In Proceedings of the 7th International Conference on Artificial Intelligence: Methodology,
Systems, Applications (AIMSA96), Sozopol, Bulgaria, 1996, pp. 86-95.

XI: A Simple Prolog-based Language for
Cross-Classification and Inheritance

R. Gaizauskas and K. Humphreys
Department of Computer Science, University of Sheffield
{robertg, kwh}@ics. shef . ac. uk

Abstract

This paper describes a simple Prolog-based knowledge representation language called
X1 — X for cross-classification and | for inheritance — which is designed to repre-
sent knowledge about individuals, about classes of individuals, and about inclusion
relations between classes of individuals. XI allows for straightforward definitions
of cross-classification hierarchies and for the association of arbitrary attribute-value
information with classes or with individuals. XI also provides a simple inheritance
mechanism which allows attribute values to be inherited by classes or individuals
lower in the hierarchy. XI is simple, flexible, theoretically well-founded, and fully
implemented. The utility of the language is demonstrated by discussing how it has
been motivated by, and used in, a natural language processing system to represent the
conceptual and world knowledge needed to perform co-reference resolution.

Keywords: knowledge representation, natural language, coreference resolution

1 Introduction

Knowledge representation (KR) has long been a central area of research in the "symbolic®
Al tradition and it remains so, justifiably, since so many aspects of intelligence appear to
require the application of large amounts of general conceptual and world knowledge. A
prime example of this is the co-reference resolution task in natural language understand-
ing, that is, the task of determining which expressions in a text refer to the same entity [2].
This task is difficult because co-referring expressions are generally not textually identical
(pronouns and their antecedents are one obvious instance of this phenomenon) and because
the information needed to perform the task is very often not present in the text, but rather
is background conceptual or world knowledge which the reader brings to the text. For
example, in the sentences Bill trod on the dog’s paw. He yelped and ran away. we have
no difficulty resolving He with the dog, rather than with Bill, because we know that tread-
ing on paws causes pain and that experience of pain leads to responses such as yelping.
To computationally model co-reference resolution, therefore, requires representing large
amounts of this general knowledge in a computer and then applying it appropriately during
the text interpretation process.

In the following we describe a simple language called X1 — X for cross-classification
and 1 for inheritance — that allows one to represent, access, and manipulate this sort of
knowledge. In section 2, after a brief characterisation of the main features of the language,
we present an example, then turn to presenting XI's syntax and its inference rules in more
detail. The semantics of the language is given by showing how a XI theory can be mapped
onto a definite clause theory in such a fashion as to guarantee the soundness of XI infer-
ences. We briefly highlight some of the non-logical extensions to XI that make it more
useful in practice. In section 3 we describe how XI has been used to do co-reference res-
olution as part of the discourse interpretation stage of a large applied NLP system. This
system took part in the recent ARPA-sponsored Sixth Message Understanding Conference
(MUC-6) [1] in which there was an evaluated co-reference task. The XI-based component
of the system performed very well at this task.

Xl is not particularly unique in conception. It may be viewed as yet another logic-
based or frame-based inheritance system in the general tradition of KL-ONE [3], [10] or
more generally as a form of semantic network [12], though the original motivation for its
design came from Dahlgren's work on naive semantics [4]. It strengths are that is simple to
use, simple to implement (the core of the language is less than 100 lines of Prolog), flexible
(arbitrarily complex computations may be carried out if necessary), and theoretically well-
founded. A full, efficient and freely available implementation exists, which may easily be
extended or incorporated into existing Prolog programs?.

2 Xl

Xl is a language for representing knowledge about individuals, about classes of individuals,
and about inclusion relations between classes of individuals. It allows for straightforward
definition of cross-classification (multiple inheritance) hierarchies and for the association
of attribute-value structures with classes or with individuals. The attribute-value structures
are sequences of attribute-value associations where the values may either be atomic or may
be expressed via definite clauses [9] which specify how the value of an attribute is to be
derived from other information held in the hierarchy (the *impure’ version of XI allows
negated literals to appear in bodies of the attribute clauses, where negation is interpreted
as 'negation as failure® as in Prolog). XI provides a simple inheritance mechanism which
allows attribute values to be inherited by classes or individuals lower in the hierarchy.

