

GoTag: A Case Study in Using a Shared UK e-Science
Infrastructure for the Automatic Annotation of

Medline Documents

Abstract

In this paper we describe our efforts and experience in constructing GoTag, a distributed system
for automatically annotating Medline documents with relevant GO (Gene Ontology) terms. The
system is built on top of a service-based text mining infrastructure that integrates tools developed
within the Discovery Net and myGrid projects. Two baseline approaches to assigning GO terms
have been developed. One assigns GO terms based on directly matching GO term names and
synonyms in documents; the other uses a trainable document classifier trained over feature vector
representations of documents with which GO terms can be associated using the manually curated
yeast genome database. We present preliminary results of evaluating these two approaches and
discuss proposals for enhancing both baselines, as well as for constructing a hybrid approach.

1. Introduction

We live in a period of explosive growth of
scientific knowledge, expressed very visibly in the
growth of the scientific literature. Accessing this
literature efficiently and effectively is critical for
continued scientific progress. To this end the
search for novel or improved automated techniques
to support information access and even knowledge
discovery in large electronic text collections has
become a very active area of research. One part of
this research, now popularly referred to as text
mining, addresses the goal of extracting or mining
information (i.e. “content” or “meaning”) at a more
abstract level than the literal strings of words by
which it is expressed in specific documents. Such
extracted information can then be used as a
surrogate for the original document or may be used
as an annotation on the document to support
indexing or clustering or linking or summarisation
of documents at the conceptual level. This, in turn,
can facilitate searching, browsing and knowledge
discovery in general.

Within the EPSRC e-Science programme two
pilot projects – Discovery Net and myGrid –
recognised the importance of text mining by
including text mining capabilities within the more

general workflow-based knowledge discovery
platforms which were their overall objective.
Given this shared interest between the two
projects, a follow-on collaborative project was
established with two high level objectives: (1) to
demonstrate that the service-based text mining
components from both projects could be integrated
to deliver a more fully functioned text mining
capability, and (2) to demonstrate the utility of this
combined capability through a case study whose
aim is to automatically annotate Medline [1]
abstracts with terms from the Gene Ontology (GO)
[2] in real time, so as to enable retrieval and
clustering of abstracts via the ontology – a novel
and useful capability for biological researchers
exploring the literature.

In this paper we describe the shared
infrastructure we have developed, integrating text
mining components from the two contributing
projects within a single distributed workflow
environment. We also describe two approaches to
GO term assignment to Medline abstracts that we
have developed within this environment as initial
baselines against which further developments can
be measured. Evaluating these baselines has meant
establishing a corpus of GO-term annotated
abstracts which we have done using the manually
curated yeast genome database. This approach to

N. Davis, R. Gaizauskas, Y.K. Guo,
H. Harkema, I. Roberts

Dept. of Computer Science

University of Sheffield
United Kingdom

n.davis@dcs.shef.ac.uk

M. Ghanem, V. Curcin,
Y. Guo

Dept of Computing

Imperial College London
United Kingdom

mmg@doc.ic.ac.uk

J. Ratcliffe

InforSense Ltd
London

United Kingdom

j.ratcliffe@inforsense.com

evaluation is not without problems, however, and
we discuss issues that arise when trying to
establish a gold standard for GO term annotation in
this manner. Finally, analysis of the baseline
approaches and their performance leads to various
proposals for improvement which we aim to
address in future work.

2. The Shared Infrastructure

2.1 Discovery Net

The Discovery Net system [3,4] is a workflow-
based knowledge discovery environment for the
analysis of distributed scientific data. Within
Discovery Net, analysis components (whether
traditional data mining components or text mining
components) are treated as remote services or
black boxes with known input and output
interfaces described using web service protocols.
These services can execute either on the user’s
own machine or make use of high performance
computing resources (Figure 1), such as clusters of
workstations, through specialised implementations.

Discovery Net workflows are typically
authored through a visual programming interface.
Each of the remote web/grid services is first
registered within the system, and then the user uses
a workflow editor to connect the icons representing
these components and the data flow between them.
Discovery Net workflows (Figure 2) are expressed
in DPML, an XML-based workflow language, and
their distributed execution is handled by Discovery
Net’s workflow execution engine.

