among beginners. 

28.26. Elementary properties. We state results mainly for <1; analogous results obviously 
hold for t>. 

a. O <~-Y,X <I-{0},R <~>_DR,andRC_S => R ̀~_DS > 

b. ( rR)  <~ - r-1(R<1), for any real number r > 0. 
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c. If (X, II II) is a normed space and (Y, II II) is its dual, then the polar of the closed 
ball {z E X " I1~11 ___ ~} is the closed ball {y E Y " IlYll _< ~-1}, for any real number 
r > 0. In particular, the polar of the closed unit ball is the closed unit ball. 

d. R < is a a(Y, X)-closed, convex, balanced subset of Y, for any set R c_ X. 

e. R < is absorbing in Y - -  hence a barrel in a(Y, X) - -  if and only if R is a(X,  Y)-bounded 
in X. 

f. Let R c_ X, and let R1 be its or(X, Y)-closed, convex, balanced hull. Then R < - R~. 

g. Let X be a topological vector space with topology -y; use the bilinear pairing IX, X*}. 
Then a set V C_ X* is equicontinuous (from X~ to F) if and only if V ~ is a "y- 
neighborhood of 0 in X. 

h. Let X be a topological vector space with topology -y. Let V c_ X* be equicontin- 
uous (from X~ to F). Then the cr(X*,X)-closed convex balanced hull of V is also 
equicontinuous. (Proof. Immediate from the preceding two exercises.) 

28.27. T h e  B i p o l a r  T h e o r e m .  S <~ is the cr(X,Y)-closed, convex, balanced hull of S 
that is, the smallest or(X, Y)-closed, convex, balanced set containing S. In particular, 

S <~ - S if and only if S is or(X, Y)-closed, convex, and balanced. 

Proof. Let C be the a(X,  Y)-closed, convex, balanced hull of S. Then S c_ C C_ S <>. 
Suppose z0 E S <> \ C; we shall obtain a contradiction. Consider X as a locally convex 
space equipped with the a(X,  Y) topology. By the Hahn-Banach Separation Theorem 
(HB20) in 28.4 there is some Y0 E Y that satisfies suPxEC Re{z, Y0} < Re@0, Y0). (We may 
omit the "Re" if the scalar field is R.) Since C is balanced, the left side of this inequality 
equals supxEc I{z, Y0}I. Replacing Y0 with cyo for some suitable scalar c, we may assume 
that 

sup I(x, y0}I < 1 < I(x0,y0)l. 
x E C  

Then Y0 E C < c_ S <, hence z0 E S <> C_ {y0} >, a contradiction (explain). 

28.28. Proposition: the original topology is an S-topology. Let X be a locally convex space. 
Then the topology of X is equal to the topology of uniform convergence on equicontinuous 
subsets of X*; it is also equal to the topology of uniform convergence on a(X*,  X)-closed, 
convex, balanced equicontinuous subsets of X*. (Here a subset of X* is considered equicon- 
tinuous if it is equicontinuous as a collection of maps from X with the given topology to 
the scalar field.) 

Proof. Let F be the scalar field. Let g - {equicontinuous subsets of X*}. Refer to the 
characterization of neighborhoods of 0 given in 28.8. If S E g, then S > is a 7-neighborhood 
of 0, by 28.26.g. Conversely, if N is a 7-neighborhood of 0, then N contains a set B that is 
a 7-closed, convex, balanced neighborhood of 0, by 26.27.d. Then B is also weakly closed, 
by 28.14.a. By the Bipolar Theorem (28.27), then, B - B <~. By 28.26.g, the set S -  B < 
is equicontinuous, hence belongs to g, and N _D S ~. 

Finally, note that the a(X*,  X)-closed, convex, balanced hull of any member of g is also 
a member of g, by 28.26.h. 
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2 8 . 2 9 .  B a n a c h - A l a o g l u - B o u r b a k i  T h e o r e m s .  The Ultrafilter Principle, introduced in 
6.32 and studied further especially in 17.22, is equivalent to the following principles: 

( U F 2 6 )  Let X be a topological vector space with scalar field F. Let V be 
an equicontinuous set of maps from X into F. Then V is relatively compact 
in a(X*,  X) that is, V is contained in a or(X*, X)-compact set. (Therefore 
every equicontinuous, er(X*, X)-closed set is er(X*, X)-compact.) 

( U F 2 7 )  Let X be a topological vector space with topology -7 and with dual 
X*. If S is a neighborhood of 0 in X, then S < is a(X*,  X)-compact, where 
polars are with respect to the bilinear pairing (X, X*}. 

(UF28)  Let (X, II II) be a normed space with scalar field F. Let X* be its 
dual, and let V be the closed unit ball of that d u a l -  that is, {v E X * :  Ilvll ___ 1}. 
Then V is a(X*,  X)-compact. 

For brevity in the proofs, let the a(X*,  X) topology be denoted by w*. The reader may 
find it helpful to review 17.15. The equivalence of these principles with other forms of 
UF was first announced, without proof, by Rubin and Scott [1954]; our proof is based on 
Luxemburg [1969]. 

Proof of (UF19) ~ (UF26). The w* topology is the relative topology induced on X* 
by considering that set as a subset of F X with the product topology. The closure of an 
equicontinuous set is equicontinuous, as we noted in 18.33.a. For each x E X, the set 
V(x) = {(x, v):v E V} is a bounded subset of F, since V is equicontinuous. Hence cl[V(/)] 
is a compact subset of F. Then V is contained in the set HxEx cl[V(x)], which is compact 
by (UF19). Therefore cl(V) is itself a compact subset of F X. It remains to show that cl(V) 
is actually a subset of X*. Any pointwise limit of linear functions is linear, so each member 
of cl(V) is linear. Also, since V is equicontinuous, any pointwise limit of members of V is 
continuous. This completes the proof. 

Proof of (UF26) => (UF27). By 28.26.g we know that S < is an equicontinuous set of maps 
from X into F. By 28.26.d we know S < is a(X*,  X)-closed. 

Proof of (UF27) => (UF28). V = S < where S is the closed unit ball of X. 

Proof of (UF28) => (UF1). Let ft be a nonempty set, and let 9: be a proper filter of 
subsets of fl; we wish to show that 9" is contained in an ultrafilter. 

Let X = B(f~) = {bounded functions from ~t into IR}; this is a real Banach space when 
equipped with the sup norm. Let V be the closed unit ball of the dual of X. There is a 
natural injective mapping qa: ~t --+ V, as follows: ~ ( x )  = x(co) for co E f~ and x E X. Thus 
we may view fl as a subset of V; then members of 9" are subsets of V. 

Let iK = {w*-cl(F) : F E 9"}. Members of X are subsets of V, since V is w*-closed. 
Hence members of ig are w*-compact. The collection iK has the finite intersection property 
since 9" does. Therefore iK has nonempty intersection. Choose some vo in the intersection of 
X. Then v0 E V, so v0 is a linear map from X into IR with Iiv0II _< 1. Define # :  {P(ft) --+ IR 
by taking #(S) = v0(ls).  
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Fix any F E 9". Since v E w*-cl(F), there is some net (~(ct) : ct E A) in F such that 
w $ 

~p~(~) , v0. Thus, for each x E X, we have x(cv(c~)) ~ vo(x). 
In particular, for each S E [P(ft) we have p(S) = v0(ls) = lim~EA ls(a~(c~)). Then p is 

a charge on the measurable space (gt, [P(ft)), and its range is contained in {0, 1} since a net 
of 0s and is can only have limit 0 or 1. Moreover, p(F)  = lim~EA 1F(CV(C~)) = 1. 

The preceding conclusions about it are valid for each F E 9"; in particular it(ft) = 1. Thus 
it is a two-valued probability charge that takes the value 1 on 9", so it is the characteristic 
function of an ultrafilter that contains 9:. (This proof is modified from Luxemburg [1969].) 

Remark. The Ultrafilter Principle and its consequences are needed frequently in duality 
theory and will be used heavily throughout the remainder of this chapter. Hereafter we 
shall use the Ultrafilter Principle freely; we shall discontinue our past practice of keeping 
track of its uses and its equivalents. 

28.30. Let X be a topological vector space with topology ? and with dual X*. Consider 
polars with respect to the bilinear pairing ( X , X *  I. Let S C X*. We consider some 
conditions that might be satisfied by S: 

(A) S is equicontinuous from X~ to the scalar field F that is, S ~ is a 7- 
neighborhood of 0. 

(B) S is contained in some a(X*,  X)-compact, convex, balanced subset of X*. 

(C) S is contained in some a(X*,  X)-compact subset of X* 

(D) S is cr(X*,X)-bounded; that is, S ~, is absorbing. 

Proposition. In any TVS X.y we have ( A ) = ~  ( B ) = >  ( C ) = ~  (D). 
Moreover, suppose X~ is a locally convex space. Then X~ is barrelled if and only if (D) 

=> (A). In other words, a locally convex space X is barrelled if and only if it satisfies this 
condition (compare with 27.27(B5))" 

(B5 I) A n o t h e r  U n i f o r m  B o u n d e d n e s s  P r o p e r t y .  Let ~ be a collection of 
continuous linear maps from X into the scalar field that is bounded pointwise. 
Then (I) is equicontinuous. 

Proof. For (A) ~ (B), note that S C_ S ~><, and use 28.26.d and (UF27) in 28.29. The 
implication (B) ~ (C) is trivial. The implication (C) =~ (D) is just 27.3.c. 

To show that (D) =~ (A) in any barrelled space, note that S ~ is a a(X,X*)-closed,  
convex, balanced subset of Y; hence it is also X~-closed (see 28.13.b). If S ~ is absorbing, 
then it is a ?-barrel, hence a ?-neighborhood of 0. 

On the other hand, suppose that (D) ~ (A); let us show X~ is barrelled. Let R c_ X 
be a barrel i.e., a ~/-closed, convex, balanced, absorbing set; we wish to show R is a 
~-neighborhood of 0. Since R is ?-closed and convex, it is also weakly closed i.e., it is 
~r(X, X*)-closed; see 28.14.a. Hence R -  R <>. Let S -  R~; then R -  S >. Now apply (D) 

(A). 
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O o  2 s . 3 1 .  O r l i c z - P e t t i s  T h e o r e m .  Let E j = I  xj be a series in a Banach space (X, II II). 
OO Then Ej=I x j  is unconditionally convergent (as in conditions (A) through (F) of 23.26) if 

and only if 

(G) Each subseries EkC~__l Xjk is weakly convergent. That  is, if S c N, then there exists 
some ys E X such that  the series }-~jcs xj converges weakly to ys. 

Proof. Obviously (F) ::v (G). We shall prove (G) =v (C). We may assume that  the scalar 
field is N. For any f E X*, the subseries 

f ( x j )  and ~ f ( x j )  
f(xj)>O f(xj)<0 

are both convergent; hence }-~j=l If(xJ)l < oc. Thus V "  f H { f ( x j ) ' j  e N} defines a 
linear map V" X* ---, t~l. 

To show that  V is continuous, we shall use the Closed Graph Theorem (27.28.c)" Suppose 
that  f(k) ~ f in X* and V (f(k)) ~ ( c j ' j  C N) in t~l, as k --~ oc. For fixed j ,  the former 

hypothesis yields f (k) (x j )  ~ f ( x j ) ,  while the latter hypothesis yields f (k) (x j )  ~ cj. Thus 
cj - f ( x j ) ,  V has closed graph, and therefore V is continuous. 

Let U be the closed unit ball of X*; then V(U) is a bounded subset of gl. 
We wish to show that  V(U) is relatively compact. Let (uk) be any sequence in U; we 

wish to show that  (V(uk) " k - 1, 2, 3 , . . . )  has a subsequence that  is convergent in gl. By 
Schur's Theorem (28.20), it suffices to show that  (V(uk))  has a subsequence that  is weakly 
convergent in t~l. 

Let X0 be the closed span of the sequence (xj); then X0 is separable. Note that  X0 is 
also weakly closed; hence Ys c Xo for each set S c_ N. 

For each k, let ~k be the restriction of uk to X0; thus ~k is a member of the closed 
unit ball of X0*. By 28.24.a and (UF28) in 28.29, that  closed unit ball is a compact 
metrizable space, when equipped with the a(Xo*,Xo)  topology. Therefore, the sequence 
(~k " k - 1, 2, 3 , . . . )  has a subsequence (~k(p) " P -- 1, 2, 3 , . . . )  that  is a(X0*, X)-convergent 
to some limit ~0 in that  closed unit ball. That  is, ~k(p)(Y) ~ ~o(Y) for each y in X. In 
particular, Uk(p)(Ys) ~ ~o(Ys) for each S C_ N. 

By the Hahn-Banach Theorem (HB7) in 23.18, we can extend the functional u0 " X0 ~ R 
to a continuous linear functional u0 " X ~ R with the same norm; then u0 E U. 

It sumces to show that  the corresponding subsequence (V(uk(p))" p -- 1, 2, 3 , . . . )  con- 
verges weakly in ~1 to V(tt0). That  is, we shall show that  for each ~ E ~ ,  we have 

(,) 
It suffices to show (.)  for all p in a dense subset of g~, since the V(uk(p))'s are bounded. 
By linearity, it suffices to show (.)  for all ~ in a set whose span is dense in g~. One such 
set is the set of all characteristic functions of subsets of N; thus it suffices to show (.)  
whenever ~ - l s for some S c_ N. Unwinding the notation, for any u c U we find that  
( l s ,  V(u))  - E j c s  ? . t (x j )  - u(ys)  - ~(Ys), where ~ is the restriction of u to X0. Thus 

( l s ,  V(Uk(v))} - Uk(v)(Ys) ~ uo(Ys) - ( ls ,  V(uo)) 

when p ---, oc. This completes the proof. 
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DUALS OF PRODUCT SPACES 

28.32.  L e m m a .  The dual of a product of TVS's  is (algebraically) equal to the external 
direct sum of their duals; that  is, (I-IAEA XA) * -- [_JAEA(XA*). 

In more detail, let F be the scalar field. For each A E A, let XA be a topological vector 
space, with dual XA* = {continuous linear maps from XA into F}. Let P = I-IAEA XA be 
the product  topological vector space. Let Q = [_]AEA(XA*) be the external direct sum of 
the duals i.e., Q consists of those functions q E I-[AEA(XA*) such tha t  qA = 0 for all 
but finitely many A's. For each q E Q, define a corresponding mapping ~"  P ~ F  by 
q(P) = Y'~AEA qA(PA) = ~AEA qA(TrA(p)); here 7rA : P ~ XA is the Ath coordinate projection. 
Then the mapping q H 0" is an algebraic isomorphism (i.e., a linear bijection) from Q onto 
P*.  (We do not consider any topologies on Q or P*  here.) 

Hints: Each mapping P ~x> XA qx> IF is a composition of two continuous maps and there- 
fore continuous; thus each ~" is continuous�9 Purely algebraic considerations (i.e., without 
regard to topology) show that  the mapping ~" is linear and that  the mapping q H 0" is linear 
and injective�9 It suffices to show that  this mapping is also surjective. Let any ~p E P*  be 
given. 

For each A E A there is a continuous linear injection tA : XA ~ P,  defined by taking 
cA(z) to be the vector whose Ath coordinate is z and whose other coordinates are all 0. 

The composition qA XA ~ �9 > P > IF is a continuous linear functional on XA, and thus a 
member of X*.  

Since ~p: P ~ F is continuous, the set N = {p E P :  I~p(p)l < 1} is a neighborhood of 0 
in P. By the basic properties of the product  topology (see 15.24.a), N _D 1--[AEA NA where 
each NA is a neighborhood of 0 in XA and NA = XA for all but finitely many A's. Say we 
have NAj C XA~ for j -- 1, 2 , . . . ,  rn. If p E P is a point that  vanishes in all the coordinates 
A1,A2, . . . ,Am, then rp E N for every scalar r, and therefore ~p(p) = 0. Thus, for any 
p E P,  the value of ~p(p) only depends on the coordinates PAI,PA~, . . .  ,PAre- It follows that  
~P(P) = qA~ (PA~) + qA2 (PA2) §  § qAm (PAre). This completes the proof. 

28.33.  A nonrnetrizable example. Let F be the scalar field. Then lF N is the space of all 
sequences of scalars, and I-IN F = {y E F N : yj = 0 for all but finitely many j}�9 These two 

(X) 

spaces have a natural  separated pairing: @, y} - ~ j = l  x jy j .  

When equipped with the product  topology, IF N is a Fr~chet space, as discussed in 26.7, 
26�9 and thereafter. By 28.32, its dual is ~N F. Conversely, a natural  topology for IIN IF 
is the inductive limit topology, making it an LF space, as discussed in 27.42; then it is 
barrelled but not metrizable. We shall now show that  its dual is IF N. 

First, consider any x E FN�9 It defines a linear functional (x, .) �9 IIN F ~ F by the bilinear 
pairing defined above. This linear functional is continuous on each of the finite-dimensional 
subspaces Sn - {y E F N ' y j  - -0  for all j > n}; hence it is continuous on [~N F. 

Conversely, let ~p be a continuous linear functional on [JN F�9 Define xj = ~p(ej), where 
ej = (0, 0 , . .  �9 0, 1, 0, 0,�9 �9 is the sequence with 1 in the j t h  place and 0s elsewhere. Then 
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28.34. Proposition. The weak topology on a product is the product of the weak topologies. 
In more detail, let P - H s c s  Ys be a product of topological vector spaces, and let P 

have the resulting product topology, thus making it a TVS also. Let (Ys)~ and P~ be the 
spaces Ys and P equipped with their weak topologies, respectively. Then the topology of 
P~ is equal to the product topology on 1-Is~g((Ys)~). 

Proof. Let 7rs �9 P ~ Ys be the Sth coordinate projection. Recall from 28.32 that  P* = 
L i s t s  (Ys*). Let (p~) be a net in P, and let p c P. Then 

p,~ ~ p in P ~  -: :- r - p )  ~ 0 in F for each ~ C P* 
n 

Z ~J (Trs~ (p~ - p ) )  ~ 0 for each finite set 
j = l  

{S1, $ 2 , . . . ,  Sn} C_ g and each collection of 

functionals ~1  E ( Y S 1 ) * ,  " " " , ~)n C ( Y S n  ) *  

(Trs(p~ - p ) )  ~ 0 for each S E g and 

each ~ ~ (Ys)* 
7rs(p~) ~ 7rs(p) in (Ys)~ for each S c g 

p~ --~ p in n ((Ys)w). 

sos 

28.35. T h e o r e m  on e m b e d d i n g  an  LCS in a p r o d u c t  of  B a n a c h  spaces .  Let X 
be a Hausdorff locally convex space. It is sometimes convenient to represent X as a linear 
subspace of a product of Banach spaces Bs,  as follows: 

Let F be the scalar field, and let X* be the dual of X. Let S be the collection of all 
equicontinuous subsets of X*; here equicontinuous refers to mappings from X with its given 
topology to F. Then the seminorms Ps, defined as in 28.8, determine the topology of X, 
and they separate the points of X. 

For each S c g, the seminorm Ps determines a norm II" [Is - Ps(')  on the quotient space 
X/ps l (O) ,  as in 22.13.e. Let 7~s " X ~ X /ps l (O)  be the quotient map. Let B s  be the 
completion of the normed space (X /ps l (O) ,  I1" IIs); the norm of the Banach space Bs  will 
also be denoted by [l" I]s. Let P - I-Ises Bs  be the product, equipped with the product 
topology. Define a map c : X  ~ P by taking the Sth coordinate of c(x) to be us(x) .  Show 
that  

(i) The mapping c is injective. Thus we may view c as an inclusion; then X is 
a subset of the product P. The quotient maps 7~s �9 X ~ X /p s l (O)  are just 
restrictions of the coordinate projections 7rs : P --+ Bs .  

(ii) The given topology on X is the relative topology determined by P. 

(iii) Let "a" denote weak topology; then X~ has the relative topology determined 
by P~ - I-[scg((Bs)~).  (The last equation was proved in 28.34.) 

Proofs. X is Hausdorff, so the seminorms Ps separate points of X. It follows that  c is 
injective. The rest of (i) is obvious. 
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For (ii) and (iii), let any net (x~) be given in X, and let x ~  E X; we must show that  
x~ --+ x ~  in the given topology (respectively, in the weak topology) if and only if for each 
S E S we have 7rs(x~) --+ 7rs(x~) in the norm topology of Bs  (respectively, in the weak 
topology of Bs).  By linearity, we may assume x ~  = 0. 

For (ii) the argument is quite simple: x~ --+ 0 in the given topology .e----v. ps(x~)  --+ 0 
for each S <---> ]]~rs(x~)its --+ 0 for each S <---> rrs(x~) --+ 0 in Bs for each S. 

For (iii), first suppose that  x~ --+ 0 weakly in X. Let any S E g be given, and let 

f E (Bs)*.  Then X -s P ~ Bs  f F is a composition of continuous linear maps, if 
X is equipped with its given topology and Xs  with the norm topology and P with the 
product topology. Thus f o 7rs o t is a member of X*. Since x~ --+ 0 weakly in X, we have 
(f  o rrs o~)(x~) --+ 0 in F. Thus rrs (x~) -+ 0 weakly in Bs.  

Conversely, suppose that  rcs(x~) --+ 0 weakly in Bs for each S. Fix any f E X*; 
we must show f (x~)  --+ O. We may assume that  f is not the constant function 0. Note 
that  the singleton {f} is itself an equicontinuous subset of X*; let us denote it by S. 
Then ps(x)  - / (x) l .  Then X/psi(O) - X / f - l ( o )  ~ Range(f)  - F, where ~ denotes an 
algebraic isomorphism. Thus Bs is one-dimensional, so weak convergence in Bs  is the same 
as norm convergence. Hence If(x~)l- p(x~) - I I ~ s ( x ~ ) l l s  0. 

CHARACTERIZATIONS OF WEAK COMPACTNESS 

2 8 . 3 6 .  E b e r l e i n - S m u l i a n - G r o t h e n d i e c k  T h e o r e m .  Let X be a Hausdorff locally 
convex TVS, and let X* be its dual. In the conditions below, an equicontinuous subset of 
X* means a collection of linear maps that  is equicontinuous from the given topology on X 
to the usual topology on the scalar field. 

Let (P be a bounded convex subset of X that  is complete (in the given topology on X). 
Then the following are equivalent: 

(A) ( I t e r a t e d  l imi t  c o n d i t i o n . )  For every net ( ~  : a  E A) in (I) and every 
equicontinuous net (sz :/~ E ]~) in X*, we have 

lira lira (qp~ s ~ )  --  lim lira ( ~  s~}  
aEA ~E~ ' ~E~ c ~ E A  ' 

whenever both sides of the equation exist 
limits exist. 

i.e., whenever all the indicated 

( B )  ( S e q u e n t i a l  i t e r a t e d  l imi t  c o n d i t i o n . )  For every sequence ( ~ m ) i n  (I) and 
every equicontinuous sequence (s~) in X*, we have 

lira lira (~m,S~) = lira lim (~m,s~) 
?Yt---+OO 7t - - -+(X)  g t - - -+OO m - - - + ( X )  

(c) 
whenever both sides of the equation exist. 

~P is weakly compact. That  is, each net in �9 has a subnet that  converges 
weakly to some member of ~. 
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(D) �9 is weakly countably compact. That  is, each sequence in �9 has a subnet 
that  converges weakly to some member of ~. 

Moreover, if X is a Banach space, then those conditions are equivalent to this one: 

(E) �9 is weakly sequentially compact. That  is, each sequence in �9 has a subse- 
quence that  converges weakly to some member of ~. 

Proof. Note that  �9 is complete, hence closed. Also q) is convex, hence �9 is weakly closed. 
The implications (C) =~ (D) and (E) =~ (D) and (A) =~ (B) are obvious. 
We may prove (D) ~ (A) as follows: By (UF26) in 28.29, any equicontinuous subset of 

X* is relatively compact in a(X*,X).  Hence the sequence (s~) has a subnet that  converges 
in a(X*, X) to some s E X*. By assumption (D), (~m) has a subnet that  converges weakly 
to some qp C ~. If both l i m m - ~  l i m n ~  (r Sn)  and l i m n ~  limm~oc (qPm, Sn) exist, it 
follows easily that  those limits must both be equal to (~, s). 

Next we prove that  (B) implies (C) and (E) when X is a normed space. Let S be the 
closed unit ball of the dual normed space (X*, II II)- Since the span of S is all of X*, the 
weak topology on X is precisely the same as the topology of convergence pointwise on S. 
Let S be equipped with the a(X*,X) topology; then S is a(X*,X) compact, by (UF26) 
in 28.29. Since �9 is bounded, the set of scalars {(~, s / �9 ~ c ~, s E S} is bounded, and 
thus its closure in the scalar field F is a compact metric space M. Members of �9 may be 
viewed as distinct maps from S into M; it is easy to verify that  those maps are continuous 
when S has the a(X*,X)  topology. Then �9 C_ C(S,M) C M S as in 17.50. Then condition 
17.50(B) is satisfied, hence conditions 17.50(C) and 17.50(E) are also satisfied. Moreover, 

is weakly closed, by assumption, so the weak limits guaranteed by 17.50 all lie in ~. 
Finally we prove (B) ~ (C), in general. For that  purpose we employ the notation and 

conclusions of 28.35. Note that  �9 is complete in X, hence �9 is complete when considered 
as a subset of P, hence �9 is closed in P. Also �9 is convex, hence �9 is closed in P~. Since 
the topology of Xo is the relative topology determined by P~, we merely need to show that  

is contained in some compact subset of P~. Recall from 28.34 that  P~ - rIs~g((Bs)w). 
Certainly �9 is contained in 1-Iseg 7rs(r By Tychonov's Theorem (AC21) in 17.16 (or by 
the weaker version (UF19) in 17.22) it sumces to show that  for each S, the set ~rs((I)) is 
compact in (Bs)~. Applying the results of the previous paragraph, it suffices to show 7rs(r 
satisfies condition (B) in Bs; we hold S fixed throughout the remainder of this argument. 
Let (Ym) be a sequence in 7rs(r and let (tn) be an equicontinuous sequence in Bs*. Since 
Bs is a normed space, the equicontinuity of (tn) simply means that  (t~) is bounded in norm; 
thus for any e > 0 there is some 5 such that  

y c Bs, Ilylls -< 6, n E N =~ t~(y) <_ e. 

Define the compositions 8 n " X & P ~ Bs L~ F. Then they satisfy 

x c x ,  p s ( x )  < ~, n c I~ ~ ~ ( x )  <_ ~. 

Thus the sequence (Sn) is an equicontinuous subset of X*. For each Ym in 7rs(r choose 
any ~Pm C r 7rsl(y,) .  Then the scalars {~m, Sn) are the same as the scalars (ym,tn), so 
hypothesis (B) for q) implies condition (B) for 7rs(O). This completes the proof. 
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28.37.  J a m e s ' s  S u p  T h e o r e m .  Let X be a Hausdorff, locally convex, real TVS, and let 
X* be its dual. Let B be a bounded, weakly closed subset of X. Assume that  the closed 
convex hull of B is complete. Then the following are equivalent: 

(A) B is weakly compact.  

(B) Each member  of X* at tains a maximum on B. 

(C) Each continuous (not necessarily linear) map from X~ to IR at tains a max imum 
o n  B .  

Of course, (A) =~ (C) is just 17.7.i, and (C) =~ (B) is trivial. The new result here is (B) 
(A). 

Remarks. Note tha t  the set B is not required to be convex. 
James 's  Theorem is something of a "supertheorem." Its proof is quite long, but it 

makes into easy corollaries several substantial  theorems tha t  were proven in the years before 
James 's  Theorem. For instance, in 28.38 we shall use James 's  Theorem to prove the Kre[n- 
Smulian Theorem. 

James originally proved this theorem for normed spaces; the proof was simplified slightly 
and extended to locally convex spaces by Pryce [1966]. For separable Banach spaces X, a 
substantially shorter proof was later given by Simons [1972]; that  proof can also be found 
in Deville, Godefroy, and Zizler [1993]. However, for the more general setting considered 
here, Pryce's  proof (given below) still seems to be the shortest. 

Proof of theorem. We may replace B with its closed convex hull, since (i) each f E X* 
at tains the same maximum on that  set, and (ii) if tha t  set is weakly compact,  then so is 
B since B is weakly closed. Thus, we may assume B itself is closed, convex, and complete. 
Replacing X with its completion, we may assume X is complete. 

Assume B is not weakly compact; we shall eventually reach a contradiction. By 28.36, 
there is a sequence (Zn) in B and an equicontinuous sequence (ej) in X*  such that  the 
i terated limits limj limn ej(Zn) and limn limj ej (Zn) exist and are unequal. We may assume 
that  

lim lim ej (Zn) > a > b > lim lim ej (zn) 
j n n j 

for some real numbers a, b. Let F be the linear span of the sequence (ej), and let 

- {positively homogeneous, continuous functions from X to ]R}. 

Then F, X*,  (I) are linear spaces, with F C_ X* C_ (I). 
Each f E �9 is continuous, and therefore is bounded on some neighborhood of 0. It 

follows tha t  f is bounded on bounded sets, and in particular f is bounded on B. Hence the 
number 

p( f )  - s u p { f ( x )  " x E B}  

is finite. In this fashion we obtain a mapping p �9 q) ~ R. We easily verify that  p is a 
sublinear functional on the linear space O. Also, we verify that  if A c_ O is equicontinuous, 
then A is uniformly bounded on some neighborhood of 0, and hence uniformly bounded on 
B. Therefore p is bounded on any equicontinuous subset of q). 
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Let (fi) be a subsequence of (ej)  in the next paragraph we shall be more specific 
about our choice of this subsequence, but let us first consider properties of any subsequence. 
Define functions ~, ~"  X --, [-oc,  +cx~] by 

~(x) - l iminf f i (x) ,  ~(x) - l imsupf i (x ) .  
- -  i--*cx~ i--*c~ 

It is easy to verify that  

I (x) - - < s u p  I f~(x)  - f~ (y) l ,  m a x  
k 

Since the fi 's  are equicontinuous and vanish at 0, it follows that  ~ and ~ are real-valued and 
continuous. Furthermore, it is easy to verify that  both ~ and ~ are positively homogeneous. 
Thus, they belong to the linear space (I). 

We shall now show that  the subsequence ( f  i) can be chosen so that  

p ( h -  ~) - p ( h - - ~ )  for all h E F. (1) 

To see this, let (hk �9 k E N) be a sequence that  is dense in F, when F is equipped with the 
topology of uniform convergence on B. (For instance, the linear combinations of ej'S with 
rational coefficients form a countable dense set; arrange it into a sequence.) For any fixed k, 
by 10.38 the given sequence (ej) has a subsequence (fi) that  satisfies p ( h k - ~ )  -- p (hk - - -~ ) .  
By a diagonal subsequence argument (similar to that  in 17.27), the given sequence has a 
subsequence (f~) that  satisfies p ( h k -  ~) -- p ( h k - - ~ )  simultaneously for every positive 
integer k. Since the sequence (hk) is dense in F, we obtain (1). 

Since (fi) is a subsequence of (ej) ,  we have 

lim lira fi(zn) > a > b > lim lim f i (Zn) .  
i n n i 

Deleting the first few terms of the sequences (f/) and (Zn), we may assume that  

lim f~(Zn) > a for each i, lim f~(Zn) < b for each n. 
n---, oc i---, oc 

Then for each fixed k, we have 

l im [fk(Zn) -- l im f i ( z n ) l  > a - b > O. (2) 
n L J 

For n - 0, 1, 2, 3 , . . . ,  let Kn be the convex hull of the set {fn+l,  f~+2, fn+3, . . .} .  Then 
(I) _D X* _D 1 -~ _D Ko _D K1 _D K2 _D K3 _D.... Next we claim that  

p ( f  - ~) > a - b for e a c h f E K 0 .  (3) 

N 
To see this, fix any f E K0. Then f - }-~k=l ,Xkfk for some positive integer N and some 

N )~k -- 1. By (2) choose an integer n large enough so that  )~1, ) ~ 2 , ' - - , ' ~ N  C [0,  1] with E k = l  

f k  (Zn) - l i m m ~  f ,~ (Zn) > a -- b for all k - 1, 2 , . . . ,  N. Then 

p ( f  - W) - sup [f(x) - _~(x)] > f ( z ~ )  - ~__.(Zn) 
- -  x E B  

= f ( z n )  - l iminffk(z~)  - f ( z n )  - lira f ,~ ( zn)  
k-----~oc m----,oc 

N N 

= E Ak [ f k ( z ~ ) -  l i r n  fm(Zn)]  > E A k ( a - - b )  - a - b ,  
k = l  k = l  
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which proves (3). 
Next we shall recursively choose gl E K1, g2 E K2, g3 E K3, . . .  satisfying 

1 
P n! + 2"  (N + 1)v < inf p v ~ - 

n=l �9 g E /(N n=l n. (N + 1)! 
(4) 

for all integers N _> 0 (with the convention that  any summation }-~~ is 0). For N - 0, 
inequality (4) is  immediate from (3). Now assume that  

iki ] g~ -~ + - .  < inf - +  - P nV 2 N! P n! N! 
L n = l  " g E K N -  1 L n = l  

for some integer N _> 1. Since KN-1 _D /s we have also 

] g~ -~ + - �9 < inf p ---------= + . 
P nW 2 N! n! N 

k n = l  " g E K N  L n = l  

Now apply the lemma in 12.26, with 

N - 1  
1 1 ~a-b - E g n - - ~  

c~ -  N! '  / 3 -  ( N + I ) ! '  ~ / -  2 ' ~ n! ' 
n = l  

and with the convex set equal t o / ( N  -- ~. Take gN -- r/-~- ~; this proves (4) and completes 
the recursive choice of the gn's. Substi tuting g - gN+I in (4), we obtain also 

1 
P n! + 2"  (N + 1)! < P n! " (5) 

n = l  [ .n=l  

Next we shall show that  this sequence (g~) satisfies 

~ ( x )  < l i m  i n f  gn(X) ~ l i m  s u p  gn(X) ~ -~(X) 
- -  n - - +  CX3 n - - ~  O O  

for each x E X. (6) 

Fix any x E X; temporari ly fix any n E N. Since gn is a convex combination of finitely many 
of the functions f~+l,  fn+2, f~+3 , . . . ,  there exists at least one i E {n + 1, n + 2, n + 3 , . . . }  
with f i (x)  <_ g~(x). This proves liminfi__,~ f~(x) <_ liminf~__,or gn(x), which is half of (6). 
The other half is proved similarly. 

