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Abstract 

In this paper we describe our efforts and experience in constructing GoTag, a distributed system 
for automatically annotating Medline documents with relevant GO (Gene Ontology) terms. The 
system is built on top of a service-based text mining infrastructure that integrates tools developed 
within the Discovery Net and myGrid projects. Two baseline approaches to assigning GO terms 
have been developed. One assigns GO terms based on directly matching GO term names and 
synonyms in documents; the other uses a trainable document classifier trained over feature vector 
representations of documents with which GO terms can be associated using the manually curated 
yeast genome database. We present preliminary results of evaluating these two approaches and 
discuss proposals for enhancing both baselines, as well as for constructing a hybrid approach. 

1. Introduction 

We live in a period of explosive growth of 
scientific knowledge, expressed very visibly in the 
growth of the scientific literature. Accessing this 
literature efficiently and effectively is critical for 
continued scientific progress. To this end the 
search for novel or improved automated techniques 
to support information access and even knowledge 
discovery in large electronic text collections has 
become a very active area of research. One part of 
this research, now popularly referred to as text 
mining, addresses the goal of extracting or mining 
information (i.e. “content”  or “meaning”) at a more 
abstract level than the literal strings of words by 
which it is expressed in specific documents. Such 
extracted information can then be used as a 
surrogate for the original document or may be used 
as an annotation on the document to support 
indexing or clustering or linking or summarisation 
of documents at the conceptual level. This, in turn, 
can facilitate searching, browsing and knowledge 
discovery in general. 

Within the EPSRC e-Science programme two 
pilot projects – Discovery Net and myGrid – 
recognised the importance of text mining by 
including text mining capabilities within the more 

general workflow-based knowledge discovery 
platforms which were their overall objective. 
Given this shared interest between the two 
projects, a follow-on collaborative project was 
established with two high level objectives: (1) to 
demonstrate that the service-based text mining 
components from both projects could be integrated 
to deliver a more fully functioned text mining 
capability, and (2) to demonstrate the utility of this 
combined capability through a case study whose 
aim is to automatically annotate Medline [1] 
abstracts with terms from the Gene Ontology (GO) 
[2] in real time, so as to enable retrieval and 
clustering of abstracts via the ontology – a novel 
and useful capability for biological researchers 
exploring the literature. 

In this paper we describe the shared 
infrastructure we have developed, integrating text 
mining components from the two contributing 
projects within a single distributed workflow 
environment. We also describe two approaches to 
GO term assignment to Medline abstracts that we 
have developed within this environment as initial 
baselines against which further developments can 
be measured. Evaluating these baselines has meant 
establishing a corpus of GO-term annotated 
abstracts which we have done using the manually 
curated yeast genome database. This approach to 
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evaluation is not without problems, however, and 
we discuss issues that arise when trying to 
establish a gold standard for GO term annotation in 
this manner.  Finally, analysis of the baseline 
approaches and their performance leads to various 
proposals for improvement which we aim to 
address in future work.  

 
2. The Shared Infrastructure 

2.1 Discovery Net 

The Discovery Net system [3,4] is a workflow-
based knowledge discovery environment for the 
analysis of distributed scientific data. Within 
Discovery Net, analysis components (whether 
traditional data mining components or text mining 
components) are treated as remote services or 
black boxes with known input and output 
interfaces described using web service protocols. 
These services can execute either on the user’s 
own machine or make use of high performance 
computing resources (Figure 1), such as clusters of 
workstations, through specialised implementations.  

Discovery Net workflows are typically 
authored through a visual programming interface. 
Each of the remote web/grid services is first 
registered within the system, and then the user uses 
a workflow editor to connect the icons representing 
these components and the data flow between them. 
Discovery Net workflows  (Figure 2) are expressed 
in DPML, an XML-based workflow language, and 
their distributed execution is handled by Discovery 
Net’s workflow execution engine. 