In order to support the distributed execution of
text mining operations efficiently, Discovery Net
supports two data types: an annotated text data
type, and a feature vector type. The annotated text
type is based on the Tipster Document
Architecture [5] and provides a flexible
mechanism for associating properties, or attributes,
with text segments of a document that are uniquely
defined by their span, i.e. by their starting and

ending position in the document. The use of the
annotated text model provides two advantages:
first, information computed through earlier stages
in a text mining workflow can be passed to later
stages without modifying the original text,
therefore allowing incremental analysis of the
documents. Secondly, since the text itself is not
modified by any text mining operation, there is no
need to communicate the full text between
physically distributed components. This is
particularly useful for efficiency purposes when
dealing with large document collections that can be
mirrored locally to each of the services, in which
case the exchange of unique document identifiers
does suffice.

The second data type is the feature vector type,
in which each document within a collection is
reduced to a single numerical feature vector,
whose dimensions reflect the significant
informational components that the analysis
identified. These features can be calculated by a
range of services and can be passed to typical data
mining operations such as clustering and
categorization for further processing. These feature
vectors can be represented as either sparse or
dense, and the Discovery Net implementation
supports both types.

The use of both the annotation model and
feature vectors can be explained by referring to the
workflow in Figure 2 showing a visual
representation of an executable Discovery Net text
mining workflow. The workflow performs
automatic document clustering using a machine
learning algorithm that computes similarity
between documents based on the counts of gene
names and disease names mentioned in each
document. The first component is a data service
that retrieves documents from PubMed based on a
user supplied query. The second component
extracts the texts of the abstracts in the records.
The next two components, in turn, use a gene and
disease dictionary to identify and mark biological
entities appearing in the abstracts and store such
information in the annotation structure, which is
then passed to a feature vector generation
component that counts the occurrences of gene and

D ata/Metadata

User P ara meters

Imple me nta tion of High
P erforma nce C omputing C luster

D ata/Metadata

Figure 1 Discovery Net WS interface / HPC
implementation of a text mining component

Figure 2 Example Discovery Net workflow
based on distributed services

disease names in each document. The generated
feature vector is passed into a traditional
hierarchical clustering component to generate the
required document clusters.

2.2 myGr id/AMBIT

The myGrid project has developed a suite of
middleware components to support data intensive
in silico bio-medical experiments. The core
components of myGrid middleware implement a
workflow enactment engine which automates
sequences of web service processes to perform an
experimental function. Amongst the web services
that have been made available to the e-biologist are
components from a bio-medical text extraction
system called AMBIT (Acquiring Medical and
Biological Information from Text).

Architecture and Functionality of AMBIT
AMBIT is composed of a number of language
processing components, including an information
extraction engine, a terminology engine and a free
text search engine [6]. The information extraction
engine is designed to extract entities, their
attributes and relations between them from texts in
biomedical domains. It has evolved from the
PASTA system [7] and comprises three major
stages: lexical and terminological processing,
syntactic and semantic processing, and discourse
processing.

The first stage includes the recognition and
classification of relevant entities that occur in a
text, using a terminology engine and a term parser.
The terminology engine, called Termino [8], is
used to recognise terms using existing
terminological resources such as the Unified
Medical Language System (UMLS), OMIM,
HUGO, etc. The term parser builds longer terms
from shorter terms identified by the recogniser
according to given term grammars.

The second stage produces a syntactic and
semantic analysis for each sentence in the text,
linking, e.g. subjects and objects with their
governing verbs, which is critical for determining
relations between entities.

In the third stage, the discourse module
integrates the semantic representations of
individual sentences into a semantic representation
of the entire text. To do this the discourse module
performs co-reference resolution, linking multiple
references in the text to the same entity identifier
in the semantic model. The discourse module also
uses a domain model of background knowledge
appropriate to the extraction task, including
inference rules that add extra information to the
semantic model when certain classes occur in the
texts. After the language processing steps are
complete the information in the discourse model is

read and stored in structured templates, which
represent entities, their attributes, and relationships
between them.

The information extraction engine in AMBIT is
built within GATE, the General Architecture for
Text Engineering [9]. GATE implements a model
of indexed annotations inspired by the Tipster
Document Architecture, also adopted by Discovery
Net. Aside from document and annotation
management functionality, GATE provides a
graphical development environment for modular
language processing applications.