Next, note that  K0 is the convex hull of the equicontinuous set {fl ,  f2, f3 , . . . } .  By 28.30, 
the a (X* ,  X)-closure of K0 in X* is a(X*,X)-compact .  The sequence (g~) lies in K0 and 
therefore has a a (X* ,  X)-cluster point ~0 in X*. It follows that  

lim inf g~(x)  < ~o(x) < lim sup gn(x) for each x E X.  (7) 
~ l - - - ~  CX~ n - - - - ~  Cx:) 

Combine this with (6) to obtain ~(x) _< ~0(x) _< ~(x)  for all x E X, and therefore 

h(x)  - 7 ( ~ )  < h(x)  - ~0(x)  < h(x)  - ~ (x )  for all x E X and h E F. 
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Take the supremum over all x E B to obtain p(h--~) < p(h-  990) < p (h -  99) for all h E F. 
Combine that  with (1) to obtain p(h-  990) - p (h -  99) for each h E F. Since p is positively 
homogeneous, p(ah -  ~99o) - p (ah -  ~99) for each c~ > 0 and h E F. In particular, 

[ ~ gn -- 990 1 P n! 
n = l  

P n! 
n = l  

for any integer N > 0. Let "~n -- gn -- 990; from (5) we now obtain 

P ~-. + 2 "  ( N + I ) !  < P ~ " 
n = l  L n = l  

Since the ")'n'S lie in the equicontinuous set K0 - 990, the summation r - )--~n~__l ~n/n! 
defines a functional r E X*. By the hypothesis of the theorem, r attains a maximum at 
some point u E B. Also, since K 0 -  99o is equicontinuous and B is bounded, 

the number /3 = sup sup If(x)l is finite. 
f EKo-99o xE B 

For each N E N we have 

N o o  

Z n! ---- ff-)(~) -- E ")'n (?'t) n! 
n - 1  n - - N + l  

>_ p - p -  - 

n = l  n = N + l  n = N + l  

")/n (?_t) 

n! 

Cx~ 

P(//)) -- E ")'n (~)  
n! 

n = N + l  

_> p ~ - > 

n = l  n = N + l  

N - 1  cx) 
~_ E")/n(U) + 1 a - b  E 2~ 

n! -2" N! n! 
n = l  n = N + l  

P ~ + 2" N! E n! 
L n = l  n = N + l  

N-1 Subtract 2n=l ~/n(U)/n! from both ends of this computation and then multiply the resulting 
inequality by N!; that leaves 

2~ a - b - N !  E 
~ ( > 2 n! n--N+l 

Since 0 -  limN__~ocN!EnC~=N+l 2~/n! (exercise), we have liminfN~or '~N(/t) _~ _a~ > 0, 
contradicting (7). This completes the proof of the theorem. 

2 8 . 3 8 .  Kre~n-Smul i an  T h e o r e m .  The closed convex hull of a weakly compact subset 
of a Banach space is weakly compact. 
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More generally, let X be a Hausdorff, locally convex space. Let B C_ X, let C be the 
closed convex hull of B, and suppose C is complete (in the given topology). Also suppose 
B is weakly compact. Then C is weakly compact. 

Proof. Without loss of generality we may assume the scalar field is R. We know B is 
bounded, by 27.3.c and 28.14.d; hence C is bounded, by 27.3.d and 27.3.e. Let A E X*. 
Since B is weakly compact, we know that A attains a maximum M on B. It follows easily 
that M is also the maximum of A on C. Now apply James's Theorem. 

SOME CONSEQUENCES IN BANACH SPACES 

28.39. Exercise. A subset of ~1 is compact if and only if it is weakly compact. 

Proof. Immediate from 17.33, 28.20, and 28.36. 

2 8 . 4 0 .  G o l d s t i n e - W e s t o n  T h e o r e m .  Let (X, II II) be a normed space, with dual X* 
and bidual X**. Let B and B** be the closed unit balls of X and X**. Then B is 
a(X**,X*)-dense in B**. 

Proof. Note that B** is closed and convex, hence a(X**, X*)-closed. Also, B C_ B**. Let 
C be the or(X**, X*)-closure of B in X**; then C c B**. It suffices to show that C - B**. 
Suppose that ~ E B** \ C. We know that C is convex by 26.23.a, and or(X**, X*)-compact 
by (UF28) in 28.29. By the Hahn-Banach Theorem (HB20) applied to the locally convex 
space X** with the or(X**, X*) topology, there is some f E X* with c - maxvEc Re f(~]) < 
Re/(~) .  Then supx~B If(x)] < c, hence ]]f]] < c, and hence ]f(~)] < ]]f]] II~I < c, a 
contradiction. 

28.41. T h e o r e m  (Banach ,  Smul i an ,  J a m e s ,  et  al.) Let X be a Banach space, and 
let B be its closed unit ball. Then the following are equivalent: 

(A) X is reflexive. That  is, the canonical embedding X c_ X** is surjective 
i.e., each continuous linear functional on X* acts the same as the evaluation 
map f H f(x) for some x E X. This condition is generally abbreviated as: 
X** = X. 

(B) On X*, the weak topology a(X*,  X**) and the weak-star topology a(X*,  X) 
are equal. 

(C) B is weakly compact. 

(D) Every closed, convex, bounded subset of X is weakly compact. 

(E) Whenever Q is a nonempty, closed, convex subset of X and x E X, then 
there is at least one point q E Q that is closest to x i.e., that satisfies 
]Ix - qll = dist(x, Q). 
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(F) Any nonempty, closed, convex subset of X contains at least one point of 
minimum norm. (Compare with 22.39(E).) 

(G) For each f C X*, we have Ilfll- max{If(x)l 'x c B}. 
(H) B is weakly complete i.e., complete when equipped with the uniformity of 

the weak topology. 

(I) The weak topology on X is quasicomplete (as defined in 27.3.f). 

Remarks. In condition (G), we emphasize that a maximum is given, not just a supremum. 
Contrast this with 23.7 and (HB8) in 23.18. 

Also, we note that some of the conditions are purely topological i.e., they are un- 
affected if we replace the given norm on X with some equivalent norm. Therefore all the 
conditions above are purely topological. Thus, reflexivity should not be viewed as a prop- 
erty of certain normed vector spaces; rather, it is a property of certain topological vector 
spaces whose topologies are normable. 

In condition (A), we emphasize that the isomorphism between X and X** cannot be 

just any isomorphism; it must be given by the canon ica l  e m b e d d i n g  of X c X** -~ , which 
was described in 9.57 and 23.20. It can be shown that the space J introduced in 22.26 is 
isomorphic to J** i.e., there exists a linear homeomorphism between J and J** but 
that  isomorphism is not given by the canonical embedding, and in fact J does not satisfy 
any of the equivalent conditions listed above. This was proved by James [1951]; additional 
discussion on this subject can be found in James [1982]. 

Proof of ( A ) = ~  (B). Obvious. 

Proof of (B) =~ (C). By the Alaoglu Theorem (UF28) in 28.29. 

Proof of (C) ~ (D). Any closed, convex set is weakly closed and contained in the compact 
set r B for some r > 0. 

1 Proof of (D) =~ (E). Let r - dist(x, Q). Then the sets Sn = {q E Q " l l x -  qll -< r + ~} are 
closed, convex, and bounded, hence weakly compact. Since S1 _D $2 _D Sa _D... and each 
Sn is nonempty, the intersection of the S~'s is nonempty. Any point q in that intersection 
satisfies IIx - qll - r. 

Proof of (E) =~ (F). Take x - 0. 

Proof of (F) =~ (G). We know that I[fll - sup{Ref(x) 'x r B}, and we wish to show that 
that supremum is actually a maximum. We may assume f -r 0. Let Q - {x r X"  Ref(x)  _> 
Ilfll}. Let q be a member of Q with smallest norm. It suffices to show that Ilqll -< 1. (Some 
readers may wish to take that assertion as an exercise before reading further.) Choose 

a se.quence (b~) with libel[ - 1 and Ref(bn) + ][fll. Let q~ - (Ref(bn)) -1 Ilfllb~; then 
q~ r Q. Since q is the member of Q with smallest norm, IIq~l -> Ilqll for all n. We have 
]]qn[[ ~ 1, hence 1 _> [[q][. 

Proof of (G) =~ (C). Immediate from James's Theorem 28.37. 

Proof of ( C ) = >  (H). Obvious. 
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Proof of (H) => (I). The weak and norm topologies have the same bounded sets. Any TVS 
topology is invariant under multiplication by a positive scalar. Hence it suffices to consider 
subsets of B. Any weakly closed subset of B is (for the weak topology) a closed subset of 
a complete set, hence complete. 

Proof of (I) ~ (A). Let { E X** be given. By the Goldstine-Weston Theorem, there 
is some bounded net (xx : ~ E A) that  is a(X**,X*)-convergent to ~. Then (xx) is 
a(X**,X*)-Cauchy, hence a (X ,X*) -Cauchy ,  hence cr(X,X*)-convergent to some x E X. 
It follows tha t  ~(f)  = f (x)  for all f E X*. 

28.42.  Exercise. Let X be a Banach space, with dual X*. Then X is reflexive if and only 
if X* is reflexive. 

Hints: Let X** and X*** be the second and third dual spaces. Let T : X ~ X** 
and U : X* --+ X*** be the canonical embeddings; these maps are linear and distance- 
preserving. We are to show that  (i) T is surjective if and only if (ii) U is surjective. 

The proof of (i) ~ (ii) involves little more than unwinding the notat ion and "chasing 

some arrows around a diagram." Let { be any member  of X*** The composition ~ X T . �9 ) 

X** ~ ) F is a member  of X*. Using the definitions of T and U, verify that  U(k) - {. 
The proof of (ii) ~ (i) is a bit more substantial  it uses the Hahn-Banach Theorem. 

Suppose T is not surjective. Then T(X) is a proper closed subspace of X**;  say ~ E 
X** \ T(X).  By ( H B l l )  in 23.18, there exists some continuous linear functional { E X*** 
that  vanishes on T(X)  but not on p. Unwind the notat ion to arrive at a contradiction. 

28.43.  Exercise. Show that  the weak topology on  ~1 is sequentially complete but it is not 
quasicomplete. 

28.44.  Let (X, II II) be a real Banach space, with dual space X*. (For simplicity we 
consider only real scalars.) The n o r m a l i z e d  d u a l i t y  m a p  of X is the map J : X -+ 
{subsets of X*} defined by 

J(x) - {A E X* �9 II)~ll- Ilxll and ) ~ ( x ) -  Iixll2}. 

Such a map will be used in 30.20 and thereafter. Here are some of its basic properties: 

a. The set J (x)  is nonempty, by (HB8) in 23.18. 

b. The set J(x) is convex and weak-star compact (hence also norm-closed). 
Hint: Show that  it is the intersection of the two sets {A E X* : IIAI] < ]]xll } and 

{~ E X* : k(x) _> Iixll2}, both of which are convex and weak-star closed. Refer to 
(UF28) in 28.29. 

c. J(cx)  = cJ(m) for any real number c. 

d. If X* is strictly convex, then J is single-valued i.e., J (x)  is a singleton for each 
m E X .  

Hint: J(x) is a convex subset of the sphere {k E X * :  IikiI = Ilzll}; see 22.39(C). 

e. Example. If X is a Hilbert space with inner product  ( ,  }, then X* = X (see 28.50), 
and a(x)  is the singleton { ~ } ,  where ~ , (u)  = @, u}. 
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f. Example. Let X - LP(p) for some measure space (Ft, g ,p)  and 1 < p < cr Then 
X* - Lq(p) (see 28.50), and J(x) is a singleton {y}, where y E Lq(p) is given by 

y(~) _ { x(~)lx(~)l p-211xllp 2-p wherever x(~) # 0 
0 wherever x(w) - O. 

g. Example. Let p be a-finite, and let X - LI(p);  then X* - L ~ ( p )  by 28.51. For any 
x E X,  the set J(x)  consists of all measurable real-valued functions y that  satisfy these 
two conditions: 

y(~) - Ilxlllsign(x(~)) whenever x(~) :/: 0, 
ly(~)l _< Ilxlll whenever x(~) - 0. 

M O R E  A B O U T  U N I F O R M  C O N V E X I T Y  

28.45.  Remark. The results below, and more on this subject, can be found in Goebel 
and Reich [1984]. Some of the results below and in Chapter  29 can be proved more "con- 
structively," in one sense or another of that  word e.g., without relying on the Banach- 
Alaoglu Theorem, the Hahn-Banach Theorem, and other weak forms of the Axiom of Choice. 
See Ishihara [1988], for instance. However, the nonconstructive arguments used below are 
quicker and (in this author 's  opinion) prettier. 

28.46. M i l m a n - P e t t i s  T h e o r e m .  Any uniformly convex Banach space is reflexive. 
Actually, reflexivity is a topological property, but uniform convexity is not. Thus we 

might reword the theorem in this slightly more precise fashion: 
If X is a topological vector space whose topology can be given by a norm, and at least 

one such norm is uniformly convex, then the topological vector space X is reflexive. 

Proofs of theorem. This is immediate from 28.41(E) and 22.45. However, we proved 28.41 
using James's  Theorem 28.37, which had a very long proof. For readers who wish to skip 
James's Theorem, we shall present another, more elementary proof, from Ringrose [1959]" 

Let (X, II II) be a uniformly convex Banach space. We have X C_ X** with the canonical 
embedding, as in 23.20. Let B be the closed unit ball of X. Let ~ c X**; we want to 
show ~ E X. By rescaling, we may assume II~ - 1. By the Goldstine-Weston Theorem 
28.40, there is some net (x~ �9 ~ c A) in B that  converges in a ( X * * , X * )  to ~c. Then 
I~II < liminf~ Iix~II, as in 28.17.d, so we have Iix~II ~ 1. We may replace the vectors x~ 
with the vectors x~/ilx~II; thus we may assume Iix~II-  i for all ~. 

We shall show that  this net is Ca tchy  in the norm topology of X. Let any c > 0 be 
given; let 5 - 5(c) be the modulus of convexity of the space (as in 22.40). By definition 
of the norm of X**, there is some f E X* with I i f l l -  1 and Re<~, f)  > 1 - 5 .  Then for 
all ~ E A sufficiently large, Re(x~, f )  > 1 - 5 .  Hence for all ~, # sufficiently large, we have 
1 1 ~]Ix~ + x.I  I > Re(~(x~  + x . ) ,  f} > 1 - 5. Therefore I x~ - x.I  I < c. 
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Thus the net (x~)is  Ca tchy  in the normed space (X, II II), which is complete. Therefore 
(x~) is norm convergent to some x0 �9 X. Since (x~) is also a(X**,X*)-convergent to {, it 
follows that  x0 - {, and thus { �9 X. 

28.47.  L e m m a  on  a s y m p t o t i c  c e n t e r s .  Let C be a nonempty, closed, convex subset of 
a uniformly convex Banach space (X, ] ]). Let (Xn) be a bounded sequence in X. Define 
a mapping f :  C ~ [0, + ~ )  by f (u)  = l imsupn~  ~ ] u -  Xnl. Then there is a unique point 
u0 e C satisfying f(uo) = min{f(u)  : u �9 C}. 

(The point u0 is called the a s y m p t o t i c  c e n t e r  of the sequence (Xn) with respect to 
the set C.) 

Proof. The function f = l i m m _ ~  SUPn>m IXn --  X I is a limit of convex functions; hence it is 
convex. Also, it is continuous in fact, it is nonexpansive, for if we take limsup on both 
sides of the inequality Ix~ - x I < Ix~ - x' I + I x ' -  x[ we obtain f (x )  < f (x ' )  + l x ' -  x I. Also, it 
is easy to see that  if C is not bounded then limlul_~ ~ f (u)  = ~ .  Let I = inf{f(u)  : u E C}. 

Then the sets Cn - {u E C" f(u)  <_ I + 1} are nonempty, closed convex, and bounded; 
n 

hence they are nonempty and weakly compact. Moreover, C1 D C2 ~_ C3 2"" ". Hence the 
Cn's have nonempty intersection, so f does assume a minimum i.e., f(uo) = I for at 
least one point u0 C C. 

To show that  u0 is unique, suppose that  f(uo) = f ( u l )  = I where u0 =fi Ul. Let 
1 v - 7(u0 + Ul). Let any c > 0 be given. By the definition of f ,  there is some N(c) such 

that  

I X n  - -  ~t01 ~ I + c, I x n  - ull ~ I + c 

Therefore 

I x n - v l < -  (I+c)(l-5('u~ 

whenever n _> N(e).  

whenever n _> N (e), 

where 6 is the modulus of convexity. Taking the limsup, we obtain 

f (v)  < I ( 1 - ~ 5 ( ' u ~  < I 

contradicting the fact that  I is the minimum value of f .  This proves the uniqueness of the 
asymptotic center. 

28.48.  B r o w d e r - G b h d e - K i r k  F i x e d  P o i n t  T h e o r e m .  Let C be a closed, convex, 
bounded subset of a uniformly convex Banach space. Let g : C --+ C be nonexpansive. 
Then g has at least one fixed point. 

In fact, if x0 is any point in C, and a sequence (x~) is defined by Xn+l = g(Xn), then 
the asymptotic center of the sequence (xn) with respect to C is a fixed point of g. 

Proof. Let u be that  asymptotic center. Since g is nonexpansive, ] X n +  1 - -  g(?.t)l ~ iX  n - -  ?.t] 

for all n, and thus l imsupn I x n -  g(u)] <_ l imsupn ] x n -  u]. Since limsup~ x ~ -  (')1 achieves 
its unique minimum at u, we have g(u) - u .  

28.49.  Optional example. We cannot replace "uniformly convex" with "strictly convex" 
in the preceding theorem. 
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Let C[0, 1] - {continuous scalar-valued functions on [0, 1]}; this is a Banach  space when 
equipped with the sup norm. Show tha t  [[flls - I l f [ [ ~  + [If[[2 is a str ict ly convex norm on 
C[0, 1] t ha t  is equivalent to the usual sup norm II II~. Also show tha t  

F = { f  E C[0, 1] �9 f ( 0 ) -  0, f ( 1 ) -  1, and R a n g e ( f ) c _  [0, 1]} 

is a closed, convex, bounded  subset of C[0, 1]. Show tha t  (~f)(t)  - t f ( t )  defines a mapp ing  
~"  F ~ F tha t  is nonexpansive when the norm II [Is is used, but  ~ has no fixed point.  

DUALS OF THE LEBESGUE SPACES 

1 1 __ 1. Let (f~ $, #) be a measure  space (not 28 .50 .  T h e o r e m .  Let p, q E (1, oc) with p + q 

necessarily finite or or-finite). Then  the Banach  spaces LP(p) and Lq(p) are the norm duals 
of each other,  wi th  elements  of one space represent ing elements of the other  space's  dual  by 
the bilinear pairing 

[ T ( y ) ] ( x )  - ( x , y )  - 

In par t icular ,  L2(p) is its own dual. In view of 22.56, any Hilbert  space is its own dual. 

Remark. Compare  this result  with the remark  at the end of 29.21. 

Proof of theorem. We shall show tha t  (LP(p)) * = Lq(p). More precisely, for each y e Lq(p), 
let T(y) be the mapping  (., y) : LP(p) --. {scalars} defined above; we shall show tha t  T is 
an i somorphism from Lq(p) onto (LP(p))*. 

It follows from H61der's Inequal i ty  tha t  if y E Lq(p),  then T(y) = (.,y} (defined as 
above) is a continuous linear functional  on LP(p), with opera tor  norm I[[T(y)]][ _< [lyIIq. To 
show tha t  we have equali ty here, define a function x E LP(p) by choosing x(w) to satisfy 
]x(w)] p = ]y(w)Iq and x(w)y(w) >_ 0 for all co. Then  we can apply HSlder's Equal i ty  (see 
22.33); it is easy to verify tha t  (x, y) = [IX]]p]]y[[q; from this it follows tha t  ]]]T(y)]]] _> [lY[Iq. 
Thus  the mapping  y H T(y ) i s  a norm-preserving linear map  from L q ( p ) i n t o  (LP(p))*; it 
suffices to prove tha t  this map  is surjective. 

Suppose not. Then  T(Lq(p)) is a proper,  closed, linear subspace of (LP(p))*. By the 
Hahn-Banach  Theorem (HB23) in 28.4, there  is some {0 in (LP(p))** t ha t  vanishes on 
T(Lq(p)) but  does not vanish on some vo E (LP(p))*. 

By 22.41.a and 28.46, LP(p) is reflexive. Thus  there is some xo E LP(p) t ha t  represents  
{0, in this sense: We have u(xo) = {0(u) for every u E (LP(p))*. Define a function 
Y0 E Lq(p) by taking ]y0(w)] q = ]x0(w)[ p for all w, with xo(w)yo(w) >_ O. Since {0 vanishes 
on T(Lq(#)), we have 0 - ~o(T(yo)) - [T(yo)](xo) - (xo,Yo} - []xo[[p p - ]]~o]] p. Thus  
~o = 0, cont radic t ing  our assert ion tha t  ~o does not vanish on some vo. 

2 8 . 5 1 .  
L~(#) .  

T h e o r e m .  Let (Vt, S ,p)  be a a-finite measure  space. Then  the dual of LI(p) is 
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Pro@ Let IF be the scalar field�9 For any y c L c~ (#), we may define a mapping  Ty" L 1 (#) --+ 

IP by the rule 

Ty(x) - ~ x(w)y(w)dp(w) for x c LI (#) ,  

and obviously IIIGI I ~ Ily ~ .  Now let any T E LI (# )  * be given�9 It sumces to show tha t  

(i) T = Ty for some y C L ~ ( p ) ,  and (ii)IlYlI~ -< I IIrlll. 
Let us first fix our a t ten t ion  on any measurable  set f~o c_ f~ tha t  has finite measure�9 Let 

P0 denote the restr ict ion of p to f~o and its measurable  subsets�9 If f c L 1 (po), then we may 
extend f to a member  of LI (p)  by defining f - 0 on f~ \ f~o. We have L2(po) C_ Ll (p0)  with 

continuous inclusion, by Hhlder 's inequality: Ilglll - Illglll -< Ilgl l2i l l l l2  - v / , ( f ~ 0 ) [ i g i l 2  �9 
Hence the composi t ion 99 Le(po) c c L1 T �9 - ,  LI(p0)  -~ (p) IF is continuous, and thus 99 is a 
member  of L2(po). However, LU(po) * = L2(po) by 28.50. Unwinding the notat ion,  we see 
tha t  there is a uniquely determined function y0 E L2(po) tha t  satisfies T(x) - fao xyodpo 
for all x C L2(#o). 

We claim tha t  ]Yo(')l < IIITII] almost everywhere on f~o. Indeed, suppose on the contrary 
tha t  {co r f~o: ]Yo(cO)l > IIITIII} has positive measure. Then the set 

has positive measure,  for some number  r > I IITIII. Define 

_ S lyo( )l/yo( ) X(r / 0 
when co E S 
when co E f~o \ S. 

Then the function x belongs to L~ C_ L2(#o). Then 

T,(S) < s - /Mxyod#o -- Z(x) < lilt I IlXlll --IIITIII#(S),  

a contradiction.  This proves our claim; we have Ilyoll~ IIITIII. 
B y  our choice of Yo, we have f~o xyo d# - T(x) for all x E L2(#0). However, bo th  sides 

of tha t  equat ion are continuous functions of x C Ll (#o) ,  and L2(#o) is dense in Ll(#o) .  
Thus,  tha t  equat ion is valid for all x E L 1 (#0). 

The function y0 is uniquely determined on each set f~0 of finite measure.  By covering 
ft with an increasing sequence of sets of finite measure,  we see tha t  there is a measurable  
function y :  f~ --+ IF, with IlYll~ <-ilITIII, such tha t  f my d# = T(x) whenever x is a member  
of L 1 (~) tha t  vanishes outside some set of finite measure.  Such functions are dense in L 1 (#), 
and bo th  sides of the equat ion f xyd# = T(x) are continuous in x. Hence the equat ion 

holds for all x E L 1 (#). 

28 .52 .  If (f~,S,p) is not a-finite, then (E l (# ) )  * is not necessarily equal to L ~ ( p ) .  

Example (from Holmes [1975]). Let (f~, S, #) be the interval [0, 1] equipped with counting 
measure. Here S - ~P(ft), so every function f "[0, 1] --+ IF is measurable  (where IF is the scalar 
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field IR or C). The integral of a f u n c t i o n / ' [ 0 ,  1] --+ IF is the sum ~-~-tE[0,1] f( t)  E [0, +oo], 

provided that  Ii/II1 - ~tE[0,1] I/(t)I is finite. 
Now let 80 be the a-algebra of countable or cocountable subsets of [0, 1], and let #o be 

the restriction of p to 80. Thus a function f �9 [0, 1] --+ IF is measurable with respect to 
8o if and only if, for each Borel set B C IF, the set f - l ( B )  is countable or cocountable. 
The integral of such functions is the same as in the previous paragraph. If f E L 1 (#o), 
then the function g(t) - t f( t)  is not necessarily measurable with respect to 80, but we still 
have Ig(t)l < I/(t)l, and so g E LI(#) .  Thus we can define a bounded linear functional 
A �9 Ll(#0) +~IF by A(f)  - Y~-tE[0,1] t f(t) .  It is an easy exercise that  there does not exist a 

function h E n ~ ( # o )  satisfying A ( / ) -  EtE[O,1] f(t)h(t) for all f E Ll(#o).  

28.53.  Remark. The dual of L~ will be characterized in 29.31.c. 
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Vector  Measures  

BASIC PROPERTIES 

29.1.  Definition. Let (X, [ [) be a Banach space. By an X-valued c h a r g e  we mean 
a finitely additive mapping p : A -~ X,  where A is an algebra of sets. By an X-valued 
m e a s u r e  we mean a countably additive mapping p : S ~ X, where S is a a-algebra of sets. 
See 11.37. Such objects will be investigated in this chapter. Vector measures are used in 
spectral theory, but tha t  subject will not be pursued in this book. This chapter covers only 
a very small portion of the subject of vector measures; the interested reader should refer to 
the encyclopedic work of Diestel and Uhl [1977] for a broader t reatment .  

Caution: The terminology varies. For instance, what we have called "charge" and "mea- 
sure" are what Diestel and Uhl [1977] call, respectively, "vector measure" and "countably 
additive vector measure on a a-algebra." 

29.2.  Observation. If # �9 S ~ X is a Banach-space-valued measure and $1, $2, $ 3 , . . .  
are disjoint measurable sets, then the series P([-J~-I Sj) - ~-~j~=l p(Sj) is unconditionally 
convergent (defined in 23.26). 

cx:) Proof" Uj=I Sj is not affected if we change the order of the Sj's. 

29.3.  Theorem. Any Banach-space-valued measure is bounded. 

Proof of proposition. Let A �9 S ~ X be a Banach-space-valued measure, where S is a a- 
algebra of subsets of ~t. Then [A(S)[ is a finite number  for each S E S; we must show that  
supscs  [A(S)I is finite as well. Suppose not. Call a set S E S "fat" if it has the property tha t  
sup{IA(A)l" A E S, A C_ S} - co; then our assumption is tha t  ~t is fat. We now recursively 
choose fat sets So _D S~ _D $2 D . . .  with [)~(Sn+l)[ > [/~(Sn)]-~- 1, by the following procedure" 
Let So - ~t; this is fat. Given a fat set Sn, choose some measurable set B C_ Sn such that  
IA(B)[ > 2[A(S~)I + 1. Since S n is fat, at least one of the sets B, S~ \ B must be fat. Call 
tha t  set Sn+I; we easily verify tha t  ]A(Sn+I)] > ]A(S~)] + 1. This completes the recursion. 
Now, for n - 1, 2, 3 , . . . ,  let Tn - Sn-1 \ Sn. Then the T~'s are disjoint and have union 
equal to gt, hence EnC~__l ~(Tn) - )~(~'~). However, 

[)~(Tn) [ -  ] ,~(Sn-1)- /~(Sn)  ] ~_ ],~(~n) ] -  [/~(~n-1)I ~ 1, 

785 
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so the series En~ diverges. This contradiction proves SUPs~8 ]A(S)I < oc. 

29.4. T h e o r e m  a n d  def in i t ion .  Let (~, g, It) be a measure space; assume It is finite. Let 
(X, I I) be a Banach space, and let A: g ~ X be a vector charge. Then the following two 
conditions are equivalent. 

(A) limp(s)~0 A(S) = 0. That  is, for each number c > 0, there exists some number 
5 > 0 such that  if S E g with It(S) < 5, then IA(S)I < c. 

(B) A is a measure, and A vanishes on sets of It-measure 0 -  that  is, It(S) = 0 
= 0 .  

If either (hence both) of these conditions is satisfied, we say that  A is a b s o l u t e l y  con t in -  
u o u s  with respect to It or that  it is t t - con t i nuous ;  this is abbreviated A < < tt. Some 
examples will be given in 29.7 and 29.10. 

Proof of equivalence. First assume (A). Obviously It(S) - 0 =v A(S) - 0. Let the sets 
OO E1,E2, E3 , . . .  be disjoint with union E; we want to show that  ~--~j=l A(Ej) - A(E). Let 

Fj = E \ ( E 1  U E 2 U . . . U E j ) ;  we want to show that  A(Fj) --~ 0 as j ~ oc. We know 
that  F1 D F2 _~ F3 _~ . . .  and the Fj's have empty intersection. Hence #(Fj) I O. By 
#-continuity, IA(Fj)I---~0. Thus ( A ) : ,  (B). 

We shall prove (B) ::v (A) first in the case where ~ is real-valued. Note that  if p(S)  - 0, 
then p vanishes on every measurable subset of S; hence so does A; hence so does /A/ ;  hence 
so do A+ and A-. By the Jordan Decomposition, it suffices to consider ~+ and A-; thus 
we may assume A _> 0. Suppose that  A does not satisfy the condition in (A). Then there 
exist a number c > 0 and measurable sets Sn such that  ~(Sn) > ~ and #(Sn) ~ O. Passing 

CX) CO 
to a subsequence, we may assume #(S~) < 2 -n.  Let T - limsup~__,~ S~ - ~j=l Un=j S~. 
Then for each j we have T C_ NnC>C=j Sn, hence #(T) < En~176 It(~n) < 2--J+l, hence It(T) - O. 
On the other hand, by 21.25.c we have c < l i m s u p ~  A(S~) _< A(lim SUPn_~ Sn) - A(T). 
This is a contradiction, proving (B) ==v (A) in the case of real-valued A. 

Now we prove (B) =v (A) for an arbi trary Banach space X. We may assume the 
scalar field is R. Suppose (B) holds but not (A); thus there exist measurable sets Sk with 

IA(Sk)[ > c and It(Sk) < 2 -k. We have limm__,~ It (Uk_>m Sk) - 0 .  For each u E X*, the 

real-valued measure uA is p-continuous and therefore satisfies 

l i ~  sup{lu~X(S) l ,  s ~ s ,  s C  U s k  } k > m  = o. 

Recursively choose positive integers re(p) as follows" Let m(0) - 1. Given re (p -  1), use the 
Hahn-Banach Theorem (HB8) to choose some Up c X* with lupl - 1 and Up)~(Sm(p-1)) > C. 
Then choose re(p) > m ( p -  1) large enough so that  

sup{lUp)~(S)[, SEg, SC uk>_m(p) Sk} 1 

This completes the recursion. Now define the sets Fp - Srn(p_l) \ Uk>m(p)Sk. The 1 sets Fp are disjoint, and I)~(Fp)l ~_ lUp)~(Fp)l > ~c. Since A is a measure, we have 
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( ) "~ U?--I Fp -- Ep=l A(fp), and therefore the series }-~p=l A(Fp) is convergent, and there- 

fore limp_.~ IA(Fp)I = 0, a contradiction. 

THE VARIATION OF A CHARGE 

29.5. Definition. Let 04 be an algebra of subsets of f~, let (X, I l) be a Banach space, and 
let A: 04 ~ X be a charge. The v a r i a t i o n  of A is the f u n c t i o n / A / :  04 -+ [0, +oc] defined 
by 

/A/(A) - sup {IA(S1)I + IA(S2)I + . . .  + IA(Sn)l} 

where the supremum is over all positive integers n and partitions of A into disjoint subsets 
S1, $ 2 , . . . ,  S~ E 04. (Much of the literature denotes the variation by I~l, but we p re fe r /A /  
for reasons indicated in 8.39.) 

For further clarification, we may refer t o / A / a s  the v a r i a t i o n  in t h e  sense  of  c h a r g e s  
or  m e a s u r e s  to distinguish it from another type of "variation" introduced in 19.21. The 
relation between the two notions of "variation" will be considered in 29.33 and 29.34. 

I f / A / ( f t )  < oc, we say A has b o u n d e d  va r i a t i on .  The number /A/(ft)  may also be 
written as Var(A) or as Var(A,04) if several different algebras of sets are being considered. 

29.6. Basic properties of the variation of a charge. 
a. / A / i s  a positive charge. 

b. sup{IA(S)I : S E A} < /A/ ( f~) .  Thus, any charge with bounded variation is a bounded 
charge. 

c. The s p a c e  of  all X - v a l u e d  c h a r g e s  on  04 w i t h  b o u n d e d  v a r i a t i o n  is a Banach 
space, with the variation for a norm. We may denote this space by BV(04, X).  

Proof of completeness. Apply 22.17 with F - 04, with �9 consisting of all functions 
of the form ~(A) = IA(S1)[-~-[A(S2)[-~-...-[-[A(Sn)[ for disjoint sets Sj E 04. 

Remark. For a still larger space, see the space of bounded charges in 29.29.f. 

d. If X = R, then /A/(A) = sup {]~(S)] + IA(A \ S)[ : S E 8, S C_ A}. Thus the 
definition of "variation" given in this chapter agrees with the definition of "variation" 
given in 11.47. As we noted in 11.47, any bounded real charge has bounded variation; 
hence any real-valued measure has bounded variation. 

e. If A is countably additive, then /A/(A) is also equal to sup Ej~ 1 [,,~(sj)[ where the 
supremum is over all partit ions of A into countably many disjoint sets Sj 'E g. 