In order to support the distributed execution of 
text mining operations efficiently, Discovery Net 
supports two data types: an annotated text data 
type, and a feature vector type. The annotated text 
type is based on the Tipster Document 
Architecture [5] and provides a flexible 
mechanism for associating properties, or attributes, 
with text segments of a document that are uniquely 
defined by their span, i.e. by their starting and 

ending position in the document.  The use of the 
annotated text model provides two advantages: 
first, information computed through earlier stages 
in a text mining workflow can be passed to later 
stages without modifying the original text, 
therefore allowing incremental analysis of the 
documents. Secondly, since the text itself is not 
modified by any text mining operation, there is no 
need to communicate the full text between 
physically distributed components. This is 
particularly useful for efficiency purposes when 
dealing with large document collections that can be 
mirrored locally to each of the services, in which 
case the exchange of unique document identifiers 
does suffice. 

The second data type is the feature vector type, 
in which each document within a collection is 
reduced to a single numerical feature vector, 
whose dimensions reflect the significant 
informational components that the analysis 
identified. These features can be calculated by a 
range of services and can be passed to typical data 
mining operations such as clustering and 
categorization for further processing. These feature 
vectors can be represented as either sparse or 
dense, and the Discovery Net implementation 
supports both types. 

The use of both the annotation model and 
feature vectors can be explained by referring to the 
workflow in Figure 2 showing a visual 
representation of an executable Discovery Net text 
mining workflow. The workflow performs 
automatic document clustering using a machine 
learning algorithm that computes similarity 
between documents based on the counts of gene 
names and disease names mentioned in each 
document.  The first component is a data service 
that retrieves documents from PubMed based on a 
user supplied query. The second component 
extracts the texts of the abstracts in the records. 
The next two components, in turn, use a gene and 
disease dictionary to identify and mark biological 
entities appearing in the abstracts and store such 
information in the annotation structure, which is 
then passed to a feature vector generation 
component that counts the occurrences of gene and 
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Figure 1 Discovery Net WS interface / HPC 
implementation of a text mining component 

Figure 2 Example Discovery Net workflow 
based on distributed services 



 

disease names in each document. The generated 
feature vector is passed into a traditional 
hierarchical clustering component to generate the 
required document clusters. 

2.2 myGr id/AMBIT 

The myGrid project has developed a suite of 
middleware components to support data intensive 
in silico bio-medical experiments. The core 
components of myGrid middleware implement a 
workflow enactment engine which automates 
sequences of web service processes to perform an 
experimental function. Amongst the web services 
that have been made available to the e-biologist are 
components from a bio-medical text extraction 
system called AMBIT (Acquiring Medical and 
Biological Information from Text).  

Architecture and Functionality of AMBIT 
AMBIT is composed of a number of language 
processing components, including an information 
extraction engine, a terminology engine and a free 
text search engine [6]. The information extraction 
engine is designed to extract entities, their 
attributes and relations between them from texts in 
biomedical domains. It has evolved from the 
PASTA system [7] and comprises three major 
stages: lexical and terminological processing, 
syntactic and semantic processing, and discourse 
processing.  

The first stage includes the recognition and 
classification of relevant entities that occur in a 
text, using a terminology engine and a term parser.  
The terminology engine, called Termino [8], is 
used to recognise terms using existing 
terminological resources such as the Unified 
Medical Language System (UMLS), OMIM, 
HUGO, etc. The term parser builds longer terms 
from shorter terms identified by the recogniser 
according to given term grammars.  

The second stage produces a syntactic and 
semantic analysis for each sentence in the text, 
linking, e.g. subjects and objects with their 
governing verbs, which is critical for determining 
relations between entities.  

In the third stage, the discourse module 
integrates the semantic representations of 
individual sentences into a semantic representation 
of the entire text. To do this the discourse module 
performs co-reference resolution, linking multiple 
references in the text to the same entity identifier 
in the semantic model. The discourse module also 
uses a domain model of background knowledge 
appropriate to the extraction task, including 
inference rules that add extra information to the 
semantic model when certain classes occur in the 
texts. After the language processing steps are 
complete the information in the discourse model is 

read and stored in structured templates, which 
represent entities, their attributes, and relationships 
between them.  