Integrating AMBIT in Distr ibuted Workflows
AMBIT is a standalone text mining system whose
products are of value only insofar as they can be
utilised in further applications so as to assist in the
process of information access or knowledge
discovery. In order to address this issue we have
(1) made a number of AMBIT components
accessible via web service interfaces, so that
application builders can make use of them (2)
constructed several demonstrator applications that
suggest how AMBIT services could be used to
support information access. The following AMBIT
components/products have been made available via
web service interfaces:
1. Termino: A client can submit a document

together with an indication of which
biomedical term classes are to be recognised
and the service will return the document with
the specified classes marked up.

2. Medline free text search: A client can submit a
free text query and the service returns a ranked
list of PubMed id’s of relevant documents. A
secondary service can be used to return the
abstracts themselves.

3. Document clustering: A client can submit a
list of PubMed id’s and the document set can
be clustered in various ways, including by
MESH category, by GO category (assuming
GO codes have been associated with the
abstracts) or by chromosome structure
(assuming that AMBIT gene-chromosome
location relation processing has taken place –
see below). In each case the service returns a
labelled tree where each node is a cluster of
documents.

4. Entity annotated corpus generation: A client
can submit a list of PubMed id’s and the
service returns a corpus consisting of the
corresponding abstracts with Termino
annotations and an index recording each
occurrence of each term across the document
set. This is annotated/indexed corpus can be
used to support entity-based browsing over a
collection of documents (e.g. search results).

A demonstrator application that illustrates the use
of these web services as part of a workflow is a

document retrieval and clustering application built
as an adjunct to the myGrid workflow
demonstrator for Williams Beuren Syndrome (see
[13] for details). The fact that AMBIT components
have already been made available as web services
allows them to be integrated easily into other
service-based workflow architectures, such as
Discovery Net. This is this route taken in building
GoTag.

2.3 The Integrated Infrastructure

We have followed a service-based approach for
integrating existing text mining technologies
developed within both Discovery Net and myGrid.
Existing services are composed and coordinated
through the Discovery Net workflow environment
workflow model to build new, automated services.
The approach is summarised in Figure 4. The
workflow paradigm and Discovery Net
architecture enables these services to be combined
by the workflow author without concern for the
origin of the service, Discovery Net and myGrid
resources appear to the author as a coherent list of
services. The developed workflows can then be
deployed as new services, with a configurable user
interface, to the end user accessed through a web
browser. In our current implementation, services
provided by myGrid are invoked remotely from
within the Discovery Net workflow using SOAP
and a format translation mechanism that allows
interoperability between the internal document
annotation formats used by both projects.

3. The Case Study and Datasets

3.1 Defining the GO Annotation Task

The task chosen as a case study to validate the
integrated text mining infrastructure is to develop a
system that annotates Medline abstracts
automatically with terms from the Gene Ontology
(GO) and in real time to enable retrieval and
clustering of abstracts via the ontology. This
approach would allow end users to search and
browse document collections for concepts rather
than terms, allowing them to access information of
interest without having to worry about variances in
spelling, synonyms or word ordering within
phrases.

Using an existing biological ontology to label
and organise the concepts within papers has three
main advantages: biological scientists should be at
least aware of the ontology and may well be skilled
with using it; there is no need to go through the
process of building a new ontology which can be
very time consuming and requires a high level of
domain expertise; the organised data can be linked
into existing tools for the ontology.

Numerous biological ontologies exist (e.g. the
ontologies provided by the Open Biology
Ontology consortium http://obo.sourceforge.net/),
however the ontology chosen was the Gene
Ontology which is a wide-ranging ontology that
covers the molecular biology sub-domains of
molecular functions, biological processes and
cellular components.

3.2 Related Work

Two existing software systems address the
problem of assigning GO terms to PubMed
documents, GO-KDS [10] which uses a machine
learning approach and GoPubMed [11] which uses
a term recognition approach.

GO-KDS is a commercial product using a
proprietary Weighted Confidence Learner (WCL)
classifier to annotate PubMed articles with GO
terms at varying levels of confidence. A minimal
amount of text pre-processing is performed before
classification to remove stop words, expand
abbreviations and to parse complex names. Around
26,500 training documents from existing databases
that use GO annotations (e.g. SwissProt, Interpro
etc.) are used to classify the PubMed documents
into approximately 3,700 GO term categories. GO-
KDS is available for trial use through a web
interface, but no real evaluation of the system is
available due to a lack of comparison baseline.