Hints: Any finite parti t ion can be written as a countable partition, by taking all 
OO but finitely many of the Sj's to be empty; thus /A/(A) <_ sup ~-~j=l I (sjll. On the 

(3O 
other hand, i f /A / (A)  < r < ~>-~j=l IA(SJ)I for some countable parti t ion (Sj) and some 

real number r, then choose N large enough to satisfy r < 2~_-1 I,X(SN)I; then we have 

/)~/(A) < IA(A \ U;-1 Sj)l no- EjN=I I (sj)l, a contradiction. 

f. If A is countably additive, t h e n / A / i s  too. Thus, if A is a measure, t h e n / A / i s  too. 
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Hints: Let A1, A2, A3, . . .  be disjoint members of A with union A c A. S ince /A /  
is a positive charge, for any positive integer N we have 

E / A / ( A J )  - /A/  Aj 
j=l j=l 

<_ /A/(A),  

OO 
and taking limits we obtain E j : I / A / ( A j )  <_ /A/(A). For the reverse inequality, let 
(Bk : k C N) be any partit ion of A into countably many disjoint members of A. Then 
(Aj N Bk : k E N) is a parti t ion of Aj, and (Aj A Bk : j C N) is a parti t ion of Bk. 

Hence Taking 
OO 

the supremum over all choices of the sequence (Bk) y ie lds /A/ (A)  _< ~-~'~j=l/A/(Aj). 

g. If A is a vector measure with bounded variation, then A < < / A / .  

h. Any real-valued measure 
dimensional Banach space 

or, more generally, any measure taking values in a finite- 
has bounded variation. (Proof. 29.3 and 29.6.d.) 

29.7.  Example: a pathological vector measure. We exhibit a bounded vector measure that  
has infinite variation on every nontrivial set. (This example is taken from Diestel and Uhl 
[1977].) 

Let (Ft, S,p)  be the measure space [0, 1] with Lebesgue measure on the Lebesgue- 
measurable sets. Let X = L2[0, 1]. Define A: S --, X by A(S) = l s  (i.e., the characteristic 
function of S). Then A is #-continuous i.e., A vanishes on sets that  have #-measure 0. 

To show that  A is countably additive, verify that  if (En) is a sequence of disjoint mea- 
surable subsets of [0, 1], then 

2 

which tends to 0 as N ~ c~. 
On the other hand, if E is a measurable set with #(E) > 0, we shall show t h a t / A / ( E )  = 

oc. Indeed, let N be any positive integer. By 24.25, fo  1E(t)dt is a continuous function of 
u, so it must pass through each number between 0 and #(E). Hence we can parti t ion E 
into disjoint measurable sets El ,  E 2 , . . . ,  EN that  have equal Lebesgue m e a s u r e -  i.e., they 
all have lt( Ej ) -- -~ It(E). Then 

 i/01 /A/(E) >_ E[A(E j ) ]x  - - j ~ l  [ 1 E j ( t ) ] 2 d t -  v /Np(E) '  
j=l "= 

which can be made arbitrarily large. 

29.8. N i k o d y m  C o n v e r g e n c e  T h e o r e m  ( o p t i o n a l ) .  Let (X, [ [ )be  a Banach space, 
and let {An: n E N} be a sequence of X-valued measures on a measurable space (f~, 8). As- 
sume A(S) -- limn--.cc An(S) exists in X for each S E S. Then A is a measure. Furthermore: 
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The An's are uniformly countably additive. That  is, if Sk I ~ in 8, then An(Sk) --+ 0 (as 
k --+ ~ )  uniformly in n. In other words, the sequence-valued function 

A(S) - (,~I(S), ,~2(S), )~3(S), . . . )  

is a c(X)-valued measure. 

Explanation of notations. The expression Sk I ~ means that  S1 ~ $2 D $3 ~ ... and 
(X:)  

~k= l  Sk -- ~. Also, c(X) means the Banach space of all convergent sequences in X; it is 
normed by II(Xl,X2,X3,.-.)ll = supneN [xn[. 

Proof of theorem. We first prove this theorem in the classical case, where X is the scalar 
field IF. In that  case, each variation /An/ is a positive, finite measure. Hence 

. ( s )  = 

n--1 

defines a probability # on (ft, g) with the further property that  An < < # for all n. 
Define a pseudometric d on 8, by 

d(S, T) = , ( s  A T) = [ 1 s ( ~ ) -  1T(~a)[ d#(co) = I l l s -  1Till ; 

the last expression is a norm in the Lebesgue space El(#). The space LI(#)  is complete, 

by 22.31(i); and { I s "  S E S} - { f  c LI(#)  �9 Range(f )  c {0,1}~ is a closed subset of 

LI(#) ,  by 22.31(ii); hence the pseudometric space (S ,d) i s  complete. By the Baire Category 
J 

Theorem (20.16), (S, d) is a Baire space, and so any comeager subset of S is dense and thus 
nonempty. 

From An < < # it follows easily that  each An is a continuous map from the pseudometric 
space (S,#) into IR, and each An is a continuous map from (S,#) into X. By the Baire- 
Osgood Theorem (20.8), (An) is equicontinuous on a subset of g that  is comeager, hence 
nonempty. 

Say (An) is equicontinuous at some particular T C g. Let Sk I ~- We verify that  the 
sequences (T tO Sk) and (T \ Sk) both converge to T in the metric space (g,#).  Since the 
sequence (An) is equicontinuous at T, the sequences An(TUSk) and An(T\Sk)  both converge 
to An(T) uniformly in n as k --+ c~. Then An(Sk) = A n ( T U S k ) -  A n ( T \  Sk) converges to 0 
uniformly in n as k ~ oo. Thus (An) is uniformly countably additive. It follows easily that  
the limit A is a measure. This completes the proof in the case where X is the scalar field. 

We now turn to the general case. For each u E X*, we know that  u o A is a measure, 
by the scalar case. Let us next show that  A itself is a measure: If (Tn) is any sequence of 
disjoint measurable sets, we know that En%l A(Tn) converges weakly to A (Un%l Tn). Since 
the same type of conclusion holds when we replace (Tn) with a subsequence, we know that  
any subseries of Enc~__l A(Tn) converges weakly. By the Orlicz-Pettis Theorem (28.31), it 
follows that  y~.nc~__l A(Tn) converges in X to a limit. That  limit can only be A ([..Jn~__l Tn), 
since X* separates points of X. Thus A is a measure. 
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Replacing (An) with the sequence (A n - - A ) ,  we may assume A = 0. That  is, A n ( ~ )  ----+ 0 
for each S �9 S. 

Suppose the sequence (An) is not uniformly countably additive. Thus there exists a 
sequence Sk J, 0 in S, which does not satisfy SUPn ]An(Sk)l ~ 0 as k ~ c~. That  is, 
some constant ~ > 0 satisfies limsuPk__,~SUPnEN ]An(Sk)  ] > E. Replacing (Sk) with a 
subsequence, we may assume supn ]An(Sk)] > ~ for all k. Thus, for each k there is some 
n(k) satisfying [An(k)(Sk)[ > ~. 

Since Sk $ O, we also have m a x l < n < g  [An(Sk)] --~ 0 as k ~ oo for each fixed N. Thus, 
the sequence (n(k)) cannot take all its values in some finite set { 1 , 2 , . . . , N } .  That  is, 
the sequence (n(k)) is unbounded. Replacing (Sk) and (n(k)) with subsequences, we may 
assume n(1) < n(2) < n(3) < . . . .  Replacing (An) with the subsequence (An(k)), we may 
assume IAk(Sk)[ > ~ for all k. 

Choose some uk �9 X* satisfying ]ukAk(Sk)] > C and ]uk] = 1. For each fixed S �9 S, we 
have [ukAk(S)] <_ [Ak(S)] ~ 0. By the scalar case that  we have already proved, 

A(S) -- (ulAI(S), u2A2(S), u3A3(S), ...) 

is a c-valued measure. Since Sk $ ~,  it follows that  A(Sk) ~ 0. However, IA(Sk)I _> 
lukAk (Sk)[ > e, a contradiction. 

29.9.  C o r o l l a r y :  N i k o d y m  B o u n d e d n e s s  T h e o r e m .  Let (X, ] ] ) b e  a Banach 
space, and let A be a collection of X-valued measures on a measurable space (f~, S). If 
sup~EA ]A(S)] < oo for each S �9 S, then in fact sup~EA supsEs ]A(S)] < oo. 

Proof. Suppose not. Then we may choose sequences (An) in A and (Sn) in S, with ]An(Sn)] > 
n 2. The measures ~/n -- n 1An satisfy [~/n(Sn) [ > n and limn__,~ 7n(S) - 0 for each S. 
By the Nikodym Convergence Theorem (29.8), F(S) = (71(S), 72(S), 73 (S) , . . . )  defines a 
c(X)-valued measure. By 29.3, any Banach-space-valued measure is bounded; but that  
contradicts IF(Sn)I > n. 

Remark. With a longer proof, a slightly weaker hypothesis suffices; see Diestel and Uhl 
[1977]. 

INDEFINITE BOCHNER INTEGRALS AND 
RADON-NIKODYM DERIVATIVES 

29.10. Example: the B o c h n e r  i n t e g r a l  as a v e c t o r  m e a s u r e .  Let ( ~ , S , # )  be a 
measure space, let (X, ][) be a Banach space, and let h �9 L 1 (#, X). We shall show that  the 
function A : S ~ X defined by the Bochner integral 

A(S) - f s h d # -  / l s (w)h (w)dp (w)  

is an X-valued measure on S. Obviously it is #-continuous (as defined in 29.4). It is 
sometimes called the i nde f in i t e  i n t e g r a l  ofh.  Also, we say that  h is the R a d o n - N i k o d y m  
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d e r i v a t i v e  of A with respect to p. We say "the derivative" rather  than "a derivative," 
because as we shall show below there is at most one h E L I ( p , X )  satisfying this 

dA 
relation with measures A and p. Thus we may write h - 

dp" 

Proofs. Let h E L l(#,  X).  Obviously A is a vector charge. To show that  it is a vector 
measure (i.e., countably additive) and is absolutely continuous, we may reason as follows: 
The function Ih(')l is measurable and is a member  of L I ( p , R )  (see 22.28). By 21.38(i), the 
function "7 defined by "?(S) = f s  Ih(')l d~ is a finite positive measure. Since I,~(S)I _< ~(s )  
for every measurable set S, it is easy to see that  the vector charge A satisfies A < <  ~, by 
criterion 29.4(A). Therefore A < < "7 by criterion 29.4(B), and so A is a vector measure. We 
have A < <  # by criterion 29.4(B). 

To show h is uniquely determined, suppose hi,  h2 are both Radon-Nikodym derivatives 
of A with respect to #. Then g - hi - h2 is a member  of L 1 (~, X)  that  satisfies fs g d# - 0 
for every S E g; we are to show that  g = 0. Suppose that  g is not the zero function. Altering 
g on a set of measure 0, we may assume g has separable range. Let X0 be the closed span 
of the range of g; then X0 is a separable closed subspace of X. We can cover X0 \ {0} with 
countably many closed balls By tha t  do not contain 0. The set S = g -1 (B j) has positive 
measure for at least one j; fix that  j .  Since Bj is a closed convex set that  does not contain 
0, by the Hahn-Banach Theorem (HB20) in 28.4 there exists some functional p C X* that  
is positive everywhere on By. Then 

0 -  ~(0) - g) ( s  g d#) - ~s(qp o g)d# > 0 , 

a contradiction. 

2 9 . 1 1 .  
dA Proposition. Suppose h -  -7- 
a #  

/),/(s) - Jls 

, as above. Then A has bounded variation. In fact, 

Ih(.)ld#, and in particular /A/(f~) = Ilhlll. 

Proof. It will be helpful to denote A instead by kh, to display its dependence on h. The in- 
equa l i t y /Ah / (S )  <_ fs Ih(')l d~ follows easily from the definition of the variation. Therefore 
the mapping h H Ah is a nonexpansive linear map from L 1 (~, X)  into the Banach space of 
X-valued functions of bounded variation, normed by the variation as described in 29.6.c. 
Since the map h H ,'~h is continuous, it suffices to prove the e q u a t i o n / A h / ( S )  = fs Ih(')l d# 
for all h in some dense subset of LI(p ,X) .  The integrable simple functions are dense in 
L 1 (#, X),  and the proof is easy for such functions. 

Remarks. A converse question is this: If k < < # and A has bounded variation, when does 
dA/d# exist? Tha t  question is addressed in 29.20 through 29.26. 

29.12.  Some further properties of the Radon-Nikodym derivative. 
a. C h a n g e  of  V a r i a b l e s  F o r m u l a .  If g = dp/dv where #, v are positive, finite measures, 

then fs  h dp - fs hg dv for any function h E L I(p, X) and any measurable set S. 
(Compare with 25.17.) 
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Hints: Show this first when h is a simple function. Then prove this for any mea- 
surable function h �9 ~t ~ [0, +c~), by taking limits of simple functions and using the 
Monotone Convergence Theorem. Finally, prove it for arbitrary f E L I ( p , X )  by tak- 
ing limits of simple functions and using the Dominated Convergence Theorem; the 
dominating functions take their values in [0, +c~). 

b. C h a i n  R u l e  for Vec to r  M e a s u r e s .  From the Change of Variables Formula it follows 
that  

dA dA dp 

d~ dp d~ 

whenever the right side exists. More precisely, if h - dA/d# and g - dp/du, where 
#, u are positive finite measures and A is a vector measure, then the Radon-Nikodym 
derivative dA/du also exists; it is equal to hg. (Compare with 25.6.) 

CONDITIONAL EXPECTATIONS AND MARTINGALES 

29.13. Notations/assumptions. Throughout this subchapter, we assume (X, ] ]) is a 
Banach space and (~t, S, p) is a probability space i.e., a set equipped with a a-algebra of 
subsets and a probability measure. We consider various sub-a-algebras A, ~, e , . . .  C_ S. The 
restriction of p to those sub-a-algebras will be denoted P A , P ~ , P C ,  etc. Thus LP(pA,X ) 
consists of those members of LP(p, X) that  are equivalence classes of functions measurable 
from (f~,A) to the Borel subsets of X. Note that LP(pA,X ) is a closed linear subspace of 
LP(p,X); this follows from 21.3 and 22.31(ii). 

Conditional expectations and martingales are used extensively in probability theory; 
this book will use them to prove Theorem 29.26. 

29.14. Proposition and definition. Let f E LI (# ,X) ,  and let A C_ S be a sub-a-algebra. 
Then there exists a unique (up to #-equivalence) function g E LI(pA, X) with this property: 
fA g dp - fA f dp for every A E A. Such a function will be denoted by E(fIA); it is 
called the c o n d i t i o n a l  e x p e c t a t i o n  of f with respect to A. In this fashion we define the 
conditional expectation operator 

E(.I~[ ) �9 L I (# ,X)  ~ LI (#/:[, X). 

It has these further properties" 

(i) 

(ii) 

(iii) 

(iv) 

It is linear. 

It is nonexpansive from L I ( p , X )  to LI(pA, X) that is, I[E(fIA)[[1 _< Ill[ 1. 

It is idempotent that is, E( . IA)o E(.[A) - E(-IA ). 

Let F be the scalar field. If f E L2(p,F),  then E(f[A) is the closest vector to 
f in the closed linear subspace L2(#A,F).  
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Proof. We first prove uniqueness. Suppose that 91,92 E LI(#Od,X) satisfy fAgld> = 
fA g2 d# for every A E O4. Then h - gl - g 2  is a member of L I(#Od,X) that satisfies 
fA h d# = 0 for every A E o4. It suffices to show that h = 0 almost everywhere. Suppose, 
on the contrary, that {w E ft : h(w) =/= 0} has positive measure. Since the range of h is 
separable, its points are separated by the functions R e i n  for some sequence (~n) in X* 
see 23.24. Then {w E ft :  Re ~nh(w) =/= 0} has positive measure for at least one n. Replacing 
~ with - ~ n  if necessary, we may assume that the set A = {w E f t  : Re ~nh(w) > 0} has 
positive measure. But fA Re ~ h  d> = Re ~ fA h d# = 0, a contradiction. This proves 
uniqueness. 

Let us define a linear map E(-Io4 ) from some linear subspace of L 1 (#, X) into L 1 (#o4, X), 
by writing g - E(fIo4 ) whenever g E L I ( p A , X  ) satisfies fAg d> - f A f  d> for all A E o4. 
(The fact that the operator's domain is all of L I(#, X) will not be established until the 
end of this proof.) Clearly, E(f lA  ) exists and equals f whenever f E LI(pod,X); thus 
the domain of the conditional expectation operator contains L 1(#o4, X) and the operator is 
idempotent. 

We next show that E(.Io4 ) is nonexpansive. Say g = E(flo4 ). Define measures Ag,s 
on g,od, respectively, by 

-- ~ f d #  for S E 8, A o 4 ( A ) - / A g d #  for A E o4. As(S) 

T h e n  I l f l l l  - -  Var ( )~  s )  --  / ~ S / ( ~ - ~ )  a n d  Ilgllx - -  Va r ( /~od )  - -  / / ~ j [ / ( ~ ) ,  b y  29.11. However, 
~o4 is just the restriction of ~g to the smaller a-algebra o4, so Var(~od) _< Var(,~g); thus 

IIE(flA)II  _< IIfll . 
Next we consider f E L2(p,F). Let g be the closest point to f in the closed linear 

subspace L2(pod,F). Then g -  f is orthogonal to L2(pod,F), as we noted in 22.51. That 
is, f a ( g -  f )hd#  - 0 for every h E L~(pod,F). In particular, taking h - 1A shows that 
fA g d# = f a f  d# for every A E o4. (We can take h = l a  because # is a probability measure, 
hence 1A E L2(p,F) a_ LI(p,F).)  Thus, for scalar-valued functions, the domain of E(.Io4 ) 
contains L2(#, F); note that that linear space is dense in LI(#, F). Since E(-Iod) : L2(#, F) --~ 
LI(pod,F) is nonexpansive for the II II1 norms (as noted  in the preceding paragraph), the 
operator extends uniquely to a nonexpansive linear operator F : L I(p,F) ~ L I(#o4 ,F) 
(which, however, we have not yet established to be a conditional expectation operator). For 
fixed A E o4, the mappings f H f a f  d# and f H fA F f  d# are continuous linear maps from 
LI(p,F)  into F, and they agree on the dense set L2(p,F), hence they agree on LI(p,F) .  
This proves F is indeed a conditional expectation operator, defined everywhere on L 1(#, k'). 

For f E LI(p ,X)  with a general Banach space X, we construct E(flo4 ) first in the 
Tt case where f is a simple function. Say f - }--~d=l ls j( . )xj  where the lsj( . ) 's  are char- 

acteristic functions of disjoint sets Sj E g, and the xj 's are members of X. Define 
Tt E( f  o4) - }-~d=l E (lsj( ' ) lod)xj.  It is easy to verify that this defines a linear, nonex- 

pansive mapping E(.Io4 ) from the simple functions in LI (p, X) into LI(pod,X), satisfying 
fa  E(flod)d# = fA f d# for all A E o4. Those properties are preserved when we take limits, 
and the simple functions are dense in LI (p ,X) ;  thus the conditional expectation operator 
extends to a mapping with those properties on all of LI(#, X). 

29.15. Corollaries. 
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a. fK IE(f104)(w)ld#(w) <- fK If(w)ldP(w) for any K E 04. That  is, the conditional 
expectation operator is nonexpansive from LI(pgnK, X) to L1 (P04nK, X), where g N K 
and 04 N K denote the traces of the a-algebras g and 04 on the set K. 

Proof. Replace p with its restriction to K, and apply the preceding results. 

b. If 04 c_ ~ c_ g, then E(E(fI~)I04 ) - E ( f lA  ). 
c. Example. Let $1, $2, $3,. . .  be disjoint members of g with union equal to ft. Let 04 be 

the a-algebra generated by the Sj's; thus 04 = {unions of Sj's}. Verify that g = E(II04 ) 
can be represented as follows: 

fs~ f d# 

0 

if w E Sj and #(S j) > 0 

if a~ e Sj and #(S j ) - O .  

29.16. Definition. Let F be a collection of sub-a-algebras of S that is directed by inclusion 
i.e., assume that for any 04, ~ c F there exists some C E F with C _D .,4 U ~B. An X-valued 

m a r t i n g a l e  indexed by F will mean a net (gA" 04 c F) in LI(p ,X)  satisfying 

- E w h e n e v e r  c_ 

that  is, satisfying 

/ i  g04 d# - / A g e d #  whenever 04 C- ~3 and A C 04" 

An important special case is that in which F consists of an increasing sequence of sub- 
a-algebras 041 C_ 042 C_ 043 c_ . . .  c_ g, with conditional expectation operators Ej - E(.104j). 
Then the corresponding functions form a sequence gl, g2, g3, . . ,  that satisfies gj - Ej(gk) 
whenever j < k that is, fA gJ d # -  fA gk d# whenever j < k and A E 04j. We may refer 
to such martingales as s equen t i a l  ma r t i nga l e s .  

Two examples of methods for constructing martingales are given in 29.17 and 29.24. 

29.17. M e a n  C o n v e r g e n c e  T h e o r e m  for m a r t i n g a l e s .  Let (gA " A c F) be a net in 
L I(#, X)  where F is a collection of sub-a-algebras directed by inclusion. Then these two 
conditions are equivalent" 

(A) (gA" A e F) is a martingale that converges in LI(#, X)  to some limit g~.  

(B) There is some function g e LI (p ,X)  such that gA - E(glA) for each A e F. 

Moreover, if those two conditions are satisfied, then 

- E(glS ) (,) 

where S~ is the a-algebra generated by UAcr A. (Remark. The function g~ is determined 
uniquely almost everywhere by these conditions, but the function g might not be.) 

Proof of (A) =v (B). Fix any A e F. Since E(.IA ) �9 LI (p ,X)  ~ L I ( p A , X )  is a nonexpan- 
sive mapping and 0 - lim~B IIg~B - gcclll, it follows that 0 - lim(B IIE(g~BIA) - E(gcclA)[[1. 
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For (B sufficiently large, we have (g _D .4, hence E(g~31.4 ) -- gA; thus 0 - limN Ilgo4- 
E(g~ Jr) 1. But IIg~ - E(gl~)lll does not depend on ~B, so g"4 - E(g~l"4).  

Proof of (B) =~ (A) and (,).  Let gA - E(glA) �9 That  (gA" A E F) is a martingale follows 
immediately from 29.15.b. 

Let g~  - E(g lS~) ;  it remains to show that  0 - lim A IIg~ - g~ll l .  Note that  if B E (B 
then B r g~ ,  hence 

/B g~ d# -- /B g d# -- /R g~B d#; 

this proves E(g~I(B ) - g(B" The function g~  is g~-measurable ,  hence by 22.30 we can 
approximate g~  arbitrarily closely in L I ( p , X )  by an g~-measurable  simple function. The 
algebra of sets I1 - U A E r A  generates the a-algebra g~ ,  so by 21.26 each member of g~  
can be approximated arbitrarily closely in measure by some member of %[. Combining these 
two results, we can approximate g~  arbitrarily closely in L I ( p , X )  by a simple function 
of the form h - ~5-~j=l 1uj (.)xj where the Uj's belong to 11; here 1uj is the characteristic 
function of Uj. Thus we can satisfy IIg~ - hill < ~ for any given c. Temporarily hold c 
fixed; then we may fix n, h, and some particular A that  contains all of U1, / ]2 , . . . ,  Us. For 
all (B E F sufficiently large, we have (B _D A, and therefore E(hl(B ) - h. Since E(.I(B ) is 
nonexpansive, we obtain 

IIg~ - g~  Ill <-- IIg~ - hill + g~  - h 1 

= IbE(g~ ~ ) -  E(hl~) l l l  + IIg  - h 1 _< 2high-hill < 2c. 

Thus limsup( B g(B - g ~ l l l  <_ 2c. Now let c I 0; this proves lim(B IIg~B - g ~  I1 - - 0 .  

29.18.  M a x i m a l  l e m m a  for m a r t i n g a l e s .  Let (g~) be a sequential martingale, with 
a-algebras A1 c A2 c A3 c . . .  c_ S. Let some number c > 0 be given. Then 

1 ~up/a g~( )ld.. 
s mEN 

(Compare with 24.43.) 

Proof. Let B = {w E ft : sup~ Ig~(w)l > c}. A point w belongs to B if and only if Ig~(w)l > 
for some n E N. We shall classify the w's in B by considering which is the first value of n 

satisfying this condition. In other words, let B1 -- {CO E ~ :  s < Igl(a2)l}, a n d  for ?% > 1 let 

Bn = {w E f~ " max lgj(w)l <-c < lgrz(w)l} 

Then the B~'s form a parti t ion of B, so #(B)  - }--~--1 #(B~). Since 9~ is A~-measurable 
and the ,4~'s are increasing, it follows that  B~ E ,4~. Observe that  
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for any m > n; the last inequality follows from 29.15.a since gn - E(gm]An).  Therefore, 
for any integer m > 1 we have 

m m 

E p(Bn)~ E / B  Igm(a2)I dp(w) _< 1 /~  - sup Ign(.)l d#. 
s s nEN n=l n=l n 

Finally, take limits as m ~ ~ .  

29.19.  P o i n t w i s e  C o n v e r g e n c e  T h e o r e m .  Let ( ( f ~ , A n ) ' n -  1 , 2 , 3 , . . . )  be a sequen- 
t ial  X-valued martingale,  which converges in L I ( p , X )  to a limit f .  Then also fn  --* f 
pointwise p-almost everywhere. 

Proof. Say the conditional expectat ion operators are En - E( ' IAn);  thus the functions are 
fn  - E n ( f ) .  Let any numbers 5, e > 0 be given. By 22.30 and 21.26, we have If-giI1 < & / 2  
for some simple function g that  is Ak-measurable for some positive integer k. Then E~g - g 
for all n > k. For all m, n > k, we have 

Ifn - fmI - [Enf  - EmgI 

I E n g  - Emg] -]- IEn ( f  - g) - E m  ( f  - g)I -< 2 sup IEj ( f  - g) l def h. 
j_>l 

Taking limits, we have lim SUPm,n~o c I fn(W)-  fro(W)] < h(w) for each w. Therefore 

p ({W E ~ "  limSUPrn,n___,oc]fn(W)-- fro(W)' ~ C})  ~ p({W E ~  �9 h(cd) ~C})  

= p w E t2 �9 sup IE j ( f (w)  - g(w)) I > ~ <- - I I / - -  g 1 < (~, 
j_ l  s 

where the next-to-last inequality follows from Lemma 29.18 with p -  f -  g. Lett ing 5 I 0 
shows tha t  p ({w E ~t �9 limsupm,n_+o o Ifn(w) - fm(w)l > c}) -- 0. Since c is arbitrary, this 
shows tha t  limsUPm,n~o c Ifn(W) -- fm (W)l -- 0 almost everywhere, and thus limn~oo fn(W) 
exists almost everywhere. We established earlier in this proof that  fn converges to f in 
Ll (p ,  X); hence fn  ~ f pointwise almost everywhere. 

EXISTENCE OF RADON-NIKODYM DERIVATIVES 

29.20.  C l a s s i ca l  R a d o n - N i k o a y m  T h e o r e m .  Let (~t, g, p) be a finite measure space. 
Let A be a scalar-valued measure on g. Assume that  A is p-continuous (as defined in 29.4). 
Then there exists a Radon-Nikodym derivative h -  d)~/dp, as defined in 29.10. 

Remark.  An analogous result can be proved for a-finite measures p, but to keep our defini- 
tions simple we shall only consider finite measures p. 

Proof of  theorem. Any complex measure can be decomposed into its real and imaginary 
components; for any real measure A we have the Jordan Decomposition A - A + - A - .  Thus, 
it suffices to consider the case of A _> 0. By assumption, A is scalar-valued, so A(~t) < c~. 
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We prove existence of h first under the additional assumption that  A(S) ~ #(S) for all 
S E 8. In that  case, it is clear tha t  fn If(.)idA < f~ If(.)id# for every measurable function 

f .  Thus we have the inclusion c LI (#)  c 1 �9 -~ L (A), and in fact that  inclusion is a continuous 
linear map from one seminormed space into the other, with operator norm <_ 1. 

Note that  if two measurable functions f, g are p-equivalent, they are also A-equivalent, 

since A is p-continuous. Therefore the inclusion c L I(#) c 1 �9 -~ L (A) determines a continuous 
linear mapping ~" L l(p) ---, L 1 (A) with norm <_ 1. (We do not assert tha t  this is an injective 
map after all, two functions which are not #-equivalent may possibly be A-equivalent.) 

The integral mapping I "  f H fn f dA is a continuous linear map from L 1 (A) into the 
scalar field F. The composition I o ? .  LI(p)  -~ LI(A) ~ F is a continuous linear map. By 
28.51, we know that  that  linear map is given by some h E LI(p)  * - L ~ ( p ) .  Thus, there is 
some function h E L ~ ( # ) ,  determined uniquely up to it-equivalence, such that  

] f d)~ - / fhdp (1) 

for every f E L I ( # ) .  Since # and A are nonnegative, it follows easily that  h is nonnegative. 
By the Monotone Convergence Theorem, (1) holds for any positive measurable function f ,  
whether it is integrable or not. 

In particular,  when f is the characteristic function of a set S E g, we find A(S) - fs h d#. 
In particular,  fa h d# - A(f~) < oc, so h E L 1(#). This completes the proof of existence of 
the Radon-Nikodym derivative dA/dp in the case where A < #. 

We now remove the assumption that  A(S) _< p(S) for all S. (We continue to assume that  
A > 0. The reduction used here is taken from Bradley [1989].) Let 7r - A + it. Then A and # 
are scalar-valued, 7r-continuous measures, and A, # < 7r. By the preceding arguments,  there 
exist Radon-Nikodym derivatives dA/dTr and dp/dTr; these are members of Ll(Tr). Note that  
dp/dTr satisfies the condition analogous to (1); thus, 

f d it - f --~ d Tr (2) 

for every nonnegative measurable f .  Now define the set fit0 - w E f~" 

the nonnegative measurable function 

- 0 }  and 

dA 

d# when ~ E ~t \ f~0 

0 when a~ E f~o. 

Then #(f~o) - fao d-can dTr - 0. Since ~ is p-continuous, we have also A(f~o) - 0. Apply (2) 

with f( . )  - l s ( . )h( . ) .  By the definitions of dA/dTr, dp/dTr, and h, for any measurable set 
S c f~ \ f~o we have 

hGd - hd,. 
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Since A and f( .)h dp both vanish on subsets of ~t0, we have A(S) - f s  

This completes the proof in the case of p(Ft) < ~ .  
h dp for all S c S. 

29.21.  Definition. We say that  a Banach space (X, ] 
P r o p e r t y ,  or R N P ,  if this condition is satisfied: 

[) has the R a d o n - N i k o d y m  

(A) (RNP with respect to arbitrary measure.) Suppose (~t, g, >) is a finite measure 
space and A : g --+ X is a #-continuous measure with bounded variation. Then 
there exists some g E El(p;  X) such that  A(S) - f s  g d# for all S c g. 

Summary of results. We saw in 29.20 that  the scalar field has the RNP. It follows easily 
that  any finite-dimensional Banach space has the RNP. More generally, we shall prove in 
29.26 that  every reflexive Banach space has the RNP. We shall see by simple examples that  
some nonreflexive Banach spaces have the RNP (see 29.22) and some do not (see 29.23). 

Other characterizations (proofs omitted). Many other conditions are equivalent to the 
Radon-Nikodym Property. Here are a few of them: 

(B) (RNP with respect to Lebesgue measure.) Let (~t, g, >) be the unit interval 
equipped with Lebesgue measurable sets and Lebesgue measure. Suppose that  

: g -+ X is a #-continuous measure with bounded variation. Then there 
exists some g E LI(#; X) such that  A(S) - f sgdp  for all S E g. 

(C) (Riesz Representation Property.) Suppose (~t, g, #) is a finite measure space 
and T : L l(#) ---+ X is a continuous linear operator. Then there exists some 
g E L~ X) such that  T ( f ) =  fa fg d> for all f c L I(>). 

(D) (Huff and Morris Property.) If D is a nonempty closed bounded subset of X, 
then some continuous real-linear functional on X assumes a maximum value 
o n  D .  

Many more formulations and the proofs of equivalence can be found in Diestel and Uhl 
[1977]. That  book also includes this interesting result: 

Let X be a Banach space, let (~, g, #) be a finite measure space, and let p E 
1 1 _ 1. Then the dual of LP(p,X) is Lq(p,X*) [1, + ~ )  and q E (1, +oc] with p + 

if and only if the dual space X* has the Radon-Nikodym Property. 

Thus, (LP(p,X)) * = Lq(#,X *) is true for "nice" Banach spaces X, but not more generally. 

29.22.  Example. The space ~1 has the RNP. 

Proof. Let IF be the scalar field (IR or C). Let (f~, S, p) be a finite measure space and let 
/~ : ~ --+ ~1 be a p-continuous vector measure with bounded variation. We are to exhibit a 
function g ~ Ll (p ,  ex) satisfying A ( S ) -  f s  g dp for all S ~ S. 

We may write A(S) - (AI(S), A2(S), A 3 ( S ) , . . . ) ;  then each Aj �9 S + F is 
/ 

a p- 
/ 

continuous, scalar-valued measure with bounded variation. It follows easily from the defi- 
nition of the norm of 61 and the definition of the variation of a charge, that  

/A/(S)  = /A1/(S) + / A ~ / ( S ) +  / A 3 / ( S ) +  . . . .  
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(Hint: To prove that E j = I / ~ j / ( S )  ~_ /)~/(S),  it SUffices to show that E Y = I / ~ j / ( S )  _~ 
/ ~ / ( S )  for any positive integer N.) 

Since the scalar field has the RNP, for each j we have Aj(S) = fs  9j d# for some 9j E 
LI(# ;F) .  Define g (a~ ) -  (gl(cZ), g2(~), ga(a~), . . .  ) .  Observe that  

O O  O O  

-- j~l  ~ Igj (co) Id#(a)) " -- j=l E / / / ~ J / ( ~ )  -- //)~//(~)' 

which is finite; this proves that  g E LI(#,  el). 
Define a "truncation map" TN :el ----+ el by 

T N ( X l ,  X2,  X3,  . . .) - -  (Xl, X2, . . . ,  X N - 1 ,  X N ,  O, O, 0 , . . . ) .  

Then for any x E el, we have l i m N _ ~  TN(X) = x or, more precisely, 

lira II x - Z N ( x ) l l l  - -  0 ;  N---* oc 

this follows from the definition of ~1 and its norm. Now, for any S E g and N E N it is easy 

to verify that  TN (A(S))  - TN (fs g d#). Taking limits yields ) ~ ( S ) -  f s  g d#. 

29.23.  Example. The space co lacks the RNP. 
Let (f~, g, #) be the interval [0, 27r] equipped with Lebesgue measure. For S E g, let A(S) 

be the sequence whose nth  term is 

jr0 27r An(S) - ls(t)sin(nt)d#(t)  ( n -  1 ,2 ,3 , . . . ) .  