The information extraction engine in AMBIT is 
built within GATE, the General Architecture for 
Text Engineering [9]. GATE implements a model 
of indexed annotations inspired by the Tipster 
Document Architecture, also adopted by Discovery 
Net. Aside from document and annotation 
management functionality, GATE provides a 
graphical development environment for modular 
language processing applications. 

Integrating AMBIT in Distr ibuted Workflows  
AMBIT is a standalone text mining system whose 
products are of value only insofar as they can be 
utilised in further applications so as to assist in the 
process of information access or knowledge 
discovery. In order to address this issue we have 
(1) made a number of AMBIT components 
accessible via web service interfaces, so that 
application builders can make use of them (2) 
constructed several demonstrator applications that 
suggest how AMBIT services could be used to 
support information access. The following AMBIT 
components/products have been made available via 
web service interfaces: 
1. Termino: A client can submit a document 

together with an indication of which 
biomedical term classes are to be recognised 
and the service will return the document with 
the specified classes marked up. 

2. Medline free text search: A client can submit a 
free text query and the service returns a ranked 
list of PubMed id’s of relevant documents. A 
secondary service can be used to return the 
abstracts themselves. 

3. Document clustering: A client can submit a 
list of PubMed id’s and the document set can 
be clustered in various ways, including by 
MESH category, by GO category (assuming 
GO codes have been associated with the 
abstracts) or by chromosome structure 
(assuming that AMBIT gene-chromosome 
location relation processing has taken place – 
see below). In each case the service returns a 
labelled tree where each node is a cluster of 
documents. 

4. Entity annotated corpus generation: A client 
can submit a  list of PubMed id’s and the 
service returns a corpus consisting of the 
corresponding abstracts with Termino 
annotations and an index recording each 
occurrence of each term across the document 
set. This is annotated/indexed corpus can be 
used to support entity-based browsing over a 
collection of documents (e.g. search results).  

A demonstrator application that illustrates the use 
of these web services as part of a workflow is a 



 

document retrieval and clustering application built 
as an adjunct to the myGrid workflow 
demonstrator for Williams Beuren Syndrome (see 
[13] for details). The fact that AMBIT components 
have already been made available as web services 
allows them to be integrated easily into other 
service-based workflow architectures, such as 
Discovery Net.  This is this route taken in building  
GoTag. 

2.3 The Integrated Infrastructure 

We have followed a service-based approach for 
integrating existing text mining technologies 
developed within both Discovery Net and myGrid. 
Existing services are composed and coordinated 
through the Discovery Net workflow environment 
workflow model to build  new, automated services. 
The approach is summarised in Figure 4. The 
workflow paradigm and Discovery Net 
architecture enables these services to be combined 
by the workflow author without concern for the 
origin of the service, Discovery Net and myGrid 
resources appear to the author as a coherent list of 
services. The developed workflows can then be 
deployed as new services, with a configurable user 
interface, to the end user accessed through a web 
browser. In our current implementation, services 
provided by myGrid are invoked remotely from 
within the Discovery Net workflow using SOAP 
and a format translation mechanism that allows 
interoperability between the internal document 
annotation formats used by both projects. 
 
3. The Case Study and Datasets  

3.1 Defining the GO Annotation Task 

The task chosen as a case study to validate the 
integrated text mining infrastructure is to develop a 
system that annotates Medline abstracts 
automatically with terms from the Gene Ontology 
(GO) and in real time to enable retrieval and 
clustering of abstracts via the ontology.  This 
approach would allow end users to search and 
browse document collections for concepts rather 
than terms, allowing them to access information of 
interest without having to worry about variances in 
spelling, synonyms or word ordering within 
phrases.  

Using an existing biological ontology to label 
and organise the concepts within papers has three 
main advantages: biological scientists should be at 
least aware of the ontology and may well be skilled 
with using it; there is no need to go through the 
process of building a new ontology which can be 
very time consuming and requires a high level of 
domain expertise; the organised data can be linked 
into existing tools for the ontology.  