GoPubMed is developed by Dresden
University and is based on earlier work from City
University in London. The GoPubMed group
annotate documents with GO terms by matching
the descriptions of GO nodes within papers.
However only very rarely does an entire GO node
description line appear within a document, so the

Discovery Net

MEDLINE
DATABASE

Web Browser

WEB
PORTAL

WORKFLOW
EXECUTION

ENGINE

myGRID

TERMINO

DEPLOYED
SERVICE

SOAP WEB SERVICE
INTERFACE

PUBMED e-
UTIL ITIES

JSP / APPLET

Figure 3 Overview of integrated Discovery Net /
myGrid infrastructure

semantic weight of each word within the GO node
description lines are calculated and the words that
carry the most meaning are matched within the
document and then mapped back to the original
GO terms. Term matching approaches are not
without their problems, the main one being that
they are reliant on the form of the document being
analysed rather than the meaning, so concepts may
be missed if they are not articulated using the same
terminology as found in GO.

3.3 Available Datasets and Evaluation

The accuracy and effectiveness of a system such as
the GoTAg system can be evaluated through the
use of manually annotated data sets available from
public repositories. Our benchmarks used in this
paper are based on the yeast genome database
(www.yeastgenome.org) which provides a
manually curated mapping between Medline
documents and GO terms.

We have collected a set of Medline Abstracts
which the SGD database cites as evidence when
human experts manually annotate a yeast gene
with a GO Annotation. This data set contains 4922
PMIDs and 2455 GO Terms forming 10485
PMID-GO Term pairs. The version of GO we are
using contains a total of 18,374 terms arranged as a
directed acyclic graph. There is also a stripped
down version of GO, called GO-Slim, containing a
subset of 87 high-level GO terms.

The evaluation of our GO tagging systems is
based on using standard recall and precision
measures defined as: Recall = A/(A+B), and
Precision = A/(A+C), where A is he number of
GO-PMID pairs in the evaluation dataset that are
predicted, B is the number of GO-PMID pairs in
the evaluation dataset that are not predicted and C
is the number of GO-PMID pairs not in the
evaluation dataset that are predicted.

The use of the SGD database to provide a gold
standard is not without problems. The aim of the
SGD curation process is not to tag all the
documents in the collection with all the GO terms
that appear in these documents, but rather to
provide links for each of the genes in SGD to the
PubMed papers that were used to infer the GO
categories for these genes. Hence the dataset is
incomplete and lowered levels of precision are to
be expected. Secondly there is no guarantee that a
GO term attributed to a paper is mentioned in the
paper’s abstract. Such terms could have been
assigned based on reading the full text of an article
and no system (or human) could be expected to
assign them to the abstract. This feature of the
dataset would affect the maximum recall that could
be obtained.

4. Text Mining Methods and Results

4.1 Lexical Look-up Approach

The first approach used in this paper assigns a GO
annotation to a document if a GO term, or its
synonym, is directly mentioned in the document.
This is achieved by performing lexical look-ups
invoked through a remote service call to the
myGrid Termino engine hosted at Sheffield
University. The Discovery Net workflow that
implements this approach is shown in Figure 4.

The main nodes in this workflow are
implemented using generic components in the
Discovery Net text mining repository. They have
been labeled by more representative names:
Abstracts Node: a table with four columns storing:
PMID (unique PubMed identifier), Title (document
title), Abstract (document abstract) and True
GoTAGS (the set of human assigned GO tags for
each document). Each of these columns is stored as
text field.
Create AnnotationSet Node: a generic component
that tokenizes documents and initializes the
annotated text data structure for the Abstracts
columns in the input table, to enable components
downstream to add extra information (e.g. the GO
annotations) to individual segments within its text.
Termino WebService: a component that makes a
remote call to the Termino server, through a web
service interface by sending only the text
representation of the Abstract column for each
document in the input table to the remote service.
The current implementation iterates through the
whole collection by sending one abstract at a time,
waiting for a tagged document to be returned from
the service, then parsing the returned data structure
for the GO tags and adding them to the internal
annotated text data structure of Discovery Net.
Tabulate Results Node: a component that creates
summary statistics for annotations found in its
input. In this workflow, the parameters of the
component are set such that the output contains