By the Riemann-Lebesgue Lemma (24.41.b), An(S) ~ 0 as n ~ oc. Thus A is a map from 
g into the Banach space co = {sequences of real numbers converging to 0}, which we equip 
with the sup norm as usual. Obviously A is finitely additive i.e., a vector charge. Also, 
IlA(S)ll < #(S),  so ~ is a p-c0ntinuous vector measure with bounded variation. However, 
we shall show that  there does not exist an integrable function g : [0, 27r] ~ co with the 
property that  

~(S) - ] g(t)d#(t) for every S E 8. 
/ .  

J s  

Indeed, suppose there were such a function. Then g(t) is a member  of co - -  i.e., a sequence 
(gl(t),g2(t), g3( t ) , . . . ) .  Applying the n th  coordinate projection to the equation above, we 
obtain 

/ .  

[ sin(nt)d#(t) - [gn ( t )d# ( t )  for every S E g 
P 

J s  J s  

and therefore gn(t) = sin(at) for almost every t. However, we shall show that  the function 
g(t) = (sin(t),sin(2t),sin(3t),...) defined in this fashion generally does not take values in 
co in fact, we shall show that  g(t) E Co only for t in a set of measure 0. Fix any 
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small number e > 0, and let En - {t e [0,27r] " Ign(t)[ _> e}. It is easy to show that  
p ( E n )  - 27r -  4 arcsin(e) for each n. Define limsups as in 7.48 and 21.25.c; then 

{ t  �9 g ( t )  ~ co} ~_ { t  �9 Ign(t)l >_ a for infinitely many n }  - -  l imsup En. 
n----~ cK) 

Hence 

, ( { t  e �9 g(t) r co}) > p(lim sup En) 
n - - . c x D  

_> l imsupp(En)  
n - - - ~  c ~  

27r - 4 arcsin(e). 

Now take limits as e ~ 0. 

29.24.  Defini t ion/example .  The rather complicated definitions in this section and the 
related lemma in the next section are in preparation for the major theorem given in 29.26; 
some readers may find it helpful to glance ahead to that  result. 

The collection ~ - {finite subalgebras of S} is directed by inclusion. Let # be a prob- 
ability measure on (t), S), let A be an X-valued measure on (F t, S), and suppose that  A 
is p-continuous that  is, A vanishes on p-null sets. We use A to define a martingale 
(gA " A E ~d) as follows. 

For each finite subalgebra A C S, observe that  7r(A) - {minimal nonempty members of 
dt} is a finite parti t ion 7r(A) of t), and dt - {unions of members of 7r(Jt)}. Define a simple 
(i.e., finitely valued) integrable function gA " t) ~ X by 

Some observations" 

,(T) 

0 

if w C T E 7r(A) and # ( T )  > 0 

if w e T C 7r(A) and # ( T )  - O. 

a. The function gA is defined uniquely everywhere on t), not just p-almost everywhere. 

b. The restriction of A to A has bounded variation and has Radon-Nikodym derivative 
equal to gA; thus we obtain V a r ( A , A ) -  [[gJt[[l" 

c. f A g A  d# - A(A) when A e A. 

d. (gA : A  E ~) is an X-valued martingale. For purposes of the discussion in the next 
few sections, we shall call this t h e  full s ieve m a r t i n g a l e  associated with A. 

e. If A1 c_ A2 c_ A3 c_ . . .  is an increasing sequence of finite subalgebras of g, then the:. 
sequence gn -- gJt~ (n -- 1, 2, 3 , . . . ) ,  with a-algebras An,  is a martingale. We shall 
call it a s e q u e n t i a l  s ieve m a r t i n g a l e  associated with A. Different sequential sieve 
martingales are obtained from different sequences (An). 

29.25.  Sieve  C o n v e r g e n c e  L e m m a .  Let (~,8,  p) be a probability space. Let A be 
an X-valued measure on (t), S) that  is p-continuous. Define sieve martingales as in 29.24. 
Then the following conditions are equivalent" 
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(A) There exists a Radon-Nikodym derivative h - dk/d>. That  is, there exists 
some h E L I ( p , X )  that satisfies A(S) - f s h d #  for every S E g. Hence 
go4 - E(hlo4 ) for each o4 E ~. 

(B) The full sieve martingale (go4" A E ~) associated with A converges in L 1(#, X) 
to some limit h. 

(c) 

(D) 

For each increasing sequence of algebras -/:[1 C o42 C o43 C . . -  contained in g, 
the sequential sieve martingale (gn) associated with k converges in L I ( p , X )  
to some limit g~- 

For each increasing sequence of algebras o41 c_ o42 C_ art. 3 C . . .  contained in 
g, there exists some function g~ E LI(#, X) with the following property: For 
each ~ E X*, the scalar-valued sequential sieve martingale (qp o gn : n = 
1, 2, 3 , . . . )  converges in LI(#, IF) to p o g~.  (Here IF is the scalar field.) 

Furthermore, when these conditions are satisfied, then the functions h in (A), (B) are the 
same, and the limits g~ in (C),(D) are equal to E(hlo4~ ), where o4~ is the a-algebra 
generated by Un~N o4~" 

Proof of theorem. The implication (A) ~ (C) follows from 29.17; the implication (C) => 
(B) follows from 19.7. To prove (B) ~ (A), fix any set S E g. For all O4 E ~" sufficiently 
large, we have S c O4, hence f s  go4 d> - A(S). Take limits as gA --+ h in LI(>, X) to obtain 

The implication (C) => (D) is obvious. For (D) => (C), let any sequence eLI1 

o42 C_ o43 C_ .. .  C_ g be given, and suppose the conclusion of (D) holds. Temporarily fix any 
p E X*. It is easy (exercise) to verify that the sequence (qpogn) is a martingale in LI(#, IF). 
Since that martingale converges in LI(p ,F)  to p o g~,  we know from the implication (A) 

(B) in 29.17 that p o g ~ -  E ( p  o g~ o4n) for each n. That is, ~ o gn is o4~-measurable, 
and f s  P o g~ d# - f s  P o g~  d# for each set S E o4n. Since ~ is continuous and linear, it 
commutes with the Bochner integral; thus we obtain ~ ( f  g~ dp) - ~ ( f  g~ dp) for each 

E X*. Since X* separates the points of X, it follows that f gn d> - f g~  d> for each 
S E o4n. That  is, gn - E(g~Io4~). By the implication (B) ~ (A) in 29.17, it follows that 
g~ --+ g ~  in L I ( p , X ) .  

29.26. T h e o r e m  (Phi l l ips) .  Every reflexive Banach space has the RNP. 

Proof (following R0nnow [1967] and Chatterji [1968]). Let (X, I [) be a reflexive Banach 
space. Let (~, g, p) be a positive measure space, and let A be an X-valued #-continuous 
vector measure that has bounded variation. We are to show that the Radon-Nikodym 
derivative dA/dp exists. 

If S is not complete, we may extend A and p to the completion of g, by taking them both 
to be 0 on any #-null set. Thus we may replace S with its completion we may assume S 
is complete (i.e., every null set is measurable). 

Since A < <  #, we know that / A / < <  #. By the classical Radon-Nikodym Theorem, we 

know that the Radon-Nikodym derivative d /A /  d# exists. It suffices to show that the derivative 
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dA dA dA d/A/ 
d/A/ exists, for then we may apply the Chain Rule 29.12.b to obtain d# d/A/ d# 

Hence we may replace # wi th /A/ ;  thus we may assume hereafter that # - / A / .  By rescaling, 
we may also assume that # is a probability measure. 

Let A1 C_ A2 c ./t3 C . . .  be an increasing sequence of finite algebras contained in S. 
Define the X-valued martingale (gn) as in 29.24.e It suffices to verify condition 29.25(D). 

Let X0 be the closed linear span of the union of the ranges of the gn'S; then X0 is 
separable and weakly closed. Since IA(S)] < / A / ( S )  - #(S), from our definition of the gn'S 
in 29.24 we see that Ign(W)] _< 1 for all n,w. Let B be the closed unit ball of X; the gn'S 
take their values in B N X0. The set B is weakly compact by 28.41(C); hence B n X0 is 
weakly compact. Therefore B n X0 is weakly sequentially compact, by 28.36(E). 

Temporarily fix any w E f~. The sequence (gn(w)) has a subsequence (gnk (w)) that 
converges weakly to some limit g~ (w) E B n X0. Many choices of g~ (w) may be possible, 
using different subsequences; we use the Axiom of Choice to select some particular g~(w). 
Making a choice for each w, we define a function g~ �9 f~ -~ B. (Different w's may use 
different subsequences; we do not yet assert anything about measurability of g~.)  

Let IF be the scalar field. Temporarily fix any ~ E X*. By the classical Radon-Nikodym 

Theorem, the scalar-valued measure ~ o A has a Radon-Nikodym derivative d(~ o A_______~). By 
d# 

the implication (A) =a (C) in 29.25 (with the scalar field used as a Banach space), the 
sequence (~ o gn "n  E N) converges in L 1 (#, IF) to some limit h~. By 29.19, we also have 

o gn ---* h~ almost everywhere. Thus there is some set N~ with measure 0, such that  for 
any w E f / \  N~ we have {~,gn(W)} ~ h~(w). On the other hand, holding w fixed, some 
subsequence (gnk (w)) converges weakly to g~(w). It follows that 

hr - (~,g~(w)} for all w E ~ \ Nr 

Since h~ is measurable and N~ is a null set, the function w ~ {~, g~(w)} is measurable. 
Thus g~  is weakly measurable. It is also separably valued and bounded, since it takes its 

values in B n X0. Therefore it is strongly measurable (by 23.25) and belongs to L ~ ( p ,  X). 
As we noted above, for e a c h p E X * w e h a v e ~ o g n  ~ h~ = ~ o g ~  a s n ~ o c .  This 

completes the verification of 29.25(D), and thus the proof of the theorem. 

SEMIVARIATION AND BARTLE INTEGRALS 

29.27. Notations. Throughout the next few sections, we shall assume A is an algebra of 
subsets of some set ~. Also, we "assume (X, ] ]) is a Banach space, and U is the closed 
unit ball of the dual of X that is, 

U - { u E X *  �9 lU]x ,_< l} .  

29.28. Definition. With notations as in 29.27, let A" ,4 ~ X be a vector charge. Then for 
each u E U, the function uA - u o A is a scalar-valued charge; its variation is the positive 
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cha rge /uA/ .  The s e m i v a r i a t i o n  of A is the function ::A-" �9 A --, [0, +oc] defined by 

.")~:'(A) = sup /uA/(A). 
uEU 

Caution" A more commonly used nota t ion  is I1~11; see for instance Diestel and Uhl [1977]. 
Our n o t a t i o n / A / i s  unconventional, but perhaps more suggestive. 

29.29.  Basic properties of semivariations. 
a. -'~-" is monotone that  is, A c_ B ~ .-s < .-s Hence the largest value 

taken by .."~- is the (not necessarily finite) number -)~::(f~). 
b . . - A / i s  f in i te ly  s u b a d d i t i v e  that  is, :'A/ [.J~=l cj <_ }-~j=l/A.."(Cj) whenever n 

is a positive integer and C1, C 2 , . . . ,  C~ are members of A. 

c. If the scalar field is IR, our formula for the semivariation can be rewritten 

-x- (A)  - {l a(S)l + I X(A \ s)l �9 e u, s e s, s < A}. 

-I:'~-(A) < sup (~I~(S)I �9 S c A S c A~ ~ < -")~-'(A) 
~ , ~ _ _  

1 in place of 1 If the scalar field is R, we can use ~ ~. 
Hints: This follows from the previous observation; for the second inequality use 

also (HB8) in 23.18. 

e. In particular, ~l-~-(ft) -< SUPacA I~(A)I <- - 'A-(a) .  Thus, ~ is bounded (i.e., has 
bounded range) if and only if its semivariation over ft is finite. Instead of saying that  
a charge has "bounded semivariation," we may just say that  the charge is bounded. 

f. The space  of  all b o u n d e d  X - v a l u e d  c h a r g e s  on  A is a Banach space, when normed 
by either I1~11 = sup{l~(A)l : A E A} or II~[I = / ~ / ( a ) ;  these two norms are equivalent. 
The n o r m / ~ / ( f ~ )  is more convenient for some purposes, particularly 29.30 below. The 
space of bounded charges will be denoted ba(A, X). (For proof of completeness, apply 
22.17 with F = A.) 

In general, ba(A,X) is larger than the space BV(A,X)  of charges with bounded 
variation, which was introduced in 29.6.c. However, when X is finite-dimensional, then 
the two spaces ba(A, X) and BV(A, X) are the same, and the variation is another norm 
equivalent to the semivariation. When X is the scalar field, then the variation is equal 
to the semivariation. 

g. Let g be a a-algebra of subsets of f~. The space  of  X - v a l u e d  m e a s u r e s  (i.e., 
countably additive charges) on g will be denoted ca(A, X). It is a closed subspace of 
ba(A, X) and is normed by the semivariation or the sup norm, as in 29.29.f. 

(Again, we note that  if X is finite-dimensional, then another equivalent norm is 
given by the variation; if X is the scalar field, then the semivariation is equal to the 
variation.) 

This follows from 29.6.d. 

d. For any set A E g, we have 
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29.30. Notations. For the discussions below, let ft be a nonempty set, and let r be an 
algebra (but not necessarily a a-algebra) of subsets of f~. Let F be the scalar field (equal 
to IR or C). Let 

B(ft) = {bounded functions from Ft into F}; 

this is a Banach space when equipped with the sup norm. 
In this context, a simple function will mean a function f : ft ~ IF whose range is a finite 

set and that satisfies f - l ( c )  c A for each c E F. Equivalently, f is a linear combination of 
finitely many characteristic functions of members of A.) Observe that the simple functions 
form a linear subspace of the Banach space B(f~). Now define 

Vnif(A) = {uniform limits of simple functions}; 

thus Unif(A) is the closure of the simple functions in B(ft). It is a closed linear subspace 
of B(ft), and thus it is a Banach space when equipped with the sup norm. 

Elementary exercise. If the algebra A is a a-algebra, then Unif(A) is equal to the set of 
all bounded measurable real-valued functions on ft. 

Definition. Let (X, I I) be a Banach space, with scalar field F. Let f~, A, Unif(A), etc., 
be as above. Define the Banach space ba(A, X) of bounded charges as in 29.29.f, with 
the semivariation for the norm: IlAII = -A-(ft).  By the B a r t l e  i n t eg ra l  we shall mean a 
continuous bilinear map 

fa() d() : Unif(A) x ba(A,X) ~ X 

defined as follows. When f is a simple function (i.e., a finitely valued measurable func- 
tion), then define the integral in the obvious fashion, as in 11.42 that is, fa  f dA = 
~ ~ ( f - l ( c ) ) c .  It is easy to verify that 

s d  Ilfll~ IIAll. (!) 

Thus the mapping f H fn f dA is continuous, and so it extends uniquely (see 23.2.e) to a 
linear map on all of Unif(A), also satisfying (!). 

We emphasize that the charge A need not be scalar-valued or countably additive, but the 
integrand f must be scalar-valued and bounded. (Contrast this with the Bochner integral 

defined in 23.16 for which the measure must be positive and countably additive, but 
whose integrand may be vector-valued and unbounded.) 

Remarks. The definition given above is convenient for our purposes, but the literature 
sometimes uses the term "Bartle integral" with wider choices of f and A. In particular, 
Bartle himself permitted all of f ,  A, and f f dA to take values in vector spaces X, Y, Z; 
where we have used multiplication of a scalar times a vector, he used a bilinear map ( ,  } : 
X x Y ~ Z. What  we have called the "Bartle integral" is what some mathematicians would 
call the R a d o n  in tegra l ,  but that term has other meanings, too. 

29.31. Further properties of the Battle integral. Let f~, A, Unif(A), etc., be as in 29.30. 
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a. In the fashion indicated above, each A c ba(o4, X) defines a continuous linear map 
~ : Unif(o4) ~ X, defined by ~a(f )  = fa f dA. The preceding argument shows that  
this linear map has operator norm II]~]]]-< ]]A]]. 

Actually, from the definition of semivariation it follows easily (ezercise) that  [[[r 
is equal to ]]A]]. That  is, 

 up{ : f E Unif(~t), Ilfll~ -< 1 = - a - ( a ) .  

(For this and related purposes, the semivariation works much better than the sup of 
the charge, even though the semivariation and sup are equivalent norms.) 

b. Furthermore, every continuous linear map from Unif(r to X is of this form. Thus, 
the mapping A ~ /3x is an isomorphism (i.e., norm-preserving linear bijection) from 
ba(o4, X) to the operator-normed space 

BL(Unif(Ct),X) - {bounded linear maps from Unif(J t ) to  X} 

(defined as in 23.1). 
In particular, ba(A, F) = (Unif(A))*. 

c. T h e  dua l  of  L ~ (tt). Let (f~, g, #) be a measure space (i.e., assume g is a a-algebra and 
# is countably additive). Show that  the mapping A H ~x gives an isomorphism from 
ba(#,X) onto BL(L~(#) ,X)) ,  where ba(#,X) is the subspace of ba(g,X) consisting 
of those charges that  vanish on #-null sets. 

(Hints: Since g is a a-algebra, Unif(g) is the space of bounded measurable functions. 
Then L ~ (#) is a quotient space of Unif(g), obtained by identifying those functions that  
are #-equivalent.) 

In particular, ba(#, F) = (L ~(#) )* .  

29.32. The following principles are equivalent to the Hahn-Banach Theorems, which were 
presented in 12.31, 23.18, 23.19, 26.56, 28.4, and 28.14.a. Notation is as in 29.30. 

( H B 2 5 )  B a n a c h ' s  G e n e r a l i z e d  I n t e g r a l .  Let f~,A,B(ft),lF, etc., be as in 
29.30, with X = F = R. Let A be a bounded charge on A. Then the Bartle 
integral f ~-, f f dA, already defined on Unif(A) in 29.30, can be extended 
(not necessarily uniquely) to a continuous linear map w B(ft) ~ R, satisfying 
]w < ]]f]]~::A:". If A is a positive charge, then w can be chosen so that  it is also 
a positive linear functional. 

( H B 2 6 )  B a n a c h ' s  C h a r g e .  Let A be an algebra of subsets of a set f~, and 
let A be a bounded real-valued charge on A. Then A can be extended to a real- 
valued charge A on all of [P(f~). If A is a positive charge, then we can also choose 
A to be a positive charge. 

(See also the related remarks in 21.23.) 

Proof that (HB2) and (HB7) imply (HB25). The first statement is obvious from (HB7); 
the result about positive charges will take a little more work. Observe that  the mapping 
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f H Itf+ll~ is convex, since IIf+ll~ is the supremum of the linear functionals 0 and f(co) 
(for co Ef t ) .  For f C Unif(A), we have f f dA <_ f f+ dA <_ llf+ll~-)~: :, hence by (HB2) we 
can extend the Bartle integral to a linear map w that  satisfies w _< IIf+ll~-,k -. When f _< 0, 
then IIf + ll~ -< 0; this proves w is a positive linear functional. However, we still need to show 
that  a functional chosen in this fashion will also satisfy the inequality Iw -< llfll~ -A-.  Any 
f E B(fl)  can be expressed in terms of its Jordan Decomposition: f = f +  - f -  with 

f+  (a~)-  f (aJ )and  f - ( a J ) -  0 wherever f(aJ) _> 0, 

f - ( w ) -  - f ( w ) a n d  f+(co) - 0  wherever f(w) _< 0. 

Then w and w  are both nonnegative, so 

lw - IN(f + )-w _< max{w167 
_< m a x { l l f + l l ~ , l l f - I ~ } : ' ~ : "  - 

Proof of (HB25) ==v (HB26). Define A(S) = w ( ls ) .  

Proof of (HB26) ==v (HB12). Let :7 - {gt \ F "  F e 9"}; this is the proper ideal that  is dual 
to 9". L e t A -  9 " U 9 -  {S c_ gt �9 S c 9" or S E 9}; verify t h a t A i s  an algebra of sets. 
Define ~" A --+ {0, 1 } by taking A(F) = 1 for each F e 9" and A(I) - 0 for each I e 9; verify 
that  this is a positive charge on A. Now extend to A - p. 

MEASURES ON INTERVALS 

29.33.  T h e o r e m :  s c a l a r - v a l u e d  m e a s u r e s  on  an  in te rva l .  Let IF be the scalar field 
(N or C). Let ~ ' [ a , b ]  -~ IF be a function that  has bounded variation (in the sense of 
intervals i.e., as in 19.21). Then: 

a. The Henstock-Stieltjes integral p:(S) - f :  ls(t)d~p(t) exists for every Borel set S c_ 
[a, b], and thus defines a scalar-valued measure p :  on those sets. (That  measure has 
bounded variation in the sense of measures, as in 29.5 see 29.6.h.) 

b. Let f ' [ a ,  b]-+ IF be bounded and measurable (from the Borel sets to the Borel sets). 

Then the Henstock-Stieltjes integral f :  f d~ exists and is equal to the Bartle integral 

f[a,b] f dP: �9 

Proof. If ~ is complex-valued, we may write it as Re ~ + i Im 7~; thus it suffices to consider 
real-valued p. Any real-valued function of bounded variation can be written as the difference 
of two increasing functions. Thus we can apply 24.35; # :  is a linear combination of positive 
finite measures on the Borel sets, and thus it is a scalar-valued measure. 

By the definition of # : ,  the equation f :  f d~ - f[a,b] f d#: is clear when f is the charac- 
teristic function of a measurable set hence also when f is a simple function, by linearity. 
The simple functions are dense in L ~ (g), and the Henstock-Stieltjes and Bartle integrals 
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are continuous on L ~ ( g )  (see 24.17 and 29.30). Take limits to prove fb 

for all f E L ~ (g). 

f d~ - f [a ,b ]  f dp~ 

29.34.  R iesz  R e p r e s e n t a t i o n  T h e o r e m  for in t e rva l s .  Let ~ = [a,b] be a compact 
interval in I~, and let 93 be its a-algebra of Borel subsets. Let F be the scalar field (R or 
C), and let 

C[a, b] = {continuous functions from [a, b] into F}. 

Then these three Banach spaces are isomorphic: 

�9 the space C[a, b]* of continuous linear functionals A : C[a, b] ~ F, equipped with the 
operator norm; 

�9 the space ca(iB, F) of scalar-valued measures #, normed by the variation /#/ as in 
29.29.g; 

�9 the space NBV([a, b], F) of normalized functions of bounded variation, equipped with 
the norm IlPll = Var(p, [a, b]) as in 22.19.d. 

In fact, the following maps are linear norm-preserving bijections: 

�9 the mapping M :  ~ H p~ from NBV([a, b],]F) to ca(iB,]F) defined by the Henstock- 

Stieltjes integral p~(S) - f :  l s  d~ as in 29.33; 

�9 the mapping B : p ~ 3 ,  from ca(N,F)  to C[a,b]* defined by the Bartle integral 
/~u(f) = f~ f dp, as in 29.30; 

�9 the mapping A : ~ ~ I~  from NBV([a, b],F) onto C[a,b]* given by the Riemann- 

Stieltjes integral A~(f) -  f:  f d~, as in 24.26(ii). 

(In fact, the mapping A is actually equal to B o M.) Thus, the two kinds of "variations" 
defined in 19.21 and 29.5 are equal, for ~ and p corresponding as above. 

Proof (based on Limaye [1981]). The equation A = B o M follows from 29.33. It follows 
from 24.28 that  the mapping n is injective when considered only from NBV([a, b],F) to 
C[a,b]*. We saw in 29.30 and 24.16.c that  IIIBIII <_ 1 and IIIMIII < 1; hence IIIAIII < 1. 
It suffices to show that  the mapping A : NBV([a, b],F) -+ C[a, b]* is surjective and that  
ILIA-1111 _< 1. Thus, let any A E C[a,b]* be given; it suffices to show that  there is some 

E NBV([a, b] , F) satisfying A = A~ and ]]~[[ _< IIA]]. 

Let A be any Hahn-Banach extension of A to L ~ ( N )  that  is, let A �9 L~(~3) be any 

continuous linear map from L~(~3) to F that  extends A and satisfies I1~ -I1~11. De~ne 
~(t)  - A(l(,,t]), where l(~,t] is the characteristic function of the interval (a, t]. In particular, 

0. 
Note that  if a = to < tl < t2 < . . .  < tn = b is any parti t ion and kl,k2,...,kn are any 

constants, then the function u : [ a ,  b] ~ F defined by 

~t(') -- E kj l(tj_l,tj](" ) -- E kj (l(a,tj](") -- l(a,tj_l](')) (**) 
j=l j=l 
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satisfies A(u) -- E j = I  k j  [@(tj) - r  

We claim next that  ~ C BV([a, b],F), with Var(r < ]JAil. To see this, let any partition 
of [a, b] be given; define u as in (**) with constants 

I r  - -  r  

k j  - -  r  - -  r  

0 

if r 7s r  

if r  = r  

We may assume that  the kj's are not all zero; hence Ilull~ = 1 and 

n n 

E Ir -- r  = E kj [r - r  - ~(u) _< II~ll. 
j = l  j= l  

This proves our claim. 

Next we claim that  feb f de  -- A(f) for every u e C[a, b]. Indeed, since f is continuous 

and r has bounded variation, the integral f :  f de  is a Riemann-Stieltjes integral, not just 
a Henstock-Stieltjes integral. Thus, in the approximating Riemann sums E[ f ,T , r  we 
may take the tags ~-j to be any points in the subintervals [tj-1, tj]. In particular, we may 

n 
take Tj -- tj. Let kj - f ( t j ) ,  and define u as in (**); then E[f,T,  r - f~j=l k j [ r  
r - A(u). The Riemann sums of this type converge to the Riemann-Stieltjes integral 

faD f de. Meanwhile, the approximating functions u defined in (**) converge uniformly to 

the continuous function f ,  and so A(u) converges to A(f) - A(f). This proves our claim. 
By 24.28 we may write r = r + r where r e C[a,b] • ~P2 e NBV([a,  b],X), and 

Var(~P2) < Var(r Take ~a = r this completes the proof of the present theorem. 

29.35. We now state a more general theorem. We omit the proof, which is quite long; it 
can be found in books on measure and integration. 

Riesz  R e p r e s e n t a t i o n  T h e o r e m  (gene ra l  vers ion;  p r o o f  o m i t t e d ) .  Let Ft be a locally 
compact, Hausdorff topological space. Let Cc(~t) be the ordered vector space of all real- 
valued, continuous functions on ~t that  have compact support. Then each positive linear 
functional A on Cc (~) is of the form 

A(f) = / a  f dp 

where # is a positive measure on the Borel subsets of ft. There may be more than one 
measure satisfying this requirement, but there is only one satisfying the following further 
conditions: Each compact subset of ft has finite measure; p is outer regular, in the sense 
that  #(B) = inf{p(G) :  G is an open superset of B} for each Borel set B; and p is inner 
regular, in the sense that  p(G) = sup{p(K) : K is a compact subset of G} for each open 
set G. 

29.36. T h e o r e m .  Let ~a be some mapping from an interval [a, b] into the scalar field (N 
or C). Then the following conditions are equivalent: 
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(A) ~(x) - p(a) + f x  g(t)dt for some function g E Ll[a,b]. 

(B) p is a b s o l u t e l y  cont inuous  in the  c lass ical  sense; that  is, for each number 
e > 0 there exists some number 5 > 0 such that  

whenever a _< Sl < tl _< s2 <_ t2 < .. .  <_ Sn < tn <_ b with 
n n 

E j = I  I s J -  tJl < 5, then E j = I  IV)(sj)- v)(tj)l < c. 
In this case we might also describe phi as a b s o l u t e l y  c o n t i n u o u s  in the  
sense  of  intervals .  

(C) qo is continuous, and p has bounded variation in the sense of intervals (see 
19.21). Moreover, if we define a measure p~ on the Lebesgue measurable 

sets by the Henstock-Stieltjes integral #~(S) - f :  ls( t )d~(t) ,  then #~ is 
absolutely continuous (in the sense of measures, as in 29.4) with respect to 
Lebesgue measure. 

Proof. Throughout  the proof, let A denote Lebesgue measure on [a, b]. 

Proof of (A) =~ (B). Define a positive finite measure '7 by '7(A) - fA Ig(')l dA, as in the 
proof of 29.10. Compute 

n n 

j = l  j = l  

'i ~ g(r)dr n f t j  j~l ~ Ig(r)ldr - "7(A) 

n where A - Uj=l(s j , t j ) .  Since '7 < <  A (as noted in 29.10), for each e > 0 there is some 
> 0 such that  A(A) < ~ ~ ?(A) < c. 

Proof of (B) ~ (C). That  ~ is continuous and has bounded variation in the sense of 
intervals is an easy exercise. To prove p~ < <  A, let e > 0 be given; choose ~ > 0 as in 
(B). Let S be any Lebesgue-measurable subset of [a, b] with A(S) < (5; we shall show that  
I~(s)l _< c. 

By 24.40, there is some open set G _D S with A(G) < 5. (Here "open" refers to the 
o o  

relative topology on [a, b]; thus [a, b] itself is open.) By 15.37.d we know that G -  [-Jo=l Ho 
for some disjoint open intervals H O (not necessarily arranged from left to right across the 
the interval [a, b] as j increases); again "open" refers to the relative topology. 

Form a gauge '7" [a, b] ---, (0, +oc) with the following property: Whenever r is a point 
in H O for some j E N, then '7(r) is a positive number small enough so that  [a, b] e [ r -  
"7(7), 7 q-'7(3-)] C Hj. Let T - (m, ti, 3-i) be any tagged division of [a, b] that  is '7-fine; let 

I - {i c { 1 , 2 , . . . , m }  " 3-i E S}. Then p~(S) - f : l s ( t ) d ~ ( t ) i s  approximated by the 
Riemann-Stieltjes sum 

m 

E[Is ,  T, ~] = E l s  (3-i)[qo(ti)- qp(ti_ 1)] = E [(p(ti) - g)(ti_l)]. 
i=1 iE I  

Whenever i E I, then 3-i c G, hence 3-i E Hj for some j ,  and therefore [ti-l,ti] C_ Hj by 
our choice of the gauge '7. The intervals ( t i - l , t i )  are disjoint, and therefore the sum of 
the lengths of the (t~-l, t~)'s (for i C I) is less than or equal to the sum of the lengths of 



81o Chapter 29: Vector Measures 

the Hj's.  That  sum is less than or equal to A(G), and thus is less than 6. Hence, by our 
hypothesis (B), we have EiEI [9~(ti)- 9~(ti-1)l < e. Thus IS[ Is ,T ,  < c. Taking limits 
as the tagged division T becomes finer, we see that  I  (S)l _< ~. 

Proof of (C) =~ (A). The measure #~ has bounded variation by 29.6.h, and #~ < <  A. By 
the Radon-Nikodym Theorem (29.20), there is some g c Ll[a, b] such that  #~(S)  - f s  gdA  
for all Lebesgue-measurable sets S c_ [a, b]. In particular,  when S is the interval [a, x], then 

by 24.22.b and the continuity of 9~ we have 9~(x)-9~(a) - f :  1s(t)dg~(t) - #~(S)  - f~  g(t)dt. 

PINCUS'S PATHOLOGY (OPTIONAL) 

29.37.  The following three principles are equivalent to one another, in the sense of weak 
forms of the Axiom of Choice. All of these principles assert the existence of intangibles 

i.e., we can use the Axiom of Choice to prove that  these objects exist, but we cannot 
find explicitly constructible examples of any of these objects. Condition (A), below, is a 
consequence of the Hahn-Banach Theorem, as we noted in 23.10. 

Recall that  a measurable space is a set equipped with a a-algebra of subsets. 

(n)  (~oc)* ~ ~1 that  is, there exists a bounded linear functional on ~o~ that  
cannot be represented by a member  of ~1. 

(B) There exists a measurable space (ft, g) and a bounded scalar-valued charge 
on g that  is not a measure. 

(C) There exists a probability charge on (N, [P(N)) that  vanishes on finite sets. 

Proof (based on Wagon [1985]). For (C) =~ (A), it is an easy exercise to show that  if 
it" [P(N) ~ It{ is a bounded charge that  is not countably additive, then the Bartle integral 
A(f)  - fN f dff (defined as in 29.30) satisfies the requirements of (A). For (A) =~ (B), it is 
an easy exercise to show that  if A ' ( ~  ~ F satisfies (A), then if(S) - A(l s )  satisfies (B), 
where l s is the characteristic function of any set S C_ N. 

It remains to show (B) ~ (C). Let ~ be the given scalar-valued charge. If the scalar field 
is C, then we may write ~ - Re ~ + iIm ~; thus at least one of Re ~, Im ~ is a real-valued 
bounded charge It that  is not countably additive. Next, use the Jordan Decomposition 
ff - if+ - i f-  (see 8.42.f and 11.47); thus at least one of It +, # -  is a positive, real valued, 
bounded charge v tha t  is not countably additive. Since v is positive and finitely additive, 
for any disjoint measurable sets S1, $2, $3,... C_ ~ we have 

(0) (0) 
j = l  j = l  j = l  

(u ) hence Ej=I l](sj) _</./ 1 , and similarly }--~j~j u(Sj)  < u jcJ  Sj for any set 

J c_ N. On the other hand, since u is not countably additive, there is some sequence (S j) 



Pincus's Pathology (Optional) 811 

that  satisfies E j = I  u(Sj)  -r u U?=I ~J , and therefore Y'~j=I u(Sj)  < u U?-I  ~J ~ oo. 
Define 

Then )~ takes values in [0, +oc) and, in particular, )~(N) > 0. Also, )~ is finitely additive but 

vanishes on finite subsets of N, since the mappings J H ~ ( U j ~ j  S j )  and J ~ ~ j e  j u(Sj)  
are both finitely additive. Finally, let 7r(J) - L,(J)/L,(N); then 7r is the required probability. 

\ / 

29.38.  We shall now show that  any of the equivalent principles listed in 29.37 implies the 
following principle: 

( N B P )  There exists a subset of {0, 1} N that  lacks the Baire property. 

Here {0, 1} has the discrete topology and {0, 1} N has the product topology, as usual. 
This implication was first stated without proof in Solovay [1970]; the first published 

proof apparently is that  of Pincus [1974]. The slightly shorter proof below is essentially 
that  of Taylor; it was published in Wagon [1985]. 