At one level XI may be viewed simply as a declarative formalism with its own syntax
and a semantics based on FOPC. But an interpreter and compiler for XI exists, together
with ancillary commands that allow X1 models to be incorporated into Prolog programs. In
this way X1 may be viewed as something akin to Prolog — a language which runs but which
has some claim to a declarative semantics.

Throughout, the design philosophy has been to *keep it simple’. Classes are repre-
sented as unary predicates and individuals are atoms. Attributes are binary predicates,
the first argument identifying the class or individual of which the attribute holds, and the
second being the value (which may be a variable to be instantiated by the execution of a
rule associated with the attribute). The language has two components, a definitional com-
ponent and a derivational component. The definitional component allows a hierarchy to
be defined and attributes to be associated with nodes in the hierarchy. The definition of
a cross-classification hierarchy we refer to as an ontology; the definition of a mapping be-
tween nodes in an ontology and attributes we refer to as an attribute knowledge base (AKB).
Together, an ontology and its associated AKB form what we term a world model.

The derivational component allows one to determine just two sorts of things: whether
one node dominates another in the hierarchy and what value an attribute has at a given
node. Attribute values are determined first at the given node and then are inherited by
working depth-first up the hierarchy from left to right. Multiple values may be obtained
by backtracking and nothing is done to prohibit these values from being contradictory —
this is left to the application. The application programmer is free to implement a default
inheritance scheme on top of XI.

2.1 AnExample

Here is an example of the XI expressions that define a fragment of a crude world model
to do with vehicles. First, the ontology (Figure 1 illustrates these hierarchical relationships
graphically):

X1 may be obtained fromft p: // ft p. dcs. shef . ac. uk/ honme/ kwh/ xi . tar . gz

top(X) ==> object(X) v event(X) v property(X).
obj ect(X) ==> vehicle(X) v country(X) v person(X).
vehicle(X) ==> (car(X) v lorry(X) v motorcycle(X)) &
(commercial (X) v private(X)).
car(X) ==> (rover(X) v toyota(X) v renault(X)) &
(twodoor (X) v fourdoor(X)).
el <-- private(X) & toyota(X) & fourdoor(X).
e2 <-- country(X).
e3 <-- country(X).
event (X) ==> drive(X) v own(X).
e4 <-- drive(X).
property(X) ==> single_valued prop(X) v multi_val ued_prop(X).
made_i n <-- single_val ued_prop(X).
col our _of <-- single_val ued_prop(X).

Terms on the left of the ==> arrow are superordinate classes and terms on the right
are subclasses. Each conjunct on the right is a dimension of classification and the dis-
juncts within each conjunct represent mutually exclusive alternative classifications within
the given dimension. So, for example, a vehi cl e will be at most one of acar, alorry,
or a not or cycl e and for whichever of these is chosen it may also be classified as either
conmer ci al or private. Terms on the left of the <- - arrow are instances, denoted with
constant terms of the form e1, e2, ..., and terms on the right of this arrow are the classes
of which the terms on the left are instances. So, el is an instance of something which is
private, atoyota, and f our door .

The XI expressions should not be read as implicit universal quantifications, but more
accurately as expressions relating classes denoted by unary predicate terms which are im-
plicit lambda abstractions (e.g. obj ect (X) denotes the class of objects and might more
accurately, but more awkwardly, be written AX. obj ect (X)).

top(X)
/ \
object(X) event(X) property (X)
\ RN
country(X) multi_valued_prop(X) single valued_prop(X)
I\ /\
vehicle(X) e2 3 made_in colour_of

N/

(lorry(X) motorcycle(X) car(X)) & (commercial(X) private(X))

(rover(X) toyota(X) renault(X)) & (twodoor(X) fourdoor(X))