Numerous biological ontologies exist (e.g. the 
ontologies provided by the Open Biology 
Ontology consortium http://obo.sourceforge.net/), 
however the ontology chosen was the Gene 
Ontology which is a wide-ranging ontology that 
covers the molecular biology sub-domains of 
molecular functions, biological processes and 
cellular components. 

3.2 Related Work 

Two existing software systems address the 
problem of assigning GO terms to PubMed 
documents, GO-KDS [10] which uses a machine 
learning approach and GoPubMed [11] which uses 
a term recognition approach. 

GO-KDS is a commercial product using a 
proprietary Weighted Confidence Learner (WCL) 
classifier to annotate PubMed articles with GO 
terms at varying levels of confidence. A minimal 
amount of text pre-processing is performed before 
classification to remove stop words, expand 
abbreviations and to parse complex names. Around 
26,500 training documents from existing databases 
that use GO annotations (e.g. SwissProt, Interpro 
etc.) are used to classify the PubMed documents 
into approximately 3,700 GO term categories. GO-
KDS is available for trial use through a web 
interface, but no real evaluation of the system is 
available due to a lack of comparison baseline. 

GoPubMed is developed by Dresden 
University and is based on earlier work from City 
University in London. The GoPubMed group 
annotate documents with GO terms by matching 
the descriptions of GO nodes within papers. 
However only very rarely does an entire GO node 
description line appear within a document, so the 
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semantic weight of each word within the GO node 
description lines are calculated and the words that 
carry the most meaning are matched within the 
document and then mapped back to the original 
GO terms. Term matching approaches are not 
without their problems, the main one being that 
they are reliant on the form of the document being 
analysed rather than the meaning, so concepts may 
be missed if they are not articulated using the same 
terminology as found in GO. 

3.3 Available Datasets and Evaluation 

The accuracy and effectiveness of a system such as  
the GoTAg system can be evaluated through the 
use of manually annotated data sets available from 
public repositories. Our benchmarks used in this 
paper are based on the yeast genome database 
(www.yeastgenome.org) which provides a 
manually curated mapping between Medline 
documents and GO terms.  

We have  collected a set of Medline Abstracts 
which the SGD database cites as evidence when 
human experts manually annotate a yeast gene 
with a GO Annotation. This data set contains 4922 
PMIDs and 2455 GO Terms forming 10485 
PMID-GO Term pairs.  The version of GO we are 
using contains a total of 18,374 terms arranged as a 
directed acyclic graph. There is also a stripped 
down version of GO, called GO-Slim, containing a 
subset of 87 high-level GO terms.  

The evaluation of our GO tagging systems is 
based on using standard recall and precision 
measures defined as: Recall = A/(A+B), and 
Precision = A/(A+C), where A is he number of 
GO-PMID pairs in the evaluation dataset that are 
predicted, B is the number of GO-PMID pairs in 
the evaluation dataset that are not predicted and C 
is the number of GO-PMID pairs not in the 
evaluation dataset that are predicted.  

The use of the SGD database to provide a gold 
standard is not without problems. The aim of the 
SGD curation process is not to tag all the 
documents in the collection with all the GO terms 
that appear in these documents, but rather to 
provide links for each of the genes in SGD to the 
PubMed papers that were used to infer the GO 
categories for these genes. Hence the dataset is 
incomplete and lowered levels of precision are to 
be expected. Secondly there is no guarantee that a 
GO term attributed to a paper is mentioned in the 
paper’s abstract. Such terms could have been 
assigned based on reading the full text of an article 
and no system (or human) could be expected to 
assign them to the abstract. This feature of the 
dataset would affect the maximum recall that could 
be obtained. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.   Text Mining Methods and Results 

4.1 Lexical Look-up Approach 

The first approach used in this paper assigns a GO 
annotation to a document if a GO term, or its 
synonym, is directly mentioned in the document.  
This is achieved by performing lexical look-ups 
invoked through a remote service call to the 
myGrid Termino engine hosted at Sheffield 
University. The Discovery Net workflow that 
implements this approach is shown in Figure 4.  