Proof. We assume 29.37(C). As usual, we shall identify [P(N) = {subsets of N} with 
{0, 1} N = {sequences of 0s and ls}, by identifying each subset of N with its characteristic 
function. However, for clarity we shall use different notations in these two settings. For 
any sequence a = (a l ,a2 ,a3 , . . . )  E {0, 1} N, the corresponding member of [P(N) is the set 
N(a) = {j E N : aj = 1}. Similarly, for any finite sequence a = (a l ,a2 , . . .  ,am) of 0s and 
ls, the corresponding set is N,~(a) = {j C {1, 2 , . . . ,  m} : aj = 1}. 

The given probability measure It : T(N) ~ [0, 1] yields a corresponding function 
L, : {0,1} N ~ [0,1]. L e t T = { a ~  {0,1} N : u ( a ) = 0 } .  We shall show that  T l a c k s  the 
Baire property. Assume, on the contrary, that  T has the Baire property; we shall obtain a 
contradiction. 

Since the measure # vanishes on finite subsets of N, it follows that  L, takes the same 
value on any two sequences that  differ in only finitely many terms; thus T is a tail set in 
{0, 1} N. By 20.33, T is either meager or comeager. 

Note that  if a ~ is the sequence obtained from a by switching all the 0s to ls and all 
the ls to 0s, then L,(a) + ~,(a') = 1, since # is finitely additive. Also, the mapping a H a' 
is a homeomorphism from {0, 1} N onto itself, preserving all topological properties. If T is 
comeager, then the set 

U = {0,1} N \ T  = { a t { 0 , 1 }  N : ~ , ( a ) > 0 }  

is meager, and so the set 

U' = {a' �9 a E U }  - { b E { 0 , 1 }  N �9 L , ( b ) < l }  

is also meager. But then {0, 1} N - U tO U' is also meager, contradicting 20.17. Thus T 
cannot be comeager. 

Hence T is meager. Say T -  [..JpeN Qp, where each Qp is nowhere-dense in {0, 1 }N. 
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When a and b are finite sequences, let a | b denote their concatenation i.e., the 
sequence a followed by the sequence b. For instance, (1, 2, 3) | (4, 5) = (1, 2, 3, 4, 5). An 
extension of a finite sequence ( a l , a 2 , . . .  ,am) is a longer sequence, either finite or infinite, 
whose first m terms are a l , a 2 , . . . , a m  in that  order. For any finite or infinite sequence 
a = (al, a2, a3,...), let 7rj(a) = aj. 

We shall now recursively construct integers 0 = A(0) < A(1) < A(2) < . . .  and functions 
FB "{0, 1} p ~ {0, 1} ~(p) with certain properties described below. 

(i) The function Fp maps sequences of 0s and ls of length p to sequences of 0s 
and ls of length A(p). (The function F0 maps the empty sequence to the 
empty sequence.) 

(ii) If q > p and b C {0,1} q is an extension o f a  e {0,1} p, then Fq(b) is an 
extension of Fp (a). 

(iii) When p is a positive integer, no infinite sequence contained in Qp will be an 
extension of any of the finite sequences in Range(Fp). 

(iv) For each positive integer j E {1, 2 , . . . ,  A(p)}, there is at most one sequence 
a in {0, 1} p with the property that  zcj(Fp(a)) = 1. In other words, the sets 
N~(p)(Fp(a)) (a E {0, 1} p) are disjoint. 

The definition of A(0) and F0 is clear. Now suppose that  some A(p) and Fp have already 
been specified, satisfying the conditions above; we wish to determine A(p + 1) and Fp+l. 
They will be constructed in several steps. 

As a first step, define a function Gp on {0, 1} p+I by taking 

Gp(a | b) = Fp(a) | a | b for a E {0, 1} p and b c {0, 1}. 

In other words, 

a;(ooo...oo) 
ap(O00. . .01) 
Gp(O00. �9 �9 10) 
Gp(O00... 11) 

G p ( l l l .  �9 �9 10) 
G p ( l l l . . .  11) 

consists of the sequence 
consists of the sequence 
consists of the sequence 
consists of the sequence 

�9 . . 

consists of the sequence 
consists of the sequence 

Fp(O00...O) followed by 000 . . -00  
Fp(O00...O) followed by 000- . -01  
Fp(O00... 1) followed by 000 . . .  10 
Fp(O00... 1) followed by 000 . . .  11 

�9 . . 

F p ( l l l . . . 1 )  followed by 111 . . . 10  
Fp(111- . .1 )  followed by 111 . . .11  

Thus, all the sequences Gp(a) (for a c {0, 1} p+I) have length A(p)+  2 p+I. 
For our next step, we shall extend all these sequences Gp(a) to new sequences Hp(a), 

all of which have different lengths. Let al,a2,...,a2p+l be the 2 p+I elements of {0,1} p+I, 
listed in any convenient order. Say we have already formed extensions 

Hp(al), Hp(a2), . . . ,  Hp(an-1) 

for some n (or take n = 1 if we haven't  formed any of these extensions yet). We now 
wish to extend Gp(an) to a longer sequence Hp(an) having certain properties. First, add 
0s to the end of the sequence Gp(an), to make a sequence that  is as long as any of the 
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extensions Hp(al) ,  H p ( a 2 ) , . . . ,  Hp(an-1)  already formed (or skip this operation if n - 1). 
Now, by 20.5.c, we can extend the sequence further, to get a new sequence Hp(an) having 
the property tha t  no infinite extension of this new sequence Hp(a) is a member  of Qp+l. 

Wi th  this construction, we now have 

[length of Hp(al)] < [length of Hp(a2)] < . . .  < [length ofHp(a2p+l)]. 

Thus, the longest of these sequences is Hp(a2p+l). Take the length of tha t  sequence as our 
definition of ~ ( p +  1). Now extend all the other Hp(an)'S to that  length by adding 0s to the 
ends of those sequences. The resulting sequences are our definition of the Fp+l (an)'s. This 
completes our recursive construction of the Fp's and A(p)'s. 

Now define a mapping F ~  : {0, 1} N -+ {0, 1} N as follows: For each a = (a l , a2 ,aa , . . . )  
in {0, 1} N, let F~(a)  be the sequence tha t  is an extension of all the finite sequences 
Fp(al, a 2 , . . . ,  ap) for p = 1, 2, 3, . . . .  The set B = Range(Fo~) C_ {0, 1} N now has these 
properties: 

(a) The set B is disjoint from all the Qp's and hence from T. (This follows from property 
(iii) of the Fp's.) 

(b) If a, b are two distinct members of B, then N ( a ) n  N(b) - {j  c N �9 aj - bj - 1} is a 
finite set. (This follows from property (iv) of the Fp's.) 

(c) B is uncountable. (Indeed, F ~  is injective, because of our method of constructing the 
Gp's from the Fp's.) 

1 for some For each b C B, we have b ~ T, and therefore u(b) > 0. Hence u(b) > 
positive integer b. Since B is uncountable, there is some positive integer k such that  

1 Bk -- {b E A �9 u(b) > g} is uncountable. Hence tha t  Bk has at least k distinct elements 
bl ,b2 , . . .  ,bk E {0, 1} N If we change finitely many ls to 0s in any fashion whatsoever, then 
the resulting new sequences c1, c2 , . . .  , c k C {0, 1} • will also satisfy u(cj) > ~. However, 
by property (b) it is possible to choose the cj's so that  their corresponding sets of integers 

1 while Sj - N(c j )  are pairwise disjoint. Thus f f(Sj)  > -~ 

#(oO1) _~_ #(002) _qt_... _~_ #(Sk  ) -- # ( S l  U $2 U . . - U  Sk) _< 1, 

a contradiction. 
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Initial  Value P r o b l e m s  

30.1. Overview. This chapter is concerned with initial value problems in a Banach space 
X; these take the form 

u'(t) - f (t, u(t)) (0 < t < T), I 
(IVP) u(O) - xo.  f 

Here x0 is a given element of X, called the initial value, and f is a given mapping (not 
necessarily linear or continuous in either variable) from some subset of R x X into X. 
The function u is the solution of the initial value problem it is not necessarily given; it 
may be viewed as the "answer" o f  the initial value problem. The problem (IVP) is called 
nonautonomous because the function f ( t ,  x) may depend on both t and x. We shall devote 
some extra attention to the autonomous problem 

u'(t) - f (u ( t ) )  (0 <_ t <_ T), 
(AIVP) 

u ( o )  - x o  f 
wherein f is a mapping from some subset of X into X. 

The vector u(t) may represent the state of some system at time t. The differential 
equation u'(t) = f ( t ,  u(t)) is also called an evolution equation, because it describes how 
the system evolves as time passes. In the real world, all things change as time passes, 
so the initial value problem described above is very general; it represents many different 
phenomena. 

Various questions can be asked about the solution u. For instance: What  additional 
assumptions about X, f, x0 are sufficient to ensure that a solution exists? That the solution 
is unique? That the solution depends continuously on the d a t a -  i.e., that  a small change in 
f or x0 results in only a small'change in the solution? Can the solution be found exactly, or 
approximated by some effective algorithm? How quickly do the approximations converge? 
Some of these questions can be addressed and partially answered in a very general and 
abstract setting. This chapter will concentrate mainly on the existence of solutions. 

"Here is a preview of some basic results: 

�9 If f is continuous and X is finite-dimensional, then a solution exists see 30.12. 

�9 Continuity of f does not imply existence of solutions in infinite-dimensional spaces - -  
see 30.4. 

814 
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�9 However, in any Banach space, most differential equations with continuous right-hand 
sides have solutions see 30.11. 

�9 Existence of solutions is guaranteed by certain additional assumptions e.g., Lips- 
chitz conditions (see 30.9), compactness (see 30.12), isotonicity (see 30.14), or dissi- 
pativeness (see 30.28). Some of these conditions do not require continuity of f .  

A more extensive survey can be found in Schechter [1989]. 

E L E M E N T A R Y  P A T H O L O G I C A L  E X A M P L E S  

30.2.  N o n u n i q u e n e s s  of  s o l u t i o n s .  Even if an initial value problem has a solution, 
the solution might not be unique. For instance, in the Banach space X - IR, consider the 
autonomous initial value problem 

u ' ( t ) -  v~(t )  (t _> 0), 
~(0)--0. 

This problem has infinitely many solutions. For each number c >_ 0, a solution u �9 [0, +oc) 
R is given by the function 

~(t) - { 0 (0_<t_<~) 
'(t - ~): (~ < t) 

- -  �9 

30.3.  E x i s t e n c e  o n l y  local ly ,  n o t  g loba l ly .  Even if a differential equation has a solution 
for every initial value, the solution might not exist for all time. For instance, in the Banach 
space X - IR, consider the autonomous initial value problem 

{ ~'(t) - (~(t)) ~ (t > 0), 
u ( 0 ) - x 0 .  

It is easy to verify that  the solution is given by 

u ( t )  - -  ( X o  1 - -  t )  - 1  for all t _~ 0 if x0 < O, 
u(t) - 0  for all t ~_ 0 if Xo - O ,  
u ( t ) - ( x o  l - t )  -1 for a l l t E  [O, xo 1) i f x 0 > O .  

Moreover, the solution is uniquely determined by x0; that  fact will follow from 30.9. Note 
that  if x0 > 0, then a solution does not exist for all positive time; rather,  the solution u(t) 
blows up when t increases to the finite t ime Xo 1. Thus, we say a solution exists locally in 
time, but perhaps not globally. 

30.4.  E x i s t e n c e  n o t  e v e n  local ly .  Let X be a Banach space, and let f "  X --~ X be 
continuous. The autonomous initial value problem (AIVP) in 30.1 has a solution under 
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certain additional assumptions e.g., if f is locally Lipschitzian (see 30.9) or X is finite- 
dimensional (see 30.12) but without additional assumptions, a solution might not exist 
even locally. The following example was given by Dieudonn~ [1950]. 

Let X = co = {sequences that  converge to 0}; this is a Banach space when equipped 
with the sup norm. Define 

f ( X l , Z 2 , X 3 ,  . . . )  --  (V/'Xll, V/Ix21, 1~31, . . .)  �9 

It is easy to verify that  f is a continuous map from X into X. However, we claim that  the 
1 1 autonomous initial value problem (AIVP) with initial value x0 - (1, 3, 5 , ' "  ") does not 

have any solution for any T > 0. 
Indeed, suppose that  u(t) = (u l ( t ) , u2 ( t ) ,u3 ( t ) , . . . )  were such a solution. Then each 

component uj would be the solution of this one-dimensional initial value problem: 

v/l  (t)l 
uj(O) = 1/j. 

(0<t<T), } 

Since the function x ~ ~ is positive, any solution uj of this problem must be increasing. 

Since x ~ X/~xl is Lipschitzian on [1, +oc), there is a unique solution for t _> 0, by 30.9. It 
is easy to verify that  that  solution is 

1) - + 

But then uj(t) > t2/4, so u(t) ~ co for any t > 0. 

Further remarks. After Dieudonn~ published this example for co, other mathematicians 
gave similar examples in other spaces. Finally Godunov [1975] proved that  

if X is any infinite-dimensional Banach space, then there exists x0 E X and a 
continuous function f : R  x X --, X such that  the initial value problem (IVP) 
does not have any solution for any T > 0. 

The proof of that  result is long and complicated; it will not be given in this book. 

CARATHI ODORY SOLUTIONS 

30.5. A precise notion of "solution." The term "solution" has many different meanings 
in the literature. Precision was not needed for the preceding elementary examples they 
would make sense with any reasonable notion of "solution" but for the theorems devel- 
oped later in this chapter we will need precise definitions. 

The most obvious kind of "solution" for a differential equation is a continuously differ- 
entiable function that  satisfies the equation. However, we will find it advantageous to study 
a slightly weaker and more general notion of "solution:" 
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Let X be a Banach space, and let f be a function (not necessarily continuous) from 
some subset of R x X into X. By a C a r a t h ~ o d o r y  s o l u t i o n  of the differential equation 
u'(t) - f ( t ,  u(t)) on an interval J c_ R, we mean a function u" J -~ X such that  Graph(u) C_ 
Dora(f)  and 

(*) whenever a < b in J,  then the Bochner integral f~ f ( t , u ( t ) )d t  exists and 
equals u(b) - u(a). 

This notion of "solution" will suffice for most of this chapter. (More general notions of 
"solution" will be introduced in 30.16.) 

Any Carath~odory solution is continuous, by 24.41.a. Furthermore, if u is a Carath6o- 
dory solution of u ' ( t ) =  f ( t ,  u ( t ) ) o n  J,  then 

(!) for almost every t C J,  the Fr~chet derivative u'(t) exists and equals f ( t ,  u(t)), 

by 25.16. We remark that  condition (!) is slightly weaker than (*). For many purposes, 
integrals are easier to work with than derivatives; thus they yield a simpler and more 
satisfactory theory. We retain the differential equation u'(t) = f ( t ,  u(t)) as a shorthand 
notation and as a source of intuition, but the theory developed below is really concerned 
with integral equations. 

30.6. The question of whether a solution exists globally in time (as in 30.2) often can be 
separated into two component questions" (i) Do solutions exist at least locally in time (as in 
30.3)? and (ii) Can solutions be continued further in time (as in the next theorem below)? 

Definition. Let f~ be a subset o f a  Banach space X, and let f �9 R x ft + X be some 
mapping. We shall say that  f is loca l ly  g e n e r a t i v e  on f~ if: 

For each (to, z0) E R x f~, there exist some c > 0 and some Carathdodory solution 
of u'(t) - f ( t ,  u(t)) on the interval [to, to + c] with u(to) - zo. 

Remarks. (1) We emphasize that  no assertion is made about uniqueness of the solution. (2) 
Necessary and sufficient conditions for a mapping f to be locally generative are not known. 
Later in this chapter we shall give several different sufficient conditions for f to be locally 
generative, using Lipschitzness, compactness, or isotonicity conditions. 

C o n t i n u a b i l i t y  T h e o r e m .  Let X, ft, f be as above; assume f is locally generative on ft. 
Then for each (to,xo) E R x f~, there exists some Carath~odory solution of u'(t) = f ( t ,  u(t)) 
on an interval [to, t l) ,  satisfying the initial condition u(to) = x0, which is "noncontinuable" 
(i.e., it cannot be continued further) because it satisfies at least one of the following three 
conditions: 

(i) tl = +exp. 

(ii) u(tl)  = limtT,l u(t) exists and lies outside ft. 

(iii) fet~ i f ( t ,  u(t))lldt - + ~ ,  and thus the Bochner integral f,~l f ( t ,  u(t))dt cannot 
exist. 
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Remarks. In many applications, additional information about u or f or f~ allows us to 
eliminate possibilities (ii) or (iii). For instance, (ii) cannot occur if f~ is closed, and (iii) 
cannot occur if f is bounded and t l is finite. 

Proof of theorem. Let any (to, x0) E I~ • ~t be given. Consider all Carath~odory solutions u 
of the differential equation u'(t) = f(t ,  u(t)) with initial condition u(to) = x0, on intervals 
of the form [to, t l] or [to, t 1). Partial ly order these solutions by inclusion of their graphs 
i.e., Ul ~ ~t2 if Graph(u l )  C_ Graph(u2).  It is easy to see that  Zorn's Lemma is applicable, 
and thus there exists a maximal solution, which we shall denote by u. 

First,  we show that  the domain of u is not an interval of the form [t0,tl] for some 
t l ( exp. Indeed, if it were, we could use the local generativeness of f to find a solution 
on [tl, tl 4- c] with initial value u( t l ) .  Combining the two solutions yields a solution on 
[to, t l 4- c], contradicting the maximali ty of [to, t 1]. 

Thus, a maximal  solution u exists, with domain of the form [to, t 1). Now assume that  
none of conditions (i), (ii), or (iii) are satisfied; we shall obtain a contradiction. 

Since ftt~o Ill(t, u(t))lldt < c~, the quanti ty f :  Ill(t, u(t))l]dt must become small as a and 

b increase to tl .  Therefore l i t (b) -  u(a)l I - I I  f :  f(t,u(t))dtll becomes small, and u(t) is 
Ca tchy  as t T tl.  Thus u ( t l ) - - l imtT t l  u(t) exists. By our assumption, u( t l )  C ~. But then 
we have a Carath~odory solution on [to, tl], contradicting the maximali ty of [to, t l) .  This 
completes the proof. 

30.7.  C a r a t h ~ o d o r y  s o l u t i o n s  as f ixed p o i n t s .  A Carath~odory solution of the initial 
value problem (IVP) in 30.1 is a function u : [ 0 ,  T] --~ X that  satisfies the integral equation 

~0 t u(t) - xo + f(s,  u(s))ds for all t c [0, T]. (IE) 

This integral equation often can be transformed to a fixed point problem in the following 
fashion: Let 

C ([0, T], X)  = (continuous functions from [0, T] into X}. 

Define a operator �9 from some appropriate subset of C ([0, T], X)  into C ([0, T], X)  by the 
formula 

[~(u)] (t) - Xo + f(s ,u(s))ds for all t c [0, T]. 

Then a solution of the integral equation (IE) is the same thing as a function u that  satisfies 
�9 (u) = u; that  is, a fixed point of ~. 

Thus, to prove the existence and other basic properties of a function u : [0, T] --, X in an 
abstract  setting, we shall apply theorems about fixed points for a function �9 : Dom(~)  ~ ,  
C([0, T],X) in an even more abstract  setting. In the next few pages, we shall apply fixed 
point theorems of Banach, Vidossich, Schauder, and Tarski, to obtain several different easy 
results about initial value problems. Deeper theorems about differential equations can be 
proved by longer, more specialized methods, which do not involve fixed point theorems. 
One such result is the Crandall-Liggett  Theorem, presented in 30.28. 
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LIPSCHITZ CONDITIONS 

30.8.  Gronwal l ' s  L e m m a .  Let 5, A be two mappings from an interval [0, S] into [0, +oc).  
Assume 5 is continuous, A is integrable, C E [0, +oc),  and 

Then 

~0 t ~(t) < C + A(s)~(s)ds for all t E [0, S]. 

[/0 ] (5(t) < C exp A(s)ds for all t c [0, S]. 

Proof. Let R(t) - C + fo A(s)(~(s)ds and Q(t) - R( t )exp  [-  fo A(s)ds]. Then 5(t) < R(t),  

and R ' ( t ) -  A(t)~(t) < A(t)R(t) for almost all t. Also, 

Q'(t) - [ R ' ( t )  - a ( t ) R ( t ) ]  e x p  - a(s)ds <_ O. 

Integrating yields Q(t) <_ Q(0) - C; the conclusion of the lemma follows immediately. 

30.9.  C a u c h y - L i p s c h i t z  E x i s t e n c e  T h e o r e m .  Let G be an open subset of a Banach 
space X,  and let f "  G ---, X be locally Lipschitzian. Then for any x0 E G, there exists a 
solution of the autonomous initial value problem (AIVP) for some T > 0. The solution is 
unique and depends continuously on the initial value. In fact, if u l, u2 are two solutions of 
u'(t) - f (u( t ) )  on some interval [0, T], and f has Lipschitz constant A on the compact set 
Range(u1) t2 Range(u2), then 

[[U 1 (t) - -  u2(t)l I < e At {[U 1 (0) - -  U2(0) I I 

for all t E [0, T]. If G - X and f is Lipschitzian, then the solution can be continued for all 
positive time. 

More generally: Let G be an open subset of a Banach space X. Let f �9 [0, T] x G ~ X 
be integrably locally Lipschitz, as defined in 22.36. Then for each x0 E G, there exists a 
Carath~odory solution of the initial value problem 

u ' ( t ) -  f ( t ,u ( t ) )  (0 <_ t < S), 
u(o) - x o  

for some number S - S(xo) with 0 < S < T. The solution is unique and depends contin- 
uously on the initial data: If Ul, u2 are two solutions of u'(t) - f ( t ,  u(t)) on any interval 
[0, S], then 

~tl (t) -- u2(t)[[ < I~tl (~') -- U2(P)]] exp AK(s)d8 (CD) 

for all [r, t] C [0, S], where K - Range(u1) U Range(u2) and AK is as in 22.36. If G - X 
and f is integrably Lipschitz (as defined in 22.36), then we can take S - T tha t  is, the 
solution is continuable across the entire t ime interval where f is defined. 
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Proof. First  we shall prove continuous dependence. Suppose Ul and u2 are two Carath6odory 
solutions of u ' ( t ) -  f(t ,  u( t ))on an interval [0, S], and let K -  Range(ul)  U Range(u2). Let 
6(t) - I lu l ( t )  - u2(t)l I. Then 

~ ( t )  - ~ t l ( r ) -  U2(r)if- [f(Ul(8)) -- f(u2(s))]ds <_ 5(r) + AK(s)5(s)ds 

for any [r,t] C_ [0, S]. Hence Gronwall's Inequality 30.8 applies; it proves the continuous 
dependence condition (CD). 

Next we prove local existence. Let x0 E G be given. Let B be the closed ball centered at 
x0 with radius R; for R sufficiently small we have B C_ G. By the proposition in 22.36, with 
R sufficiently small there is some integrable function ~ such that  whenever u, v �9 [0, T] ~ B 
are continuous functions, then 

IIf(t, u ( t ) )  - f ( t ,  v(t))ll ~ ~( t ) I t ( t )  - v(t)ll for almost all t. 

In particular,  taking v - xo, we see that  u also satisfies 

IIf(t,u(t))ll ~< IIf(t, xo)ll Jr (R + Ilxoll)~(t) def ~(t); 

the function 7 thus defined is integrable too. Now choose some S > 0 small enough so that  

S _< T and f :  ~(t)dt < 1 and f :  7(t)dt <_ R. Let C ([0, S], X)  and C ([0, S], B) be the sets 
of all continuous functions from [0, S] into X and into B, respectively; then C ([0, S ] ,X)  
is a Banach space (with the sup norm) and C ([0, S], B) is a closed subset of that  Banach 
space. Since B c_ G, for each u c C ([0, S], B) we can define 

j~0 t (r - Xo + f(s ,u(s))ds (0 ~ t < S). 

Since f [  7 <-- R, it follows easily that  �9 maps C ([0, S], B) into itself. Also, for any ~tl, ~t 2 E 

C ([0, S], B) we have 

[l(OUl)(t) - (~u2)(t)ll 

< fo ~ 

~0 t -- [f(s, Ul (8 ) )  -- f(s,  u2(s))]ds 

II/(s, Ul (S))  --  f ( s ,  u2(s))ll& < lUl - u211~ ~(s)ds 

and therefore {O}Lip -< f [  ~ ' <  1. By Banach's  Theorem on strict contractions (19.39), 

has at least one fixed point u C C ([0, S], B); thus the initial value problem has at least one 
solution. 

If f is integrably Lipschitz and X = G, we shall modify the local existence argument 
of "the preceding paragraph to prove the continuability result. Take R = oc and B = X. 
Since f is integrably Lipschitz, there is a function p E L 1 [a, b] (which does not depend on 
the choice of x0) such that  

I l l ( t ,  X l )  - f ( t ,  x2)ll ~_ ~( t )  IlXl - x2tl for all t c [a, b], X l ,  X2 E X .  
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The  condi t ion f :  y( t)dt  <_ R may be omi t ted ,  since R - cx~. Form a par t i t ion  0 - to < 

tl < t2 < --- < tm - T fine enough  so tha t  f/f_1 ~(t)dt  < 1 for each j .  The  a rgumen t  of 

the  preceding p a r a g r a p h  establishes the  existence of a Carath(~odory solut ion to each of the  
initial value problems 

u ' ( t ) =  f ( t ,  u(t)) (tj-1 ~__ t ~ tj), 
U(tj-1) - -X j -1  

for j - 1, 2 , . . . ,  m. Use the  final value of one initial value p rob lem as the  initial value of 
the  next  problem.  Pu t  the  m solutions toge ther  to ob ta in  a solut ion on [0, T]. 

30 .10 .  T h e o r e m  o n  c o n t i n u o u s  d e p e n d e n c e .  Let G be an open subset  of a Banach  
space (X, I II). Let g ' [ 0 ,  T] • G -~ X be a funct ion tha t  is in tegrably  locally Lipschitz 
(as defined in 22.36). Let f i ,  f2, f 3 , . . ,  be funct ions from [0, T] • G into X (not necessarily 
satisfying any Lipschitz condi t ions or o ther  regular i ty  condit ions) .  Let u l, u2, u 3 , . . ,  and v 
be Ca ra th~odory  solutions of 

~" (t) - f n  (t, ~ ( t ) ) ,  ~' (t) -- g ( t ,  v(t)) 
on [0, T]. Suppose  tha t  un(O) -~ v(O) as n --~ oc, and  fn --~ g uniformly on [0, T] • G as 
n ~ co. T h e n  un ~ v uniformly on [0, T] as n ~ ~ .  

Proof. Since Range(v)  is a compac t  set, by 22.36 there  exist some number  r > 0 and some 
funct ion ~ E L I[0, T] wi th  this proper ty:  Wheneve r  Pl and  p2 are cont inuous  funct ions 
from [0, T] into G such tha t  

max  max  dist (pj (t), Range(v) )  _< r, 
j = l , 2  0 < t < T  

then  I]g(t, p l ( t ) ) -  g(t,p2(t))ll ~_ ~(t)llpl(t  ) -p2 ( t ) l  I for a lmost  all t. 
Choose  some par t i t ion  0 - to < t l ~ t2 ~ " -  ~ tm -- T t ha t  is fine enough so tha t  

f/l-1 [l+2~(s)]ds < 1/2 for all j .  Fix any j ,  and assume tha t  Un(tj-1) ---+ v( t j -1)  a s  r t  ~ oo ' ,  

it suffices to show tha t  u~ ~ v uniformly on [tj-1, tj]. 
Let any e in (O,r/2) be given; choose n large enough so tha t  I l u ~ ( t j _ l ) -  v( t j -1)l  <_ c 

and I l f n - g l l ~  <- c; it suffices to show tha t  I lun( t ) -v( t ) l l  < 2c for all t E [tj_l,tj]. Suppose  
the  contrary;  let 7 be the  first point  in [tj-1, tj] satisfying IlUn(T) -- V(7)I I _> 2C. T h e n  for 
all s in [tj-1, T), we have Ilu~(s) - v(s)l I < 2e < r. For such s we have 

fn(s,  Un(S)) - g(s, v(s))ll 
_< I IA(~ ,  ~ n ( ~ ) )  -- g (~ ,  ~ ( ~ ) ) 1  + IIg(~, ~ ( ~ ) )  -- g (~ ,  v ( ~ ) ) l  

_< f ~  -- g] ~ + ~ ( ~ ) ] ] ~ n ( ~ )  -- ~ (~ )  _< ~ + 2 ~ ( ~ ) .  

Therefore  

2c - ~ n ( ~ )  - v (~) l l  

II ; - ~ ( t - 1 )  - ~ ( t - 1 )  + [/~(~, ~(~)) - g (~ ,  v ( ~ ) ) ] d ~  
--1 

1 IlUn(tj_l)- v(tj_l)ll 4- [s + 2 c ~ ( s ) ] d s  _< c 4- ~c, 
tj 1 
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which is a contradiction. This completes the proof. 

GENERIC SOLVABILITY 

30.11. Notation. In the following discussion, whenever ~ is a topological space and X is 
a Banach space, let 

B C ( ~ , X )  - {bounded, continuous functions from gt into X}; 

this is a Banach space when equipped with the sup norm. 

T h e o r e m  on generic  solvability. Let X be a Banach space, let x0 c X, and let T be 
a positive number. Then there exists a comeager set F C_ BC([O,T] x X, X)  with the 
following properties: For each f E F, the initial value problem (IVP) in 30.1 has a unique 
solution us E BC([O,T], X) ,  and the solution map f H us is continuous from F into 
PC([0, T], Z).  (Thus, "most" differential equations with continuous right-hand sides have 
unique solutions, and the solutions depend continuously on the right-hand sides.) 

Remark. A similar result was first proved by Lasota and Yorke [1973]; our own proof follows 
that of Vidossich [1974]. For related results and additional references, see Myjak [1983]. 

Proof of theorem. Each f in B([0, T] x X, X) can be used to define a continuous mapping 
�9 S �9 PC([0, T], X) ~ PC([0, T], X) by the rule 

- 

A solution of (IVP) is the same thing as a fixed point of Of. It suffices to verify the 
'S. hypotheses of 20.10. Note that different f ' s  yield different OS Indeed, if fl (T, ~) r f2(T, ~), 

then any continuous function u with u(T) - ~ will yield O:1 (u) ~= O/2(u); verifying this is 
an easy exercise. 

Let �9 be the set of all such mappings Of. Then �9 is a bijective copy of B([0, T] x X, X), 
and so we may topologize �9 by copying the topology of PC([0, T] x X, X). Then �9 is 
a complete metric space. It is easy to verify that the topology on �9 is stronger than the 
topology of uniform convergence on PC([0, T], X). 

When f is locally Lipschitz, then (IVP) has a unique solution i.e., Of has a unique 
fixed point. Define ~0 as in 20.10; then ~0 contains the locally Lipschitz functions, by 
30.10. The locally Lipschitz maps from [0, T] x X into X are dense in PC([0, T] x X, X), 
by 18.6.c. This completes the proof. 

COMPACTNESS CONDITIONS 

30.12. Peano ' s  Exis tence  Theorem.  Let ~ be an open subset of a Banach space X. 
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Let f �9 [0, +c~) • Ft ~ X be jointly continuous (or, more generally, assume f is jointly 
measurable and f ( t ,  .)" ~ ~ X is continuous for each fixed t). Suppose that  

(CM) f is a c o m p a c t  m a p p i n g  
compact sets. 

i.e., f maps bounded sets to relatively 

Let x0 E Ft. Then the initial value problem (IVP) in 30.1 has at least one solution for some 
T > 0 .  

Remarks. We can weaken (CM) slightly: it suffices to assume that  f maps closed, bounded 
sets to relatively compact sets. This condition can be omitted altogether if X is finite- 
dimensional and f is jointly continuous, since this condition follows from those assumptions 
- -  see 17.7.h and 17.17. The finite-dimensional case can be found in most books on ordinary 
differential equations. Hypothesis (CM) can not be removed when X is infinite-dimensional; 
see 30.4. 

Proof of theorem. Let R be some positive number small enough so that  the closed ball B 
centered at x0 with radius R is contained in Ft. Then f ([0, 1] • B) is relatively compact, 
hence bounded; say Ilull < M for all u E f ([0, 1] • B). Choose some positive number 
T <_ min{1, R / M } .  Let C ([0, T], X) and C ([0, T], B) be the sets of continuous functions 
from [0, T] into X and into B, respectively; then C ([0, T] ,X)  is a Banach space (with 
the sup norm) and C ([0, T], B) is a closed convex subset of that  Banach space. Define a 
mapping (I)" C ([0, T], B) ~ C ([0, T], X) by 

jr0 t (~Pv)(t) - xo + f ( s , v ( s ) )d s  (0 < t <_ T). 

It is easy to show that  this mapping is continuous. By our choice of T, it follows eas- 
ily (exercise) that  ~ maps C([O,T],B) into itself. Furthermore, II((Pv)(t)-  (~v)(r)l  I - 
II f t  f ( s ,  v(s))dsll < I t -  r iM , and thus the range of �9 is equicontinuous. 

Recall from 26.23.i that,  in a Banach space, the closed convex hull of a compact set 
is compact. The set f ([0, T] • B) is relatively compact; hence its closed convex hull is a 
compact set K1 c X. Any function (I)v has range contained in xo + TK1, which is also a 
compact subset of X. By the Arzela-Ascoli Theorem (18.35), the range of �9 is contained in 
a compact set iK1 c C ([0, T], X). Let iK2 be the closed convex hull of iK1; then ~ has range 
contained in :K3 - :K2 A C ([0, T], B), which is a compact convex subset of C ([0, T], X). 

The restriction of �9 to :K3 is a continuous self-mapping of the compact convex set K3. 
By Schauder's Fixed Point Theorem (27.19), (I) has at least one fixed point in K3; that  fixed 
point is a solution of (IVP). 

30.13. Remarks on generalizations. Instead of assuming that  f maps bounded sets to 
relatively compact sets, we could make the weaker assumption that  ? ( f ( t ,  S)) _< a~(t, ?(S))  
for all t and all bounded sets S; here ~ is one of the measures of noncompactness c~ or g 
(defined in 19.19) and a~ is some suitable function. Some results in this direction are given 
by Mhnch and von Harten [1982], Heinz [1983], Banag [1985], Song [1987], and other papers 
cited by those. 
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I S O T O N I C I T Y  C O N D I T I O N S  

30.14.  B i l e s - S c h e c h t e r  T h e o r e m .  Let (X, II II, ~)  be a Dedekind complete Banach 
lattice. Let [0, T] and X be equipped with their a-algebra of Lebesgue-measurable sets and 
Borel sets, respectively. Let f : [0, T] x X ---, X be a mapping with the following properties: 

(i) f is jointly measurable and maps separable sets to separable sets (or, more generally, 
f has the property that  whenever x : [0, T] ---, X is continuous, then the mapping 
t H f ( t , x ( t ) ) i s  measurable and separably valued). 