Figure 4 Discovery Net GoTag workflow based
on remote calls to TERMINO server

only two columns, the first containing columns
stores a document’s PMID, and the second
column, Predicted GoTAG, storing the list of the
GO annotations predicted by the remote service.
Extract GO ID, and GO RegEX Nodes: The
Extract_GO_ID component performs a simple
textual transformation on the Predicted GoTAG
column to transform the the Termino format (eg:
‘go_id:GO:0005574, namespace:
cellular_component’) to the the more concise
representation containing GO term id (eg:
‘GO:0005574’). The transformation is based on set
of regular expressions provided by the GO_RegEx
component.
Join Node: a generic component that performs a
“ join” operation on two tables to join the Predicted
GoTAG Column with the original four documents
in the Abstracts table, allowing further workflow
stages to compare the human assigned tags and the
predicted tags.
Evaluate Node: a component that calculates
precision, recall and F measures.

Exper imental Evaluation of Lexical Look-up
Table 1 summarizes our experiments in using

this approach. As could be expected, recall and
precision are higher when using the 87 GO Slim
terms as opposed to the 18374 GO terms.

The above precision and recall results may seem
poor at the first glance. However, it should be
noted that when using the full set of GO terms the
large numbers of potential classes to which a
document may be assigned make achieving high
precision and recall values very difficult. In a
traditional classification task, where a document is
simply assigned a ‘yes’ or ‘no’ class, the likelihood
of a correct prediction by chance is 50% (recall
and precision would be expected to be 50%).
Using GO and GO Slim Annotations as class
means the likelihood of a correct prediction by
chance are 0.005% and 1.149% respectively (recall
and precision would be expected to be 0.005% and
1.149% respectively). The low values can also
partly be attributed to the nature of the SGD
process that generated the data sets being used, as
described in Section 3.3 above.

In order to evaluate the above results better, we
have manually analyzed a number of document
abstracts and compared the curated vs. predicted
tags with the abstract text. Our detailed analysis
has revealed the following three main
shortcomings of the pure lexical look-up approach:

1. A document may include a direct mention of a
GO term that may be represented in the text in
a slightly different form from that of the
official name and synonyms found in the GO
database. For example, The GO term
GO:0005739 has the official name
‘mitochondrion’ and no synonyms. Many of
the manually curated documents in the SGD
data set that have been assigned this GO term
do not include the word ‘mitochondrion’ , but
instead include other words such as
‘mitochondria’ .

2. Although GO terms are organized in a
directed-acyclic-graph, they have a hierarchical
structure. Terms higher up this structure refer
to more general concepts. Because of this, the
names and synonyms of the GO terms higher
up the hierarchy tend to use some of the same
lexical terms used to describe lower concepts.
The simple look-up method makes no
allowance for this and assigns all GO terms
found in paper. For instance a paper containing
the text ‘mitochondrion distribution’ should be
assigned GO:0048311 (‘mitochondrion
distribution’). The lexical look up method will
also assign it the GO term GO:0005739
(‘mitochondrion’).

3. A human expert may read an abstract and infer
that it refers to a specific GO term even without
explicit mentions of the official GO term, or its
synonyms, appearing in the text of the paper.
The GO tag can only be inferred from the
context of the document of the other words
appearing in the document. In this case, there is
a semantic relationship between the name of
the GO term and the document but no syntactic
relationship.

In Section 5 we discuss how some of these
shortcomings can be overcome

4.2 Machine Learning Approaches

The second approach to GoTagging that we have
explored is based on using machine learning
methods. We restricted our experiments to using
GO Slim annotations, rather than the full set of GO
categories, and used a number of classification
algorithms that have been integrated as services in
Discovery Net; a Naïve Bayes algorithm, the
Rainbow freeware classifier [12], and a Decision
Tree and an SVM classifier, both based on Oracle
Text. We omit the corresponding workflows for
space restrictions.