The main nodes in this workflow are 
implemented using generic components in the 
Discovery Net text mining repository. They have 
been labeled by more representative names:  
Abstracts Node: a table with four columns storing: 
PMID (unique PubMed identifier), Title (document 
title), Abstract (document abstract) and True 
GoTAGS (the set of human assigned GO tags for 
each document). Each of these columns is stored as 
text field. 
Create AnnotationSet Node: a generic component 
that tokenizes documents and initializes the 
annotated text data structure for the Abstracts 
columns in the input table, to enable components 
downstream to add extra information (e.g. the GO 
annotations) to individual segments within its text.  
Termino WebService: a component that makes a 
remote call to the Termino server, through a web 
service interface by sending only the text 
representation of the Abstract column for each 
document in the input table to the remote service. 
The current implementation iterates through the 
whole collection by sending one abstract at a time, 
waiting for a tagged document to be returned from 
the service, then parsing the returned data structure 
for the GO tags and adding them to the internal 
annotated text data structure of Discovery Net.  
Tabulate Results Node: a component that creates 
summary statistics for annotations found in its 
input. In this workflow, the parameters of the 
component are set such that the output contains 

Figure 4 Discovery Net GoTag workflow  based 
on remote calls to TERMINO server 



 

only two columns, the first containing columns 
stores a document’s PMID, and the second 
column, Predicted GoTAG, storing the list of the 
GO annotations predicted by the remote service. 
Extract GO ID, and GO RegEX Nodes: The 
Extract_GO_ID component performs a simple 
textual transformation on the Predicted GoTAG 
column to transform the the Termino format (eg: 
‘go_id:GO:0005574, namespace: 
cellular_component’ ) to the the more concise 
representation containing GO term id (eg: 
‘GO:0005574’). The transformation is based on set 
of regular expressions provided by the GO_RegEx 
component. 
Join Node: a generic component that performs a 
“ join”  operation on two tables to join the Predicted 
GoTAG Column with the original four documents 
in the Abstracts table, allowing further workflow 
stages to compare the human assigned tags and the 
predicted tags. 
Evaluate Node: a component that calculates 
precision, recall and F measures. 

Exper imental Evaluation of Lexical Look-up 
Table 1 summarizes our experiments in using 

this approach.  As could be expected, recall and 
precision are higher when using the 87 GO Slim 
terms as opposed to the 18374 GO terms.  

 
 
 
 
 
 

 
The above precision and recall results may seem 
poor at the first glance. However, it should be 
noted  that when using the full set of GO terms the 
large numbers of potential classes to which a 
document may be assigned make achieving high 
precision and recall values very difficult. In a 
traditional classification task, where a document is 
simply assigned a ‘yes’  or ‘no’  class, the likelihood 
of a correct prediction by chance is 50% (recall 
and precision would be expected to be 50%). 
Using GO and GO Slim Annotations as class 
means the likelihood of a correct prediction by 
chance are 0.005% and 1.149% respectively (recall 
and precision would be expected to be 0.005% and 
1.149% respectively). The low values can also 
partly be attributed to the nature of the SGD 
process that generated the data sets being used, as 
described in Section 3.3 above.  

In order to evaluate the above results better, we 
have manually analyzed a number of document 
abstracts and compared the curated vs. predicted 
tags with the abstract text. Our detailed analysis 
has revealed the following three main 
shortcomings of the pure lexical look-up approach: 

1. A document may include a direct mention of a 
GO term that may be represented in the text in 
a slightly different form from that of the 
official name and synonyms found in the GO 
database. For example, The GO term 
GO:0005739 has the official name 
‘mitochondrion’  and no synonyms. Many of 
the manually curated documents in the SGD 
data set that have been assigned this GO term 
do not include the word ‘mitochondrion’ , but 
instead include other words such as 
‘mitochondria’ .  

2. Although GO terms are organized in a 
directed-acyclic-graph, they have a hierarchical 
structure. Terms higher up this structure refer 
to more general concepts. Because of this, the 
names and synonyms of the GO terms higher 
up the hierarchy tend to use some of the same 
lexical terms used to describe lower concepts. 
The simple look-up method makes no 
allowance for this and assigns all GO terms 
found in paper. For instance a paper containing 
the text ‘mitochondrion distribution’  should be 
assigned GO:0048311 (‘mitochondrion 
distribution’). The lexical look up method will 
also assign it the GO term GO:0005739 
(‘mitochondrion’).   