(ii) For each fixed t, the function f(t,  . ) :  X ~ X is increasing. 

(iii) There exist functions b, c r L 1([0, T], X)  such that  b(t) ~ f(t,  x) ~ c(t) for all (t, x) c 
[O, TI x x .  

Then for each x0 c X,  there exists a Carath6odory solution to (IVP). Among the solutions 
there is a largest; it is the pointwise supremum of all the solutions. We may refer to it as 
the maximal solution. In fact, it is also equal to the pointwise supremum of all the solutions 
of the integral inequality 

~0 t ~(t) 4 x0 + f(~, ~(~))a~ (0 ___ t _< T). 

Remarks. If we also assume 

(~) there exists a function m e LI[0, T] such that  Ilf(t,x)ll <_ re(t) for all (t,x) e 
[O,T] x x ,  

then we do not need X to be a lattice; it suffices to assume that  X is a Dedekind complete 
ordered Banach space whose positive cone is closed and whose topology and ordering make 
X a locally full space (defined in 26.52). Condition (~) can be replaced by still other, weaker, 
more complicated conditions, but we shall not pursue those here. 

Isotonicity conditions have not yet been used extensively in applications in the literature. 
We include this theorem not so much for its usefulness, but for its theoretical interest. The 
present argument was first given in finite dimensions by Biles [1995]; it was subsequently 
extended to Banach lattices by Schechter [1996]. 

Proof of theorem. We shall first use the fact that  X is a Banach lattice to prove condition 
(~); in fact we shall prove it with re(t) = Ilb(t)ll + Ilc(t)ll. The proof is just an application 
of ordinary lattice arithmetic. For any t, x we have 

f ( t ,x )  ~ c(t) ~ /c(t)/ ~ /b ( t ) /+ /c ( t ) /  
- f ( t , x )  ~ - b ( t )  ~ /b(t)/ ~ /b ( t ) /+/c ( t ) / ,  

and 

hence 

I f ( t ,x ) l  - f ( t , x )  v ( - f ( t , x ) )  ~ Ib(t)l +/~(t) /  - / Ib( t ) l  + I~(t) l / .  
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Then 

llf/~,~/I _< I I /~(~/ /+/~(~/ /11 -< II/~(~//11 + I]/c(~//ll - ll~(~/ll + I~(~/l,. 
This proves (~). 

Let C([0, T], X)  - {continuous functions from [0, T] into X}. Let _ denote the pointwise 
ordering on C([0, T] ,X )  that  i~, ~ __ ~ if ~(t) ~ ~(t) for ~]] t  ~ [0, T]. Observe that  if 
v E C([O, T] ,X) ,  then the mapping s H f ( s , v ( s ) )  is measurable and ] ]]-dominated by 
the integrable function m; hence it is integrable. Therefore we can define the function 

/0 ((~v)(t) -- xo + f ( s ,v ( s ) )ds .  

Then (I) maps C([0, T], X)  into itself. It is clear that  a solution of the initial value problem 
is the same as a fixed point of (I), and a solution of the integral inequality is the same as 
a solution of u _ (I)u. Since each mapping f ( s ,  .) �9 X -+ X is 4-increasing, it follows that  
(I)" C([0, T], X)  + C([0, T], X)  is E-increasing. Let 

ji /0 /3(t) - zo + b(s)ds, "y(t) - zo + c(s)ds; 

those are continuous functions of t. Define the set 

V - {v ~ C([O, TI ,X)  �9 ~(t) ~ v(t) 4.y(t) and 
k 

b(s)ds 4 v(t) - v(r) 4 f t  c(s)ds for all [r,t] c_ [0, T]} .  

Clearly, (I) maps C([0, T], X)  into V; hence V is nonempty and (I) maps V into V. 
We next show (V, E_) is a complete lattice. (We note that  C([0, T] ,X )  is not Dedekind 

complete, in general; thus/3 and 3, are essential for the following argument.)  Let V be any 
nonempty subset of V, and define a(t)  - sup{v(t) �9 v E V} and t(t) - inf{v(t) "v E V}; 
these functions are well defined since X is Dedekind complete. It suffices to show that  cr C V 
(for t hen~  E V by similar reasoning). Clearly, 13(t) 4 a( t)  4 ",/(t). Fix any Jr, t] c_ [0, T]. 
For each v c V we have 

ji v(r) + b(s)ds 4 v(t) and v(t) 4 v(r) + c(s)ds, 

hence 

S v(r) + b(s)ds 4 ~(t) and v(t) 4 or(r)+ c(s)ds, 

hence (taking the supremum on the left side) 

~(r) + b(s)ds 4 ~(t) and c~(t) 4 ~ ( r ) +  c(s)ds, 
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and therefore f :  b(s)ds ~ a ( t ) -  a(r) ~ fd c(s)ds. We shall use that  inequality, finally, 
to prove tha t  a is continuous. To show that  a is continuous from the right, let tn I r; 
then f tn b(s)ds ~ 0 and f tn c(s)ds --, 0 (see 26.52(E)). Since X is a Banach lattice (or, 
more generally, since X is locally full), it follows that  a(tn) - a(r) ~ O. Similarly, a is left 
continuous. Thus V is order complete. 

We can now apply Tarski's Fixed Point Theorem in the form of 4.30; this completes the 
proof of the present theorem. 

30.15.  C o r o l l a r y  on  c o m p a r i s o n  of  s o l u t i o n s .  Let f l ,  f2 be two functions satisfying 
the conditions of the preceding theorem, let Xl,X2 c X,  and let Ul,U2 be the maximal  
solutions of the initial value problems 

~}(t) - f j ( t ,  ~j(t))  (o < t <_ T), 
(IVPj)  

u j (O)  - z~ f 
for j - 1,2. Suppose tha t  Xl ~ X2, and f l ( t , x )  ~ f2( t ,x)  for all (t ,x) e [0,T] x x .  Then 
Ul (t) ~ u2(t) for all t E [0, T]. 

Proof. We have Ul ( t )  --- X 1 -}- fO f l  (s, U 1 (s))ds ~ x2 + fo f2(s, Ul (s))ds. Thus Ul is a solution 
of the integral inequality given by f :  and x2. However, u2 is the largest solution of tha t  
integral inequality. 

GENERALIZED SOLUTIONS 

30.16.  The preceding subchapters were concerned mainly with Carathdodory solutions of 
differential equations. Such solutions are differentiable almost everywhere, as we noted in 
30.5. In the remainder of this chapter we consider "generalized solutions" i.e., functions 
tha t  are are not necessarily differentiable, but nevertheless "solve" the differential equation 
in some natural  sense. We shall briefly discuss why generalized solutions are sometimes 
needed; then we discuss some of the main types of generalized solutions. 

Let us begin with the world's simplest partial  differential equation: 

Ou Ou 
= or, more briefly, Ot Ox ~ t  t ~ U x  " 

We seek real-valued solutions u _ u(t, x), defined for real t, x. It is easy to verify that  a so- 
lution is given by u(t, x) = p(t + x), if p is any real-valued differentiable function. We could 
refer to ut = Ux as a very simple w a v e  e q u a t i o n ,  because the function u(t, x) = p(t + x) 
behaves much like a wave at the seashore: it retains its shape while moving horizontally. 
(Caution: The term "wave equation" is commonly applied to several other, more compli- 
cated equations tha t  model water waves more accurately.) 

Classically, a solution u = u(t, x) is viewed as a real-valued function i.e., a mapping 
u : 1t( 2 --* lI~. A different viewpoint, closer to the ideas at the beginning of this chapter, 
views u(t ,x)  as a continuous function of x for each fixed t. Thus, for each t, u(t, .) is a 
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member of some space of continuous functions - -  e.g., the Banach space BC(R)  of bounded, 
continuous functions from IR into R, equipped with the sup norm. Then we may suppress 
the x variable from our notat ion and write u(t, .) instead as u(t)  E BC(R).  We may view 
u as a Banach-space-valued function u : [a, b] ---, BC(R) .  With  this viewpoint, we may 
a t tempt  to apply theorems like the ones developed earlier in this chapter. 

However, it is important  to understand that  the Fr6chet derivative v = u~(to) of the 
Banach-space-valued function u : [a, b] ~ BC(R)  is a much stronger derivative than the 
classical, pointwise derivative v(x)  = u t ( t o , x )  of the real-valued function u : R 2 --, R. In 
both cases we have 

~(to + h, x ) -  ~(to, x) v ( x )  as h ~ 0. 

For the pointwise derivative the convergence is pointwise in x; for the Fr~chet derivative 
the convergence is uniform in x. If p is a differentiable function but p~ r BC(R) ,  then 
u(t,  x) = p(t  + x) only satisfies ut = Ux in the classical (pointwise) sense, not in the sense 
of Fr~chet derivatives. Thus theorems of the type developed earlier in this chapter are not 
directly applicable. 

It is natural  to view u(t,  x) = p(t  + x) as the "solution" of the initial value problem 

ut( t ,  x) - Ux(t, x) (t _> 0), ~ (WIVP) 
~ ( o ,  x )  - ; ( x )  J 

for any differentiable function p. By taking limits, we may extend this definition; it is natural  
to view u(t,  x) = p(t  + x) as the "solution" of the wave initial value problem (WIVP) for 
any function p -  even one that  is not differentiable. Thus, some differential equations have 
natural  "solutions" that  are not differentiable in any sense. Such nondifferentiable solutions 
turn out to be the correct answers to many physical problems. 

30.17.  The need for nondifferentiable solutions becomes even more evident when we turn 
to nonlinear problems, such as B u r g e r s ' s  E q u a t i o n :  

?.t t ~ U ? _ t  x . 

Even if the initial data  u(0, .) is continuously differentiable, the solution u(t,  .) may develop 
discontinuities at some later time t. We shall demonstrate  this with some simple examples. 
Let q : R  ---, R be some continuously differentiable function that  satisfies q(z) = z for all z 
in [-1,  1], and q'(z)  _> 1 for all z E R. The particular choice of q will not affect our main 
reasoning below, but we mention a couple of examples for concreteness. A trivial example 
is given by q(z) = z; more complicated examples can be devised by the reader. 

For any fixed t in [0, 1), the function ~(t ,  z) - q(z) - tz  satisfies ~  z) _> 1 - t > 0. 
Hence ~(t ,  .) is strictly increasing and is a bijection from R onto R. Let u(t ,  .) be its inverse; 
thus 

~ ( t ,  q ( z )  - t z )  = z .  ( ~ )  

(In the example of q(z) = z we obtain ~ ( t , z )  = (1 - t ) z  and u ( t , x )  = (1 - t ) - l x . )  
Now differentiate both sides of (~) with respect to t to obtain 

d [~(t, q ( z )  - t z ) -  z] - 0 = d--~ ~,( t ,  q(z )  - t z )  - ~x(t ,  q(z)  - t z ) z .  
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Then subst i tute q(z)  - t z  - x to obtain 0 - u t ( t , x )  - u x ( t , x ) u ( t , x ) .  Thus u ( t , x )  is 
a solution of Burgers's Equation ut - uux ,  at least for 0 < t < 1. The initial data  is 
u(0, x) - q - l ( x ) ,  which is continuously differentiable since q is. 

Observe that  u ( t , x )  < - 1  for all x < - 1  + t, and u ( t , x )  > 1 for all x _> 1 - t. If u 
extends to a continuous function on 0 < t < 1, it must satisfy u(1, x) < - 1  for all x < 0 
and u(1, x) > 1 for all x > 0, a contradiction. 

Thus the solution u ( t , x ) ,  which is continuously differentiable for all ( t , x )  in [0, 1) x II~, 
becomes discontinuous at time t - 1; we say that  it develops shocks .  After time t - 1, 
the solution may still be physically meaningful, but its mathematical  theory becomes more 
complicated. We shall not pursue that  theory here, other than to mention that  one must 
deal with "generalized solutions" i.e., discontinuous functions u ( t , x )  that  correspond 
somehow to the equation ut - UUx but do not satisfy it in a classical sense. The development 
of shocks is quite typical of nonlinear partial differential equations and is explained further 
in books on that  subject see Lax [1973], for instance. 

SEMIGROUPS AND DISSIPATIVE OPERATORS 

30.18.  M o t i v a t i o n  f o r  the Cranda l l -L igge t t  Theorem.  Let A be an operator for which the 
differential equation u ' ( t )  - A ( u ( t ) )  has "solutions" of some sort. More precisely, suppose 
that  M is a subset of a Banach space, and for each x0 E M there is a unique  solution 
u ' [ 0 ,  +co) ~ M of the initial value problem 

~ ' ( t )  - A ( ~ ( t ) )  (t  >_ o),  
u ( o )  - xo.  

We may denote that  solution by u( t )  - S ( t ) x o  to display its dependence on both the time 
t and the initial value x0. In this fashion we define a family of mappings S ( t )  �9 M ~ M for 
t > 0, with S ( O ) x -  x.  

For most reasonable notions of "solution," the solutions of the two initial value problems 

u ' ( t )  - A ( u ( t ) )  (0 <_ t),  and - 
u(O) - xo v(O) - u ( t l  ) 

are related by u ( t l  + s) - v ( s ) .  From this it follows that  the mappings S ( t )  satisfy the 
s e m i g r o u p  p r o p e r t y :  S ( t ) S ( s ) z  - S ( t  + s )z .  

In some of the most interesting cases, the semigroup of mappings satisfies an e x p o n e n -  
t ia l  g r o w t h  c o n d i t i o n :  

(S(t)}Li p _< exp(~t) 

for some constant a~. For example, if A �9 X ~ X is a Lipschitzian mapping, then A 
generates a semigroup satisfying an exponential growth condition; that  follows from 30.9. 

However, a semigroup arising from differential equations may satisfy an exponential 
growth condition even if the operator A is not L i p s c h i t z i a n -  in fact, even if the operator 
A is not continuous. In 30.24 we shall show that  if the semigroup S ( t )  is differentiable at 
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t = 0, then the operator A must satisfy a dissipativeness condition; this is a generalization 
of Lipschitzness. Conversely, even for semigroups that are not differentiable, an operator 
A that  satisfies a dissipativeness condition plus a mild "range condition" must generate a 
semigroup that  satisfies an exponential growth condition; this is established in 30.28. 

We might denote the semigroup S(t) instead by SA(t), to display its dependence also 
on the choice of the operator A. A still more suggestive notation is S(t)x = etAx, where A 
is the operator appearing in the differential equation. If A is a continuous linear operator, 
then e tA can be defined in several different equivalent fashions: 

~176 (td)n ( t m )  n ( t m )  -n 
eta = E = lim I + ~  = lim I - - m  

n! n-- - ,  o c  n n---~ o c  n 
n - - 0  

If the operator A is discontinuous and/or  nonlinear, then most of these formulas become 

meaningless or incorrect, but the limit of ( I -  t-A)-n may still be meaningful and useful. 
7"1, 

Even if A is a badly behaved o p e r a t o r -  e.g., a differential operator, which is discontinuous 
in most of the usual Banach spaces of functions the operator ( I -  ,~A) -1 may be quite 
well behaved when ,~ is a small positive number e.g., it may be an integral operator, 
which is continuous or even compact on many of the usual Banach spaces. 

30.19. Although the abstract theory applies to both linear and nonlinear operators, for 
illustrative purposes we shall give just one very elementary linear example. (For more ad- 
vanced examples, the reader should consult books devoted specifically to partial differential 
equations and evolution equations.) Let us use the Banach space C0(R) of continuous func- 
tions from R to IR that vanish at infinity (as explained in 22.15), with the sup norm. Let 
A be the operator d ,  with domain D(A) equal to the set of all functions f E C0(R) such 
that  f is differentiable and f '  E C0(R). Then the differential equation u'(t) = A(u(t)) is a 
reformulation of "the world's simplest partial differential equation," discussed in 30.16. We 
shall now show that ( I - ) ~ A )  -1 is very well behaved for any positive number ,~. 

Let g E C0(R) be given; then ( I - /~A)- lg  has what value? Assuming that it exists, it 
is a function f E D(A) that  satisfies f -  )~Af = g. Let us find that function f.  Rewrite its 
equation as f ( x ) -  )~f'(x) = g(x). Multiply both sides of this equation by _,~-1 exp(-x/ ,~) ,  
to obtain 

- x  1 exp(  - x  dxd [f (x) exp(-~- ) 1 -  [ f ' ( x ) - l ~ f  ( x ) ] e x p ( ~ )  = ,~g(x) -~- ) .  

Integrate both sides starting from x = O, say - -  to obtain 

( - x )  l~0Z ( - t )  / ( x ) e x p  - ~  - C - ~  g(t)exp ~ dt 

for some constant C. To find the value of C, take limits on both sides of this equation as 
1 o c  x -+ oc. We have f(x) --+ 0 since f vanishes at oc, and thus C - -2 fo g(t)exp(-t/)~)dt. 

This integral converges, since g vanishes at infinity and exp( - t /A)  vanishes exponentially 
fast. Therefore the last displayed equation can be rewritten 

1 ( I - , ~ A ) - l g -  f where f ( x ) -  ~ e x p ~  g(t)exp -~- dt. 
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It is easy to verify that f ,  defined by the last equation, is indeed a member of D(A) that  
solves ( I - ) ~ A ) f  - g; and the preceding computations show that there is no other solution. 
A further computation shows that I fllsup -< Ilgllsup- Thus 

( I -  AA) -1 is a nonexpansive linear operator defined everywhere on C0(I~). 

This is typical of the kind of operator to which the Crandall-Liggett Theorem is applicable 
- -  but we emphasize that that theorem applies to much more complicated operators as well. 

Exercise. Modifying the computations above, show that (I + AA) -1 is also a nonexpansive 
linear operator defined everywhere on C0(I~), for each A > 0. 

30.20. Let X be a Banach space, and let J "  X --, iP(X*) be its duality mapping (defined 
as in 28.44). Let A be some mapping from a subset of X into X. Then the following two 
conditions are equivalent; if either (hence both) are satisfied, we say A is d i s s ipa t ive  (or 
- A  is accret ive)" 

(A) Whenever ~ > 0, then the mapping ( I -  ~A) �9 Dom(A) ~ X is injective, and 
its inverse mapping ( I -  AA)-I"  R a n ( I -  hA) --~ Dom(A) is nonexpansive. 

(B) Whenever Xl,X2 E Dom(A), then there is some ~ E J ( x l -  x2) such that 
p [ A ( x l ) -  A(xe)] _< 0. 

Proof (following Cioranescu [1990]). Let Yl - A(xl) and Y2 - A(x~). Let ~ -  Xl - x2 and 
- Yl - Y~; then we are to show that 

(A') I I~-  ~y'[I-> I1~11 for all )~ > 0 

if and only if 

(B') there is some ~a E J(~) such that ~a(~) _< 0. 

For (B') =~ (A') we simply compute 

I1~11 ~ = ~(~) _< ~ ( ~ ) -  ~ ( ~ )  = ~ ( ~ -  ~ )  _< I1~11 I 1 ~ -  ~11 .  

The proof of (A') => (B ~) is longer. We may assume ~ and ~" are both nonzero (explain), 
hence ~ -  ~ is also nonzero for each ~ > 0. For each/~ > 0 choose some ~ c J ( ~ -  ~ ) ;  
this vector is also nonzero. Form the unit vector ~/~ = ~/[[~11. Then 

I1~11 - I 1 ~ -  ~11 = ~ ( ~ -  ~ )  = ~(~)  - ~ ( ~ )  -- I1~11 - ~ ( ~ )  

from which we conclude both 

I1~11 ~ ~ ( ~ ) +  ~11~11 ~nd ~(~)  ~ 0. (**) 

Since the vectors ~/~ all lie in the unit ball of X*, which is weak-star compact by (UP28) in 
28.29. the net (~/~ �9 A $ 0) has a subnet converging in the weak-star topology to some limit 
~0 in that unit b~11. Then I1~011 -< 1. Now we may take limits in (**); we obtain 

I1~11 ~ w0(~) and r/0(~) ~ 0. 
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Since rio is in the unit ball, we can conclude I ~ - ~ o ( x )  and II,oll- 1. Then ~ -  I1~ I,o is 
a member  of d(2), satisfying ~(~) _< 0. 

30.21.  A generalization. Let X be a Banach space, and let J : X  ~ T(X*)  be its duality 
mapping. Let A be a mapping from some subset of X into X, and let w be a nonnegative 
number. Then the following three conditions are equivalent (exercise); if they are satisfied 
we say A is w - d i s s i p a t i v e :  

1 (A) Whenever A E (0, 5),  then the mapping ( I -  AA) �9 Dom(A) ~ X is injective, 
and its inverse mapping 

R(A) = ( I -  AA) -1 : R a n ( / -  AA) ~ Dom(A) 

(B) 

is Lipschitzian with (R(A))Li p < ( 1 - ) ~ ) - 1 .  

Whenever Xl,X2 E Dom(A),  then there is some p E J ( X l -  x2) such that 
(~[A(xl) - A(x2)] ~ ~[]Xl - x2]] 2. 

(C) A - wI is dissipative. 

30.22.  Remarks. If A is a Lipschitzian mapping, with (A}Lip _< w, then A and - A  are both 

w-dissipative. For this reason, dissipativeness conditions are sometimes called o n e - s i d e d  
L i p s c h i t z  c o n d i t i o n s .  

However, tha t  terminology may be misleading. For instance, define A as in 30.19. Then 
A and - A  are both dissipative, but A is not Lipschitzian; in fact, A is not even continuous. 

30.23.  Example. Let X be a real Hilbert space with inner product  ( , }. Then an 
operator A is dissipative if and only if it has this property: Whenever Xl,X2 E Dora(A), 
then @1 - x2, A(yl) - A(y2)) <_ O. 

If X is one-dimensional i.e., if X is just  the real line then A is dissipative if and 

only if ( X l -  x 2 ) ( A ( y l ) -  A(y2)) < 0; that  inequality is satisfied if and only if A is a 
\ 

decreasing function. 

30.24.  Proposition. Let C be a subset of a Banach space X,  and let S be a semigroup of 
self-mappings of C. Assume that  (S(t))Li p < e ~t for some constant ~ >_ 0 and all t >__ 0. 

Define a mapping from a subset of C into X by 

A(x) - lim S(h)x  - x 
h~o h 

where the domain of the operator A is the set of all x E C for which the limit exists. Then 
A is ~-dissipative. 

Proof. Fix any Xl,X2 E Dora(A) and A E (0, 1).  let h > 0. Then 

](Xl -- X2) -- . ~ S ( h ) x l  - Xl S ( h ) x 2  - x2 
h + A  h 
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> 

_> 

- -  [ 1 - A  

Take limits as h $ O, to prove 

(1 + ~)(Xl - x2) - ~ [S(h)Xl - S(h)x2] 

(1 -t- ~ ) ( X l  -- x2 )  -- ~ [ S ( h ) x l  - S ( h ) x 2 ]  

)~ wh (1 + ~)l lXl - x211-  ~ e  IlXl - x2]l 

e wh - 1] 
h IlXl - x211. 

II(Xl -- X2) -- ) ~ [ A ( x l )  - A(x2) ] I I  _> (1 - ,~w)[[Xl - x211. 

30.25. L e m m a .  Let A be an w-dissipative mapping, and let R(A) - ( I -  ,~A) -1. Then for 
any numbers a,/3 e (0, 1)~ and any vectors u e R a n ( / -  a A )  and v e R a n ( / -  ~ A ) ,  we have 

Proof. Let x - R ( a ) u  and y - R(/3)v; thus u - x -  c A ( x )  and v - y - / 3 A ( y ) .  Choose 
some ~ e J ( x  - y) such that ~[A(x) - A(y)] < w l l x -  YII:. Then 

(~ + z -  ~ Z ) l l x -  yll ~ 
= (~ + Z ) ~ ( x -  y) - ~ Z l l x -  yFI ~ 
<_ (a  + f l ) ~ ( x  - y) - a f lqo{A(x)  - A ( y )  } 

_< a l l x  - yll ]Ix - y + r  + r - yll Ilx - y - a A ( x ) l l .  

Divide through by ]Ix - Yll to obtain the desired inequality. 

3 0 . 2 6 .  R a s m u s s e n - K o b a y a s h i  Inequal i t ies .  Let a and fl be positive numbers. Let cj,k 
be nonnegative real numbers that satisfy 

ct 
Cj,o ~ j a ,  cO,k ~ k/~, Cj+l,k+l ~ ~ C j + l , k - ~ -  a +/3  a + z cj,k+l 

for all nonnegative integers j, k. Then Cj,k ~_ v / ( j a  -- k/3) 2 + j a  2 + k/32 for all nonnegative 
integers j, k. 

More generally, let a,/3 > 0 and w > 0 with max{wa, w/3} < 1. Let cj,k be nonnegative 
real numbers that satisfy 

cj,o <_ ( 1 - w a ) - J j a ,  

Cj+l,k+l 

CO,k <_ (1 -- W~) - k  k~,  (1) 

O~Cj + 1 ,k 2r 1 
~ + 9 - ~ , ~ 9  (2) 
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for all nonnegative integers j, k. Then 

Cj,k < (1 -- WC~) - j  (1 -- W~) -a  v/(jc~ -- k~) 2 + jc~ 2 + k~ 2 (RK) 

for all nonnegative integers j, k. 

Remarks .  This inequality will be used in 30.27. It shows that cj,k may be small even with 
j, k large, provided that  c~, /3, and j c ~ -  k~ are small. In a first reading, the reader may 
wish to concentrate on the special case of w = 0, stated in the first paragraph of the lemma, 
since that  case is slightly simpler in notation and still contains most of the main ideas. 

Outline of  proof. First, a few preliminary computations. Show that  

a { [ j a - ( k - 1 ) / 3 1 2 +  jc~2+ ( k - 1 ) ~  2} 

+ ~ { [ ( j -  1 ) a -  k/~] 2 + ( j -  1)a 2 + k/~ 2 } 

= + + 

(3) 

Also, from w(c~ + ~)2 _ 2(a +/3) _< 0 _< a~w we obtain 

(c~ +/3) [c~(1 - w ~ )  2 +/3(1 -wc~) 2] < (a + / 3 -  wc~) 2. (4) 

Also, by the Cauchy-Bunyakovskii-Schwarz Inequality (2.10), 

a(1 - w~)x/P +/3(1 - wC~)v/~ < V/C~(1 - w/3) 2 +/3(1 - wa) 2 V/c~p + ~q (5) 

for any nonnegative numbers p and q. 
Now, the Rasmussen-Kobayashi Inequality (RK) is clear from (1) when j = 0 or k = 0. 

The inequality will be proved for larger j and k by double induction. In the computations 
below, step (Ind) is by the induction hypothesis. Compute 

(2) 

(Ind) 
< 

(5) 
< 

(3) 

(4) 
< 

(1 - wa)  j (1 - w~)k  (a + ~ -- wa/3)cj,k 

(1 - wc~)J(1 - w/3) k [CtCj,k-1 -Jr-/~Cj-l,k] 
c~(1- w~)v/ [ jc~-  ( k -  1)/3] 2 + jc~ 2 + ( k -  1)/32 

+/3(1 -wc~)V/[(j - 1)c~- k~] 2 + (j - 1)c~ 2 + kr 2 

V/a(1 - w~) 2 +/3(1 - wc~) 2 
(a  { [ j a  - (k - 1)/3] 2 + j a  2 + (k - 1)/32 } 

+/3  { [ ( j -  1)c~- k~] 2 + ( j -  1)a 2 + k~2}) 1/2 

v/~(1 - ~ 9 ) :  + 9(1 - ~ ) : v / ( ~  + 9){[J~ - kg]: + J~: + k9 :} 

(c~ +/3 - w e t S ) v / ( j a  - k/3) 2 + j a  2 + k~ 2. 

This completes the induction step, and thus the proof of (RK). 
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30.27.  Discussion. The Crandall-Liggett  Theorem is generally viewed as a theorem about 
differential equations in Banach spaces. The Crandall-Liggett  Theorem has no applications 
except in that  setting. However, a large part  of the proof can be presented in the sim- 
pler setting of a complete metric space. We shall take that  approach because it may be 
conceptually simpler to grasp without the distractions of linear structure,  and because it 
provides an interesting application of metric completeness. It is one of the few cases known 
to this author  where we use Lipschitz mappings without using the Contraction Fixed Point 
Theorem. 

In the theorem below, we permit  T - +c~ if c o  0. The computat ions are slightly 
simpler in that  case and so beginners may wish to concentrate on that  case. 

C r a n d a l l - L i g g e t t  T h e o r e m  ( m e t r i c  s p a c e  v e r s i o n ) .  Let (M, p) be a complete metric 
space. Let T c (0, +c~] and co c [0, +c~) with coT < 1. For each t E [0, T), let R(t )"  M --+ 
M be some Lipschitzian mapping, with 

_< (1 - wt) -1 ( 1 )  (R(t)}Lip 

and 

R(t)y) < (2) 
- s + t - w s t  

for all s , t  E [0, T) and x ,y  E M. Let R ( t / j )  k denote the kth iterate of the mapping 
R ( t / j ) "  M ~ M.  (This is defined for all integers j > t /T . )  Define the function 

F(x) = sup i - c o t  ( ) 
~(o,r) t p R(t)x, x , (a) 

and assume that  the set D - {x E M �9 F(x) < ~ }  is dense in M. 
Then for each t _> 0, the sequence of functions R ( t / j )  j (j C N, j > t / T )  converges 

�9 ( } < e " n  In fact, pointwise on M to a Lipschitzian function S(t)  M ~ M,  with S(t)  Lip - " 

for x C D we have this est imate of the convergence rate: 

x, S ( t ) M )  <_ 1 -  e~tF(x). (a) 

The map ( t ,x)  H S( t )x  is jointly continuous from [0, + ~ )  • M into M. It is also Lips- 
chitzian in t for fixed x c D and bounded t" 

p(S(t)x ,  S(s)x)  _< e (t+~)~ It - sl r ( x ) .  (b) 

Moreover, the mappings S(t)  " M ~ M form a semigroup" 

S(O)x - x and S(t  + s)x - S ( t ) S ( s ) x  (c) 

for t , s  _> 0 and x E M. 

Outline ofproof. Temporari ly fix any c~,/3 e [0, T) and any x E D. We may assume F(x) > 0; 
a separate but easy argument for the case of F(x) - 0 is left as an exercise. We shall 
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apply the Rasmussen-Kobayashi  Inequality in 30.26, with cj,k - p(R(a)Jx, R(/~)kx)/F(x). 
Hypotheses (1), (2), (3) of the present theorem imply the hypotheses of the Rasmussen- 
Kobayashi Inequality; thus we obtain 

p(R(a)Jx,  R(~)kx) < v/(Jc~ - k/~)2 + Jc~2 + k/72 F(x) (4) 
- (1 - aJc~) j (1 - a~/3) k " 

Wi th  c ~ -  t / j  a n d / 7 -  t /k  this yields 

r(x) p R X, R X ~ J k ' 

/ \ 
which proves tha t  the sequence (R( t / j )Jx  �9 j E N, j > t /TJ  is Ca tchy  for fixed t >_ 0 and 

\ / 

x E D; denote its limit by S(t)x. Hold j fixed and let k --~ oc to prove the convergence rate 

Since (R(S)}Li p _< ( 1 -  wt) -1 on all of M,  it follows that  S(t) - l i m j + ~  R( t / j )  j exists 

and is Lipschitzian on all of M,  with {S(t)}Li p _< limj__+~ ( 1 -  7~~ )- j  _ e,Ot. 
Now apply (4) with c~ = t / j  and /7  = s/k, and take limits to prove (b). Since S(t) is 

Lipschitzian on M,  it follows easily that  (t, x) H S(t)x is jointly continuous. 
Finally, by induction on n show that  S(s /n)nx  = limk__.~ R(s/kn)knx = S(s)x. Use 

this to prove (c) when t /s  is rational; then use continuity to prove (c) for all s and t in 

30.28.  C r a n d a l l - L i g g e t t  T h e o r e m .  Let X be a Banach space, and let A be a mapping 
from some set Dora(A) C_ X into X. Assume A is a~-dissipative for some a~ >_ 0. Also 
assume this r a n g e  cond i t ion"  

R a n ( / -  )~A) _D cl(Dom(A)) for all sufficiently small A > 0. 

Then the limit ( )n 
S(t)x = lim I - - t A  x 

n----+ o<~ n 

exists for each x E cl(Dom(A)) and each t _> 0. In fact, the functions R(A) - (I  AA) -1 
satisfy the hypotheses and hence the conclusions of 30.27, with M - cl(Dom(A)).  

Proof. Choose T > 0 small enough so tha t  the range condition is satisfied for all A E (0, T), 
and also so that  wT < 1. It is easy to verify tha t  F(x) <_ IlA(x)[[ for x E Dom(A); hence 
Dora(A) C D; hence D is indeed dense in M. The other hypotheses of 30.27 follow from 
properties of aJ-dissipative operators developed in the last few p a g e s -  see 30.21 and 30.25. 

30.29.  Remarks on extensions and generalizations. For simplicity we have only considered 
a~ > 0; with some effort it is possible to generalize so that  w may also take negative values. 
Actually, much of the l i terature concerns itself only with the case of c0 - 0, because the 
most interesting ideas are already present in tha t  case and the computat ions are tidier. We 
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have considered positive values of w so that beginners may more easily contrast Lipschitz 
mappings with w-dissipative mappings. 

To avoid burdening beginners with more complicated notation, we have only considered 
dissipative operators that are mappings A : Dom(A) --. X. However, most of the ideas about 
dissipative operators developed above can be generalized readily to set-valued mappings 
A : Dom(A) ~ {subsets of X}. The proofs for that generalization are similar to the proofs 
we have presented above; for the most part, one simply replaces "=" with "E" in appropriate 
places. Thus, instead of just differential equations u'(t) = A(u(t)), it is possible to consider 
differential inclusions u'(t) c A(u(t)). This greater generality is useful in various ways 

e.g., for implicit differential equations p(u(t),u'(t)) = 0 or for differential inequalities 
p(~(t)) <_ ~'(t) <_ q(~(t)). 

Additional properties of the semigroup S(t) can be proved under additional assumptions 
about the operator A and/or the Banach space X. When X is a Hilbert space, the resulting 
theory is particularly elegant; much of it can be found in Br~zis [1973]. The book by Haraux 
[1981] covers some of the Banach space theory but also devotes particular attention to the 
Hilbert space case. 