\

Figure 1: A Sample XI Ontology

el

Here is the associated XI attribute knowledge base:

props(vehicle(X), [function(X, transportation]).

props(rover(X), [made_in(X e2)]).

props(toyota(X), [(nade_in(X e2) :- X < twodoor(_)),
(made_in(X,e3) :- X <- fourdoor(_))]).

props(drive(X),[|subj type(X person(_)), lobj type(X vehicle())].

props(el,[col our_of (el,blue)]).

props(e2, [nane(e2,uk)]).

props(e3, [nane(e3,japan)]).

props(nmade_in, [instance_type(object(_)),value_type(country(_))]).

props(col our_of,[instance_type(object(_)),value]).

Note that an attribute value may either be directly associated with a class or an instance
(asinprops(rover (X), [madei n(X, uk)]) orprops(el, [col our(el, bl ue)]) which tell
us, respectively, that r over s are made in the UK and that e1 is bl ue) or indirectly via a
rule which must be evaluated for the value to be determined (as in the case of the t oyot as
which if t wodoor are made in the UK and if f our door are made inj apan). Note also that
by treating attributes themselves as entities we can store information about attributes, such
as the types of their arguments, within a XI model.

Given this world model we may now ask questions such as:

?- el <- vehicle(X). /[* Is el a vehicle ? */

yes

?- hasprop(el, col our_of (el, X)). /* \What colour is el ? */

X = bl ue

?- hasprop(el, made_in(el, C), /* Where was el made ? */
hasprop(C, namre(C, N)).

C =e3, N=japan

?- hasprop(el, P). /* What attributes hold of el ? */

P = col our_of (el, bl ue) ;

P = nade_in(el, e3) ;

P = function(el,transportation) ;
no

2.2 Ontologies, Attributes, World Models

The definitional component of X1 allows for the specification of ontologies, attribute knowl-
edge bases, and world models. We define these more formally here.

Since Xl is an extension to Prolog, much of its syntax bears a close resemblance to that
of Prolog. The alphabet of XI, Ax/, is just like Prolog with the addition of two reserved
functor symbols props and hasprop and several new connectives. = and <— are used in
defining hierarchies to assert immediate class inclusion and immediate instance inclusion
respectively. = and « are used to indicate class inclusion (not necessarily immediate)
and instance inclusion (not necessarily immediate). Vv and A are used to define cross-
classification hierarchies.

A term is one of a variable, a 0-ary functor symbol (also called an instance symbol),
or an expression of the form f(¢4,...,t,) where f is a functor symbol and ¢, ..., are
terms. Terms of this last sort are called complex. In XI, classes are denoted by complex
terms with a class functor and exactly one variable — we call these class terms. Attributes
are asserted with attribute terms — complex terms with attribute functors and exactly two
arguments. If ¢ is a term we let var(¢) denote the set of variables occurring in t.

We now define three further classes of expressions: O-clauses (for defining an ontol-
ogy), G-clauses (for defining goals or queries), and P-clauses (for associating attributes
with classes, i.e. for defining an AKB).

O-clauses have one of two forms:

1. ¢ = D& ---&D,, where c is a class term and each D; is a disjunction of class
terms of the form d;, v --- Vv d;,, and each class term d; on the right of the O-
clause contains the variable occurring in the class term on the left of the O-clause —
i.e. var(d; ;) = var(c);

2. e «— c1& - - - &c, Where each ¢; is a class term containing the same variable, i.e.
var(c;) = --- = var(c,,) and e is an instance symbol.

x = y may be read "y is an immediate subclass of =" and = <— y may be read "z is
an immediate instance of y". Each conjunct (D;) on the right hand side of an O-clause of
type 1 may be thought of as a classificatory dimension and the disjoined terms within in it
are intended to be mutually exclusive classes (this exclusiveness is enforced below through
constraints on the sets of O-clauses that may form an ontology).