3. A human expert may read an abstract and infer 
that it refers to a specific GO term even without 
explicit mentions of the official GO term, or its 
synonyms, appearing in the text of the paper. 
The GO tag can only be inferred from the 
context of the document of the other words 
appearing in the document. In this case, there is 
a semantic relationship between the name of 
the GO term and the document but no syntactic 
relationship.  

In Section 5 we discuss how some of these 
shortcomings can be overcome  

4.2 Machine Learning Approaches 

The second approach to GoTagging that we have 
explored is based on using machine learning 
methods. We restricted our experiments to using 
GO Slim annotations, rather than the full set of GO 
categories, and used a number of classification 
algorithms that have been integrated as services in 
Discovery Net; a Naïve Bayes algorithm, the 
Rainbow freeware classifier [12], and a Decision 
Tree and an SVM classifier, both based on Oracle 
Text. We omit the corresponding workflows for 
space restrictions. 

Evaluation of Naïve Bayesian Classifier  
Our first experiment was based on the Discovery 
Net Naïve Bayes text classifier. The workflow 
starts by identifying frequently occurring phrases 
and words in the training data set. A feature vector 

 
GO 
Version 

Recall Precision F 
Measure 

GO 15.1% 5.3% 7.8% 
GO Slim 51.0% 29.9% 37.7% 

 
Table 1 Precision and recall values for the lexical 

look-up approach based on Termino 



 

is created for each document containing the 
frequency of these phrases and words in each 
document. The feature vectors for the training 
dataset are then passed to the classifier. The results 
of our experiments are reported in Table 2. The 
approach offers higher precision, but lower recall, 
than the lexical look-up approach. The use of 
single words as features provides the best results. 
However, one shortcoming of this classifier is that 
the generated model assigns only one GO 
annotation to each document, rather than all 
possible GO annotations. In the evaluation data set 
each paper has on average 3.5 GO annotations 
assigned. This limits the maximum recall that can 
be achieved. The subsequent classifiers overcome 
this problem. 

 
 
 
 
 
 
 
 
 
 

Evaluation of Rainbow Classifier  
The Rainbow classifier provides a confidence 
value for assigning each GO annotation to each 
document. In our implementation we used only 
single words as features and filtered out the 
predicted classes if the confidence of the prediction 
was lower than a given threshold value. Table 3 
summarizes the evaluation of our experiments. As 
the confidence threshold decreases, it starts to 
outperform the Naïve Bayes classifier in terms of 
both precision and recall. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Evaluation of Oracle Text Classifier   
Our final set of results is based on using Decision 
Tree and SVM classifiers from Oracle Text that 
are invoked from within the Discovery Net 
workflows. Both classifiers return a number of GO 
annotations per document, rather than a single 

label. The results are summarized in Table 4, 
which indicates that the Decision Tree classifiers 
produces the best precision results across all 
experiments, but still lower recall than the lexical 
look-up approach.   

 
 
 
 
 
 

5.   Conclusions and Future Work 

The main purpose of our joint project has been to 
investigate the interoperability issues between the 
e-Science text mining efforts for our two systems. 
Our infrastructure work has been highly successful 
in terms of integrating both systems. We hope that 
these efforts will help us build a reusable text 
mining infrastructure for the UK e-Science 
community. We are currently evaluating and 
investigating the performance optimization issues 
related to such interoperability.  

For the application case study, our initial 
results show that the lexical look-up approach 
achieves the highest recall. All machine learning 
methods achieve the highest precision. In the 
remainder of this section we briefly describe some 
ideas for improving the results of each approach, 
and discuss the possibilities of building hybrid 
approaches. 

5.1 Improving Lexical Look-up Approach  

One option to improve upon the shortcomings of 
the pure lexical look-up implementation, whilst 
still employing a simple implementation, is to 
extend the lookup dictionary used. These terms 
need not be provided by a human expert, but rather 
can be calculated statistically from the available 
data sets to find surrogate terms that are tightly 
correlated with each GO term.  