The Crandall-Liggett Theorem, as we have presented it, extends readily to the differ- 
ential inclusion u'(t) C A(u(t)). If we strengthen the range condition, and require that 
R a n ( / -  AA) = X for all sufficiently small A > 0, then it is possible to prove the existence 
of solutions to the initial value problem 

u'(t) E A(u(t)) + f( t )  
u(O) - x o  

(O~_t~_T), 

for any f c LI ([O, T], X)  and x0 c X. A very elegant theory for problems of this type 
was developed in B(~nilan [1972], Crandall and Evans [1975], Crandall and Pazy [1979], and 
elsewhere. 

Much has also been written about differential inclusions of the form u'(t) E A(t, u(t)), 
where A(t, .) is a w-dissipative operator for each fixed t. One reference for this subject is 
Pavel [1987]; that book also introduces many applications to partial differential equations. 
This subject's theory is not so elegant, but there is good reason. For maximum applica- 
bility to partial differential equations, researchers have been interested in problems where 
the different operators A(t, .), for different fixed values of t, have different domains, and 
where Dom(A(t, .)) varies erratically with t. This makes the problem considerably more 
complicated. 

30.30. Remarks on the lack of a "Grand Unified Theory" of initial value problems. In the 
preceding pages we have developed several substantially different theories of initial value 
problems, using hypotheses of Lipschitz conditions, compactness, isotonicity, and dissipa- 
tiveness. Historically, these theories developed separately, for different kinds of applications. 
It is tempting to try to make these theories into special cases of a single, more general the- 
ory. Certainly it is possible to prove at least a few weak results in a more general setting 

see for instance 30.6. 
However, in truth we are very far from a complete or unified theory. The several main 

subtheories Lipschitzness, compactness, isotonicity, etc. are very different in nature; 
large conceptual gaps lie between them. The literature contains only a handful of examples 
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of nonexistence of solutions, most of them similar to Dieudonn~'s example 30.4; the examples 
of nonexistence are not sufficiently diverse to explain the gaps between our theories of 
existence. Thus, we are very far from a clear understanding of what  "really" makes initial 
value problems work. 

More modest than the search for a grand unified theory is the program to solve problems 
of the form u'(t) = A(u(t))+ B(u(t)), where A and B are operators of two different t y p e s -  
e.g., where A satisfies a dissipativeness condition and B satisfies a compactness condition. 
A theory of this sort would include the dissipativeness and compactness theories as special 
cases, since we could take A = 0 or B = 0 (since the operator 0 is both dissipative and 
compact). This program has met some success, at least when the operators are continuous 

- -  for instance, the sum of a continuous dissipative operator, a continuous compact operator, 
and a continuous isotone operator is known to generate an evolution; see Volkmann [1991]. 
But without continuity the problem is still open. For the compact plus dissipative problem, 
some discussions and partial results can be found in Schechter [1987, 1989] and Vrabie 
[1988]. 
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Index and Symbol  List 

Symbols are listed at the end of this index. 

AA (Aarnes and Anden~es) 
equivalent nets, 163 
subnet, 162 
subsequences, 167 

Aarnes, s e e  AA 
Abelian, s e e  commutative 
absolute integral, 632 
absolute value 

in a field, 259 
in a lattice group, 198 

absolutely 
consistent, 399 
continuous, 783, 806 
convergent, 583 
convex, s e e  convex 
integrable, 645 

absorbing set, 307 
absorption law of lattices, 89 
AC, s e e  choice 
accretive, 827 
ACF, s e e  choice for finite sets 
ACR, s e e  choice for the reals 
actual infinity, 14 
addition or additive 

commutative operation, 24 
complements, 185 
group, 182 
identity (zero), 180, 187 
mapping, 180, 183 
modulo r, 183 
monoid, 180 
uniform continuity, 705 

adjoints, 238 
a.e. (almost everywhere), 553 
affine, s e e  convex 
agnostic mathematics, 404 

agree, 36 
Alaoglu et al. Theorems, 762 
alephs, 126 
Alexandroff et al. Theorems, 535, 540 
algebra 

Boolean, 329 
classical (linear ring), 273 
lattice, 292 
norm, 406 
of sets, 115, a l s o  s e e  or-algebra 
universal, 202 

algebraic 
categories, 214 
closure, s e e  closed, closure 
system, 202 
topology, 228 

almost 
all, always, true, 101,230 
everywhere, surely, 553 
open, 538 
separably valued, 554 

alphabet, 354 
analytic, 682 
Anden~es, s e e  AA 
anticommutative, 275 
antisymmetry, 51,599 
antitone, 57 
apartness, 137 
Approximate Fixed Point Theorem, 70 
approximating Riemann sum, 629 
Approximation Lemma 

measures, 560 
AR, s e e  Regularity 
arbitrarily large, 158 
arbitrary choices, s e e  choice 
Archimedean, 243, 248 
Argand diagram, 255 
argument of a function, 19 
arity, arity function, 25, 202, 356 

857 
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arrow, see  morphism 
Arzela-Ascoli Theorem, 495 
a.s. (almost surely), 554 
Ascoli-Arzela Theorem, 495 
assignment (in logic), 381 
associative, 24, 179 

matrix multiplication is, 193 
asymptotic center, 778 
atom, 27, 396, 476 
atomic formula, 361 
aut, 4 
automorphism, 216, 384 
axiom, see  choice, constructible, equality, 

identity, logical, Regularity, scheme, 
Zermelo-Fraenkel Set Theory 

Baire 
category (first or second), 531 
Category Theorem, 536 
-Osgood Theorem, 532 
property or condition, see  almost open 
sets and ~-algebra, 544 
space, 536 

balanced, see  convex, 687 
ball, 108 
Banach, 687 

-Alaoglu Theorem, 762 
Contraction Fixed Point Theorem, 515 
lattice, 716 
limit, 318, 320 
space, 576 
-Tarski Decomposition, 142 

band, 300 
barrel, 729 
barrelled TVS, 731 
Bartle integral, 290, 801 
barycentric algebras, 306 
base or basis 

for a filter, 104 
for a topology, 428 
for a vector space, 281 
of a pointed space, 214 
of neighborhoods of a point, 426 

basic rectangle, 428, 567 
belongs, 11 

Bernstein-SchrSder Theorem, 44 
Berry's Paradox, 351 
Bessaga's Contraction Theorem, 524 
bidual functor, 239 
big, bigger, see  large, larger 
biggest, see  maximum 
bijective, bijection, 37, also  see  isomorphism 
bilinear map f : X  • Y --~ Z, 277 
bilinear pairing (, > --~ F, 751 
binary operation, 24 
binary relation, see  relation 
binding, 358 
binomial coemcient, 48 
Binomial Theorem, 48 
Bipolar Theorem, 762 
Bochner integral, 613 
Bochner-Lebesgue space, 588 
Bohnenblust-Sobczyk Correspondence, 280 
Boolean 

algebra or ring, 329, 334 
homomorphism, 329, 336 
lattice, 326 
space, 472 
subalgebra, 330 
subring, 335 
-valued interpretation, model, universe, 

381,383 
Borel sets and ~-algebra, 116, 289, 555 
Borel-Lebesgue measure, 555 
bound, bounded 

above or below, 59 
function, 97, 293, 579 
greatest lower, see  infimum 
hyperreal, 251 
least upper, see  infimum or supremum 
linear map (normed), 605 
linear map (TVS), 719 
locally, see  locally bounded 
lower or upper, 59 
metrically, 97, 111 
order, 57 
order-bounded operator, 296 
remetrization function, 486 
sets form an ideal, 104 
subset of a normed space, 580, 718 



I n d e x  a n d  S y m b o l  L i s t  859 

subset of a TVS, 718 
totally, see totally bounded 
variable (not free), 355, 358 
variation, 507, 784 

boundary, 530 
Bourbaki-Alaoglu Theorem, 762 
BP, 401 
Bronsted ordering, 519 
Brouwer's Fixed Point Theorem, 727 
Brouwer's Triple Negation Law, 342, 370 
Brouwerian lattice, 341 
Browder's Fixed Point Theorem, 778 
BunyakovskiY Inequality, 39 
Burali-Forti Paradox, 127 
Burgers's Equation, 824 

Caccioppoli Fixed Point Theorem, 515 
canonical 

choices, see choice 
embedding in the bidual, 240, 775 
isomorphism, 240 
net, 159, 160 
shoe, 140 
well ordering, 74 

Cantor 
construction of the reals, 513 
founder of set theory, 43, 711 
function, 674 
space, 462 
theorem on card(2X), 46 
theorem on card(N x N), 45 

Carath(~odory Convexity Theorem, 307 
Carath(~odory solution of ODE, 814 
card, cardinality, 14, 43 

and AC, 145 
and compactness, 468 
and dimension, 282, 286 
and metric spaces, 429 
and a-algebras, 549 
and ultrafilters, 151 
collapse, 348 
numbers (cardinals), 126 
of the rationals, 190 
of wosets, 74 
also, see countable, Hartogs number 

Caristi's Fixed Point Theorem, 518 
Cartan's Ultrafilter Principle, 151 
category 

Baire (first or second), 531 
concrete, 210 
inverse image, 212 
nonconcrete, 216 
objects and morphisms, 208 
of sets, 212 

Cauchy 
completeness, 501 
continuity, 510 
derivatives notation, 659 
filters, nets, sequences 

in metric spaces, 502 
in TAG's and TVS's, 706 
in uniform or gauge spaces, 498 

Intersection Theorem, 502 
-Lipschitz Theorem, 816 
-Riemann Equations, 666 
-Schwarz Inequality, 39, 586, 591 
space, 511 

CC, see choice 
Ceitin's Theorem, 136 
centered convergence, 170 
CH, see Continuum Hypothesis 
chain (ordering), 62 
Chain Rule 

for Fr(~chet derivatives, 662 
for Radon-Nikodym derivatives, 789 

change of variables, 788 
chaotic topology, see indiscrete topology 
character group, characters, 708 
character, finite, see finite character 
characteristic function, 34 
charge, 288, 618 
charts, tables, diagrams 

A A :J (algebra plus ideal), 117 
Argand diagram, 255 
arithmetic in I-co, +oc], 13 
arithmetic in Z6, 188 
arity function of a ring, 206 
bal(co(S)) not necessarily convex, 305 
Banach spaces, 573 
Bessaga-Brunner metric, 522 
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Boolean and set algebras, 327 
Cantor's function, 675 
categories (dual), 238 
categories (elementary), 208 
Choice and its relatives, 131 
compactness and its relatives, 452 
Condorcet's Paradox, 63 
convergence spaces, 155 
convex and nonconvex sets, 302 
convexity and its relatives, 303 
Dieudonn~-Schwartz Lemma, 701 
distances, F-norms, etc., 686 
dual concepts, 6 
functions that agree, 37 
Hausdorff metric, 112 
injective, surjective, etc., 37 
Intermediate Value Theorem, 433 
lattice diagrams, 89 
measure convergences, 561 
monotone maps, 58 
Moore closures, 79 
numbers, common sets of, 12 
preorders, 49 
regularity and separation, 434 
SchrSder-Bernstein Theorem, 44 
"sets" that violate ZF, 32 
topological vector spaces, 685 
typographical conventions, 3 
uniformity, distances, etc., 480 
Venn diagram, 18 
zigzag line, 671 

Chebyshev's Inequality, 565 
choice 

AC (Axiom of), equivalents, 139, 144-146, 
285, 424, 425, 460, 461,503 

arbitrary or canonical, 74, 77, 140, also 
see canonical 

countable (CC), 148, 466, 502 
dependent (DC), 149, 403, 442, 446, 525, 

536 
finitely many times (FAC), 141 
for finite sets (ACF), 141 
for the reals (ACR), 140, 152 
function, 139 
Kelley's, 147 

multiple (MC), 141 
pathological consequences, 142 
Russell's socks, 140 

circle group, 183, 238, 260 
circle of convergence, 584 
circled (same as balanced),  see convex 
cis (cos +/s in) ,  256 
clan, 117 
Clarkson's Inequality, 262, 592 
Clarkson's Renorming Theorem, 597 
class, 26 
classical (in IST), 398 
classical logic, 363 
clopen, 106, 107, 328, 472 
closed, closure 

algebraic, 84 
ball, 108, 688 
convergence, 410 
convex hull, 698 
down- or up-, 80 
formula, 375 
Graph Theorem, 731,732, 745 
half-space, 750 
Hausdorff metric, 112 
interval, 57 
Kuratowski's Axioms, 112 
mapping, 422 
Moore, 78, 225, 303, 411 
neighborhood base, 427 
path, 681 
relativization, 416 
string, 730 
topological, 106, 111,411 
under operations, 19, 83, 179, 330 

closest point, 470, 598, 602 
cluster point, 430, 452, 453, 456, 466 
coarser (weaker), see stronger or weaker 
codomain, 19, 210, 216, 230 
coefficients, 584 
cofinal, see frequent 
cofinal subnet, 163 
cofinite 

cardinality, 43, 158 
filter, see filter 
topology, 107, 461 
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collapse, 348 
column matrix, 20, 192, 606 
combination 

convex, 305 
Fr~chet, 487, 689 
linear, 275 

combinatory logic, 360 
comeager, 531 
Common Kernel Lemma, 281 
commutative, 24 

algebra, 273 
composition isn't, 35 
fundamental operation, 203 
group, 182 
matrix multiplication isn't, 192 
monoid, 179 
ring, 187 

compact, compactness 
Cauchy structure, 504 
mapping, 820 
principle of logic, 391,464 
spaces or sets, 452 
uniform continuity, 489 

comparability of wosets, 74 
comparable, 52 
Comparison Law, 135 
compatible 

topology with distances, 110, 703 
uniformity with distances, 119 
uniformity with topology, 119 

complement 
additive, 185 
in a lattice, 326 
orthogonal, 86, 300, 600 
sets, 16 

complete, 253 
assignment, 65 
Boolean lattice, 326 
Dedekind, 87 
measure space, 553 

�9 metrics and uniformities, 501 
ordered field, 246 
ordered group, 242 
ordering (lattice), 87 
theory, 204 

completely 
metrizable, 535 
regular, 441 

Completeness Principle of Logic, 386, 390 
completion 

of a measure space, 553 
of a normed space, 577 
of an ordered group, 243 
order (Dedekind), 93 
order (MacNeille), 94 
uniform or metric, 512 

complex 
charge or measure, 288 
conjugate, 255 
derivative, 666 
differentiable, 682 
linear functional, 280 
linear map, 277 
linear space, 279 
numbers (C), 255 

complexification of real linear space, 279 
component, componentwise, 20, 192, 422, 

also see pointwise, product 
composition 

of functions, 35 
of morphisms, 216 
of relations, 50 

Comprehension, Axiom of, 30 
concatenation, 181 
concave, 310 
concrete category, 210 
condition of Baire, 538 
conditional expectation, 789 
Condorcet's Paradox, 63 
cone, 712 
congruent modulo rn, 183, 188 
conjugate 

complex, 255 
exponents, 591 
symmetry, 599 

conjunction, 4, 357 
connected, 106 
connective, 357 
consequence, 352 
conservative, 395 
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consistent, consistency, 368, 399, 401,402 
constructive, constructible 

Axiom of, 130, 348 
example with irrationals, 134 
in the sense of Bishop, 133, 403, 576 
in the sense of GSdel, 129, 348 
Intermediate Value Theorem isn't, 432 
numbers, 270 
relative to the ordinals, 130 
Trichotomy Law isn't, 135, 271,349 

contains, 12 
continuous 

absolutely, 783, 806 
at a point, 417 
from the left or right, 420 
function (on a set), 212, 417 
indefinite integral is, 640, 654 
scalar, 687 

continuously differentiable, 660 
Continuum Hypothesis (CH), 47 
contraction, 481 
Contraction Mapping Theorem, 515 
contradiction, 377, also see  proof by 
contrapositive, 6, 341,370 
contravariant functor, 227 
convergent, convergence 

almost uniformly, 561 
along a universal net or ultrafilter, 454 
centered, 170 
closure, see closed, closure 
Hausdorff, 170 
in a limit space, 168 
in a metric space, 155 
in complete lattices, 174 
in measure, 561 
in posets, 171 
in probability, 561 
interior, see interior 
isotone, 170 
martingales, 791,793 
monotone, see monotone 
of a net or filter, 169 
order, 171 
preserving, 169 
pretopological, 409 

series, 266, 583 
space, 168 
topological, 412 
uniform, 490 

converse, 5 
convex, and similar algebraic notions (affine, 

balanced, star, symmetric, absolutely 
convex) 

combination, 305 
derivatives, 311,680 
function, 309, 313 
hull, 303 
infimum, 313 
order convex, 80, 712 
set, 302 

convolution, 275 
Cook-Fischer filter condition, 413 
coordinate projection, 22, 236, 422 
coordinatewise, see  pointwise, product 
coproduct, 227 
countable, countably, 15, 43 

(products or intersections), 43 
a (sums or unions), 43 
additive, 288 
boundedness in TVS's, 719 
choice (CC), see  choice 
compact, 466 
F~ and G~, 529 
gauge, 486 
infinite, 15, 43 
model, 378 
N x N is, 45 
products or intersections (5), 43 
pseudometrizability criteria, 703 
recursion, 47, 148 
sums or unions (or), 43 
union of countable sets, 149 
valued, 547 

counting measure, 551 
covariant functor, 227 
cover, covering, 17, 504 

Lemma of Lebesgue, 468 
Cowen-Engeler Lemma, 152 
Crandall-Liggett Theorem, 832 
cross product, 275 
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crystal, 66 
cubic polynomial equation, 257 
cumulative hierarchy, 129 
cut, 93 

5, see countable products, Kronecker 
5-fine, 629 
Darboux integral, 628 
DC, see choice 
De Moivre's formula, 256 
De Morgan's Laws 

for Boolean algebras, 329 
for logic, 6 
for sets, 16 

decimal representation, 269 
decomposition 

Banach-Tarski, 142 
direct sum in Hilbert space, 602 
direct sum of groups, 185 
Jordan, 199 
Riesz, 300 
sums in lattice groups, 199 

decreasing, see increasing or decreasing 
Dedekind complete, see  complete 
Dedekind finite or infinite, 149 
deduce, 363 
Deduction Principle, 373 
definable, 139 
defined on, 19 
degenerate Boolean lattice, 327 
degree of a polynomial, 191 
Denjoy-Perron integral, 628 
dense, 416 
Density Property of Fields, 248 
denumerable, 43 
dependence, linear, 280 
Dependent Choice (DC), see  choice 
derivation, 352 
derivative, 659 
detachment, 363 
devil's staircase, 674 
diagonal set, 50 
diagrams, see charts 
diameter, 97 
dictionary order, see lexicographical 

differ, 36 
differentiable, 659 
dimension, 282, 284, 286 
Dini's Convergence Theorem, 456 
direct product, 219 
direct sum 

external, 227 
internal, 184 

directed order, directed set, 52, 156 
disconnected, 106 
discrete or indiscrete 

absolute value, 261 
G-norm, 577 
measure, 551 
metric, 41 
(a-)algebra, 115 
topology, 107 
TVS topology, 695 
uniformity, 120 

disjoint, 16, 618 
disjunction, 4, 357 
disk of convergence, 584 
dissipative, 827 
distance 

between closed sets, 112 
between two points, 40 
from a point to a set, 97 

distance-preserving, 40 
distribution, 744 
distributive 

for functions, 24 
for sets, 18 
in a ring, 187 
lattice, 90, 326 

divergent series, 266 
Dom, domain 

in a model, 377 
in a nonconcrete category, 216 
of a function, 19 
of a morphism, 210 

Dominated Convergence Theorem 
for co, 581 
for Lebesgue spaces, 589 
for totally measurable functions, 692 

dot product, 599 
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double elliptic geometry, 346 
Double Negation Law, 342, 370 
Dowker's Sandwich, 449 
down-closed, see lower or upper 
dual, duality, 6 

Boolean algebras and spaces, 337, 474 
closed sets and open sets, 106 
closures and interiors, 410 
covering and free collection, 17 
distributive laws, 18, 90 
Euclidean space is its own, 283 
eventual sets and infrequent sets, 159 
exponential functor, 238 
filters and ideals, 101,336 
functor, 238 
map of a normed space, 776 
of a linear map, 283 
of a linear space, 277 
of a normed space, 608 
of a Pontryagin group, 708 
of a TVS, 749 
of L ~,  802 
of ordered vector space, 299 
of the Lebesgue spaces, 779 
order and its inverse, 50 

in a Boolean algebra, 329 
in an ordered group, 195 
1.s.c., u.s.c., 421 

pairing of vector spaces, 751 
sets and their complements, 16 
two families of functions, 23, 751 

Duns Scotus Law, 363 
dyadic rational, 542 

c-induction and E-recursion, 33 
earlier, 51 
Eberlein-Smulian Theorem, 477, 768 
effective domain, 311 
effectively equivalent or proved, 56, 144 
Egorov's Theorem, 562 
Eisenstein function, 259 
element, 11, 20, 27, 192 
embedding, 209 
empirical consistency, 401 
empty 

function, 22 
relation, 50 
set, 14, 30 

endpoints, 305 
Engeler-Cowen Lemma, 152 
enlarging a filter, 103 
entities, 396 
entourage, 118 
entry, 20 
epigraph, 309 
Epimenides, 9 
equality, equals 

axioms for, 364 
ordered pairs, 20 
sets, 11 

equational axioms and varieties, 204 
equiconsistent, 402 
equicontinuous, 493 
equivalence 

defined by 
a filter or ideal, 230 
a linear subspace, 278 
a subgroup, 186 
meager differences, 538 

relation or classes, 52, 54 
used to define 

field of fractions, 190 
operations on quotient, 223 

also, see equivalent 
equivalent 

consistency assertions, 402 
definitions, phrases, statements, 5, 55, 

138, 328 
(F-) (G-)(semi)norms, 575 
gauges or pseudometrics 

topologically, 109 
uniformly, 119 

homotopy-, 216 
nets, 163 
of choice, see choice 
structure-determining devices, 211 
topologically or uniformly, 211 
also, see equivalence 

essential infimum, 568 
essential supremum, 568, 589 
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Euclidean norm, 578 
Euler's constant, 267 
evaluation map, 240, 757 
eventual, eventually, 158 
eventuality filter, see  filter, eventuality 
eventually constant, 165 
examples (or lack of), see  intangible 
Excluded Middle, see  Law of the E.M. 
existence of 

atoms, 28 
Banach limits, 318, 321 
bijection (SchrSder-Bernstein), 44 
Boolean prime ideal, 339 
canonical net, 159, 160 
cardinalities between N and I~, 47 
closest point, 470, 598, 774 
cluster point, 452, 768 
common superfilter, 103 
common supernet, 410 
completion of a uniform space, 514 
completion of ordered group, 243 
completion of poset, 93 
explicit examples, xvi, 133, 404 
free ultrafilters, 151 
hyperreal numbers, 250 
inaccessible cardinal, 46, 401 
infinitesimals, 398 
initial structures, 218 
integrals, 630, 640, 656 
intermediate value, 432 
Lebesgue measure, 649 
liminf and limsup, 175 
locally finite cover, 448 
maximum value, 456, 465 
measurable cardinal, 254 
model, 386 
Moore closure, 79 
nonconstructive proof, 8, 133 
nowhere-differentiable functions, 670 
objects proved by showing 

int(S) :fi ~, 411 
set is comeager, hence nonempty, 531 

partition of unity, 445, 448 
quotient of algebraic systems, 223 
Radon-Nikodym derivative, 793 

real numbers, 249, 270, 513 
set lacking Baire property, 132, 808 
sets, 30 
shrinking of a cover, 445 
solutions to polynomial equations, 257, 

470 
sup-completion of poset, 96 
uniformity generated (not), 120 
universal subnet, 166 
unmeasurable set or map, 549, 557, 587 
Urysohn function, 445 
Well's pseudometric, 98 
well ordering, 74, 144 
witness for a formula, 380 
also, see  AC, DC, HB, UF, fixed point 

existential quantifier, 357 
expectation, 613 
explicit example, 404 
exponential functors, 238 
exponential growth condition, 825 
exportation law, 363 
extended real line, 13 
extension of a function, 36 
Extensionality, Axiom of, 29 
external direct sum, 227, 276 
external object, 397 
extra-logical axioms, 364 

F-lattice, 716 
F-(semi)norm, F-space, 686, also see  norm, 

seminorm, G-(semi)norm 
F~, Gs, 529 
FAC, see  choice 
factorial, 48 
false, falsehood, see  truth 
Fatou's Lemma, 566, 647 
Fermat's Last Theorem, 134 
field, 187 
field of sets, see  algebra of sets 
figures, see  charts 
filter, 100, 336 

base or subbase, 104 
cofinite (Fr~chet), 103, 105 
correspondence with nets, 158 
enlarge, 103 
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eventuality (tails), 159 
iterated, 103, 413 
maximal, 105 
neighborhood, 110, 409 
proper or improper, 100, 336 
ultra-, see  ultrafilter 

final topology, 426 
locally convex, 741 

5-fine tagged division, 629 
finer (stronger), see  stronger or weaker 
finest locally convex topology, 742 
finitary, 25, 202 
finite, 15, 43 

character, 77, 144 
charge, 551 
choice (ACF, FAC), see  choice 
dimensional, 282, 284 
intersection property, 104 
sequence, 20 

finitely 
additive, 288 
subadditive, 800 
valued, 547 

F.I.P., see  finite intersection property 
first, see  minimum 
first category of Baire, see  meager 
first countable, 427, 703 
first-order language, logic, theory, 354 
Fischer-Cook filter condition, 413 
fixed or free collection of sets, 16, also  see  

ultrafilter 
fixed point, 36, 70, 92, 128, 515-519, 524, 

533, 534, 668, 727, 778, 815 
Foguel-Taylor Theorem, 619 
Folkman-Shapley Theorem, 308 
forcing, 383 
forgetful functors, 228 
formulas, 361 
forward image, see  image 
Foundation, Axiom of, see  Regularity 
Fourier transform, 709 
fraction, 190 
Fr~chet 

combination, 487, 689 
derivative, 659 

filter, see  filter 
space, 694 
topology, 437 

free, see  fixed or free 
free variable, 355, 358 
frequent subnet, 163 
frequent, frequently, 158 
frontier, see  boundary 
Fubini's Theorem, 613 
full (order convex), 80, 712 

components, 80 
full subcategory, 212 
function, 19, 22 

of classes, 27 
functional, 277 
functor, 227 
fundamental group, 228 
fundamental operations 

algebraic system, 202 
barycentric algebra, 306 
Boolean algebra, 329 
group, 182 
lattice group, 225 
monoid, 179 
ring or field, 187 
variety with ideals, 221 

Fundamental Theorem of Algebra, 470 
Fundamental Theorem(s) of Calculus, 671, 

674 

G-(semi)norm, 573, also  see  norm, semi- 
norm, F-(semi)norm 

G~, F~, 529 
Garnir's Closed Graph Theorem, 745 
gauge (collection of pseudometrics), 42 

equivalent topologically, 109 
Hausdorff or separating, 42, 43 
topology, 109 
uniformity, 119 

gauge (Henstock) integral, 628 
gaugeable 

topology, 109, 441 
uniformity, 119 

Gaussian probability measure, 552 
generalized 
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Continuum Hypothesis (GCH), 47 
functions, 744 
Perron integral, 631 
Riemann integral, 628 
sequences, see nets 

generated, generating 
Boolean subalgebra, 330 
by operations, 83 
filter or ideal, 102, 226 
Moore closure, 79 
preuniformity, uniformity, 121 
(a-)algebra, 116 
subalgebra, 220 
subgroup, 182 
topology, 114 

generative, 814 
generic, 101,531, also see comeager, large 
Gherman's conditions, 414 
given topology, 754 
g.l.b. (inf), see infimum, supremum 
GSdel 

Completeness Principle, 386, 390 
consistency of AC and GCH, 348 
constructible, 130 
Incompleteness Theorems, 392, 400 
number, 393 
operations, 129 

GShde's Fixed Point Theorem, 778 
Goldbach's Conjecture, 134, 270 
Goldstine-Weston Theorem, 774 
googol, 267 
Gr, graph 

of a function, 22 
of a relation, 50 

grammar, 360 
greatest, see maximum 
greatest lower bound, see infimum 
Gronwall's inequality, 816 
Gross-Hausdorff Theorem, 469 
Grothendieck et al. Theorem, 768 
.group, 181 

Haar measure, 708 
Hahn-Banach Theorem 

equivalents, 318, 319, 615, 616, 618, 714, 
750, 756, 802 

nonconstructive (discussion), 135, 143 
half-space, 750 
Hall's Marriage Theorems, 153 
Halpern's vector bases, 285 
ham sandwich, 14 
Hamel basis, 281,286 
harmonic series, 267 
Hartogs number, 127 
Hausdorff 

compact metric space theorem, 469 
convergence space, 170 
Maximal Chain Principle, 144 
measure of noncompactness, 506 
metric for closed sets, 112 
topological space, 439 

HB, see Hahn-Banach Theorem 
Heine-Borel Property, 723 
Helly's Intersection Theorem, 308 
Henstock 

integral, integrable, 628 
-Kurzweil integral, 631 
-Saks Lemma, 638 
-Stieltjes integral, 631 

hereditary, 450 
Heyting algebra, 341 
Heyting implication, 340 
highest, see maximum 
Hilbert space, 599 
Hilbert's program, 399 
HSlder continuity, 482, 582 
H51der Inequality, 591 
holomorphic, 682 
homeomorphism, 418 
homogeneous function, 313 
homogeneous polynomial, 191 
homomorphism 

algebraic systems, 203 
barycentric algebras, 307 
from Q into any field, 190, 247 
from Z into any ring, 188, 247 
groups and monoids, 179 
ideals, kernels, quotients, 222 
lattices, 91,205 
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rings or fields, 187 
homotopy-equivalent, 216 
hull, 79 

affine, balanced, convex, star, symmetric, 
absolutely convex, 303 

closed convex, 698 
hyperfinite, see bounded hyperreal 
hypernatural numbers, 252 
hyperreal line, hyperreal numbers, 14, 250 

ideal 
(homomorphism kernel), 222 

generated, 226 
maximal, 336 
prime, 336 
-supporting variety, 221 
also, see homomorphism 

(ideal of sets), 100 
generated by a collection, 102 
of bounded sets, 104 
of equicontinuous sets, 493 
of finite sets, 103 
of infrequent sets, 159 
of meager sets, 531 
of nowhere-dense sets, 531 
of subsets of compact sets, 455 
of totally bounded sets, 504 
also, see a-ideal, small 

point(s) adjoined, 13 
proper or improper, 100, 224, 336 
also, see lower set 

idempotent, 36, 82, 411,414 
identification of isomorphic objects, 209 
identification topology, 425 
identity 

(axiom) in an algebra, 204 
element of a monoid, 179 
function or map, 36 
morphism, 216 

if, 4 
iff, 5 
image, 37, 122 
imaginary part, 255 
Implicit Function Theorem, 669 
implies, 4 

importation law, 363 
inaccessible cardinal, 46, 402 
includes, 12 
inclusion map, 36 
inconsistent, 368 
increasing or decreasing 

function, 57 
net, 171 
to a limit, 171 

indefinite integral, 640, 787 
independence, linear, 280 
index set, 11,230 
indicator function, 35, 311, also see charac- 

teristic function 
indiscrete, see discrete or indiscrete 
indistinguishable, 435 
individuals, 355, 377, 396, also see atom 
induction, 33, 47, 72, 99, 127 
inductive locally convex topology, 741 
inequality 

BunyakovskiL 39 
Cauchy-Schwarz, 39, 586, 600 
Clarkson, 262, 592 
Gronwall, 816 
HSlder, 591 
Minkowski, 586 
reverse Minkowski, 591 
triangle (in a lattice group), 200 
triangle (in metric space), 40 
ultrametric, 42, 261 

infer, inference, 363 
infimum (inf)or supremum (sup), 59 

A (meet, inf, g.l.b.), 59 
V (join, sup, 1.u.b.), 59 
associative and commutative, 88 
complete lattice has A(S), V(S), 87 
coordinatewise, pointwise, 61 
dense, 92 
depends on the larger set, 60 
inf of infs, sup of sups, 61 
inf sum is pseudometric, 98 
inf- or sup-closed, 80 
lattice has x A y, x V y, 87 
of structures (in category theory), 218 
preserving, 62 
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sup completion, 96 
topology, 114 
using sup to define norms, 579 

infinitary, 202 
infinite, 13, 15, 43, 46, 149 

Axiom of the, 31 
dimensional, 282 
distributivity, 18, 90 
regress, 150 
sequence, 20 
series, 266 

infinitely close, 251 
infinitesimal, 251,398 
infrequent, 158 
initial 

end of a path, 681 
gauge, 484 
ordinal, 126 
property, 450 
segment, see lower set 
structure (topology, uniformity, etc.), 217, 

696 
injective, injection, 37 
inner product, 599, also see product: dot, 

scalar 
intangible, xvi, 105, 133, 137, 140, 142, 151, 

166, 404, 538, 610, 807 
integers modulo rn, 188 
integrable, 290, 565, 589, 631,691 

absolutely, 645 
simple function, 291 

integrably (locally) Lipschitz, 593 
integral, 564, 613, 627 
integral domain, 189 
integrally closed, 242 
integrand, 289 
intentional ambiguity, 261 
Interchange of Hypotheses, 341,370 
interior, 111,410 
Intermediate Value Theorem, 432,433 
internal direct sum, 184 
internal object, 397 
interpolating polynomial, 35 
interpretation, 134, 143, 377 
intersection, 15 

interval, 56 
intuitionist logic, 363, 370, 371 
inverse, 181 

function, 37 
image, 39, 122 
left or right, 283 
relation, 50 

Inverse Function Theorem, 668 
inverse image categories, 212 
involution, 36 
irrationals homeomorphic to N N, 540 
irreflexive, 51 
isolated, 41, 106 
isometric, 40 
isomorphism 

D o m ( f ) / K e r ( f )  ~_ Ran(f) 
for groups, 186 
for linear spaces, 278 
for varieties with ideals, 225 

in a category, 216 
informal definition, 209 
of monoids, 179 
of normed spaces, 575 
uniqueness of R, 249 
X and subgroup of Perm(X), 184 
X and submonoid of x X  181 

isotone 
convergence, 170 
also, see increasing 

iterates, iterated 
filter, 103 
fixed points of, 524 
function, 36 
limits, 413, 477, 768 