If O is a set of O-clauses we define the transitive, reflexive relation <q to hold between
two terms ¢; and ¢, which occur in clauses in O as follows. t; <g t» Iif:

1. t; =ty 0r

2. ty occurs on the left hand side of an O-clause of type-1 in O and ¢; occurs on the
right hand side of the same O-clause; or

3. ty occurs on the right hand side of an O-clause of type-2 in O and ¢; occurs on the
left hand side of the same O-clause; or

4. there exists a term ¢3 occurring on the right hand side of an O-clause of type-1 in O
in which ¢, occurs on the left and ¢; <g 5.

G-clauses have one of the forms:

1. ¢; = co Where ¢l and ¢, are class terms or variables;

e <+ c where e is an instance symbol or a variable and ¢ is a class term or a variable;

3. hasprop(e, p) Where e is an instance symbol or a variable and p is an attribute term
or a variable;

4. G, G4 where G and G, are G-clauses.

5. G1; Gy where G and G4 are G-clauses.

no

x = y may be read "y is a subclass of =" and = < y may be read "z is an instance of y".
P-clauses have the form props(c, V) where ¢ is either an instance symbol or a class
term and V is a set whose members are of the form

1. p(t1,t2) where p is a functor and ¢ is ¢ if c is an instance term and var(c) otherwise;
or
2. p(t1,t2) :— G where p is attribute term as in 1) and G is a G-clause.

A world model W is a pair (O, P) where
1. O isaset of O-clauses such that:

(@) there exists a unique term r such that for all terms ¢ occurring in O ¢t <o r; and
(b) for any O-clause c = D& - - - & D,, if t; and ¢, both occur in some D;, i.e. if

D; has the form t; V ¢, V - - - V tn then there is no term ¢ in any O-clause in O
such thatt <g t; and t <g ts.

2. P is a set of P-clauses such that for each P-clause props(c,{V1,...,V,}) iIn P, ¢
occurs in some O-clause in O.

Some remarks about this definition of world model are in order. The conditions on the
O-clauses in O ensure that

1. the ontology has a greatest element (the universal class);

2. no class can inherit from two classes within the same classificatory dimension; i.e.
since the classes within a classificatory dimension (one of the conjuncts D; on the
right of an O-clause of the form ¢ = D& ---&D,,) are meant to be mutually
exclusive then clearly no subclass can be a subclass of two or more of them.

The O-clauses in a world model may be seen as an extensional definition of a partial order-
ing relation on a subset of the class terms of £ x;. The conditions on P ensure that all the
classes which have properties associated with them in P-clauses are defined somewhere in
the ontology.

The language of XI, £x/, is the set of strings in A%, which are O-, G-, or P-clauses.

2.3 Derivation in Xl

Only G-clauses may be derived in XI. There are five types of G-clauses: those asserting
dominance relations between classes, those asserting dominance relations between classes
and instances, those asserting that an attribute holds of an instance (possibly by inheri-
tance), and conjunctions and disjunctions of these three basic types.

To establish that one class is a subclass of another or that an instance is an instance of
some class requires recursively exploring the set of O-clauses in the world model to see
if the terms in query are appropriately related; i.e. it involves seeing whether for a given
set of O-clauses O and terms ¢; and ¢, the ordering relation <g holds between them. To
establish that an attribute holds of a given instance requires checking to see if the attribute
is recorded in the set of attributes associated with the instance and this may in turn require
determining that other G-clauses hold, if the attribute is conditional. If the attribute does
not hold "locally® then the ontology is recursively explored upwards to see if the attribute
is associated with any dominating node. Note that the attribute we are seeking to estab-
lish may be a partially instantiated term. Thus, seeing that the attribute is recorded at a
class or instance node requires seeing if the goal term may be unified with (the head of)
any term stored in the set of attributes at the class or instance node. Conjoined goals are
established by establishing each conjunct. Disjoined goals are established by establishing
either disjunct.