Evaluation of Naïve Bayesian Classifier
Our first experiment was based on the Discovery
Net Naïve Bayes text classifier. The workflow
starts by identifying frequently occurring phrases
and words in the training data set. A feature vector

GO
Version

Recall Precision F
Measure

GO 15.1% 5.3% 7.8%
GO Slim 51.0% 29.9% 37.7%

Table 1 Precision and recall values for the lexical

look-up approach based on Termino

is created for each document containing the
frequency of these phrases and words in each
document. The feature vectors for the training
dataset are then passed to the classifier. The results
of our experiments are reported in Table 2. The
approach offers higher precision, but lower recall,
than the lexical look-up approach. The use of
single words as features provides the best results.
However, one shortcoming of this classifier is that
the generated model assigns only one GO
annotation to each document, rather than all
possible GO annotations. In the evaluation data set
each paper has on average 3.5 GO annotations
assigned. This limits the maximum recall that can
be achieved. The subsequent classifiers overcome
this problem.

Evaluation of Rainbow Classifier
The Rainbow classifier provides a confidence
value for assigning each GO annotation to each
document. In our implementation we used only
single words as features and filtered out the
predicted classes if the confidence of the prediction
was lower than a given threshold value. Table 3
summarizes the evaluation of our experiments. As
the confidence threshold decreases, it starts to
outperform the Naïve Bayes classifier in terms of
both precision and recall.

Evaluation of Oracle Text Classifier
Our final set of results is based on using Decision
Tree and SVM classifiers from Oracle Text that
are invoked from within the Discovery Net
workflows. Both classifiers return a number of GO
annotations per document, rather than a single

label. The results are summarized in Table 4,
which indicates that the Decision Tree classifiers
produces the best precision results across all
experiments, but still lower recall than the lexical
look-up approach.

5. Conclusions and Future Work

The main purpose of our joint project has been to
investigate the interoperability issues between the
e-Science text mining efforts for our two systems.
Our infrastructure work has been highly successful
in terms of integrating both systems. We hope that
these efforts will help us build a reusable text
mining infrastructure for the UK e-Science
community. We are currently evaluating and
investigating the performance optimization issues
related to such interoperability.

For the application case study, our initial
results show that the lexical look-up approach
achieves the highest recall. All machine learning
methods achieve the highest precision. In the
remainder of this section we briefly describe some
ideas for improving the results of each approach,
and discuss the possibilities of building hybrid
approaches.

5.1 Improving Lexical Look-up Approach

One option to improve upon the shortcomings of
the pure lexical look-up implementation, whilst
still employing a simple implementation, is to
extend the lookup dictionary used. These terms
need not be provided by a human expert, but rather
can be calculated statistically from the available
data sets to find surrogate terms that are tightly
correlated with each GO term.

We have conducted various experiments to this
effect. Terms tightly correlated with each GO
annotation were found by calculating statistics on
the word and phrase distribution within the
datasets. Chi2 values were calculated for each
word and phrase in the document collection against
the manually assigned GO Slim classes. These
results were then filtered to include only words and
phrases with high Chi2 values, meaning they are
tightly correlated to specific GO Slim annotations.

Our initial results indicate that this approach
can be extremely beneficial. Taking the GO term
GO:0005739 (‘mitochondrion’), which was used
as an example of the shortcomings of direct GO
annotation lookup in Section 4, our statistical
methods have found it to be highly correlated with
the terms ‘mitochondrial’ and ‘mitochondria’ .

GO
Version

Features Recall Precision F
Measure

GO
Slim

Words &
Phrases

15.8% 54.6% 24.5%

GO
Slim

Words 17.8% 61.7% 27.7%

GO
Slim

Phrases 16.6% 57.3% 25.7%

Table 2 Evaluation of precision and recall values for
the Naïve Bayes classifier

GO
Version

Confidence
Threshold

Recall Precision F
Measure

GO
Slim

75% 14.0% 59.2% 22.7%

GO
Slim

50% 16.4% 58.8% 25.6%

GO
Slim

25% 18.9% 57.4% 28.4%

GO
Slim

10% 22.5% 57.0% 32.3%

GO
Slim

3% 25.8% 55.8% 35.3%

Table 3 Evaluation of precision and recall values for
Rainbow Classifier for various confidence thresholds.

GO
Version

Classifier Recall Precision F
Measure

GO Slim Decision
Tree

36.8% 51.6% 43.0%

GO Slim SVM 17.5% 53.4% 26.3%
Table 4 Evaluation of precision and recall

values for two Oracle Text classifiers

5.2 Improving Machine Learning Approach

For the machine learning approaches, which are
based on GO Slim, detailed analysis of the
misclassification errors reveal that certain default
annotations (or classes) consistently contribute to
the prediction errors. The reasons are primarily
that the training data is skewed towards such
annotations. We are currently evaluating various
standard machine learning approaches including
bagging and boosting and novel centroid based
methods to overcome these problems.