James space, 586 
James's Sup Theorem, 769 
join (sup, V), see infimum, supremum 
joint continuity, 423 
joke, 14, 48, 145 
Jordan Decomposition, 199 

Kadec's Renorming Theorem, 598 
Kantorovi~-Riesz Theorem, 298 
Kelley subnet, 162 
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Kelley's Choice, 147 
kernel, 186, 200, 281 
Kirk's Fixed Point Theorem, 778 
knob space, 120 
knots, 730 
Kolmogorov Normability Theorem, 721 
Kolmogorov quotient space, 437 
Kolmogorov space, 436 
Kottman's Theorem, 620 
Kowalsky's iterated filter, 103, 414 
..Krein-Smulian Theorem, 773 
Kronecker delta, 35, 194, 602 

absolute value, 261 
G-norm, 577 
metric, 41, 120, 488, 502 

Kuratowski 
axioms for closed sets, 112 
Continuity Lemma, 539 
inclusion, 411 
measure of noncompactness, 506 

Kurzweil integral, 628 
Kurzweil-Henstock integral, 631 

labeling, 65 
Lagrange notation, 659 
Lagrange polynomials, 35 
language, 9, 55, 134, 242, 328, 350 
large, 101,231 
larger, later, 51 
largest or last, see  maximum 
lattice, 87 

algebra, 292 
Boolean, 326 
complemented, 326 
complete, 87 
diagrams, 89 
distributive, 90, 326 
group, 197 
homomorphism, 91,205 
meet-join characterization, 89 
relatively pseudocomplemented, 340 
vector, 292 

Law of the Excluded Middle, 134, 142, 363, 
370, 371,400 

LCS (locally convex space), 694 

leading coefficient, 191 
least, see  minimum 
least upper bound (sup), see infimum or 

supremum 
Lebesgue 

-Bochner space, 588 
Covering Lemma, 468 
Differentiation Theorem, 672 
Dominated Convergence Theorem, 589 
integral, 564, 613 
measurable sets, 555 
measure, 555 
Monotone Convergence Theorem, 565 
number, 468 
point and set, 672 
space, 589 

left inverse, 181,283 
left-hand limit, left continuous, 420 
Leibniz notation, 659 
Leibniz's Principle, 394 
L.E.M., see Law of the E.M. 
length 

of a sequence, 20 
less, 51 
Levi's Theorem, 566 
lexicographical order, 75 
LF space, 742 
liar, 9 
Liggett-Crandall Theorem, 832 
liminf, limsup, 174 
limit, limit space, 168 
limit from the left or right, 419 
limit ordinal, 126 
limited, see  bounded hyperreal 
Lindenbaum algebra, 368 
line, line segment, 305 
linear 

combination, subspace, 275 
dependence, independence, 280 
isomorphism, 278 
map, functional, dual, 277, 310 
order, see  chain 
space, algebra, 272 
span, 276, 303 

Lipschitz conditions, 481,816, 828 
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little, see  small 
littler, 51 
littlest, see  minimum 
LM, 401 
locally 

bounded space, 721 
compact space, 457 
continuous mapping, 418 
convex space, 694 
finite collection of sets, 444 
full space, 712 
generative, 814 
integrable, 691 
Lipschitz mapping, 482 
solid space, 714 
uniformly convex norm, 594 

logical axioms, 362 
Lovaglia's example, 596 
love, 14 
lower or upper 

bound, 59 
limit, 174 
lower limit topology, 451 
lower set topology, 107 
lower set, down-closed set, 57, 80 
semicontinuous (1.s.c. or u.s.c.), 420 
upper set, up-closed set, 80 

lowest, see  minimum 
L5wig's Theorem, 286 
1.s.c., 420 
1.u.b. (sup), see  infimum, supremum 
Luxemburg et al. Theorem, 322, 333, 616, 

618 

Mackey topology, 754 
MacNeille completion, 94 
magnitude, see  absolute value 
Mal'cev-G5del Theorem, 386, 390 
map or mapping, see  function 
maps to, 23 
Marriage Theorems (Hall), 153 
martingale, 791 
material implication, 5 
matrix, 192 
matrix norms, 606 

max, maximum, 59 
max-closed, max-closure, 81 

maximal, 59 
chain, 144 
common AA subnet, 164 
filter, 105 
function for Lebesgue measure, 655 
ideal, 224, 336 
lemma for martingales, 792 
linearly independent set, 281 
orthonormal set, 603 
principles equivalent to AC, 144 
principles equivalent to DC, 525 
also,  see  minimal 

Mazur et al. Theorem, 575, 699, 719 
Mazurkiewicz-Alexandroff Theorem, 535 
MC, see  choice 
meager, 531 
mean, 553 
measurable 

cardinal, 253 
mapping, 212, 546 
sets, 115, 546 
space, 115, 289, 546 

measure, 288 
measure algebra, 551 
measure of noncompactness, 506 
measure space, 289, 551 
meet 

have nonempty intersection, 16, 103 
A, see  infimum, supremum 

member, 11 
membership (c) induction or recursion, 33 
metalanguage, metatheory, 351 
metavariables, 361 
metric, metrizable 

completion, 512 
defined, 40 
metrically bounded, see  bounded 
subset of Banach space, 579 
topology, 108 
also,  see  pseudometric 

Meyers' Contraction Theorem, 519 
midpoint convex, 698 
Milman-Pettis Theorem, 777 
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min, minimum, 59 
minimal, 31, 59 

spanning set, 281 
also, see maximal 

Minkowski 
functional, 316 
inequality, 586 
reverse inequality, 591 

model, 381 
model theory, 353 
models of set theory, 347 
modulo, 183, 188 
modulus 

absolute value, 260 
of convexity, 596 
of uniform continuity, 484 

m o d u s  p o n e n s ,  363 
monoid, 179 
monomial, 191 
monotone 

class, 117 
convergence, 171 
Convergence Theorem 

Dini, 456 
for Henstock-Stieltjes integrals, 643 
Lebesgue, 565 

function, 57 
net, 172 

Montel's Theorem, 683 
Moore closure or collection, see closed 
Moore-Smith sequences, see nets 
more, 51 
morphism 

concrete category, 210 
general category, 216 

Mostowski's Collapsing Lemma, 347 
Multiple Choice Axiom (MC), see choice 
multiplication or multiplicative, 24 

identity (one), 180, 187 
in a group, 182 
in a linear space, 272 
in a monoid, 180 
in a ring, 187 
of matrices, 192 

n-ary operation, 24 
name, 378 
NBP, 808 
Nedoma's Pathology, 549, 587 
negation, 4, 357 
negative part, 198 
negative variation, 294 
negligible set, 101,553 
neighborhood; neighborhood filter 

base, 426 
finite, see locally finite 
in a pretopological space, 409 
in a topological space, 110, 411 
string, 730 

net, 157 
Neumann series, 625 
Niemytzki-Tychonov Theorem, 506 
Nikodym et al. Theorem, 785, 787, 793 
noncompactness, 506 
nonconcrete category, 216 
nondecreasing, 58 
nondegenerate Boolean lattice, 327 
nondense, see nowhere-dense 
non-Euclidean geometry, 346 
nonexpansive, 481 
nonlogical axioms, 364 
nonmeager, 531 
nonprincipal ultrafilter, see ultrafilter 
nonstandard 

analysis, 394 
enlargement, 231 
object, 397 

norm, 314, 574 
equivalent norms, 575 
operators, 605 
the "usual norm" is complete, 576 

Normability Theorem, 721 
normal 

cone, 712 
Form Theorem, 330 
probability measure, 552 
sublattice, 300 
topological space, 445 

normalized duality map, 776 
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normalized function of bounded variation, 
583 

nothing, 14 
nowhere-dense, 530 
nowhere-differentiable, 556, 670 
null set, 14, 101,553 
nullary operation, 25 
numbers, 12 

object 
concrete category, 210 
language, 351 
nonconcrete category, 216 

obtuse angle, 601 
one, s ee  multiplicative identity, 187 
one-sided 

Boolean algebras, 340 
derivatives, 661 
limits, 420 
Lipschitz conditions, 828 

one-to-one, see  injective 
one-to-one correspondence, see  bijection 
onto, see  surjective 
open 

almost, s ee  almost open 
ball, 108, 688 
interval, 57 
mapping, 422 
neighborhood base, 427 
sets, 106 

operator norm, 606 
operator or operation, s ee  function 
oracle, 137 
order, ordered 

bounded, see  bounded 
bounded operator, 296 
by a normal cone, 712 
by reverse inclusion, 157 
complete, see  complete 
convergent, 171 
convex, 80, 712 
dual, 299 
equivalents of AC, 144 
group, 194 
ideal, see  lower set 

interval, 56 
interval topology, 108 
isomorphism, 58 
monoid, 194 
n-tuple, 20 
pair, 20 
preserving or reversing, see  increasing 
ring or field, 245 
topological vector space, 711 
vector space, 292 

ordinal, ordinal type, 124, 125 
original topology, 754 
Orlicz function, 693 
Orlicz-Pettis Theorem, 764 
orthogonal, 86, 300, 600 
orthonormal set or basis, 602 
Orwell, G., 3 
oscillation, 492 
Osgood-Baire Theorem, 532 
outer measure, 560 
Oxtoby's Zero-One Law, 543 

p-adic absolute value, 261 
pairing, 30, 751 
pairwise disjoint, 16, 618 
paracompact, 447 
paradox, 142 

Banach-Tarski's, 142 
Berry's, 351 
Burali-Forti's, 127 
Condorcet's, 63 
Epimenides's, 9 
existence without examples, see  intangible 
liar, 9 
Quine's, 10 
Russell's, 25 
Skolem's, 389 

Parallel Postulate, 346 
Parallelogram Equation, 600 
parameter, 11, 21 
paranorm, 686 
Parseval's Identity, 603, 710 
partial derivative, 663 
partial sum, 266 
partially ordered set (poset), 52, 56 
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partition, 16 
partition of unity, 444 
Pascal's Triangle, 48 
patching together, 445 
path, path integral, 681 
pathological, 142 
Peano arithmetic, 382 
permutation, 37, 184, 194 
perpendicular, 86 
Perron integral, 628, 631 
Picard condition, 525 
piecewise continuous, 511 
piecewise-linear, 310 
Plancherel transform, 710 
Poincar~ 

fundamental group, 228 
pathological functions remark, 670 

point finite, 444 
pointed topological space, 214 
points, 27 
pointwise 

almost everywhere, 554 
convergence, 422 
inf, sup, max, min, 61 
also, see product 

polar, 761 
polynomial, 191 

Fundamental Theorem of Algebra, 470 
Lagrange interpolation, 35 
leading coefficient, 191 
ring of, 190, 247 
solution of quadratic, cubic, etc., 257 

Pontryagin Duality Theorem, 708 
Pontryagin group, 707 
poset, see partially ordered set 
positive 

charge, 288 
cone, 196 
definite, 40, 260 
homogeneity, 313 
integral, 564 
logic, 362 
operator, 296 
part, 198 
variation, 294 

potential infinity, 13 
power of a set, 22, 46 
power series, 584 
power set, 15, 30, 46 
power set functor, 228 
p.p. (presque partout), 553, 554 
precedes, 51 
precise refinement, 17 
precisely subordinated, 444 
precompact, 505 
predecessors, 57 
predicate calculus or logic, 354 
predicate logic with equality, 365 
predicate symbols, 356 
preimage, see inverse image 
prenex normal form, 375 
preorder, preordered set, 52 
preregular space, 438 
prerequisites, xx 
presque partout, 553, 554 
pretopological, 409 
preuniformity, 118 
prevalent, 556 
prime ideal, 336 
prime number, 48, 188 
primitive objects, see atom 
primitive proposition symbols, 356 
principal lower and upper sets, 57 
principal ultrafilter, see ultrafilter 
probability, 330, 551,618 
product 

and Cauchy nets, 499 
and equicontinuity, 495 
Eberlein-Smulian Theorem, 477 
inner, 599 
nonempty by AC, 139 
of bounded sets in TVS, 719 
of closures, 424 
of compact sets, 461 
of complete spaces, 503 
of complex numbers, 256 
of convex functions, 312 
of gauges, 485 
of ideals, 226 
of linear spaces, 273 
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of matrices, 192 
of measures, 566 
of morphisms, 219 
of numbers, 34 
of orderings, 53, 88, 292 
of pseudometrics, 487 
of rings, 189 
of scalar and vector, 272 
of sets, 21 
of ~r-algebras, 548 
of structures (in a category), 218 
of subalgebras, 221 
of TAG's, TVS's, LCS's, 696 
of topologies, 422 
of totally bounded spaces, 504 
of ultrapowers, 233 
of wosets, 75 
uncountable =~ nonmetrizable, 488 
also, see coordinate projection, pointwise 

productive, 450 
projection 

coordinate, 22, 218, 236, 422, 426 
for internal direct sum, 185 
idempotent morphism 

closest point, 598, 602 
linear, 286, 300 

quotient, 54 
proof, 352 
proof by contradiction, 7, 134, 370, 400 
proof theory, 353 
proper or improper 

class, 26, 398 
filter, 100, 336 
ideal, 100, 224, 336 
lower or upper set, 57 
Riemann integral, 628 
subset, superset, 12 

propositional calculus or logic, 362 
Pryce sequence, 264 
pseudo-Boolean algebra, 341 
pseudocompact, 465,469 
pseudocomplement, 340, 341 
pseudometric, pseudometrizable 

Baire Category Theorem, 536 
Cauchyness, 500 

compactness, 469 
completeness, 501 
completion, 512 
defined, 40 
defined by inf E, 98 
equivalent (topologically), 109 
equivalent (uniformly), 486 
first countable, 427 
Niemytzki-Tychonov Theorem, 506 
product, 487 
TAG or TVS, 703 
topology, 108 
totally bounded, 504 
translation-invariant, 574 
uniformity, 119 
Weil Lemma, 98 
also, see metric, norm, seminorm 

quadratic, cubic, quartic formulas, 257 
quantifiers, 357 
quartic equation, solution, 258 
quasicomplete, 719 
quasiconstructive, 404 
quasiconvex, 310 
quasigauge, 110 
quasi-interpretation, 377 
quasimodel, 381 
quasinorm, 687 
quasipseudometric, 40 
Quine's Paradox, 10 
quining, 10 
quintic, 258 
quotient 

group, 186 
map or projection, 54 
norms, 579, 608 
object, 223 
set, 54 
topology, 425 

radial, see absorbing 
radius of convergence, 584 
Rado's Selection Lemma, 152 
Radon 

Affineness Lemma, 307 
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integral, 801 
Intersection Theorem, 307 
-Nikodym derivative, 787 
-Nikodym Theorem and Property, "/93 

random variables, 232, 554 
range, 19, 38 
range condition, 832 
rank, 129, 356 
rare, see nowhere-dense 
rational functions, 191, 247 
rat'ional numbers, 190, 247 
real 

derivative, 666 
-linear functional, 280 
-linear map or operator, 277 
linear space, 279 
numbers modulo r, 183 
part, 255 
random variables, 232, 554 
-valued charge or measure, 288 

real number system (~) 
Cantor's construction, 513 
cardinality of, 269 
Dedekind's construction, 249 
defined, 246 
uniqueness, 249 
usual metric and topology, 109 

realization, 381 
recursion, 33, 47, 73, 128 
reduced power, 229 

nonstandard analysis, 394 
of algebraic system, 236 

refinement integral, 632 
refinement of a cover, 17 
reflective subcategories, 229 
reflexive 

Banach space, 619, 774 
LCS, 757 
object in a category, 240 
relation ( x R x  for all x), 51 

regress, 150 
regular open, 328 
regular topological space, 427, 440 
Regularity, Axiom of, 31, 138, 150 
relabeling, 9, 165 

relation, 50, 356 
relative 

compactness, 459 
complement (of a set), see complement 
consistency, 401 
pseudocomplement, 340 
topology, 107 

remetrization function, 486 
renorming, 596 
Reparametrization Theorem, 635 
Replacement, Axiom of, 30 
residual, 101, 158, 531 

also, see eventual, generic, large, comeager 
resolvent, resolvent set, 626 
respect an equivalence, 55 
restriction 

Axiom of, see Regularity 
of a function, 36 
of a relation, 50 
also, see trace 

reverse inclusion, 157 
Reverse Minkowski Inequality, 591 
Riemann 

-Cauchy Equations, 666 
-Darboux integral, 628 
geometry, 346 
integral, integrable, 627 
-Lebesgue Lemma, 654, 709 
-Stieltjes integral, 631 
sum, 629 

Riesz 
Decomposition Property, 196 
Decomposition Theorem, 300 
(F-) (semi)norm, 713 
-Kantorovi(~ Theorem, 298 
Representation Theorem, 804, 805 
space or subspace, 292 
Theorem on Locally Compact TVS's, 726 

right half-open interval topology, 451 
right inverse, 181 
right-hand limit, right continuous, 419 
ring, 187 

of sets, 117 
RNP (Radon-Nikodym Property), 795 
row matrix, 192 
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rule, 19 
rule of detachment, 363 
rule of generalization, 375 
rules of inference, 363 
Russell, Bertrand 

Paradox, 25 
quotation about truth, 345 
socks and shoes, see choice 

a, countable sums or unions, 43 
a-additive, 288 
a-algebra, 115 
a-field, 115 
a-finite charge or measure, 558 
a-ideal, 101 
a-ring, 117 
sandwich, 14, 319, 449 
satisfy, 353 
saturated, saturation, 79, 81, 82 
scalar continuity, 687 
scalarly measurable, 621 
scalars, scalar multiplication, 272, 283 
Scedrov-real number, 349 
Schauder's Fixed Point Theorem, 727 
schemes for axioms, 363 
SchrSder-Bernstein Theorem, 44 
Schur's Theorem, 759 
Schwarz Inequality, 39, 600 
Scott et al. Epimorphism Theorem, 333 
second category of Baire, see nonmeager 
second derivative, 661 
segment 

initial, see lower set 
line, 305 

self-mapping, 35 
semantic implication, consequence, theo- 

rem, consistency, 204, 353 
semigroup of operators, 825, 831 
semi-infinitely distributive, 90 
seminorm, 314, 574, also see norm, (F-) 

(G-) (semi)norm 
semireflexive, 757 
semivariation, 800 
sentence, 375 
sentential calculus or logic, 362 

separable (i.e., has countable dense set), 416 
separably valued, 547 
separated pairing, 752 
separated spaces, 439 
separately continuous, 423 
separation of points, using: 

(F-) (G-)pseudonorms, 704 
a collection of functions, 37 
convergences, 170 
gauge or uniformity, 42, 43, 442 
sets and/or functions, 434 

Separation, Axiom of, see Comprehension 
sequences, sequential, 20, 157 

Banach limit, 320 
closure, 427 
cluster point, 430 
compactness, 466 
completeness, 501 
continuity, 719 
generalized, 157 
martingales, 791 

series, 266, 583 
set, 11, 26 
set theory with atoms, 28 
Shapley-Folkman Theorem, 308 
Shelah's alternative, 344, 402, 405, 745 
shrinking, 445 
shy, 556 
sign function, 35 
Sikorski's Extension Criterion, 331 
simple function, 291 
simplex, 71,306, 727 
singleton, 14 
Skolem's example, 394 
Skolem's Paradox, 389 
Slow Contraction Theorem, 517 
small, 101,654, also see ideal 
smaller, 51 
smallest, see minimum 
smooth, 661 
Smulian et al. Theorem, 477, 768, 773 
Sobczyk-Bohnenblust Correspondence, 280 
socks and shoes, 140 
solid, solid kernel, 200, 714 
Soundness Principle, 385 
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space, see linear, measurable, topological, 
uniform 

span, 276 
special Denjoy integral, 628 
spectrum and spectral radius, 625 
square matrix, 192 
stabilizer group, 384 
stage, 129 
staircase, 674 
standard 

basis for F n, 282 
deviation (of Gaussian probability), 553 
in Internal Set Theory, 397 
object (in nonstandard analysis), 397 
part (of a hyperreal), 251 
real numbers, 251 

star property, 410, 414 
star set, see convex 
step function, 292, 637 
Stieltjes integrals, 631 
Stone 

-(~ech compactification, 462 
mapping, 338 
Paracompactness Theorem, 449 
Representation Theorem, 327 
space, 472 

straight line, straight line segment, 305 
strict contraction, 481 
strict inductive limit, 742 
strictly convex 

function, 310 
norm, 594 

strictly larger, stronger, etc., 5, 51, 58 
string, 730 
strong topology, 753 
stronger or weaker, 5, 109, 211,575 
strongest locally convex topology, 742 
strongly inaccessible cardinal, 46 
strongly measurable, 548 
subadditivity, 260, 314, 573 
subalgebra, 220 
subbase or subbasis 

for a filter, see filter subbase 
for a topology, 114 
for a uniformity, 118 

subcategory, 212 
subcover, 17 
subgroup, 182 
sublattice, 89 
sublinear, 314 
submonoid, 179 
subnet, 162 

Aarnes and Anden~es, 162 
cofinal, 163 
frequent, 163 
hereditary property, 165 
introduction, 161 
Kelley, 162 
Willard, 162 

subobject, 220 
subordinated, 444 
subsequence, 20, 161 
subseries, 622 
subset, 12 
subspace 

linear, 275 
topology, 107 

succeeds, 51 
successor 

function, 382 
ordinal, 126 

sufficiently large, 158 
sum, 34, 184, 583 
sup, supremum, see infimum or supremum 
superfilter, 102 
supersequentially compact, 468 
superset, 12 
superstructure, 396 
support, 111 
surjective, surjection, 19 
surprise, xvi, 13, 105, 145, 270, 317, 403, 

460 
syllogism law, 362 
symmetry, symmetric 

difference, 17, 326 
entourage, 120 
G-seminorms are, 573 
group of order n, 184 
pseudometrics are, 40 
relation, 51 
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set, see convex 
topological space, 437 

syntactic implication, consequence, theo- 
rem, consistency, 204, 352 

To, T1, T2, ... (separation axioms), 434 
To quotient space, 437 
tables, see charts 
TAG (topological Abelian group), 694 
tagged division of an interval, 629 
tail set 

in [0, 1), 542 
in 2 N, 542 
of a net, 158 

Tarski et al. Theorem, 92, 142, 151,333 
tautology, 353, 377 
Taylor-Foguel Theorem, 619 
Teichmuller-Tukey Principle, 144 
term (in a first-order language), 360 
term (in an algebraic system), 203 
terminal end of a path, 681 
t e r t i u m  n o n  da tur ,  363 
then, 4 
theorem, 353 
Tonelli's Theorem, 566 
toplinearly bounded, 718 
topological 

Abelian group (TAG), 694 
closure, 111 
convergence, see convergence 
linear space (TVS), 694 
quotient map, 425 
Riesz space, 714 
space, 106 
vector space (TVS), 694 

topologically 
complete, 535 
equivalent, 109, 211 
indistinguishable, 435 
stronger, 109, 211 

topology, 106 
gauge, gaugeable, 109, 441 
generated by a collection of sets, 114 
of pointwise convergence, 753 
of simple convergence, 753 

of uniform convergence, 491 
(pseudo)metrizable, 109 
uniform, uniformizable, 119 

total order, see chain 
total paranorm, 687 
total preorder, 63 
total quasinorm, 687 
total variation, see variation 
totally bounded, 504, 707, 726 
totally measurable, 692 
trace, 50, 103, 220 
Transfer Principle, 395 
transfinite, 47 
transitive 

closure, 123 
relation, 51 
set, 122 

translation-invariant 
neighborhood filter, 699 
ordering, inf, sup, 194, 199 
pseudometric, 574 
topology, 699 
uniformity, 705 

transpose (of a matrix), 192 
triangle inequality, see inequality 
tribe, 117 
trichotomy 

not constructive for R, 135, 271,349 
of cardinals, 145 
satisfied by chains, 62 

trivial ordering, 197 
trivially true, 6 
true love, 14 
truth, 9, 101, 134, 139, 143, 145, 349, 353, 

377, 461 
truth table, 5 
Tukey-Teichmuller Principle, 144 
TVS (topological vector space), 694 
two-valued homomorphism, 330 
two-valued probability, 551, 618 
Tychonov 

Fixed Point Theorem, 727 
-Niemytzki Theorem, 506 
product of compacts, 460, 461 
Theorem: Finite Dimensional TVS's, 725 
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topological space, 442 
type (for algebraic systems, etc.), 202 
typographical conventions, 3 

UF, see ultrafilter equivalents 
Ulam-Mazur Theorem, 575 
ultrabarrelled TVS, 731 
ultrabarrels, 730 
ultrafilter, 104 

and compactness, 454 
and total boundedness, 505 
and universal net, 166 
Boolean, 336 
equivalents of UF, 151,152, 166, 237, 338, 

339, 386, 387, 390, 391, 454, 462, 473, 
505, 762, 763 

fixed (principal), 103, 105 
free (nonprincipal), 105 

existence, 151 
intangible, i33 

ultrametric, 42 
ultranet, see universal net 
ultrapower, see reduced power 
unary operation, 25 
unconditionally convergent, 622 
uncountable, 15, 43 
underlying set, 179, 210 
Uniform Boundedness Theorem, 731, 732, 

764 
uniformity, uniform space, 118, 441,483 
uniformly 

bounded, 611 
continuous, 213, 483 
convergent, 490 
convex, 594 
equicontinuous, 494 
equivalent or stronger, 211 

union, 15, 30 
uniqueness of 

choices if canonical, 148 
closest point projection, 594 
complete (F-)norm on a vector space, 576, 

748 
completions, 95, 514 
continuous extension from dense set, 439 

direct sum decomposition, 185 
Hahn-Banach extension, 619 
identity element in a monoid, 179 
Jordan Decomposition, 199 
limit in Hausdorff space, 409 
linear extension to span, 279 
natural uniformity for a TAG, 705 
preimage by an injective function, 37 
real number system, 249 
topology having a given base, 429 
topology having a given closure, 112 
topology having a given convergence, 412 
uniformity for a compact space, 489 
value given by a function, 19 

unit circle, 578 
unit mass at a point, 552 
unital algebra, 273 
universal 

algebra, 202 
net, 165 

and compactness, 454 
and completeness, 499 
and convergence, 170 
and total boundedness, 505 
subnet theorem, 166 

ordering, relation, 50 
used to construct canonical net, 159 

quantifier, 357 
set, 17, 26 

universe, 17, 26 
unordered set, see set 
up-, upper, see lower or upper 
urelements, see atom 
Urysohn's Lemma, 445 
Urysohn-Alexandroff Theorem, 540 
u.s.c., 421 
usual 

absolute values on ~ and C, 260 
metric and topology on I~, 40, 109 
metric on [-c~, +c~], 41 
norms are complete, 576 
norms on ~n and C n, 578 
uniformity on a TAG, 705 

V (von Neumann's universe), 129 
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vacuously true, 6 
valid, 353, 381 
valuation (in logic), 381 
value, valuation, see  function, component, 

absolute value 
vanishes, 37 

at infinity, 580 
variation, 294, 507, 784 
variety (algebraic), 204 
vector, 272 

basis, see  basis 
charge, 288 
lattice, 292 
space, see  linear 

vel, 4 
Venn diagram, 17 
vicinity, see  entourage 
Vitali's Theorem, 557 

w-dissipative, 828 
wave equation, 823 
we may assume, 8, 165 
weak 

-star measurable, 621 
-star topology, 757 
structure, 217 
topology, 421,753 
Ultrafilter Principle, 151 
Universal Subnet Theorem, 166 

weaker, see  stronger or weaker 
weakly increasing, 58 
weakly measurable, 621 
Weil's Pseudometrization Lemma, 98 
well defined, 23, 55 
well-formed formulas, 361 
well ordering, 72, 74, 144 
Weston-Goldstine Theorem, 774 
wiT, 361 
Wiener measure, 555 
Willard subnet, 162 
with probability 1,553 
witness, 376, 512 
woset, 72 
Wright's Closed Graph Theorem, 745 
WUF, see  Weak Ultrafilter Principle 

Zermelo 
Fixed Point Theorem, 128 
-Fraenkel Set Theory, 29 
Well Ordering Principle, 144 

zero, see  additive identity, 187 
zero-dimensional, 472 
Zero-One Law, 543 
ZF, see  Zermelo-Fraenkel Set Theory 
Zorn's Lemma, 144 

LIST OF SYMBOLS 

The Greek alphabet: 
A, a alpha 
B,/3 beta 
F, 7 gamma 
A, 6 delta 
E, s epsilon 
Z, ~ zeta 
H,r/ eta 
O, 0 theta 
I, t iota 
K, n kappa 
A, A lambda 
M, # mu 
N, t, nu 
E, ~ xi 
O, o omicron 
II, rr pi 
P, p rho 
E, cr sigma 
T, w tau 
T, v upsilon 
�9 , 9 phi 
X, X chi 
�9 , ~p psi 
Ft, w omega 

Sets of Numbers" 
A, IB, D directed sets, 157 
C complex numbers, 255 
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F 
B 
N 
Q 
R 
T 
Z 
*N 

*IR 

a field (usually IR or C), 261 
hyperreal numbers, 250 
natural numbers, 12, 180 
rational numbers, 189 
real numbers, 246 
circle group, 260 
integers, 12, 183 

hypernatural numbers, 252 
hyperreal numbers, 252 

Special objects and sets: 
{a, fl , . . .} set, 11 
[a, b], [a, b) intervals, 56 
[-oc, +c~] extended real line, 13, 91, 109 
Pre(a) 
0", W,  f l ,  

o 
OO 

Rn 
50 

(vj) 
(w) 

x/(5 
Bd(') 
g~(.) 

G,G~ 

predecessors, 57 
r, 3, dual topologies, 753, 754 
empty set, 14 
infinity, 13 
cardinals, 14, 126 
infinite ordinal, 14, 124 
sequence, 20, 157 
net, 157 
power set, 15, 46 
quotient set, 54 
open ball, 108 
closed ball, 108 
a-algebra generated, 116 
neighborhood filter, 110, 409, 412 
some types of sets, 529 

Unary symbols: 
[~ complement, 16 

negation, 4, 357 
Gr(.) graph, 22, 50 
sgn sign function, 35 
cis cos + i sin, 256 
1s characteristic function, 34 
is identity function, 36 
Is indicator function, 311 
x -  1 inverse, 182 
- x  inverse (additive), 182 
f(x) value of function, 19 
f IS restriction, 36 

f "  X --, Y function, 19 

Dom(f) 
Ran(f) 
Ker(f) 
f(S) 
f - l ( s )  
f - l ( x )  
*X, *f 
X*, f* 
Con().  
X+ 
X + 

X 

/x/  
Ix1 ....#.... 
Sl 
xl 
Ixll 
Jlxlll 

J(x) 
Re(a) 
Im(a) 
Ol 

T 
_k 
lim 
LIM 
el 
int 
CO 

bal 

domain, 19 
range, 19 
kernel, 186 
forward image, 37 
inverse image, 39 
inverse function, 37 
reduced power, 231 
dual, 238 
consistency of, 401 

positive cone, 196 
positive part, 198 
negative part, 198 
absolute value (lattice group), 198 
absolute value (real-valued), 260 
semivariation, 800 
cardinality, 43, 145 
norm, 574 
norm, 574 
(operator) norm, 574, 605 
normalized duality map, 776 
real part, 255 
imaginary part, 255 
complex conjugate, 255 
transpose, 192 
orthogonal, 86, 600 
limit, 168, 169, 174 
Banach limit, 320 
closure, 78, 111,410, 412 
interior, 111,410, 412 
convex hull, 303 
balanced hull, 303 

Binary 

T 
--+ 

--+ 

< ;- 

V 

3 

symbols: 
maps to, 23 
decreases (to), 172 
increases (to), 171 
converges to, 169 
implies, 4 
implies, 4, 340 
iff (if and only if), 5 
syntactic implication, 352 
semantic implication, 353 
universal quantifier, 357 
existential quantifier, 357 
element, member, 11 
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e__ member or equal, 124 
C_,C subset, 11 
S\T relative complement, 16 
x product, 21 
c 
-> inclusion map, 36 

R -1 inverse relation, 50 
~, = symmetric relations, 51 
-<, E irreflexive orders, 51 
4 , _  reflexive orders, 51 
6xy Kronecker delta, 35 
xDy binary operation, 24 
SAT symmetric difference, 17 
xOy (used briefly in Ch. 16), 438 
f o g composition, 35, 50 
x . y  product, 87, 180, 599 
d(,  ) distance, 40 
osc(.) oscillation, 492 
Var(.) variation, 507 
(~) binomial coefficient, 48 
(, } bilinear pairing, 23, 751 
f f dp integral, 564, 613, 627 
f f dp integral, 289 
df/dx derivative (Leibniz notation), 659 
d)~/dp Radon-Nikodym derivative, 788 

n-dry symbols" 
u 

II 
N 
R 

V 
A 
| 
| 

U 

union, disjunction, 15 
union, disjunction, 4, 357 
intersection, conjunction, 15 
intersection, conjunction, 4, 357 
product, 21,218, 274, 421 
sum, 34, 184, 266, 583, 629 
sup, 1.u.b., join, vel, 4, 59 
inf, g.l.b., meet, and, 4, 59 
product a-algebra, 34, 549 
internal direct sum, 185 
external direct sum, 226, 276 

Spaces of Functions: 
X Y power of a set, 22 
2 Y power set, 15, 46 
ba, ca spaces of charges, 293 
ba, ca spaces of charges, 800 
B(X, Y) bounded, 97, 277, 579, 801 

C(X, Y) continuous, 690 
C(X, Y) continuous, 495 
BC(X, Y) bounded continuous, 277, 580 
BUC(X, Y) bdd. unif. contin., 277, 580 
Lip(X, Y) Lipschitz, 277, 481 
BV(.) bounded variation, 583, 784 
HSI~(X, Y) HSlder continuous, 482, 582 
Hol(f~) 
Co(X, Y) 
C~(X, Y) 
Cc, CK v(R M) 
SM(.) 
TM(.) 
C, Co, ~.p, I~ N 
L p , L p 
L ~, L~ 
L oc(a) 
Lin(X, Y) 
BL(X,Y) 
Inv(Z,Y) 

holomorphic, 691 
contin, vanish at ends, 580 
smooth vanish at ends, 277 
contin, compact support, 743 
smooth, compact support, 744 
strongly measurable, 548, 554 
totally measurable, 692 
sequence spaces, 580, 585, 690 
Lebesgue spaces, 588 
Orlicz spaces, 693 
locally integrable, 691 
linear, 277 
bounded linear, 605 
invertible linear, 625 
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