As with Prolog, XI may be extended to permit the "pure’ underlying logic (definite
clause logic in the case of Prolog) to include negated goals. As in Prolog, these are estab-
lished by failing to establish the corresponding unnegated goal (*negation as failure*). Thus
there are no inference rules explicitly for negation and we first define a notion of derivation
for pure, negation-free XI, and later extend this notion to include negated goals.

The inference rules in XI are the following:

1. c= D& - &Dip, (a type-1 O-clause)
¢t = Dy1&---&Dyy, (c1 any class term in some D ;)

Chp => Dy1& - &Dyp, (ck—1 any class term in some Dy_; ;)

c=d (d any class term in some Dy, ;)
2. ¢c=d
e— di&---&dy, (a type-2 O-clause with d = d; for some 1 < i < m)

e ¢

3. (a) props(e,]...,p(e,t)...]) (eaninstance, p an attribute term, ¢ any term)
hasprop(e, p(e, 1))

(b) props(c(X),[...,p(X,t),...]) (c(X) aclassterm, p an attribute term,

t any term)
e + ¢(X) (e an instance term)
hasprop(e, p(e, t))
4. (a) props(e,|...,p(e,t):— G,...]) (ean instance term,p an attribute term
t any term, G' a G-clause)
Go (@ a substitution for variables in 7)

hasprop(e, p(e, 1)6)

(b) props(c(X),[...,p(X,t):— G,...]) (c(X) aclass term, p an attribute
term, t any term, G a G-clause)
Go (@ a substitution for variables in G)
e+c (e an instance term)

hasprop(e, p(e,)0)

5 Gy
Ga
Gi,Go (G and G, G-clauses)
6. Gy 7. Gs
GG, Gi;G, (G and G, G-clauses)

A Xl-derivation of a G-clause G from a world model W is a finite sequence of O-, P-,
and G-clauses such that G is the last clause in the sequence and every other clause is either
an O-clause or a P-clause in W or is a G-clause that follows from one or more clauses
preceding it in the sequence according to one of the X1 inference rules. If such a derivation
exists we say G is XI-derivable from W, written W +x; G.

2.4 Semantics

Rather than specify a semantics for XI *from the ground up®, a semantics may be given to
Xl indirectly by showing how a XI world model can be translated via a translation function
7T into a first order theory which may then be given the standard first order semantics. It
is then possible to show that for a given world model W and goal G, if W Fx; G then
TW) Fropc T(G). This establishes the soundness of derivations in X1 with respect to
first order logic. We do not appeal to any particular first order proof theory, as the first order
derivations we suppose are trivial; any natural deduction system such as [11] suffices. Of
course directly supplying models for world models is another, arguably preferable, method
for providing a semantics for XI; doing this should be relatively straightforward, but has
not yet been done.
Details of the translation function 7~ may be found in [5]. In brief:

1. each type 1 O-clause and type 1 G-clause is translated into one or more material
implications in which some right-hand side class term from the O- or G-clause is the
antecedent of the implication and the left-hand side class term is the consequent;

2. each type 2 O-clause and type 2 G-clause is translated into a ground fact in which
the instance term is substituted for the variable in the class term;

w

hasprop(e, p) G-clauses are translated simply as goals p;

4. conjoined and disjoined G-clauses are translated as conjunctions and disjunctions of
the translations of their subformulas;

5. P-clauses of the form props(c, {V1,..., V,,}) are translated as material implications

cOpifViisp, or T(G),c D pifV;isp:— G.

Given this translation it is then possible to prove
Proposition Let W = (O, P) be a world model and G be a G-clause. If W Fx; G then
TW) Fropc T(G).

Again, details of the proof may be found in [5].

2.5 Impure XI

There are four sorts of extension to XI, as it is implemented, which make it much more
powerful but which affect the simple semantics given above. These extensions parallel
similar features in Prolog. The first sort includes just the metalogical not operator. This
operator can be applied to G-clauses only, but hence may occur in the G-clause components
of attribute clauses within P-clauses. The semantics of not are as in Prolog: not G follows
from a world model W iff there is no derivation of G from W. Introduction of this operator
forces us to extend the notion of XI-derivation to that of XINF-derivation (XI Negation as
Failure).