We are also currently looking into the use of
machine learning approaches for hierarchical
classification, which would allow us to classify the
whole set of GO terms, rather than concentrating
on the set of GO Slim terms.

5.3 Developing Hybr id Approaches

In this paper we mainly investigated using the
lexical look-up and machine learning approaches
independently. We are currently experimenting
with various hybrid approaches that can leverage
the benefits of each individual approach.

One particular promising hybrid approach that
we have been investigating starts by performing
lexical lookups to identify GO Slim terms in the
training data. For each GO Slim, correct
classification instances are labeled as positive
examples and misclassifications are labeled as
negative examples. This effectively generates a
new training data set for each GO Slim term that is
then passed to a machine learning classifier. We
are currently investigating this approach based on a
different data set based on annotated sentences
rather than annotated abstracts

We are also evaluating methods whereby the
features vectors to be used in training the
classifiers are generated by the Termino server
through the identification of MeSH terms and gene
names appearing in these documents, rather than
simply using features based on words or phrases.

Finally, we are also investigating the use of
alternative data sets for training and evaluating our
systems. In the current document collection, it
should be noted that although the annotations in
the dataset are correct, they are not complete (i.e.
not all relevant GO terms are manually tagged).
This poses a challenge to the models learnt using
the automatic machine learning methods,. It also
affects our evaluation metrics. We are currently
investigating the development and use of a
different data collection in collaboration with
biologists.

Acknowledgements

We would like to thank our colleagues in both the
Discovery Net and myGrid projects for their help

and advice. This work has been supported through
the “Real-time Text Mining: A Collaboration
between Discovery Net and myGrid” grant funded
by the EPSRC.

References
[1]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=
PubMed

[2]. The Gene Ontology Consortium:
http://www.geneontology.org

[3]. AlSairafi S et al. The Design of Discovery Net:
Towards Open Grid Services for Knowledge Discovery
Special issue of The International Journal on High
Performance Computing Applications on Grid
Computing: Infrastructure and Applications, Vol. 17 No
3: 297-315, August 2003.

[4]. Ghanem M et al. A Grid Infrastructure for Mixed
Bioinformatics Data and Text Mining. In Proceedings of
the 3rd ACS/IEEE International Conference on
Computer Systems and Applications, Cairo, Egypt
January 2005.

[5]. TIPSTER
www.itl.nist.gov/iaui/894.02/ related_projects/tipster/

[6]. Gaizauskas, R et al, AMBIT: Acquiring Medical and
Biological Information from Text. UK e-ScienceAll
Hands Meeting 2003.

[7]. Gaizauskas R et al. Protein structures and
information extraction from biological texts: the PASTA
system. Bioinformatics, Vol. 19, No. 1. (January 2003),
pp. 135-143.

[8]. Harkema, H et al. A Large Scale Terminology
Resource for Biomedical Text Processing, Proceedings
of Linking Biological Literature, Ontologies and
Databases, 2004.

[9]. Cunningham, H et al GATE: A Framework and
Graphical Development Environment for Robust NLP
Tools and Applications, Proceedings of the 40th
Anniversary Meeting of the Association for
Computational Linguistics (ACL'02).

[10]. Smith T. C et al Automatically Linking MEDLINE
Abstracts to the Gene Ontology. ISMB 2003 BioLINK
Text Data Mining SIG, Brisbane, Australia.

[11]. Doms A et al GoPubMed: Exploring PubMed with
the GeneOntology". Nucleic Acid Research Jul
1;33:W783-6.

[12]. McCallum A K. Bow: A toolkit for statistical
language modeling, text retrieval, classification
and clustering. 1996.
www.cs.cmu.edu/~mccallum/bow

[13]. R. Gaizauskas et al. Integrating Text Mining
into Distributed Bioinformatics Workflows: A
Web Services Implementation SCC 2004.

	Abstract
	Introduction
	The Shared Infrastructure
	The Case Study and Datasets
	Text Mining Methods and Results
	Conclusions and Future Work
	Acknowledgements
	References