We have conducted various experiments to this 
effect. Terms tightly correlated with each GO 
annotation were found by calculating statistics on 
the word and phrase distribution within the 
datasets. Chi2 values were calculated for each 
word and phrase in the document collection against 
the manually assigned GO Slim classes. These 
results were then filtered to include only words and 
phrases with high Chi2 values, meaning they are 
tightly correlated to specific GO Slim annotations.   

Our initial results indicate that this approach 
can be extremely beneficial. Taking the GO term 
GO:0005739 (‘mitochondrion’), which was used 
as an example of the shortcomings of direct GO 
annotation lookup in Section 4, our statistical 
methods have found it to be highly correlated with 
the terms ‘mitochondrial’  and ‘mitochondria’ .  

GO 
Version 

Features  Recall Precision F 
Measure 

GO 
Slim 

Words & 
Phrases 

15.8% 54.6% 24.5% 

GO 
Slim 

Words 17.8% 61.7% 27.7% 

GO 
Slim 

Phrases 16.6% 57.3% 25.7% 

Table 2 Evaluation of precision and recall values for 
the Naïve Bayes classifier 

 

GO 
Version 

Confidence 
Threshold 

Recall Precision F 
Measure 

GO 
Slim 

75% 14.0% 59.2% 22.7% 

GO 
Slim 

50% 16.4% 58.8% 25.6% 

GO 
Slim 

25% 18.9% 57.4% 28.4% 

GO 
Slim 

10% 22.5% 57.0% 32.3% 

GO 
Slim 

3% 25.8% 55.8% 35.3% 

Table 3 Evaluation of precision and recall values for  
Rainbow Classifier for various confidence thresholds. 

GO 
Version 

Classifier Recall Precision F 
Measure 

GO Slim Decision 
Tree 

36.8% 51.6% 43.0% 

GO Slim SVM 17.5% 53.4% 26.3% 
Table 4 Evaluation of precision and recall 

values for  two Oracle Text classifiers 



 

5.2 Improving Machine Learning Approach  

For the machine learning approaches, which are 
based on GO Slim, detailed analysis of the 
misclassification errors reveal that certain default 
annotations (or classes) consistently contribute to 
the prediction errors. The reasons are primarily 
that the training data is skewed towards such 
annotations. We are currently evaluating various 
standard machine learning approaches including 
bagging and boosting and novel centroid based 
methods to overcome these problems. 

We are also currently looking into the use of 
machine learning approaches for hierarchical 
classification, which would allow us to classify the 
whole set of GO terms, rather than concentrating 
on the set of GO Slim terms. 

5.3 Developing Hybr id Approaches 

In this paper we mainly investigated using the 
lexical look-up and machine learning approaches 
independently. We are currently experimenting 
with various hybrid approaches that can leverage 
the benefits of each individual approach.  

One particular promising hybrid approach that 
we have been investigating starts by performing 
lexical lookups to identify GO Slim terms in the 
training data. For each GO Slim, correct 
classification instances are labeled as positive 
examples and misclassifications are labeled as 
negative examples. This effectively generates a 
new training data set for each GO Slim term that is 
then passed to a machine learning classifier. We 
are currently investigating this approach based on a 
different data set based on annotated sentences 
rather than annotated abstracts 

We are also evaluating methods whereby the 
features vectors to be used in training the 
classifiers are generated by the Termino server 
through the identification of MeSH terms and gene 
names appearing in these documents, rather than  
simply using features based on words or phrases.  

Finally, we are also investigating the use of 
alternative data sets for training and evaluating our 
systems. In the current document collection, it 
should be noted that although the annotations in 
the dataset are correct, they are not complete  (i.e. 
not all relevant GO terms are manually tagged). 
This poses a challenge to the models learnt using 
the automatic machine learning methods,. It also 
affects our evaluation metrics. We are currently 
investigating the development and use of a 
different data collection in collaboration with 
biologists.  
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