The second extension includes mechanisms for limiting search — the xi_cut operator
which is analogous to the cut operator in Prolog but in this case forces a halt to searching
upwards in an ontology for attribute inheritance, and the nodeprop operator which limits
property inheritance to the current node.

The third includes mechanisms for dynamically altering the hierarchy by adding or
removing instances, classes or properties (analogous to assert and retract in Prolog).

The fourth includes mechanisms for input and output of world models.

3 TheApplication of XI to Coreference Resolution

We can identify several sorts of knowledge required to perform coreference resolution:

1. taxonomic or classification information (frequently anaphors are super- or subordi-
nate class terms of the antecedent, for example the vehicle may be used to refer to a
previously mentioned car);

2. attribute information about an individual or a class, together with an inheritance
mechanism to associate such information with all individuals in a class (for example,
that a typical precondition of a crashing event is the involvement of the agent in a
driving event). Since the extensions of attributes may not be known, we will also
need to express conditions on attribute values (i.e. the fact that an attribute has value
V1 if condition C; holds and value V5 if Cy holds);

3. attribute information about other attributes (for example, to preclude co-resolving
references to a blue car and a red car, we must know that the colour attribute is
single-valued for a given object at a given time — unlike, say, the beside attribute
which can have several values for a given object at a given time).

Note that what might be called property-based logic programming languages [9] such
as Prolog are inadequate for this task, at least if used naively. In such a language it is
relatively easy to discover what things have a given property (e.g. to find all green things
issue the query ?- green(X).) but very difficult, without changing representations, to dis-
cover all the properties which hold of an individual. To do this an object-based logic is

required in which attributes are associated with individuals or classes. Of course another
option is to adopt a second, or higher order, logic, but computational problems with these
languages (e.g. second-order unification is undecidable [8]) together with their excessive
formal power suggest, at least initially, the exploration of simpler approaches. Xl is capa-
ble of representing the knowledge types identified above, is therefore useful for coreference
resolution, and is a simple approach.

3.1 A Coreference Algorithm

A set of basic coreference heuristics can be easily represented in a XI attribute knowledge
base through the use of a di sti nct attribute, specifying restrictions on particular nodes
in an ontology. For example, instances of type obj ect which have the properties of being
animate and named by pronouns can be restricted to coreferences with instances of type
per son only. Text position information of referring expressions can also be represented via
properties, allowing the use of *distance measures® to restrict, say, pronouns to corefer only
within the current paragraph.

A coreference mechanism to make use of an ontology and knowledge base which in-
cludes such heuristics can then adopt a simple overall strategy of attempting to resolve each
new instance derived from a text with all existing instances, subject to the restrictions that
the instances inherit from the knowledge base. The mechanism, as currently implemented,
proceeds as follows.

Each pair of new and existing instances under consideration are initially compared for
*kind consistency”, to ensure that the instances® semantic types are ordered in the ontology.
The potential resolution is immediately rejected if the semantic types have no dominance
relation between them. For example, a new vehi cl e(e3) instance will be kind-consistent
with an existing car (e2) instance but not per son(el).

If the instances have compatible types then any inherited values of the di sti nct at-
tribute are established, to determine whether any of the coreference heuristics rule out
the potential resolution. For example, a heuristic prohibiting any new indefinite object to
corefer with anything before it in the text would apply here if, say, the new venhi cl e(e3)
instance was derived from a referring expression with an indefinite determiner.

If no general heuristics apply, then the values of all other properties of each instance
are established and checked for inconsistencies. Attributes are classified in the ontology
as either single- or multi-valued, and two instances are ‘attribute-consistent® only if the
values of single-valued attributes common to both are equivalent. If the attribute col our is
defined in the ontology as single-valued, then the potential resolution of a blue vehicle and
a red car will be rejected at this point. Equivalence tests specific to semantic type are used
for particular attributes such as name, for example to compare abbreviated forms of person
names with the full form (e.g. “Smith” with “Mr. John Smith”).

Each kind-consistent, non-distinct and attribute-consistent pair of instances is then as-
signed a similarity score based on the distance (in nodes) between the two instances in
the ontology, together with a count of any multi-valued attributes with the same value for
both instances. After all pairs have been considered the highest scoring pair (if any score
at all) is selected as the best candidate for coreference. If several pairs have equally high
similarity scores then the pair with the closest referring expressions in the text is preferred.
The selection of a best candidate causes the complete removal of the least specific instance
of the pair from the world model, and the addition of all its attributes to the remaining in-
stance. Any other references to the removed instance are then updated, effectively merging
two instances into a single referent and therefore representing a coreference in the original
input.

3.2 The Coreference Task in MUC-6

The algorithm outlined above was implemented in the LaSIE system, Sheffield University’s
entry to MUC-6 [7]. The XI language was used to construct a small domain-specific ontol-
ogy based on the MUC task specifications. For example, the specifications explicitly dis-
tinguished between company and government organisations, and between people and com-
pany posts. These distinctions could be directly represented in the X1 formalism, allowing
an initial task-specific ontology to be rapidly constructed. Further sub-classifications were
then made as needed, based on performance evaluations of training data. The small set
of coreference heuristics were also refined in this way. The system achieved a high level
of precision in the coreference task evaluation (approximately 70%, against a top score
of 72%), and a reasonable level of recall (54% against a top 63%). Further details of the
coreference algorithm and its performance can be found in [6].

4 Concluding Remarks

Xl has proved to be a powerful and easy-to-use language for representing the general con-
ceptual and world knowledge needed to perform coreference resolution. Coreference res-
olution is, however, just one example of a problem area in Al where general world knowl-
edge needs to be brought to bear in order to solve a more immediate problem. Others
include object matching in vision, reasoning in expert systems, planning and qualitative
reasoning. XIl's usefulness in the coreference task leads us to believe it could well find
more general application in Al.

References

[1] ADVANCED RESEARCH PROJECTS AGENCY. Proceedings of the Sixth Message Un-
derstanding Conference (MUC-6) (1995), Morgan Kaufmann.

[2] ALLEN, J. Natural Language Understanding, 2nd ed. Benjamin/Cummings, 1995.

[3] BRACHMAN, R., AND SCHMOLZE, J. An overview of the KL-ONE knowledge
representation system. Cognitive Science 9 (1985), 171-216.

[4] DAHLGREN, K. Naive Semantics for Natural Language Understanding. Kluwer,
1988.

[5] GaizauskAs, R. Xl: A knowledge representation language based on cross-
classification and inheritance. Tech. Rep. CS-95-24, Department of Computer Sci-
ence, University of Sheffield, 1995.

[6] GAlzAUSKAS, R., AND HUMPHREYS, K. Quantitative evaluation of coreference
algorithms in an information extraction system. In Proceedings of the Discourse and
Anaphora Resolution Colloguium (1996), University of Lancaster. in press.

[7] GAaizAuskASs, R., WAKAO, T., HUMPHREYS, K., CUNNINGHAM, H., AND
WILKS, Y. University of Sheffield: Description of the LaSIE system as used for
MUC-6. In [1].

[8] GoLDFARB, W. The undecidability of the second-order unification problem. Theo-
retical Computer Science 13 (1981), 225-230.

[9] LLoyD, J. Foundations of Logic Programming, 2nd ed. Springer-Verlag, 1987.

[10] MACGREGOR, R. The evolving technology of classification-based knowledge repre-
sentation systems. In Principles of Knowledge Representation, J. Sowa, Ed. Morgan
Kaufmann, 1991.

[11] SMULLYAN, R. First-Order Logic. Springer-Verlag, 1968.

[12] Sowa, J., Ed. Principles of Semantic Networks: Explorations in the Representation
of Knowledge. Morgan Kaufmann, 1991.

